Distributed Deduction by Clause-Diffusion: the
Aquarius Prover *

Maria Paola Bonacina and Jieh Hsiang

Department of Computer Science
SUNY at Stony Brook
Stony Brook, NY 11794-4400, USA
bonacina@loria.fr hsiang@sbcs.sunysb.edu

Abstract. Aquarius is a distributed theorem prover for first order logic
with equality, developed for a network of workstations. Given in input
a theorem proving problem and the number n of active nodes, Aquarius
creates n deductive processes, one on each workstation, which work coop-
eratively toward the solution of the problem. Aquarius realizes a specific
variant of a general methodology for distributed deduction, which we
have called deduction by Clause-Diffusion and described in full in [6].
The subdivision of the work among the processes, their activities and
their cooperation are defined by the Clause-Diffusion method. Aquar-
ius incorporates the sequential theorem prover Otter, in such a way
that Aquarius implements the parallelization, according to the Clause-
Diffusion methodology, of all the strategies provided in Otter.

In this paper we give first an outline of the Clause-Diffusion methodol-
ogy. Next, we consider in more detail the problem of distributed global
contraction, e.g. normalization with respect to a distributed data base.
The Clause-Diffusion methodology comprises a number of schemes for
performing distributed global contraction, which avoid the backward con-
traction bottleneck of purely shared memory approaches to parallel de-
duction. Then, we describe Aquarius, its features and we analyze some
of the experiments conducted so far. We conclude with some comparison
and discussion.

1 Introduction

In this paper we describe the Clause-Diffusion methodology for distributed theo-
rem proving, its implementation in the theorem prover Aquarius and we analyze
the performances of Aquarius on some experiments.

A theorem proving problem consists in deciding, given a set of clauses S
and a clause @, whether ¢ is a theorem of S. A theorem proving strategy C is
specified by a set of inference rules I and a search plan X. The inference rules

* Research supported in part by grant CCR-8901322, funded by the National Science
Foundation. The first author is also supported by a fellowship of Universita degli
Studi di Milano, Italy. First author’s current address: INRIA-Lorraine, 615 Rue du
Jardin Botanique, B.P. 101, 54602 Villers-les-Nancy, France.



can be further separated into two classes. The expansion inference rules, such as
resolution and paramodulation, derive new clauses from existing ones and add
them to the data base. The contraction inference rules, such as simplification
and subsumption, delete clauses or replace them by smaller ones. The search
plan X chooses the inference rule and the premises for each step, so that the
repeated application of X' and I generates a derivation. A derivation is successful
if it reaches a solution of the input problem. If the strategy is complete, the
derivation is guaranteed to succeed whenever the input goal is indeed a theorem.
In practice, however, a derivation by a complete strategy may fail to prove a
theorem, because it generates so many clauses that it exhausts the available
memory before succeeding. In other words, it generates too large a portion of
the search space of the problem. Contraction-based strategies try to reduce the
incidence of such failures by applying eagerly powerful contraction rules to keep
the data base, and thus the search space, as reduced as possible. These strategies,
as implemented for instance in the provers Otter [20], RRL [16] and SBR3 [1],
have obtained very encouraging results.

In this paper we present a methodology for parallelizing contraction-based
deduction strategies. The main feature of contraction-based strategies is that
existing data may be deleted or replaced by others through contraction. For
instance, an equation may be reduced to another equation via rewriting. Al-
though such a behaviour is the main reason why contraction-based strategies
are effective, it is also the major source of difficulty in parallelization. To illus-
trate this point, we consider the parallelization of Prolog technology theorem
proving (PTTP) methods. In goal-reduction methods such as PTTP, the set of
axioms remains static during the course of the derivation. Thus, it is possible to
pre-process all the axioms into elaborate data structures before the derivation
starts. Such structures are used to exploit parallelism of different granularities.
The cost of building them is limited to the pre-processing phase. Contraction-
based strategies, on the other hand, are not likely to take advantage of such
approaches, because axioms will be added and deleted during the derivation, so
that pre-processing is not sufficient.

The basic idea of the Clause-Diffusion methodology, which we present here,
is to parallelize a strategy at the search level, by partitioning the search space
among many concurrent deductive processes, which search in parallel for a solu-
tion. As soon as one of them succeeds, the whole distributed derivation succeeds.
The deductive processes are asynchronous and work in a largely independent
fashion: each process has its own local data base, constructs its own derivation
and interacts with the others through message-passing.

The Clause-Diffusion approach has a few features which we consider as new:

— It is a general methodology intended for implementing contraction-based
strategies in distributed environments.

— The problem of keeping data inter-contracted is dealt with through a notion
of image set — an approximation of the global data base. This avoids the
difficulty of the backward contraction bottleneck which often occurs in shared
memory implementation of contraction-based strategies [18, 27].



— It is a general methodology not confined to a specific architecture, topology
or inference system. Depending on the parameters chosen, our method can
be easily adopted in different environments.

Aquarius, a prototype built on top of the sequential theorem prover Ot-
ter, is completed. Aquarius implements a few of the variants of the Clause-
Diffusion methodology for all the theorem proving strategies offered by Otter.
Thus, Aquarius inherits most of Otter’s valuable features. First, it exploits the
high efficiency of basic operations and data structures, for which Otter is well-
known. Second, Aquarius maintains the philosophy of Otter of providing the
user with a wealth of options to experiment with. In addition to all those of
Otter, new parameters related to distributed execution are added, for a total
of 121 options. This flexibility allows the user to tailor the prover to different
classes of theorems, to use it to “simulate” to some extent other methods, e.g.
the team-work method of [3, 12], and to apply it to other problems, such as
Knuth-Bendix completion. Third, Aquarius is highly portable, since it has been
written in C and PCN [13], under the Unix operating system, for a network
of Sun workstations. In such an environment, each deductive process runs on
a different node of the network. We have run Aquarius on many problems and
we report a selection of results, including both positive and negative ones. For
the latter, we analyze the possible causes, especially in terms of performance of
communication, duplication of clauses and ways of partitioning the data base.
We feel that negative experimental results are important, because they highlight
the difficulties which remain to be solved and may contribute to further work.

The paper is organized as follows. First, we describe briefly the Clause-
Diffusion methodology and we define the distributed derivations generated by
a Clause-Diffusion strategy. While our methodology applies to theorem proving
strategies in general, we designed it keeping contraction-based strategies in mind.
Thus, we discuss some of the problems related to contraction in a distributed
data base and the solutions adopted in Aquarius. The remaining sections are
devoted to Aquarius and the experimental results. A full treatment of the issues
in parallel theorem proving and a formal presentation of the Clause-Diffusion
methodology are beyond the scope of this paper and therefore we refer to [6] for
a complete description.

2 The Clause-Diffusion methodology

Given a complete theorem proving strategy C =< I; X >, we describe how C is
executed according to the Clause-Diffusion methodology. We consider a network
of computers or a loosely coupled, asynchronous multiprocessor with distributed
memory. The latter may be endowed with a shared memory component. Our
methodology does not depend on a specific architecture; it can be realized on
different ones. Parameters such as the amount of memory at each processor,
the availability of shared memory and the topology of interconnection of the
processors or nodes, are variable.



The basic idea in our approach is to have a deductive process running at each
node and to partition the search space among these processes. We use p; ...Dpn
to denote ambiguously both the deductive processes and the nodes. The search
space is determined by the input clauses and the inference rules. At the clauses
level, the input and the generated clauses are distributed among the nodes. For
this purpose we need an allocation algorithm, which decides where to allocate a
clause. Once a clause v is assigned to processor p;, 1) becomes a resident of p;. In
this way each node p; is allotted a subset S of the global data base. The union of
all the S¥’s, which are not necessarily disjoint, forms the current global data base.
Each processor is responsible for applying the inference rules in I to its residents,
according to the search plan Y. Since the global data base is partitioned among
the nodes, no node is guaranteed to find a proof using only its own residents. To
assure that a solution will be found when one exists, the nodes need to exchange
information, by sending each other their residents in form of messages, called
inference messages. Fach node uses the received inference messages to perform
inferences with its own residents. The inference messages issued by a process
p; let the other processes know which clauses belong to p;, so that they can
use them for inferences. In a purely distributed system, inference messages are
implemented as messages, which may be routed or broadcast. Depending on the
broadcasting algorithm, there may be several inference messages, all carrying
the same clause, active at different nodes. In a system with a shared memory
component, inference messages may be communicated through the shared me-
mory.

The separation of residents and inference messages is also used to partition
the search space at the inference level. Using the paramodulation inference rule
as an example of expansion step, we establish that the inference messages are
paramodulated into the residents, but not vice versa. This restriction has two
purposes. First, it distributes the expansion inference steps among the nodes.
Second, it prevents a systematic duplication of steps: if this restriction were not
in place, then each paramodulation step between two residents 1, of p; and 5
of ps would be performed twice, once when 17 visits po and once when 15 visits
p1. Other expansion inference rules can be treated in a similar way [6]. While
subdividing the expansion steps serves its purpose, it is not productive to subdi-
vide the contraction steps, since the motivation behind contraction is to keep the
data base always at the minimal. In a contraction-based strategy, an expansion
step should be performed only if all the premises are fully reduced, at least with
respect to the local data base. To ensure this, we require that each processor
keep both its residents and received inference messages fully contracted.

We call raw clause a clause newly generated from an expansion step. Input
clauses are also considered as raw clauses. In the presence of contraction rules, a
raw clause should not become a resident until it has been fully contracted. Thus,
our methods also feature a number of distributed global contraction schemes to
reduce a raw clause with respect to the global data base. We shall describe these
schemes in Section 2.1. After contraction, a raw clause becomes a new settler.
New settlers are given to the allocation algorithm to be assigned to some node.



Every process executes the allocation algorithm for its new settlers: it may decide
either to retain a new settler or to send it to another node. The purpose of the
allocation algorithm is to partition the search space and keep the work-load
balanced as much as possible.

This is the basic working of the Clause-Diffusion methodology: local contrac-
tion and local expansion inferences at the nodes among residents and inference
messages, distributed global contraction, allocation of new settlers and mech-
anisms for passing inference messages. By specifying the inference mechanism
I, the search plan X to schedule inference steps and communication steps, the
allocation algorithm, the distributed contraction scheme and the mechanisms for
the communication of messages, one obtains a specific strategy. These elements
are summarized in the following notion of distributed derivation: every processor
Pk, 1 < k < n, computes a derivation

(S; M;CP;NS)& H(S; M; CP; NS)k Eo (8 M CP; NS)k E

where S¥ is the set of residents, M} is the set of inference messages, C P} is the
set of raw clauses and N SF is the set of new settlers at py at stage i. A distributed
derivation is the collection of the asynchronous derivations computed by the
nodes. The state of the derivations at processor p; and stage ¢ is represented
by the tuple (S; M; CP; NS)k. More components may be added if indicated by
a specific strategy. A distributed derivation succeeds as soon as the derivation
at one node finds a proof. A step in a distributed derivation can be either an
expansion step or a contraction step or a communication step. For instance,
sending an inference message for ¢ € S* from node p; to an adjacent node
p; can be written as (S* U {¢}, M7) F (S* U {¢}, M7 U {¢}). Settling a new
settler at node py can be written as (S*, NS* U {¢}) F (S* U {¢}, NS¥). This
representation assumes that communication between any two adjacent nodes is
instantaneous. It does not assume, however, that communication between any
two nodes is instantaneous. If an inference message sent by p; reaches p; through
Day - - - Da,,, it appears first in M*', then in M*? and so on. The time elapsed
in going from the source to the destination is captured in our description, by
showing the message stored, at successive stages, in the appropriate component
of all the nodes on the path.

2.1 Distributed global contraction

In distributed theorem proving, we term global contraction the task of reducing a
clause with respect to the global data base, i.e. the union of the sets of residents
of the parallel deductive processes. In [6], we have proposed several schemes
for distributed global contraction. The distributed approach which is common
to these schemes provides a solution to an important implementation problem
of parallel theorem proving in shared memory, which we term the backward
contraction bottleneck. In this section, we describe first this problem and then
the schemes for distributed global contraction implemented in Aquarius. More
details can be found in [6].



What is the backward contraction bottleneck Operationally, contraction
steps can be separated into forward contraction and backward contraction. In-
formally speaking, forward contraction uses existing data to contract new data
(raw clauses and incoming inference messages, for instance), while backward
contraction uses new data to contract existing ones (the residents). Designing
an effective and efficient method for parallel backward contraction is a much
more complicated task than for parallel forward contraction. Indeed, backward
contraction has turned out to be a critical problem for shared memory implemen-
tations [18, 27] of parallel theorem proving with contraction, while some other
implementations simply do not implement backward contraction (e.g. DARES
[11] and PARROT [15]). In a related area, parallel implementations of the Buch-
berger algorithm [14, 22, 25] have also suffered from this problem.

Forward contraction amounts to the normalization of a raw clause with re-
spect to the static data base of all the clauses existing when the raw clause is
generated. Thus, the task can be done once and for all when the raw clause
is derived. Backward contraction involves the normalization of any clause with
respect to all the clauses which may be generated afterwards. The normalization
tasks need to be repeated as new clauses are generated. It follows that the data
base is highly dynamic and there is no read-only data, i.e. all the items in the
data base need be accessible not only for reading but also for writing. In turn,
this implies that the clauses cannot be pre-processed into fast, specialized data
structures, such as those used in approaches to parallel rewriting in equational
programs, e.g. [17].

Furthermore, in contraction-based strategies, raw clauses are not used for
expansion steps. Therefore, forward contraction does not enter in conflict with
expansion. But backward contraction does, because it affects clauses that are
already being used as parents of expansion steps. Finally, a clause which is
reduced by a backward contraction step, should be tested for further contraction
with respect to all the other clauses. Thus, a single backward-contraction step
may induce many. In shared memory implementations such as [18, 27|, this
avalanche growth of contraction steps causes a write-bottleneck, the backward
contraction bottleneck, since all the backward contraction processes ask write-
access to the shared memory, where residents reside. Not all of them may be
served and an otherwise unnecessary sequentialization is imposed. The clauses
which are supposed to be subject to backward contraction may not be made
available for other tasks, e.g. expansion steps, so that these are delayed as well.

Distributed global contraction schemes In [6], we have given two classes of
schemes for distributed global contraction: global contraction by travelling and
global contraction at the source. In the first, we assume that no node has access
to the global data base [J!_, S* and thus global contraction employs messages.
In global contraction at the source, we assume that every node has access to an
approximation of the global data base, so that a raw clause can be contracted
at the node where it was born (its “source”). By an approximation of the global
data base, we mean a set of copies of the residents in the systems, which may



be used as simplifiers. We call such a set an image set. An image set is an
approximation, because it is not guaranteed to be identical to the global data
base (Ji_, S* at any stage of the execution.

In global contraction at the source by localized image sets, we assume that
the local memory of each node p; is large enough to hold a localized image set
SH® of |J7_, S*. Each node uses its localized image set as set of simplifiers to
perform global contraction of residents, raw clauses and incoming messages. The
localized image sets can be built by utilizing the inference messages: whenever
a node p; receives an inference message, it stores the clause carried by the mes-
sage in SH*. The identities SH7 = | J;'_, S% for all j, 1 < j < n, do not hold in
general, because the sets of residents S*’s keep evolving. Thus a localized image
set is just an approximation of the global data base. However, each of the SH’s
is logically equivalent to the global data base (JI_, S, if all the persistent resi-
dents, i.e. those not deleted by contraction, are broadcast as inference messages.
In global contraction at the source by global image set in shared memory, a sin-
gle, global image set is held in shared memory. The choice of the appropriate
global contraction scheme is related to the available resources: global contraction
by travelling requires very fast communication, while global contraction at the
source requires either sufficiently large local memories or a shared memory com-
ponent. In this paper we consider global contraction at the source by localized
image sets, because it is the scheme implemented in Aquarius, while we refer to
[6] for the others.

Our global contraction schemes do not suffer from the backward contrac-
tion bottleneck, because the clauses being rewritten by contraction are held in
the local memories of the nodes. Therefore, concurrent contractions are done
independently in the local memories at the nodes, with no need to wait to get
write-access to a shared memory. An additional advantage of image sets is that
such large sets of simplifiers can be implemented as discrimination nets [10, 23]
for the purpose of fast simplification.

Maintenance of the image sets A fundamental issue in global contraction
at the source is whether contraction of the simplifiers in the SH"’s should be
allowed. The question is whether the advantage of maintaining the SH*’s fully
reduced is worth the cost of updating them. In [6], we have proposed several
different approaches. One possibility is to have each p; performing contraction
on SH? just like on S* (“maintenance by direct contraction”). Each node con-
tracts its own raw clauses, but all nodes execute independently contraction of all
residents: if 1/ is a resident at p; which is also stored in the SHY components at
the other nodes, contraction of 1 is performed at all nodes which have a copy of
1. If contraction inferences are sufficiently fast, this may be a reasonable choice.

At the other extreme, one may forbid contraction on the SH*s and allow
only insertion of new elements (“no contraction” policy). If ¢ € SHY — S7 is
reducible, it may be reduced at the node p;, such that ¢ € S%, and a reduced
form of ¢ will be added to SH’ eventually. If SH7 is used only as a data
base of simplifiers, the presence of both ¢ and a reduced form 1)’ should not



represent serious redundancy. In fact, especially if the SH7’s are implemented
as discrimination nets, frequent updates of the elements in the net may not be
cost-effective. However, if no element is ever deleted from the SH7’s, their sizes
may grow up to compromise their performances. Furthermore, if the elements
in SH’ are used for expansion steps, redundant clauses in SH? would induce
the generation of more redundant clauses. In order to avoid such phenomena,
we may design mechanisms to update the SH"’s without resorting to the direct
application of contraction inferences.

We associate to every resident of a node a unique identifier: for every node p;
and for every resident ) of p;, 1 receives an identifier a, so that a is the unique
identifier of ¥ at p; and < p;,a > is the unique global identifier of 1. We also
establish that a resident i at p; has another attribute, the birth-time, i.e. the
time at p;’s clock when 1 was recorded as a resident of p;. Overall the format
of a resident is < v, a,z >€ S, where a is the identifier and x is the birth-time.
The global identifiers of the residents can be used to index the clauses in the
image sets. For instance, an image set may be implemented as a hash table, with
the global identifier as key. We require that inference messages carry a clause
together with its global identifier and birth-time. An inference message for a
resident < 9,a,x >€ S has the form < ,p;,a,x >. These additional fields
allow a node to recognize that an inference message is carrying a reduced form
of a previously received clause. If < v, a,z > is reduced to < ¢/, a,y >, where
y > x, at p;, a new inference message < v, p;, a,y > will be broadcast eventually.
Whenever a node p; receives an inference message, e.g. < ¢’,p;,a,y >, it checks
whether an element v with the same global identifier < p;, a > is stored in SH7.
If this is the case, node p; compares 1 and v’ according to the ordering on
clauses and saves the smallest in SH7. If the two clauses are not comparable,
the one with most recent birth-time is saved. We call this solution “update by
inference messages”.

In case of update by inference messages, the situation is less favorable if
<, a,x >€ S is deleted, rather than replaced, by a contraction step. In such
case, no more messages with identifier < p;,a > will be issued and therefore,
localized image sets may never be updated. However, inference messages may still
help: whenever an inference message < 1, p;, a, x > is deleted at a node py, it is
possible to check whether SH* contains any clause with identifier < p;,a > and
delete it. This is not sufficient in general to update all the localized image sets,
because clause 1 may not be deleted at py. Then, if performance is hindered by
not updating the localized data bases with respect to deletions, one may consider
broadcasting a special deletion message with identifier < p;,a > to inform all
the nodes that the resident at < p;,a > has been deleted. It is also possible to
integrate different policies: for instance, the strategies implemented in Aquarius
apply first update by inference messages and then direct contraction. Thus,
deletion messages are not necessary. Also, fewer direct contraction steps will be
performed if direct contraction is preceded by update by inference messages.



2.2 Clause-Diffusion strategies

In the above we briefly presented the Clause-Diffusion methodology by describing
its objectives, essential operations and various unique features. We give a sum-
mary of operations performed by a strategy designed according to our method-

ology:

— local expansion inferences between residents and between residents and in-
ference messages (resulting in the generation of raw clauses),

local contraction of residents and inference messages,

— global forward contraction of raw clauses,

global backward contraction of residents,

— allocation of new settlers,

— communication of messages.

For most of the operations we outlined a number of possibilities. A spe-
cific clause-diffusion theorem proving strategy can be formed by making specific
choices from the various options described. In other words, a clause-diffusion
strategy is specified by choosing

— a set of inference rules,

— a search plan that specifies the order of performing expansion, contraction
and communication steps at each process,

— the algorithm to allocate new settlers,

— the scheme for global contraction,

— the mechanism for message-passing.

In [6, 7], we proved that the Clause-Diffusion methodology is correct: if C =<
I; X > is a complete sequential strategy, its parallelization by Clause-Diffusion
yields complete distributed strategies. Since in Clause-Diffusion all the concur-
rent processes have the given inference system I, parallelization does not af-
fect the completeness of the inference system. Therefore, our correctness result
consisted in proving that parallelization by Clause-Diffusion preserves the com-
pleteness of the search plan, i.e. its fairness. In [6, 7], we gave a set of formal
properties that the algorithms and policies handling messages in a distributed
strategy need to satisfy. We proved that these properties imply fairness and we
showed that the specific policies of the Clause-Diffusion method satisfy those
properties.

In the following we describe a specific class of Clause-Diffusion strategies that
we have implemented.

3 The Aquarius theorem prover

Aquarius implements a version of the Clause-Diffusion methodology with global
contraction at the source by localized image sets. Each of the concurrent de-
duction processes executes a modified version, called Penguin [6], of the code of
the theorem prover Otter (version 2.2) [20]. Otter is a resolution-based theorem



prover for first order logic with equality. Its basic mechanism works as follows:
select a given_clause from the Sos (Set of Support), execute all the expansion
inferences with the given_clause, pre-process (forward contraction) and post-
process (backward contraction) all the generated raw clauses and then iterate.
Different strategies may be obtained by setting several options. Penguin is struc-
tured into a communication layer and a deduction layer. The communication
layer, written in PCN [13], implements the message-passing part. The deduc-
tion layer, written in C, incorporates the code of Otter, so that each Penguin
process executes the basic cycle on the given_clause. In addition, the deduction
layer implements the features required by the Clause-Diffusion methodology, e.g.
the partitioning of the expansion steps based on the ownership of clauses, the
distributed allocation of clauses and so on.

The Aquarius program is invoked with two main parameters, the name of
the input problem and the number of requested Penguin processes. Each Pen-
guin process reads its own input file and creates its own output and error files.
The format of the files is the same as in Otter. The user may set a very high
number of options: Aquarius has 121 options, 99 flags (boolean-valued options)
and 22 parameters (integer-valued options), including all those of Otter. These
options determine the components of the executed strategy: the inference mech-
anism, e.g. by selecting which inference rules are active, the search plan at each
node, e.g. by sorting the lists of clauses and messages, the allocation of clauses
as residents and the interleaving of inference steps and communication steps at
each node. Since each Penguin process reads its own input file, the user may set
different options patterns, and thus different strategies, at different Penguins.
This flexibility allows the user to set Aquarius to reproduce interesting features
of other methods. For instance, by having different strategies at different nodes,
Aquarius may “simulate” to some extent the team-work method of [3, 12], albeit
without the “referee processes” and the periodical reconstruction of a common
data base that are characterizing parts of the team-work method. The KNUTH-
BENDIX option (inherited from Otter), allows to perform Knuth-Bendix com-
pletion, so that Aquarius executes Knuth-Bendix completion in parallel. The
STAND-ALONE option induces each Penguin to work by itself as a sequential
prover, with no message-passing. One purpose of this option is to try in par-
allel different strategies on a given problem. Another application is to give to
each Penguin a different input and have the nodes working in parallel on differ-
ent problems. For instance, one may want to give to each Penguin a different
lemma from a large problem and have the lemmas proved independently. While
it provides the user with many input options, Aquarius is not interactive: like
for Otter, the emphasis is on obtaining fully automated proofs, with no human
intervention during the run. In the following, we analyze some experiments with
Aquarius, while we refer to [6] for a complete description of the prover.

3.1 Experiments with Aquarius

In the following table, we give the performances of Aquarius on some problems.
Aquarius-n is Aquarius with n nodes, where each node is a Sun Sparcstation.



So far we have been able to experiment with up to 3 of them. They commu-
nicate over the departmental Ethernet at Stony Brook. The sparcstations used
for our experiments were not isolated from the rest of the network and were si-
multaneously used by other users. Therefore the reported run times (in seconds)
represent the performances under realistic working conditions. For Aquarius-1
the run-time is that of the best run found. For n > 1, the run-time of Aquarius-n
is the run time of the first Penguin to succeed, which includes both inference
time and communication time. However, it includes neither the initialization
time spent to set up the Penguin processes at the nodes nor the time spent to
close all the PCN processes upon termination. Thus, the turn-around time ob-
served by a user is usually longer than the run time. The other Penguins run till
either they receive a halting message or also find a proof, whichever comes first.
Among the listed problems, two are propositional (pigeon and salt), four are
purely equational (lukas, robbins2, s7 (a problem in algebraic logic) and w-sk),
two are in first order logic with equality (ec and subgroup) and the remaining
ones are in first order logic.

Problem Aquarius-1| Aquarius-2| Aquarius-3|
andrews [8, 21] 18.00 25.40 24.39
apabhp [18] 11.86 18.11 14.18
bledsoe [4, 18] 12.29 21.53 23.00
cd12 [18] 104.18 50.98 47.56
cd13 [18] 98.79 45.32 51.07
¢d90 [18] 3.10 0.63 11.87
cn [18] 5.04 8.63 14.50
ec 3.03 1.96 1.77
imp1 [18] 6.63 2.64 3.54
imp2 [18 7.25 3.31 7.43
imp3 [18 32.05 17.92 38.89
lukab [5] 844.20 299.24 1079.45
pigeon (ph4) [21]| 8.21 7.66 8.14
robbins2 [18] 21.62 22.91 24.12
s7 (2] 630.62 208.37 192.54
salt 3.89 4.45 5.49
sam’s lemma 6.35 5.40 3.90
subgroup [26] 15.55 9.36 17.40
w-sk [19] 3.50 3.52 3.34

3.2 Analysis of the experiments

The significance of these experiments is limited by having only up to 3 nodes.
Also, the problems which can be solved sequentially in a few seconds are probably
too easy for the parallelization to pay off. Furthermore, this problems set may not
be the most ideal to test Clause-Diffusion. Most of the above problems are taken
from the input sets for Otter and ROO and therefore problems in first order



logic prevail over problems with equality. On the other hand, problems with
equality are those where the impact of backward contraction is most dramatic.
Aquarius-1 is generally slower than Otter, which indicates that the overhead
induced merely by having linked the PCN part with the C part is not irrelevant.
As can be seen, the experimental results are quite unstable. There may be many
factors for such mixed results. One reason is of course the prototype nature of
Aquarius, which was developed in a short 5 months period. In the following,
we try to analyze the performances of Aquarius in terms of communication,
duplication and distribution of clauses.

Observations of communication problems in Aquarius Communication
in Aquarius is very slow. An immediate evidence of this is the following. In the
current version, only one Penguin, i.e. Penguin0, finds the input clauses in its
input file and broadcasts them to the other Penguins. In many cases, PenguinQ
is the first one to succeed. Also, it happens that Penguinl and Penguin2 have
shorter run time than Penguin0, since the start of the derivations by Penguinl
and Penguin2 is delayed by the necessity of waiting for the input clauses. This
observation suggests that a simple improvement would be to have each Penguin
reading the input clauses from its input file. Another evidence that communica-
tion is hindering the performances is the following. Let v be a clause which can
be derived independently at two nodes, e.g. Penguin0 and Penguinl. In most
runs, it happens that Penguin0 generates and broadcasts v, but Penguinl de-
rives it on its own, before receiving the inference message from Penguin0. The
intuitive idea of inference messages in the Clause-Diffusion methodology is that
in general the clause carried by the message is “new” for the receiver. Therefore,
when the above phenomenon happens in Aquarius the purpose of the inference
messages is sort of defeated.

Communication among Penguin processes is handled by PCN. PCN [9] is a
logic-programming-like language built on top of a sequential language such as
C to serve as the communication layer. The performance of Aquarius is affected
by PCN in at least two ways:

1. The current implementation of PCN gives priority to the execution of C code
over the execution of PCN code.

2. The communication done through PCN and Unix is hampered by too many
levels of software, causing too much copying for each message.

The effect of the first problem is that no PCN message-passing will take place
until the C code completes. The producers of messages, i.e. the deduction layers
of the Penguins, are written in C, while the consumers, i.e. the communication
layers, are written in PCN. It follows that a consumer may not be scheduled from
the active queue to get its pending messages while the C code is being executed at
the node. Therefore communication, which is already likely to be the potential
bottleneck in a distributed implementation, is at a strong disadvantage with
respect to inference. The producers generate messages at a much faster pace
than the consumers may consume them. Indeed, we observed executions, where



the inference part of the computation halts upon finding a proof and then several
pending messages are delivered all together.

We countered this problem by reducing the size of the C processes, i.e., the
deduction layer of each Penguin. However, this does not seem to have been
sufficient. An alternative approach is to synchronize the communication and
deduction layers within each Penguin. Currently, they are largely asynchronous.
A possible synchronization is to let the deduction layer proceed only when all
the pending messages have been received by the communication layer.

Duplication After having experienced the problem with communication, we
resorted to try to reduce the amount of communication by empowering the single
nodes. Because communication is so slow, it is better that all nodes are able to
work as independently as possible. Some of the reported experiments have been
done by setting the flags in such a way that each node owns most of the input
clauses. In other experiments, the flags for the allocation of clauses have been
set in such a way that each node retains most of its raw clauses as residents.
None of the reported results, however, refer to executions under a combination
of flags equivalent to the STAND_ALON E mode. In other words, in all the
listed experiments, there is some partitioning of the search space.

While reducing communication, these settings of flags, together with the use
of localized image sets, induce a strong increase in duplication. It appears from
the trace files of the experiments, that often most of the clauses needed in the
proof are generated independently at all nodes. For instance, in one run of the
problem ¢d90, the clause P(e(e(z,y),e(z,y))) appeared in the trace of the ex-
ecution at Penguin2 as follows: first, it is generated and sent as new settler
to Penguin0; second, it is generated again and kept as resident; third, it is re-
ceived as inference message from Penguin0; fourth, it is generated one more time
and sent as new settler to Penguinl; fifth, it is received as new settler. Finally,
P(e(e(z,y), e(x,y))) is subsumed by P(e(z, x)). This amount of duplication may
explain the lack of speed-up in many experiments. The Clause-Diffusion method-
ology and Aquarius are sufficiently flexible to provide combinations of differ-
ent degrees of communication and duplication. However, the current version of
Aquarius realizes a highly duplication-oriented version of the Clause-Diffusion
methodology, which was not intended to be the main one, since it reduces the sig-
nificance of partitioning the search space. The basic idea in the Clause-Diffusion
methodology is to partition the search space. Indeed, the cases where Aquarius-2
speeds-up significantly over Aquarius-1 are exactly those where partitioning the
search space helps. More precisely, in most of the positive results, one Penguin
finds a shorter proof than the one found by the sequential prover, because it
does not retain some clauses. An example is ¢d90, where Aquarius-2 has super-
linear speed-up over Aquarius-1. The latter finds an 8-steps proof, which uses
first P(e(e(x,y),e(z,y))) and then P(e(x,x)). Aquarius-2 finds a 5-steps proof,
which uses P(e(e(x,y),e(x,y))), but does not even generate P(e(z,x)).



Distribution of clauses The third issue, i.e. the distribution of clauses, is
more of a conceptual nature. The criteria for distributed allocation of clauses
implemented in Aquarius try to balance the work-load by balancing the number
of residents at the nodes. They keep into account neither the contents of a
message, i.e. the clause, nor the history of the derivation, in order to decide
its destination. The design of more informed allocation policies, e.g. policies
which use informations about the clause being allocated and the history of the
derivation, may be an important progress. As an example, one may think of
heuristics of the form: if more than n clauses with property @ have been allocated
to node p;, then the next clause with property @ will also be allocated to node
p;. Such criteria, however, will be more expensive to compute and it may not be
simple to devise them. More generally, the question is how to find better ways
to partition the search space of a theorem proving problem.

4 Discussion

In the first part of the paper, we outlined our methodology for distributed de-
duction by Clause-Diffusion. This approach realizes a sort of coarse-grain paral-
lelism, that we have termed parallelism at the search level [6]. Our methodology
does not exclude the application of techniques for fine-grain parallelism, such
as those employed for parallel rewriting languages, e.g. [17]. While the Clause-
Diffusion methodology applies to theorem proving strategies in general, we have
devoted special attention to contraction-based strategies. We formulated the
problem of global contraction with respect to a distributed data base, clarifying
the differences between forward global contraction and backward global contrac-
tion. We indicated in the bottleneck of backward contraction a critical problem in
the shared memory approaches to parallel automated deduction. This source of
inefficiency had not been identified before. In [6], we proposed as solutions several
schemes for distributed global contraction. Here we have focused on global con-
traction at the source by localized image sets, since it is the scheme implemented
in Aquarius.

In the second part of the paper, we described Aquarius and analyzed some
experiments. Other parallel theorem provers have obtained better experimen-
tal results than Aquarius. For instance, ROO [18] shows linear speed-up on
most non-equational problems, while its performances on equational problems
suffer from the backward contraction bottleneck. ROO uses parallelism at the
clause level, since each concurrent process consists in selecting and processing
a given_clause. A common data base of clauses is kept in shared memory and
thus the search space is not partitioned. Such a purely shared approach to par-
allel theorem proving, with parallelism at the term/clause level, does not modify
the search space (and does not intend to). Thus, the parallel prover works on a
search space which is basically the same as in the sequential case and it is likely
to find a similar proof. The parallel prover speeds-up over the sequential one by
generating faster the same proof and the results are rather regular.

Our philosophy is very different, because by partitioning the search space, we



aim at parallelism at the search level. Then the concurrent processes deal with
search spaces that may be radically different from that of the sequential prover.
For instance, in Aquarius, it is sufficient that a Penguin does not retain a certain
clause and sends it to settle at another node to change dramatically the search
space for that Penguin. By considering a different portion of the search space,
a shorter proof may be found. In such cases, the distributed theorem prover
speeds-up considerably. However, if the search space turns out to be partitioned
in a way that does not reveal a shorter proof, the distributed prover is at a
strong disadvantage, as it may be trying to generate the sequential proof from a
fragmented search space. The irregular results are the consequence of this kind
of phenomena.

In summary, at the operational level, the main cause for the mixed results
of Aquarius is the inefficiency of communication. At least part of the problem
seems to be related to the choice of the PCN language, which perhaps was not
designed for the parallelization of a large, computation-bound C program, such
as Otter. The problem with communication may represent evidence in favor of a
less distributed version of the Clause-Diffusion methodology. Because of the use
of localized image sets, Aquarius implements a distributed duplication-oriented
approach. If a shared memory component is available, one may choose global
contraction at the source by image set in shared memory (see Section 2.1 and
[6]) and obtain a mized shared-distributed approach. This approach reduces the
amount of both communication, because exchange of messages may be replaced
in part by access to the shared memory, and duplication, because just one image
set is maintained. On the other hand, if a single image set in shared memory is
used, the search spaces considered by the different concurrent processes may turn
out to be less differentiated than in the more distributed approach of Aquarius.
Thus, the results might be more regular, but also, in a sense, less challenging
than in Aquarius. The latter probes a radically new approach to parallelization,
whose success will require a better understanding of the parallelization of search.

References

1. S.Anantharaman, J.Hsiang, Automated Proofs of the Moufang Identities in Al-
ternative Rings, JAR, Vol. 6, No. 1, 76-109, 1990.

2. A.Wasilewska, Personal communication, March 1993.

3. J.Avenhaus and J.Denzinger, Distributing Equational Theorem Proving, in
C.Kirchner (ed.), Proc. of the 5th RTA Conf., Springer Verlag, LNCS, to appear.

4. W.Bledsoe, Challenge problems in elementary calculus, JAR, Vol. 6, No. 3, 341-
359, 1990.

5. M.P.Bonacina, Problems in Lukasiewicz logic, Newsletter of the AAR, No. 18,
5-12, Jun. 1991.

6. M.P.Bonacina, Distributed Automated Deduction, Ph.D. Thesis, Dept. of Com-
puter Science, SUNY at Stony Brook, Dec. 1992.

7. M.P.Bonacina and J.Hsiang, On fairness in distributed deduction, in P.Enjalbert,
A.Finkel and K.W.Wagner (eds.), Proc. of the 10th STACS, Springer Verlag,
LNCS 665, 141-152, 1993.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.
25.

26.
27.

D.Champeaux, Sub-problem finder and instance checker: Two cooperating pre-
processors for theorem provers, in Proc. of the 6th IJCAI 191-196, 1979.
K.M.Chandy, S.Taylor, An Introduction to Parallel Programming, Jones and
Bartlett, 1991.

J.D.Christian, High-Performance Permutative Completion, Ph.D. Thesis, Univ.
of Texas at Austin and MCC Tech. Rep. ACT-AI-303-89, Aug. 1989.
S.E.Conry, D.J.MacIntosh and R.A.Meyer, DARES: A Distributed Automated
REasoning System, in Proc. of the 11th AAAI Conf., 78-85, 1990.

J.Denzinger, Distributed knowledge-based deduction using the team-work me-
thod, Tech. Rep. SR-91-12, Univ. of Kaiserslautern, 1991.

I.Foster, S.Tuecke, Parallel Programming with PCN, Tech. Rep. ANL-91/32, Ar-
gonne Nat. Lab., Dec. 1991.

D.J.Hawley, A Buchberger Algorithm for Distributed Memory Multi-Processors,
in Proc. of the International Conference of the Austrian Center for Parallel Com-
putation, Oct. 1991, Springer Verlag, LNCS, to appear.

A.Jindal, R.Overbeek and W.Kabat, Exploitation of parallel processing for im-
plementing high-performance deduction systems, JAR, Vol. 8, 23-38, 1992.
D.Kapur. H.Zhang, RRL: a Rewrite Rule Laboratory, in E.Lusk, R.Overbeek
(eds.), Proc. of CADE-9, LNCS 310, 768-770, 1988.

C.Kirchner, P.Viry, Implementing Parallel Rewriting, in B.Fronhdfer and G.Wri-
ghtson (eds.), Parallelization in Inference Systems, Springer Verlag, LNAI 590,
123-138, 1992.

E.L.Lusk, W.W.McCune, Experiments with ROO: a Parallel Automated Deduc-
tion System, in B.Fronhofer and G.Wrightson (eds.), Parallelization in Inference
Systems, Springer Verlag, LNAT 590, 139-162, 1992.

W.W.McCune, L.Wos, Some Fixed Point Problems in Combinatory Logic,
Newsletter of the AAR, No. 10, 7-8, Apr. 1988.

W.W.McCune, OTTER 2.0 Users Guide, Tech. Rep. ANL-90/9, Argonne Nat.
Lab., Mar. 1990.

F.J.Pelletier, Seventy-five problems for testing automatic theorem provers, JAR,
Vol. 2, 191-216, 1986.

K.Siegl, Grobner Bases Computation in STRAND: A Case Study for Concurrent
Symbolic Computation in Logic Programming Languages, M.S. Thesis and Tech.
Rep. 90-54.0, RISC-LINZ, Nov. 1990.

M.E.Stickel, The Path-Indexing Method for Indexing Terms, Tech. Note 473, SRI
Int., Oct. 1989.

S.Tuecke, Personal communications, May 1992 and Dec. 1992.

J.-P.Vidal, The Computation of Grébner Bases on A Shared Memory Multipro-
cessor, in A.Miola (ed.), Proc. of DISC090, Springer Verlag, LNCS 429, 81-90,
Apr. 90 and Tech. Rep. CMU-CS-90-163, Carnegie Mellon Univ., Aug. 1990.
L.Wos, Automated Reasoning: 33 Basic Research Problems, Prentice Hall, 1988.
K.A.Yelick and S.J.Garland, A Parallel Completion Procedure for Term Rewrit-
ing Systems, in D.Kapur (ed.), Proc. of the 11th CADE, Springer Verlag, LNAI
607, 109-123, 1992.



