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Abstract: This review paper examines the current landscape of electricity market modelling, specif-
ically focusing on stochastic approaches, transitioning from Mean Field Games (MFGs) to Neural
Network (NN) modelling. The central objective is to scrutinize and synthesize evolving modelling
strategies within power systems, facilitating technological advancements in the contemporary elec-
tricity market. This paper emphasizes the assessment of model efficacy, particularly in the context
of MFG and NN applications. Our findings shed light on the diversity of models, offering practical
insights into their strengths and limitations, thereby providing a valuable resource for researchers,
policy makers, and industry practitioners. The review guides navigating and leveraging the latest
stochastic modelling techniques for enhanced decision making and improved market operations.

Keywords: energy markets; power systems; market clearing; stochastic differential equations;
optimization; ML

1. Introduction

The liberalization of energy markets and the promotion of sustainable energy have
introduced market uncertainties, affecting stakeholders’ decision-making processes. In
the energy market, stochastic models are a specific class of mathematical approaches
mainly used to take into account the challenges caused by managing uncertainties naturally
arising when one aims to represent energy-characterizing variables and their dynamics
correctly. Unlike deterministic models, where all input parameters are assumed to be
known, stochastic models incorporate uncertainty in at least one input parameter, thus
providing a more realistic framework for simulating the evolution of energy production
and consumption and for describing the economic behaviours of energy-related assets.

Over the years, and increasingly in recent times because of both political and climatic
factors, the need to accurately predict the aforementioned dynamics has become even more
pressing. This need has led scientists belonging to a heterogeneous class of disciplines, from
physics to mathematics, from climatology to artificial intelligence, to the development of
increasingly sophisticated and precise models. Among them, solutions based on advanced
tools specific to stochastic analysis in general and the theory of Stochastic Differential
Equations (SDEs), in particular, have stood out. It is worth remembering that such models
are typically characterized by not having explicit solutions. This lack has made it necessary
to use considerable hardware resources, typically via the wise use of parallelization tech-
niques, with specific reference to Graphical Processing Unit (GPU) structures interacting in
real-time. In order to optimize computation flows, while at the same time containing execu-
tion times in the face of specific cost constraints, the development of hybrid SDE-based and
Machine Learning (ML)-based schemes has been undertaken, with specific reference to the
implementation of increasingly sophisticated neural networks (NNs).
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In the present paper, we address the task of reviewing those stochastic methods that
have shown their effectiveness in dealing with the dynamic analysis and forecasting of
energy markets. In particular, we provide a comprehensive review of current trends in
electricity market modelling, traversing from SDE to NN modelling, passing through
Mean Field Games (MFGs). Indeed, as the demand for cleaner and more efficient energy
solutions intensifies, understanding and adapting to the intricate dynamics of the market
become increasingly crucial. By evaluating the strengths and limitations of existing models,
this review aims to contribute to the ongoing discourse surrounding electricity market
modelling, offering a roadmap for researchers, policy makers, and industry professionals
keen on harnessing the potential of stochastic approaches.

Existing energy systems boast impressive strengths, being characterized by their
ability to deliver reliable and consistent power to meet the demands of a growing global
population. Centralized power generation has enabled economies of scale, efficient resource
utilization, and stable energy supply. However, this centralized paradigm has limitations,
especially as the world grapples with the urgent need for sustainable and resilient energy
solutions. One notable limitation concerns the vulnerability of centralized power grids
to natural disasters, cyber attacks, and other unforeseen events. Moreover, reliance on
conventional fossil fuels has led to environmental concerns, prompting a paradigm shift
towards renewable energy sources. The intermittent nature of renewable resources, such
as solar and wind, adds a layer of complexity to the existing system. As we transition
towards a more sustainable energy landscape, challenges in ensuring reliability, flexibility,
and efficiency become apparent.

The generation, transmission, and distribution triad represents the core elements of
energy markets. The landscape of power generation includes traditional sources like coal
and natural gas alongside an increasing reliance on renewable sources such as solar, wind,
and hydropower. Modelling the stochastic nature of renewable energy generation is a
formidable task, considering the variability and intermittency associated with these sources.
The transmission of electricity across vast networks involves intricacies related to load
balancing, congestion management, and the integration of diverse energy sources. At the
distribution level, these dynamics affect the delivery of electricity to end-users.

In exploring the energy landscape, we traverse the spectrum of SDEs while focusing
on stochastic partial differential equations (SPDEs) to model standard financial instru-
ments in energy markets. The strategy of market participants can be encapsulated through
various mathematical models that leverage principles from economics, game theory, and
optimization. To encompass the strategic interactions among market players, recognizing
that energy markets are shaped not only by random fluctuations but also by the rational
decision making of numerous participants, we focus on game theory models such as MFGs.
MFGs capture the strategic interactions among rational agents seeking to optimize their
objectives. This could involve generators determining bidding strategies, retailers opti-
mizing procurement, and consumers adjusting their consumption patterns in electricity
markets. MFGs are one of the most widespread models used to establish the Nash equilib-
rium. They are particularly relevant when modelling scenarios with many interchangeable
market participants, such as consumers or small-scale generators, where individual actions
collectively influence the market.

Another possibility relies on ML models, such as Reinforcement Learning (RL), which
are RL techniques or use predictive analytics based on neural networks for forecasting
market trends, electricity prices, and demand patterns. We harness the capabilities of NNs
and sophisticated tools designed for pattern recognition and prediction. By leveraging
the computational prowess of NNs, we aim to uncover hidden patterns, correlations, and
trends within vast and intricate datasets. NNs become invaluable allies in forecasting
energy trends, enhancing our ability to make informed decisions and predictions in an
ever-evolving energy ecosystem.
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Other models are based on optimization algorithms such as Linear Programming (LP)
and Mixed-Integer Linear Programming (MILP), which are used to model the bid generation
process, considering production costs, demand, and capacity limits as problem constraints.

The paper is organized as follows: Section 2 shows our motivation and paper iden-
tification methodology; an overview of the energy modelling market applications and
methods is presented in Section 3. In Section 4, we review more recent SDE-based meth-
ods to model energy features; in Section 5, we focus on the most recent SPDEs method
for financial contracts. In Section 6, we introduce the MFG paradigm with a plethora of
applications in the energy sector; in Section 7, we present some key applications of ML
and optimization algorithms in the energy sector. We conclude the article with Section 8,
outlining future directions.

2. Review Scope and Motivation

Our aim is to review the presence and application of SDEs in energy market analysis
while exploring their intersection with ML and neural networks (NNs), given their increas-
ingly central role in this domain. In particular, we encompass a wide array of applications
and prominent methodologies discussed in the literature, as shown in Figure 1. While many
reviews exist, our goal is to provide a comprehensive one covering a wider perspective of
energy modelling applications and approaches, providing the main concepts and theory
behind them, and filling gaps left by previous analogous works. For example, in [1,2],
the authors primarily focus on stochastic model classifications, while other works focus
on specific applications or approaches [3–5] without providing a complete analysis, or
they adopt a bibliometric perspective (see, e.g., [6]). Additionally, we explore emerging
advancements, particularly in the context of AI-driven solutions, also discussing current
trends and future directions within this rapidly evolving field.

As previously mentioned, our primary focus is to provide a broader perspective on
the literature rather than merely citing a number of publications. Accordingly, we identify
key papers across three main energy areas: SDEs, MFGs, and ML for energy. We also
detail surveys covering these domains. For this review, we selected papers indexed in
Scopus based on two main criteria: high impact (measured by citation count) and/or recent
publication date.

Figure 1. Applications and approaches.

3. Energy Modelling: Applications and Methods

Energy market modelling refers to the development and application of mathematical,
computational, and statistical methods used to represent and analyze the dynamics of
energy markets [7]. It involves simulating interactions between key participants, such
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as electricity generators, consumers, regulatory bodies, etc., to forecast market outcomes
like prices, demand, and system reliability. Energy market modelling involves applying
techniques such as agent-based modelling, mathematical and econometric analysis, ML
models, and optimization to support decision making in policy development, strategic
planning, and investment in energy systems. This modelling process helps to assess the
impact of various economic, technical, and regulatory factors on market stability, pricing,
investment requirements, and overall efficiency [8].

Figure 1 provides an overview of energy market applications and modelling methods,
while Table 1 reflects various energy market modelling applications along with applied
methods. While the energy applications and example papers listed in Table 1 will be
discussed in detail later in this review, particularly in Sections 4–7, this section provides a
broader perspective on the reviewed methods. Our aim is to present an abstract definition
of these methods, highlighting their classifications and core concepts.

Table 1. Overview of applications and approaches.

Application Area Techniques Examples

Electricity prices and
production modelling

Mean-Reverting Processes,
Jump-Diffusion Models,
Fractional Brownian Motion,
Regime-Switching Models,
Reinforcement Learning,
Hybrid Models, ML, DNN

[9–24]

Energy contract

Jump-Diffusion Processes,
Partial Integral Differential
Equations (PIDEs), SPDE,
Ordinary Differential
Equations (ODEs)

[25–28]

Supply and demand (load and
consumption) MFGs, ML, DNN [14,20,29–32]

Strategic bidding and market
price formation MFGs, ML, DNN [33–35]

Grid and power plant
management

Stochastic Programming,
MFGs, Monte Carlo
Simulation, Markov Decision
Processes, Blockchain-based
Methods, ML, DL

[32,36–52]

Energy Dataset Augmentation GANs [53–56]

3.1. Stochastic Methods

Stochastic methods are mathematical approaches used to model random processes and
uncertainties, making them fundamental in analyzing the dynamic and often unpredictable
nature of energy markets. By incorporating randomness and probability, these methods
provide realistic insights into factors like price volatility, demand fluctuations, and supply
constraints. Common stochastic methods include SDEs, geometric Brownian motion, jump-
diffusion models, and mean-reverting processes. SDEs allow for modelling continuous
price changes with embedded random fluctuations, while geometric Brownian motion is
effective in simulating price paths that assume continuous growth combined with random
shocks. Jump-diffusion models go further by accounting for sudden, significant changes,
such as economic events or supply chain disruptions. Mean-reverting processes, such as
the Ornstein–Uhlenbeck process, are especially useful for modelling variables that tend to
oscillate around a stable long-term mean, as often observed in energy commodities like oil
and gas prices. Section 4 delves into the use of stochastic processes for energy modelling.

3.2. MFGs

Mean Field Game (MFG) models are a class of mathematical frameworks used to study
the strategic interactions among a large number of agents or players in various settings,
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particularly in economics, finance, and game theory. The core idea behind MFGs is to model
situations in which each agent’s decision making is influenced by the overall distribution
of other agents’ strategies, while also taking into account their own individual state and
actions. Common examples include applications in financial markets, where MFG models
can simulate the behavior of numerous investors whose actions affect market prices and
trends. MFG models often employ stochastic control and partial differential equations
(PDEs) to define the evolution of an agent’s state over time, considering both individual
incentives and overall system dynamics. In Section 6, we review influential papers that
apply MFG to energy modelling.

3.3. ML Methods

ML is a subfield of artificial intelligence (AI) mainly concerned with algorithms that
aim to improve themselves through experience. The field can be rigorously classified into
several main families based on the nature of the learning task and the structure of the data.
Nevertheless, it is possible to individuate primary categories. The latter include supervised
learning, unsupervised learning, reinforcement learning, semi-supervised learning, transfer
learning, and deep learning, and each of these families encompasses a variety of methods
characterized by specific mathematical frameworks. For the sake of completeness, let us
quickly recall the standard definitions of the aforementioned ML main approaches.

3.3.1. Supervised Learning

Supervised learning deals with learning a function that maps inputs to outputs based
on example input–output pairs. Formally, given a dataset D = {(xi, yi)}N

i=1, where xi ∈
X ⊆ Rn and yi ∈ Y ⊆ Rm, the goal is to find a function f : X → Y that minimizes a loss
function L( f (x), y). The latter can be expressed as an optimization problem:

min
f∈F

1
N

N

∑
i=1

L( f (xi), yi) + λΩ( f ), (1)

where F is a hypothesis space of functions, Ω( f ) acts as a regularization term, and λ ≥ 0
controls the trade-off between the empirical loss and regularization. Typical methods be-
longing to supervised learning applications are those related to regression and classification
tasks, e.g., in linear regression, f (x) = w⊤x + b, and the loss function (being quite often
the standard choice) can be the mean squared error:

L( f (xi), yi) = ∥w⊤xi + b − yi∥2. (2)

3.3.2. Unsupervised Learning

Contrary to the supervised approach, unsupervised learning aims to find hidden
structures or patterns in unlabeled data. Specifically, given data D = {xi}N

i=1, the objective
is to model the underlying probability distribution P(x) or to discover groupings in the
data. A key problem in unsupervised learning is the clustering problem. A typical example
are k-means clustering related tasks, in which the goal is to partition the data into k clusters
by minimizing the within-cluster sum of squares:

min
C1,...,Ck

k

∑
j=1

∑
xi∈Cj

∥xi − µj∥2, (3)

µj being the centroid of cluster Cj.
An alternative relevant method, which originally belongs to the traditional statistical

field, is the principal component analysis (PCA) approach. The latter seeks a projection
of the data onto a lower-dimensional space that maximizes the variance. Accordingly, the
PCA tool solves the following:

max
W∈Rn×p

Tr(W⊤SW), (4)
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subject to W⊤W = Ip, where S is the sample covariance matrix, p ≤ n, and Ip is the p × p
identity matrix.

3.3.3. Reinforcement Learning

RL focuses on learning optimal policies through interactions with an environment.
The problem is typically formalized as a Markov decision process (MDP), defined by the
tuple (S ,A, P, R, γ), where S is the set of states, A is the set of actions, P(s′ | s, a) represents
the state transition probability, R(s, a) is the reward function, and γ ∈ [0, 1) is the discount
factor. It is worth mentioning that such an approach is strictly connected to one of the
Markov chains. Indeed, the underlying structure of state transitions is supposed to follow
the Markov property. Moreover, its functioning involves taking decisions that influence
(the probability of) state transitions, hence generalizing the Markov chain approach to
the one of making choices in the presence of stochastic noise. In particular, the above
implies that the role played by the underlying probability filtration is limited to the present
σ-algebra, which practically implies that, given the present, the future does not depend on
the past. Within this context, the objective is to find a policy π : S → A that maximizes the
expected cumulative reward, as follows:

Vπ(s) = Eπ

[
∞

∑
t=0

γtR(st, at) | s0 = s

]
, (5)

Typical tools in RL applications are based on value iteration and policy gradient
methods. For example, in Q-learning, which is a so-called model-free RL algorithm and is
also able to manage tasks characterized by stochastic transitions, the action-value function
Q(s, a) is updated iteratively:

Qk+1(s, a) = E
[

R(s, a) + γ max
a′

Qk(s′, a′) | s, a
]

. (6)

3.3.4. Semi-Supervised Learning

Semi-supervised learning leverages both labelled and unlabeled data. Indeed, given a
small set of labelled data Dl = {(xi, yi)}L

i=1 and a larger set of unlabeled data Du = {xi}L+U
i=L+1,

the goal is to improve learning performance by exploiting the structure in Du.
Typically, authors apply minimization techniques based on a combined loss function:

min
f∈F

(
1
L

L

∑
i=1

L( f (xi), yi) + α
1
U

U

∑
j=1

Lu( f (xj))

)
, (7)

where Lu is an unsupervised loss term, and α balances the contribution of the unlabeled data.

3.3.5. Transfer Learning

Transfer learning aims to transfer knowledge from a source task to a target task.
Specifically, given a source domain DS with task TS and a target domain DT with task TT ,
the objective is to improve learning in TT using information from DS and TS. Therefore,
the task concerns finding a mapping ϕ, such that

PT(yT | xT) ≈ PS(yS | ϕ(xT)), (8)

or adjusting the hypothesis space or regularization terms to reflect knowledge from the
source domain.

3.3.6. Deep Learning

Typically seen as a subset of ML, deep learning (DL) employs neural networks with
many layers to model complex patterns in data, where the (single) artificial neuron is
defined by
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hi = σ

(
n

∑
j=1

wijxj + bi

)
, (9)

where σ is an activation function, wij are weights, and bi is a bias term.
DL-based networks are trained by minimizing a given loss function via optimization

algorithms such as the stochastic gradient descent (SGD) one. A typical choice of gradient
estimation method is the backpropagation algorithm, which computes gradients of the loss
function with respect to the weights, as follows:

∂L
∂wij

=
∂L
∂hi

· ∂hi
∂wij

. (10)

3.3.7. Probabilistic Models and Graphical Models

Probabilistic models represent uncertainty using probability distributions. Graphical
models, such as Bayesian networks and Markov random fields, use graphs to encode
dependencies among variables.

In a Bayesian network, the joint probability distribution over variables
X = {X1, X2, . . . , Xn} is factorized according to the network structure:

P(X) =
n

∏
i=1

P(Xi | Pa(Xi)), (11)

where Pa(Xi) denotes the parents of Xi in the graph. Accordingly, inferencing in this
latter setting often involves computing marginal distributions or maximum a posteriori
estimates. It is worth mentioning that such tasks can be rather computationally difficult,
largely because of the summation over exponential numbers of states.

3.3.8. Online Learning

Online learning algorithms process data sequentially and update the model incre-
mentally, aiming to minimize the so-called regret representing the difference between the
algorithm’s cumulative loss and that of the best-fixed predictor in hindsight. Specifically,
given a sequence of loss functions {Lt(w)}T

t=1, the regret RT is

RT =
T

∑
t=1

Lt(wt)− min
w∈W

T

∑
t=1

Lt(w). (12)

3.3.9. Ensemble Methods

As the last approach we consider in this quick review of ML approaches, let us
recall the family of ensemble methods defined by combining multiple models to improve
predictive performance, essentially exploiting the best peculiarity of each model while
aiming at closing the gap of the model X by using the model Y. Indeed, the general idea is
to aggregate the predictions of individual models, often by averaging or voting. Therefore,
from a mathematical point of view, we realise an ensemble predictor fens defined by

fens(x) =
1
M

M

∑
m=1

fm(x), (13)

where fm are the individual models. As an example, the boosting technique formulates the
ensemble as a weighted sum, then focuses on models correcting the errors of previous ones.

4. Stochastic Modelling of Electricity Prices and Production Quantities

SDEs are widely employed in modelling energy markets due to their ability to capture
the inherent uncertainty and randomness in market dynamics [57,58]. In this section, we
present prevalent trends in using SDEs for energy market modelling. These trends highlight
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the versatility of SDEs in accommodating the diverse and dynamic nature of energy
markets, allowing researchers and practitioners to tailor models to specific characteristics
and requirements.

4.1. Mean-Reverting Processes

A natural class of stochastic models widely employed to capture the dynamics of
energy spot prices are Ornstein–Uhlenbeck models. These processes, characterized by
mean-reverting behavior, are instrumental in modelling the tendency of energy prices to
return to a long-term mean over time. Accordingly, we can recall the following SDE, which
is instrumental in describing the stochastic evolution of electricity spot prices:

dXt = θ(µ − Xt)dt + σdWt (14)

where Xt is the variable being modeled, θ is the speed of reversion, µ is the mean level, σ is
the volatility, dWt is a Wiener process, and dt is the differential time.

Ornstein–Uhlenbeck processes often represent the baseline for modelling energy
prices that exhibit mean-reverting behavior, such as natural gas or electricity spot prices.
Many extensions of this model are present in the literature. For example, the work in [11]
presents a novel approach to modelling spot prices in energy markets using exponential
non-Gaussian Ornstein–Uhlenbeck processes. The authors model spot prices in energy
markets using an Ornstein–Uhlenbeck process driven by Levy processes instead of the
classical geometric Brownian motion or mean reversion models caused by Brownian motion.
This approach offers a more realistic representation of spot price dynamics, especially in
capturing the large fluctuations typically observed in energy markets. Special attention
is given to the normal inverse Gaussian (NIG) Levy process, which is used to model
the increments in the Levy process in the spot price model. The NIG distribution is a
four-parameter family of distributions and is part of the class of generalized hyperbolic
distributions. This choice is motivated by the superior fit of the NIG distribution to financial
log returns and its flexibility in capturing the heavy tails observed in energy market data.
Moreover, the aforementioned paper discusses the pricing of derivatives in the context of
energy markets, which are characterized as incomplete markets. The authors propose using
the Esscher transform to derive equivalent martingale measures for evaluating forwards
and options. This approach acknowledges the complexity and incompleteness of these
markets, where the standard hedging approach used in other financial markets is not
directly applicable. For the valuation of options, the paper calculates the characteristic
function for the logarithmic spot price, which is crucial when applying numerical methods
like the fast Fourier transform for option pricing. The characteristic function is derived
under the probability measure modified by the market price of risk. Then, the authors
investigate the condition for the exponential integrability of the Levy measure in the
case of NIG-type Levy processes. It is shown that this condition is fulfilled for every
k < α − β, where α, β are parameters of the NIG distribution. This analysis is essential
for ensuring the existence of moments of the spot process, which are necessary for the
valuation of forwards and options. The proposed model is more straightforward in fitting
price data than alternative models described by stochastic differential equations. The
normal inverse Gaussian distribution used for modelling the residuals in the Ornstein–
Uhlenbeck process provides a more accurate representation of actual spot price dynamics
in energy markets. Hence, the paper represents a significant advancement in the modelling
of energy market spot prices by incorporating Levy processes and normal inverse Gaussian
distribution, offering enhanced realism and flexibility compared to traditional models and
also addressing the complexity of pricing derivatives in these markets, thus providing
methodologies that are able to handle the inherent incompleteness and irregularities of
energy markets.
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4.2. Jump-Diffusion Models

Jump-diffusion models combine continuous diffusion processes with occasional jumps
to account for sudden, discontinuous price movements. Paper [19] addresses SDEs that
feature a discontinuous drift coefficient and possibly a degenerate diffusion coefficient,
which are relevant in applications like optimal control problems in energy markets. The
authors prove the existence and uniqueness of robust solutions for these SDEs and examine
the strong convergence order of the Euler–Maruyama (EM) scheme, achieving an optimal
rate of 1/2. The SDE under consideration is a time-homogeneous jump-diffusion SDE,
given by

dXt = µ(Xt)dt + σ(Xt)dWt + ρ(Xt−)dNt, t ∈ [0, T], X0 = ξ (15)

where ξ ∈ R, µ, σ, ρ : R → R are measurable functions, T ∈ (0, ∞), W = (Wt)t∈[0,T] is a
standard Brownian motion, and N = (Nt)t∈[0,T] is a Poisson process on a filtered probability
space that satisfies the usual conditions. The novelty in this work lies in allowing the drift
coefficient µ to be discontinuous at a finite number of points, a characteristic often seen in
models for energy markets and financial markets in which control actions can introduce
discontinuities. This contrasts with previous studies in which SDEs with discontinuous
drift but without jumps have been explored extensively. In such cases, the SDE admits a
unique, robust solution that is approximable with the EM scheme at a strong convergence
order of 1/2 when the coefficients µ, σ, ρ are Lipschitz. Therefore, the primary contributions
of the paper include the first existence and uniqueness result for jump-diffusion SDEs with
discontinuous drift and the first approximation result for solutions to such SDEs. The
authors employ a transform G that ensures Lipschitz continuity, allowing the application
of the Meyer–Itô formula to a transformed SDE. The transformed SDE has coefficients
µ̃, σ̃, andρ̃ which are Lipschitz, thereby ensuring the existence of a unique global strong
solution. Specifically, the paper demonstrates that the original SDE (15) has a unique global
strong solution under certain assumptions.

4.3. Fractional Brownian Motion (fBm)

fBm is a generalization of standard Brownian motion that allows for long-range
dependence and self-similarity. It can be used to model the price and volatility of energy
prices, electricity loads, and variability in wind and solar power generation.

In [16], the authors model power price dynamics: S = {S(t) , t ∈ R+} is modelled as a
sum of a deterministic trend of the evolution f (t) and a stochastic process X:

S(t) = f (t) + X(t) . (16)

The process X = {X(t), t ∈ R+} is built as a superposition of two effects,

X(t) = X1(t) + X2(t) (17)

where the continuous process X1 models the base component; eanwhile, X2 corresponds to
the jump process, describing the spiky behavior of the electricity prices.

X1 follows an SDE driven by a fractional Brownian motion BH = {BH(t), t ∈ R+} ,

dX1(t) = −α1X1(t)dt + σdBH(t) (18)

with diffusion coefficient σ ∈ R+, subject to mean reversion around a level zero, with
strength α1.

Fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1) is a zero mean
Gaussian process with covariance function given by

cov(BH
s , BH

t ) = E[BH
t , BH

s ] =
1
2

(
|t|2H + |s|2H + |t − s|2H

)
. (19)
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Moving from numerical simulations, the authors uncover some evidence that fBm-
driven models may be more adequate for forecasting electricity prices than a standard
Bm-driven model by achieving better scores for different loss functions.

A similar empirical approach for forecasting electricity price is also taken in [13]. The
aim is again to use fBm to capture the long-range dependent characteristics of the price
action. Differing from [16], where the Italian electricity price is considered, the datasets
correspond to residential, commercial, and industrial monthly electricity prices for the US
market. Among different methods used to estimate the Hurst exponent (variance time
method, absolute value estimation method, or rescaled range (R/S) analysis method), the
authors in [13] use the R/S method to compute Hurst parameters, obtaining a reference
value of 0.5 for residential use and higher values (0.65) for commercial and industrial uses.

4.4. Regime-Switching Models

Regime-switching models help capture structural changes in energy markets, such as
shifts in supply–demand dynamics or policy changes. These models incorporate different
regimes or states, each characterized by distinct parameters. The system switches between
these regimes based on specific criteria.

dXt =

{
µ1dt + σ1dWt with probability p
µ2dt + σ2dWt with probability 1 − p

(20)

where Xt is the underlying process, µ1, σ1 are the parameters of the first regime, µ2, σ2 are
the parameters of the second regime, and p is the switching probability.

In [17], the authors explore the dynamics of electricity prices, mainly focusing on their
volatile and jump-prone nature, contributing a novel regime jump model to better represent
the dynamics of electricity prices, particularly addressing the need for a model that can
separately identify mean reversion and jump behaviors. This approach provides a more
accurate and nuanced understanding of electricity price movements, which are essential
for effective risk management and financial modelling in electricity markets. It is worth
mentioning that since electricity prices are known for their high volatility and frequent
jumps attributed to factors like system breakdowns, demand shocks, and inelastic supply,
such volatility is a key challenge in deregulated electricity markets, impacting pricing and
portfolio and risk management. Consequently, the authors focus on modelling electricity
price jumps, which are typically short-lived, with prices reverting to normal levels quickly,
often within a day. Traditional stochastic jump models combined with mean-reversion are
used to model these jumps. However, these models might fail to separate mean-reversion
from jump behavior accurately. The basic model used is a standard random walk model
with a drift parameter for the log of the daily electricity price. The model is expressed as
dxt = µ + ϵt, where µ and σ represent the drift and volatility of the spot price, and ϵt is a
normally distributed error term. Then, to address the shortcomings of the stochastic jump
models, the paper introduces a regime jump model. This model identifies three states: a
normal state, an initial jump state, and a state representing the reversion to normal levels
after a jump. The regime jump model is defined as dxt = µrt + ϵt, where rt is a latent
variable indicating the regime, and µrt and σrt are the mean and variance for each regime.
In contrast, the regime transitions are modelled using a Markov transition matrix, which
specifies the probabilities of transitioning from one state to another. The model assumes
that after a price jump, the process will move sequentially from the initial jump state to the
reversion state and back to the normal state. Moreover, the authors applied the model to
electricity price data from various markets. The volatility of electricity prices is significantly
higher than that of other energy commodities like oil and natural gas. This high volatility
emphasizes the need for a model, like a regime-jump one, to capture the dynamics of
electricity prices accurately.
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4.5. Hybrid Models

These models combine multiple SDE models or integrate SDEs with other modelling
techniques to enhance predictive accuracy. Hybrid models offer a more flexible and
adaptive approach, leveraging the strengths of different modelling paradigms to capture
various aspects of energy market dynamics.

Ref. [15] introduces an ambit stochastic model to study and predict electricity forward
prices, focusing on the European Energy Exchange (EEX) market. The authors use ambit
stochastic processes and fields to model electricity price dynamics, which are atypical
price patterns such as large spikes, short-term volatility, and occasionally negative prices.
Ambit processes were initially developed for studying turbulence, but due to their flexible
structure, they are implemented in various areas, including finance, to model dynamic
processes. Unlike other commodities, electricity cannot be traditionally stored and must
be delivered to the grid immediately upon production. These unique characteristics make
it crucial to develop ad hoc techniques for electricity trading, which the paper addresses.
Ambit processes in the model can encapsulate unique market behaviors, such as leptokurtic
return distributions, stochastic volatility, leverage effects, and the Samuelson effect, where
the forward price volatility increases and converges to spot price volatility as the contract’s
maturity approaches. The model is claimed to efficiently forecast the price of German
monthly peak forward contracts under the conditions of the EEX market by correctly
specifying ambit fields and processes that reflect observed market characteristics.

Another clear example of this approach is contained in [18], which presents a compre-
hensive and innovative method for characterizing and utilizing energy flexibility in systems
such as water towers and buildings. Overall, the paper makes significant contributions
to the field of energy flexibility by providing a robust and generalizable model that inte-
grates stochastic modelling, economic considerations, and practical applications in energy
markets. As demonstrated in the paper, characterizing and utilizing energy flexibility
effectively are crucial for optimizing renewable energy resources and achieving operational
and economic efficiencies in energy systems. Interestingly, the research develops a generic
model for characterizing energy flexibility, incorporating stochastic differential equations
and state-space models. This model is vital for understanding and optimizing the op-
erational response of energy-flexible consumers, especially in the context of increasing
renewable energy sources and the need for CO2 reduced emissions. Indeed, the model
includes variables such as state of charge, baseline demand, energy price, and demand
change, all normalized between 0 and 1 for simplicity, to then consider the following:

- State Equation: this element represents the state of charge of the energy-flexible system,
with 0 indicating no stored energy and 1 indicating maximum stored energy.

- Demand Link to State of Charge and Price: This part of the model uses assumptions
such as high prices reducing demand and vice versa and stored energy affecting
demand. Non-linear functions derived from data, denoted f and g, are used to model
the effects of state of charge and energy price, respectively.

- Demand and Observation Equation: This equation calculates the expected demand
after modifying the baseline demand, with a parameter indicating the proportion of
flexible overall demand. Then, the model is applied to case studies involving three
water towers and the electrical heating requirements of a household, an office building,
and a commercial building. These studies demonstrate the practical application and
validity of the proposed model in real-world settings. Moreover, the authors also
utilize energy flexibility on the day-ahead market of the Scandinavian power market
Nord Pool. This involves using flexi orders to buy electricity at the cheapest price
within a certain interval. This strategy aligns with the flexibility characteristics of the
systems studied.

- Designing Price Signals for Control: The model also addresses the challenge of design-
ing price signals to control the consumption of water towers and buildings according
to the amount of energy bought. This involves solving an inverse problem to find a
price signal that results in an expected demand close to the reference demand.
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5. Stochastic Partial Differential Equations for Energy Contracts

Through a systematic review of the literature and notable research contributions, this
chapter aims to elucidate the advancements made in the field of stochastic modelling for
energy contracts. We will discuss critical methodologies, numerical techniques, and case
studies that showcase the practical utility of SPDEs in addressing the challenges posed by
the dynamic nature of energy markets.

As energy markets mature, the role of energy as a vital asset class for investments
has grown exponentially. Diverse participants join traditional market actors, including
speculators such as investment banks, hedge funds, and pension funds. Within these mar-
kets, the primary financial instruments are spots, futures, forward contracts, and options
written on these contracts. The advent of organized markets necessitates the development
of consistent stochastic models to describe the price evolution of these products, enabling
analytical treatment for pricing derivatives.

Traditionally, electricity is usually labelled a “commodity”, although its non-storability
profoundly affects the infrastructure and the organization of the electricity market.Financial
power contracts are linked to some reference electricity spot prices whose market is open
to speculators, since consumption or production of electricity is not required to participate
in the market.

Energy-related spot prices exhibit distinct characteristics that set them apart from other
commodities with a notable mean reversion towards a prominent feature, which is mean
reversion towards a seasonally varying mean level, reflecting the cyclical nature of energy
demand and supply. Additionally, energy markets often experience sharp, short-term price
spikes resulting from imbalances between supply and demand. For instance, electricity
spot prices can surge several hundred percent over brief intervals before returning to
normal levels. As explained in Section 4, Ornstein–Uhlenbeck processes are a type of
mean-reverting SDE that can be used to incorporate a tendency for prices to revert to a
long-term mean over time, reflecting the cyclical nature of energy markets.

In contrast to more classical commodity markets like agriculture and metals, energy-
related futures contracts deliver the underlying spot price over a contracted period. De-
riving futures prices from spot prices introduces complexities, relying on the choice of
risk-neutral probability and the type of model employed. Technical challenges arise when
calculating futures prices based on exponential spot models with a delivery period. How-
ever, arithmetic models are more feasible for analytical pricing in this context. The Heath–
Jarrow–Morton approach suggests direct modelling of futures prices, but challenges persist
in proposing arbitrage-free models that are simultaneously tractable from statistical and
theoretical perspectives.

In [26], the authors introduce a novel approach to valuing swing options in electricity
markets, particularly addressing the incorporation of price spikes, by developing sophisti-
cated mathematical models and numerical methods for pricing swing options in electricity
markets, especially considering their stochastic nature and jumps in electricity prices. In
particular, the paper considers the valuation of swing options, which are path-dependent
financial products with multiple exercise rights. These options are unique due to the
incorporation of spikes in the underlying electricity price, modelled as jump-diffusion
processes. This approach is significant because it realistically captures the volatile nature
of market electricity prices. The valuation of these swing options leads to a sequence of
free boundary problems associated with a partial integral differential equation (PIDE). The
PIDE is formulated as follows:

∂V
∂t

+
1
2

σ2M2 ∂2V
∂M2 + α(µ(t)− ln(M))M

∂V
∂M

− β ln(N)N
∂V
∂N

− rV

+λ
∫ ∞

−∞

[
V(t, M, N exp(z))− V(t, M, N)− N(exp(z)− 1)

∂V(t, M, N)

∂N

]
ν(z)dz = 0 .

(21)

Moreover, the paper models swing options in electricity markets as financial products
with multiple exercises of the American type, with two consecutive exercise dates separated
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by a constant refracting period δ > 0. This period prevents the simultaneous exercising of
all rights, which would otherwise be optimal. Accordingly, to solve the PIDEs, the authors
propose a Crank–Nicolson characteristics time discretization scheme combined with a
piecewise quadratic Lagrange finite element method. They explicitly treat the integral term
in the PIDE with a suitable quadrature formula and address inequality constraints with
an augmented Lagrangian active set technique. The paper details the discretization of the
time derivative in the PIDE and the approximation of the integral term, which arises due
to the presence of jumps in the electricity price. This approximation is achieved using
the classical composite trapezoidal rule with a specific numerical integration procedure,
and numerical results are then presented to validate the performance of these methods. It
compares these results with examples from the existing literature, noting that this is the
first paper to consider the numerical solution of the PIDE associated with a two-factor
model for electricity prices.

Paper [27] presents a comprehensive approach to hedging electricity swaptions using
a Hilbert space-valued exponential jump-diffusion model, addressing the challenges of
hedging in a market with inherent incompleteness due to the infinite-dimensional nature of
the forward curve and a finite set of hedging instruments, primarily via its formulation and
solution of the quadratic hedging problem under a risk-neutral measure. More specifically,
it focuses on solving the quadratic hedging problem for European options on electricity
swaps, known as electricity swaptions. In particular, the paper employs a Hilbert space-
valued time-inhomogeneous exponential jump-diffusion process to model the forward
curve, capturing the stylized features observed in electricity prices, such as the Samuelson
effect of increasing volatilities near maturity, also introducing a general class of Hilbert
space-valued exponential jump-diffusion models for this purpose. From a mathematical
point of view, the forward curves are defined on a delivery period and are elements of
a separable Hilbert space H ⊆ L2([T1, T2]; µD), with µD being the Lebesgue measure on
the delivery period. The norm for each element in H is defined in terms of an integral
over the delivery period, where the primary stochastic process driving the model is an
H-valued additive process Xt, incorporating a drift term γs, a volatility term σs driven
by a Wiener process, and a jump term ηs caused by a compensated random measure.
Accordingly, the Hilbert space martingales are defined in the context of the forward curve
ft as an exponential of the driving process X. The paper provides a solution to the quadratic
hedging problem for European electricity swaptions within the latter scenario. This involves
hedging an option that depends on an infinite-dimensional object (the forward curve) using
a limited set of traded contracts (swaps with different delivery periods). In particular, the
quadratic hedging minimizes the expected global quadratic hedging error, formulated as

J(θ) := E|Vθ(T)− V(T)|2. (22)

where Vθ(T) is the portfolio value at time T under strategy θ. Moreover, the paper discusses
the stochastic dynamics of swap rates. It derives the PIDE for the swaption price, which
is crucial for determining an optimal hedging strategy, considering a portfolio of n swap
contracts. The value of this portfolio at time t is a critical component of the hedging strategy,
with an associated quadratic hedging error with a given strategy θ, which is expressed as
an integral involving a matrix-valued process M, which represents the sensitivity of the
traded swaps to changes in the stochastic processes driving the model.

Another example of SPDE application is contained in [25], which introduces an
infinite-dimensional approach to modelling forward price curves. In particular, the au-
thors present a novel infinite-dimensional forward price dynamics model similar to the
Heath–Jarrow–Morton framework in interest rate modelling, utilizing a first-order hy-
perbolic stochastic partial differential equation model for the dynamics of forward price
curves. Accordingly, the approach is then applied under the risk-neutral measure and
follows the Musiela parametrization, where time-to-maturity is a crucial parameter in
the model. The forward price f (t, T) at time t for a contract with maturity T is ex-
pressed as f (t, T) = g(t, T − t), ensuring that f (t, T) is a martingale for every maturity
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T. Both additive and multiplicative models for forward price dynamics are explored,
and the choice between these models depends on whether to model the dynamics of
g directly or its logarithm. Previous studies have justified alternative models for en-
ergy markets, leading to additive dynamics for forward and flow-forward price dy-
namics. Meanwhile, for the multiplicative model, the dynamics are assumed to follow
gm(t, x) = exp(dx(X(t))) = exp(X(t, x)), and the forward price dynamics are based on a
general infinite-dimensional stochastic process X(t), which can accommodate both additive
and multiplicative models. Moreover, as a simple case, the paper considers a real-valued
noise process M = W, where W is a Brownian motion. The dynamics of X(t) are then
given by

X(t) = S(t)X(0) +
∫ t

0
S(t − s)a(s)ds +

∫ t

0
S(t − s)b(s)dW(s) . (23)

Consequently, the obtained methods are particularly relevant for energy markets due
to the complexity and specific characteristics of these markets, such as the delivery period
of electricity forward contracts and the high-dimensional nature of noise sources affecting
forward curves.

Alongside the SPDE method, another type of reference for the financial framework
relies on [28]. Risk management for energy retailers is addressed in the context of fluctuating
wholesale electricity prices exploiting energy derivatives, particularly considering energy
retailers who may risk bankruptcy due to price fluctuations in wholesale electricity. To
mitigate this risk, the authors suggest trading in energy derivatives, specifically electricity
options, carbon options, and green certificates. Accordingly, the main objective is to develop
a strategy that maximizes the value of energy derivatives while minimizing risks arising
from stochastic price fluctuations. To this end, the paper models the dynamic prices of
electricity and carbon options using SDEs and the prices of green certificates using ordinary
differential equations (ODEs). The problem of allocating initial funds to purchase each
derivative, considering price volatility optimally, is formulated as a mean-variance portfolio
selection problem in control theory, and the objective function is formulated to minimize
the expected value of the portfolio minus a term that represents risk, given by the variance
of the portfolio. The function is expressed as

min J(T) = min[−E[x(T)] + δVar[x(T)]] (24)

The optimization problem is then transformed into an auxiliary problem to facilitate
the application of the linear–quadratic (LQ) control method. In particular, the latter is stated
as min J(T) = Eδx(T)2 − λx(T) subject to the original constraints. Then, this transformed
problem is solved using an LQ control approach. The solution involves solving a Riccati
differential equation and obtaining the optimal control function u(t) that minimizes the
objective function under the given constraints.

6. Bidding and Operation Strategy of the Market Participants

In the intricate landscape of electricity market modelling, a vital component of the
model concerns the strategic behavior of market participants. The bidding and operational
strategies employed by these participants play a pivotal role in shaping the dynamic
equilibrium of the market.

6.1. MFG Applications in Electricity Markets

Mean Field Game (MFG) models provide a stylized quantitative representation of
a power system featuring distributed local energy generation and storage. The model
considers N nodes within the power grid, each characterized by state variables (e.g.,
local power production) and action variables (e.g., storage action). The nodes can also
be partitioned into distinct groups where nodes within the same group share similar
characteristics based on local net power production and storage or geographic proximity.
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MFGs can be applied to model bidding strategies, production decisions, and price
dynamics in electricity markets. MFG frameworks can incorporate learning dynamics,
allowing agents to adapt their strategies over time based on the observed behavior of
others, capturing the adaptive nature of market participants as they respond to changing
market conditions.

In what follows, we shall consider some of the main MFG models typically employed
in the electricity market modelling sector.

• Supply and Demand Dynamics: MFGs can be applied to model the strategic behavior
of electricity market participants, such as generators and consumers, in response to
changing market conditions. Agents aim to optimize their production or consumption
decisions based on the average behavior of the entire market. For example, in [30],
the authors characterize the state variable of each agent by the time evolution of its
temperature, described with a linear ordinary differential equation. In addition, each
agent is given a cost function that accounts for energy consumption and deviation
of the agent’s temperature from the reference value. At the mean-field equilibrium,
each agent adopts a bang-bang-like switching control with a threshold placed at the
nominal temperature of deviation.

• Strategic Bidding: Generators participate in auctions by strategically bidding to max-
imize profits. MFGs can capture the bidding strategies of multiple generators, con-
sidering the impact of their decisions on market prices and the behavior of other
participants. In [35], an electric power network with congestion is studied; energy
consumers can strategically increase their bids on the day-ahead market in anticipation
of payouts from the dispatch market to maximize individual welfare on the day-ahead
market in anticipation of the dispatch market. This increase–decrease game for large
populations of energy consumers is solved via a mean field game approach by proving
the existence and uniqueness of the Nash equilibrium and the convergence of the
proposed algorithm based on a Picard–Banach iteration scheme.

• Market Price Formation: This refers to the formation of market prices over time.
Agents strategically adjust their bidding or consumption patterns based on the ob-
served market prices, and the model captures the resulting feedback loop. For exam-
ple, in [34], the solution of the MFG describes the market-clearing equilibrium for an
electricity grid connecting consumers to energy producers. Moreover, a uniqueness
condition is investigated, allowing numerical methods to be developed.

• Renewable Energy Integration: With the increasing penetration of renewable energy
sources, MFGs can help to model the strategic interactions among conventional and
renewable energy producers. This includes decisions on production levels, pricing
strategies, and integrating intermittent renewable resources. In [36], the authors
assess the evolution of future electricity markets under different incentive schemes
by developing a proper MFG model with two classes of agents: renewable producers
(e.g., wind), who generate electricity with a stochastic capacity factor at zero marginal
cost, and conventional (gas) producers with a fixed capacity but a random running
cost (depending in particular on the fuel cost and the CO2 emission cost). Renewable
producers aim to determine the optimal moment to enter the market by paying a sunk
cost. In contrast, fossil fuel producers aim to determine the optimal moment to exit
the market. This model is studied under different incentive schemes to understand
the effect of these policy decisions on the entry and exit of the market players and the
evolution of renewable penetration and electricity prices. A similar problem is also
investigated in [40]. Instead of considering an exit/entry game, the impact of the green
transition in the presence of a carbon tax is studied according to two different models:
an MFG with competitive producers reaching a Nash equilibrium and a mean field
control (MFC) game where players cooperate to reach a social optimum. The authors
show the existence and uniqueness of the solutions for both settings. Using a numerical
scheme, they also propose a numerical approach based on a forward–backward stochastic
differential equation (FBSDE) system in order to monitor the effect of a carbon tax on
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optimal and equilibrium decisions in both cases, arriving at quantifying the difference
between the two approaches, i.e., the so-called Price of Anarchy.

• Demand Response Modeling: MFGs can be used to model demand response programs
where consumers adjust their electricity consumption patterns in response to market
signals. The interactions among consumers in deciding when to shift their demand
have been investigated, for example, in [29], from the perspective of n consumers
linked by a demand-side management contract. The failure to deliver the service is
penalized depending on the difference between the sum of the n power consumption
and the established target. This scenario is modelled as a non-zero-sum stochastic
game whose asymptotic behavior corresponds to an MFG with penalties at random
jump time and interaction on the control. The authors investigate the case with
quadratic cost and linear pricing, whose mean field equilibrium is characterized by a
decoupled system of forward–backward SDEs with jumps, involving a Riccati BSDE
with jumps.

• Transmission System Operations: MFGs can be applied to model the strategic behavior
of transmission system operators in managing and optimizing the electricity grid for
congestion management, reactive power control, and voltage regulation. In [59], a
quantitative model for a power system with distributed local energy generation is
developed. The smart grid is modelled as a network connecting many nodes with
their consumption, production, and storage. Following the MFG approach, each node
is characterized by two state variables, local net production Qt and a battery level St,
and a control variable αt, which is the storage action. If Qt − αt is positive or negative,
it corresponds to electricity that the node sells to. Buys from the grid at the spot
price. Nodes are divided into different groups in which each node may represent
another agent type, being traditional consumers with no local production (Qt = 0)
or prosumers with local production and storage. Each node minimizes its own cost
of electricity consumption by controlling the storage device where the spot price of
electricity reflects the instantaneous global consumption, depending on the strategies
of the nodes. Hence, the solution for this problem corresponds to Nash equilibria in a
non-cooperative game setting.

6.2. Stochastic Algorithm for the Transition to Decentralization in Smart Grids and Power Plants

Until the late 1990s, the power system operated under a centralized and vertically inte-
grated model, where massive utilities assumed the three significant services of generation,
transmission, and distribution. However, critical changes have occurred, paving the way
for a new scheme characterized by small-scale distributed generation and storage. This
transition, prompted by technological innovation and environmental concerns, has caused
the substantial integration of intermittent renewable energy sources. The rapid deployment
of decentralized small-scale power generation aligns with advancements in local storage
technologies, necessitating a thorough re-engineering of distribution networks, including
tariff structures.

We divide this section according to different use cases and technologies.

6.2.1. Micro Grids (MGs)

Paper [47] focuses on developing an optimal bidding strategy for MGs participating in
energy and ancillary service markets. It introduces a novel approach through which MGs
can participate in joint energy and ancillary service markets, especially considering flexible
ramping products. The hybrid stochastic/robust optimization method and the detailed
formulation of the objective function enable MGs to bid strategically in these markets,
maximizing their revenues while managing the uncertainties inherent in renewable energy
sources and market prices. Microgrids can integrate various distributed energy resources
to offer energy and ancillary services to the bulk power system, including flexible ramping
products. The paper then develops an optimal bidding strategy in order for MGs to
assess their ramping capabilities in these markets. In particular, the authors consider a
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hybrid approach combining stochastic and robust optimization to address uncertainties in
renewable generation and day-ahead market prices. Stochastic programming models the
price scenarios in energy markets, while complete optimization addresses uncertainties in
wind and photovoltaic power generation. Consequently, the MG’s bidding strategy aims to
maximize total revenue expressed by the following objective:

max
UB

min
UU

NS

∑
s=1

cs(REs + RRESs + RFRPs − COP) (25)

Here, UB and UU represent the sets of decision and random variables; cs is the weight
of price scenario s; REs, RRESs, and RFRPs are the revenues from energy, reserve, and FRP
markets, respectively; and COP is the operation cost. Specific equations determine the
associated revenues from the energy and reserve markets, while revenues from FRPs are
composed of upward and downward FRPs.

A similar approach for MG is also proposed by [37]. That paper presents a cooperative
market mechanism for multi-micro grids (MMGs). This model is designed to work for
both grid-connected and isolated MMGs and accommodates various MG owners. It uses
a cooperative approach to ensure the existence of the optimal solution, a feature not
guaranteed by Nash equilibrium points in competitive strategies. The model considers
various energy production units, including renewable resources (photovoltaic and wind),
dispatchable energy resources, energy storage systems (ESSs), and a demand response
program. The model is formulated as an MILP problem and solved using GAMS software
(https://www.gams.com/, accessed on 25 November 2024).

The terminology used in the paper includes various indices and parameters, such
as the number of dispatchable units, renewable units, energy storage units, loads, MGs,
purchase bid blocks, and sell bid blocks, among others. Accordingly, the objective is to
minimize the operation costs of each MG, considering sell/buy bids based on economic
aspects. The operation costs include dispatchable generators (DGs), renewable sources,
flexible loads, curtailment, and critical load curtailment. The proposed model consists of the
relationship between wind speed and the output power of wind turbines. The power output
is directly proportional to the wind speed within certain intervals and drops to zero outside
these intervals. Moreover, the output of the PV module is modelled as dependent on solar
irradiance and ambient temperature, changing with each hour and scenario, and the market
is cleared based on maximizing a function involving the number of microgrids, the number
of purchase bid blocks, and the number of sell bid blocks for all time slots and scenarios.

6.2.2. Electric Vehicles (EVs)

Paper [50] presents a novel stochastic optimization model for EV aggregators in day-
ahead energy and ancillary service markets, especially considering the variability of wind
energy. This model incorporates several uncertainties, including forecast errors of EV fleet
characteristics, hourly loads, wind energy, and random outages of generating units and
transmission lines. These uncertainties are represented by Monte Carlo simulation (MCS)
scenarios. The authors use the conditional value-at-risk (CVaR) index to measure the risks
that EV aggregators face due to these uncertainties, and the optimal bidding strategy of EV
aggregators is formulated as a mathematical programming with equilibrium constraints
(MPEC). In this formulation, the upper-level problem maximizes the aggregator’s CVaR,
while the lower-level problem minimizes the system operation cost. Then, the bi-level
MPEC problem is transformed into a single-level MILP problem. This transformation is
achieved using the prime-dual formulation with linearized constraints, making the problem
more tractable for computational purposes. After solving the resulting single-level MILP
problem, the paper utilizes the PHA, a method known for its effectiveness in dealing with
stochastic programming problems. Moreover, a game theoretical framework is developed
in order to analyze the competition among EV aggregators. This approach adds a strategic
layer to the model, considering the interactions and competitive behaviors of multiple

https://www.gams.com/
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aggregators in the market. The latter solutions are then validated through numerical
studies on a modified six-bus system and the IEEE 118-bus system. The results demonstrate
the effectiveness of the proposed approach and highlight the significant impact of the
aggregator’s bidding strategies on the operation of stochastic electricity markets.

An interconnection between EVs and MGs is also studied in [60], which focuses
on developing a stochastic energy management algorithm for smart MGs for EVs. This
algorithm addresses the complexities arising from the high integration of intermittent
renewable energy resources like wind turbines (WTs) and photovoltaic (PV) units, especially
when these MGs participate in an electricity market. The presented approach contributes
to integrating multiple components and their uncertainties, applying game theory to
model the market clearing price (MCP) and using advanced optimization techniques to
minimize total cost while considering the interactions between MGs and the electricity
market. The integration of intermittent renewable energy resources and the consideration
of operational and reliability constraints in the proposed algorithm highlight the complexity
and novelty of the study. From a stochastic analysis point of view, the authors consider
distribution network operators (DNOs) and EVs. Indeed, the generated power of renewable
energy resources and the consumed power of EVs are modelled, and their uncertainties
are addressed using the Copula method. This approach allows for a comprehensive
understanding of the variabilities and interdependencies in the output. The paper employs
quantum particle swarm optimization to solve the objective function, aiming to find the
optimal size of the components in the MGs and optimizing all microgrids to find the
minimum total cost according to the corresponding objective function. The MGs then
announce the power bids to the DNO, and the MCP is calculated. The process continues
until Cournot equilibrium is achieved.

6.2.3. Virtual Power Plants (VPPs)

In [38], the authors present a novel approach to optimizing the offering strategy of a
VPP, integrating both stochastic and robust optimization techniques to handle uncertainties
in market prices and wind power production, hence providing a sound approach to
managing the complex and uncertain environment of energy markets, particularly for
entities like VPPs that combine various energy resources and participate in multiple market
segments. In particular, VPPs include a conventional power plant (CPP), a wind power
(WP) unit, a storage facility, and a flexible load, and they participate in day-ahead (DA)
and real-time (RT) markets as a single entity, aiming to optimize energy resources. The
goal is to determine the optimal offering strategy of the VPP in the DA market, considering
its participation in the RT market to balance power deviations. To achieve the latter goal,
the paper proposes a stochastic adaptive robust optimization model, which is stochastic
concerning market prices, using scenarios to represent their uncertainties. It is adaptive and
robust concerning WP production, using confidence bounds to manage this uncertainty.
The offering strategy problem for the VPP in the DA market is formulated as an MILP
model. The model maximizes the following function:

max
Θt

∑(λDA,tPDA,t∆t + λRT,tPRT,t∆t) (26)

where λDA,t and λRT,t are the DA and RT market prices, PDA,t and PRT,t are the powers
sold in these markets, and ∆t is the time step.

A similar perspective is also followed by [49] for VVP. Their paper presents a multi-
stage stochastic programming approach to optimizing the bidding strategy of a VPP
operating in the Spanish electricity market. The VPP manages electricity produced in wind
parks, participating in the day-ahead market and six staggered auction-based intraday
markets. The novelty of this paper lies in its comprehensive treatment of uncertainty, both
in electricity prices and wind energy production, and its application of a Markov decision
process (MDP), which is solved using a variant of the stochastic dual dynamic programming
algorithm. This approach is novel in integrating bidding on both the day-ahead and all
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intraday markets within a unified model, considering the dependency of decisions across
these markets and the flow of information throughout the trading period. The model
assumes that the VPP does not own dispatchable assets like storage plants, focusing instead
on marketing the intermittent production of the wind power plants it manages. This
decision is based on the limited storage capacity relative to intermittent production assets,
the typical non-ownership of assets by VPPs, and the expectation that market participants
will specialize in providing flexibility for balancing intermittent production. The model
considers a daily independent stochastic optimization problem, allowing for speculative
trading and statistical arbitrage between markets. The decision problem is formulated as a
finite horizon discrete-time MDP, partitioning the state-space into an environmental state
representing exogenous randomness (like spot prices and wind farm production forecasts)
and a resource state reflecting the current trading position and bids for the next market.
The model incorporates trading decisions that are made without knowledge of the market
prices when bidding. The immediate reward in each stage is calculated based on the bids
from the previous stage, and the resource state is used to evaluate quick profit and track the
overall net position. Furthermore, the paper introduces the modelling of risk preferences
through nested CVaR, a time-consistent extension of conventional CVaR that is suitable
for dynamic settings. This approach replaces the model’s expectation operator, facilitating
the inclusion of risk aversion in decision making. The nested CVaR is defined as a convex
combination of expectation and CVaR, recursively integrating these combinations through
the stages of the model. This method allows for solving the nested CVaR problem by
considering worst-case expectations over specific probability measures.

One alternative possibility relies on blockchain-based methods for distributed power
networks. A blockchain is a decentralized ledger that records sequences of real-time
transactions, representing asset ownership at a particular time t. Blockchains are often
used as platforms for exchanging goods and services, maintained by a set of nodes in a
decentralized network, with no reliance on a trusted central authority. In [42], the possibility
of implementing distributed power networks on the blockchain is investigated. Based on
forecasted demand generated from the blockchain, each producer determines its production
quantity, which is related to mismatch cost controlled by an auction mechanism with the
prosumers on the blockchain. The consistent relationship between demand and supply
provides a fixed-point system whose solution is a mean field-type equilibrium.

7. ML for Energy Modeling

The advent of new developments in ML applications in the energy marketing sector has
sparked a wave of innovation, enabling a more sophisticated and data-driven understanding
of energy market dynamics. The energy sector has traditionally grappled with forecasting,
risk management, and decision-making complexities in a volatile environment. Artificial
intelligence approaches, including supervised and unsupervised ML, neural networks,
reinforcement learning, and adversarial generative models, have effectively expanded the
horizons of possibilities in addressing challenges within the realm of energy marketing.

Artificial intelligence models have been extensively applied to resolve diverse energy
marketing challenges. These applications span a broad spectrum, encompassing tasks such
as forecasting energy demand and supply, predicting prices and understanding market
dynamics, managing loads and implementing demand response strategies, integrating
renewable energy sources, optimizing energy efficiency and consumption, overseeing asset
management and predictive maintenance, and enhancing grid optimization and control
mechanisms. Detailed reviews of ML models applied to different areas within the energy
market can be found in [61,62] with a literature review and statistical analysis of the number
of ML-based research works published.

This section reviews ML methodologies applied to different application areas within
the energy market, as summarized in Table 2.
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Table 2. ML-based methods applied to various energy modelling tasks.

Area Methods Use Cases Examples

Reinforcement Learning

Model-free algorithms,
Q-learning, DQN, policy
gradient methods, MARL,
actor–critic methods, deep
deterministic policy gradient
(DDPG), Monte Carlo tree
search (MCTS), IRL

Electricity auction modeling [22,63–73]

Supervised ML

Gradient boosting decision
trees (GBDTs), Gaussian
process regression (GPR),
Bayesian models, support
vector machine, hybrid and
ensemble models

Forecasting tasks (i.e., prices,
consumption and demand). [24,74,75]

Linear programming Smart distribution grids [39]

Unsupervised ML
C-means, K-means, fuzzy
C-means, hierarchical models,
self-organizing maps

Customer clustering [32,48]

k-medoids Anomaly detection [76]

Deep Neural Networks

RNN, CNN, self-attention,
GCNs, Transformer, GAN,
and hybrid approaches (i.e.,
LSTM-CNN, GRU-LSTM,
LSTM-attenstion,
LSTM-SDEs), ensemble
learning

Forecasting tasks (i.e., prices,
consumption, and demand) [14,20,21,23,31,54,54,77–81]

GAN Data augmentation [56]

GAN, RNN, CNN and hybrid
approaches (i.e., LSTM-CNN)

Other operation and
optimization modeling
(storage management,
production, smart grids, and
monitoring)

[39,41,45]

7.1. Reinforcement Learning

Reinforcement learning [82,83] is a learning paradigm that maps situations to actions
in order to maximize a numerical reward signal through repeated experience gained by
interacting with the environment. The agent aims to develop a strategy that maximizes the
expected cumulative reward over time by learning a policy that maps states to actions. The
most common algorithms for RL include Q-learning, deep Q-networks (DQN), and policy
gradient methods, such as REINFORCE and proximal policy optimization (PPO).

In a recent survey paper, [84], the authors review model-free RL algorithms with
an infinite horizon and discounted reward, focusing on some classical value-based and
policy-based methods.

RL approaches to boosting market participants’ performance and the general effective-
ness of power auctions have gained popularity in recent years. We will explore their main
issues and techniques while summarizing the state of the art in RL for electricity auctions.

7.1.1. Model-Free Algorithms: Value-Based vs. Policy-Based Approaches

Model-free algorithms do not require knowledge about the underlying model and
instead focus on directly optimizing the policy or other value parameters in a goal-oriented
approach. They can be further divided into two categories: value-based approaches and
policy-based approaches. Value-based methods aim to find accurate estimates of the state
and/or state–action pair value functions V(s) and Q(s, a). One example of this approach is
the well-known Q-learning algorithm. On the other hand, policy-based methods do not
require estimating the value function. Instead, they use a parameterized policy representing
a probability distribution of actions over states, with πθ = Pr[a|s] as a neural network. The
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policy is directly optimized by defining an objective function and using gradient ascent to
reach an optimal point. An example of a policy-based method is the actor–critic algorithm.

Two networks are trained in the family of algorithms known as actor–critic. The critic
evaluates the effectiveness of the action taken, i.e., it approximates the value function,
whereas the actor approximates the policy and chooses which action to take.

7.1.2. Methodologies for RL in Electricity Auctions

In recent years, there has been increasing interest in applying reinforcement learning
techniques to modelling day-ahead electricity markets, aiming to develop more accurate
and effective strategies for market participants. In [22], the authors model the electricity
auction market using a Q-learning algorithm, considering each supplier bidding strategy as
a Markov decision problem where the agents learn, using experience, an optimal bidding
strategy in order to maximize payoff. Although there are certain limits in application for
actual case scenarios due to the use of simple synthetic datasets and Q-tables with discrete
action–state pairings, this work still serves as a reference point.

This section presents a selection of RL methodologies applied to electricity auctions,
along with their key contributions and limitations.

1. Q-learning is a popular model-free RL algorithm for learning optimal action–value
functions in discrete state and action spaces [85]. In a discrete Q-learning setting, we
utilize a Q-table, which is a simple data structure that we use to keep track of the states,
actions, and their expected rewards; the Q-table maps a state–action pair to a Q-value
that represents the quality (hence the estimated optimal future value) of the selected
action given a particular space that the agent will learn. At the start of the Q-learning
algorithm, the Q-table is initialized to all zeros, indicating that the agent does not
know anything about the world. This method relies on a trial-and-error procedure
to learn each state–action pair’s expected reward and to update the Q-table with the
new Q-value; this is called exploration. Conversely, explicitly choosing the best-known
action at a state is called exploitation. Q-learning has been used in electricity auctions
to learn bidding strategies for market participants, such as generators and retailers
[67]. However, the discrete nature of Q-learning can limit its applicability to auctions
with large or continuous state and action spaces.

2. Deep Q-networks (DQN) extend Q-learning by using deep neural networks (NNs)
to approximate the action–value function, enabling RL in large or continuous state
spaces [66]. DQN has been applied to electricity auctions for learning optimal bid-
ding strategies in various market settings, such as day-ahead markets and real-time
markets [86]. However, DQN still assumes discrete action spaces and can be computa-
tionally expensive due to the use of deep neural networks. The idea is to exploit a
neural network mapping states to (action, Q-value) pairs to approximate the state–
action value function. The success of deep RL is based on the following features. The
first introduces an experience replay mechanism in which every experience tuple
et, composed of state transition, action selected, and reward received, is stored in a
dataset and then randomly batched, avoiding the correlation between consecutive
iterations. The second feature concerns the use of two NNs with the same architecture
but different weights in the learning process. The first NN aims to approximate
Q, the Q-network. Conversely, for every n steps, the parameters from the leading
network are copied to the target network that uses the following training loss function,
defined as

Li(θi) = E(s,a,r,s′)∼U(D)

[(
r + γ max

a′
Q(s′, a′; θ−i )− Q(s, a; θi)

)2
]

(27)

with θ−i and θi being the parameters of the target network and the Q-network at
iteration i, respectively.
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3. Policy gradient methods have been extended to use deep NNs, keeping the advantage
of allowing for policies in the continuous action space. Policy gradient methods, such
as REINFORCE and proximal policy optimization (PPO), directly optimize the policy
by estimating the gradient of the expected cumulative reward [69,71]. These methods
can handle continuous state and action spaces, making them suitable for electricity
auctions with complex market dynamics. Applications of policy gradient methods
in electricity auctions include learning optimal bidding strategies for generators and
demand response aggregators [87]. One limitation of policy gradient methods is that
they may require many samples for stable learning.

4. Electricity auctions involve multiple agents with different objectives and learning
dynamics, making them a natural fit for Multi-Agent Reinforcement Learning (MARL)
approaches [88]. MARL algorithms, such as independent Q-learning, multi-agent
deep deterministic policy gradient (MADDPG), and centralized critics with decentral-
ized actors (CCDAs), have been applied to learn coordinated bidding strategies for
electricity auctions [72]. Although MARL can capture complex agent interactions, it
may suffer from scalability issues and instabilities in the learning process.

5. Actor–critic methods combine the advantages of policy gradient methods and value
function approximation to improve the learning process [89]. The actor is responsible
for generating actions based on the current policy, while the critic learns to evaluate
the policy by estimating the value function. In electricity auctions, actor–critic meth-
ods have been used to learn bidding strategies and demand response management,
offering a balance between exploration and exploitation [64].

6. Deep deterministic policy gradient (DDPG) is an off-policy algorithm that extends
the idea of the actor–critic method to continuous action spaces [65]. DDPG uses a
deep neural network to approximate the policy and another deep neural network to
approximate the value function. In the context of electricity auctions, DDPG has been
applied to learn optimal bidding strategies for generators and energy storage systems
in day-ahead markets and real-time markets [73].

7. Monte Carlo tree search (MCTS) is a tree search algorithm that uses Monte Carlo
simulations to estimate the expected value of actions in a given state [90]. MCTS has
been applied to electricity auctions to handle complex decision-making problems with
large state spaces and uncertainty. For example, MCTS has been used to optimize
bidding strategies in multi-stage electricity auctions, considering the uncertainty in
future market conditions [63].

8. Inverse reinforcement learning (IRL) aims to learn the underlying reward function of
an expert agent by observing its behavior [68]. In electricity auctions, IRL has been
used to model the bidding behavior of market participants, allowing for the analysis
of strategic interactions and the development of counter-strategies [70]. By learning
the reward function of other market participants, IRL can provide insights into their
objectives and decision-making processes.

7.2. Supervised ML

Supervised learning techniques have been widely employed in energy market mod-
elling, utilizing various algorithms such as support vector models (SVMs), Gaussian
processes (GPs), gradient boosting decision trees (GBDTs), decision trees (DTs), and linear
regression (LR) models.

Ref. [75] presents a comprehensive study on forecasting energy consumption using
gradient boosting decision trees (GBDTs). This study emphasizes the limitations of tradi-
tional linear models in capturing complex relationships in energy consumption data. It
introduces a GBDT-based framework tailored for predicting energy demand in different
Italian electricity market zones. The study highlights the challenges of forecasting with
outdated data and incorporates historical and air temperature features to enhance predic-
tion accuracy. The results demonstrate a significant improvement over classical statistical
models, with a mean absolute percentage error (MAPE) ranging between 5 and 15 per
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cent. The paper also explores the importance of features, revealing the critical role of
past consumption data and time-related features. A comparative analysis with ARMA
models further establishes the superior performance of the GBDT approach, particularly
in capturing periodic behaviors and the effects of holidays on energy demand. The paper
emphasizes the effectiveness of ensemble models, particularly gradient boosting decision
trees (GBDTs), in improving forecasting accuracy. Ensemble models combine multiple
learning algorithms to obtain better predictive performance than could be obtained when
using any of the constituent learning algorithms alone. A notable innovation highlighted in
the paper is the model’s ability to make predictions without relying on the most recent data.
This is a significant challenge given that the latest data available at the start of each month
are two months old. This situation arises from technological limitations and variations
in data reporting frequencies among different types of electric meters and changes in the
client base over time. The latter results were achieved because in data preprocessing, the
authors took several steps to ensure the quality and consistency of the dataset. These in-
clude leap day removal (LDR) to standardize the year length to 365 days, thus simplifying
time series analysis; outlier identification by developing an algorithm to identify outliers,
which is particularly effective for contiguous series of outliers; and handling anomalies
due to SARS-CoV-2, hence discussing the impact of the SARS-CoV-2 pandemic on energy
demand, particularly during the first wave, which led to a significant drop in demand in
certain zones.

The study presented by [24] applies Gaussian process regression (GPR) as a primary
predictor of energy consumption. The experiments were conducted using actual operational
data from six commercial buildings. Feature selection was performed by analyzing the
impact of several parameters, including meteorological parameters and users’ behaviors,
on the building’s electricity use by calculating the correlation between energy use and these
parameters. The operational data of these parameters were used to predict the electricity
use of six different buildings. In this study, the Gaussian process regression method was
used as the prediction algorithm, and the prediction results were then integrated into the
building’s energy monitoring system to compare them with the actual energy use in terms
of pre-defined criteria, including deviation values, percentages, and statistical analysis
indicators. For a linear model, the prediction function is y∗ = β0X∗ + β1 + ϵt, where X∗, y∗,
ϵt indicate the matrix of test inputs, the matrix of test outputs, and a noise term, respectively.
The Gaussian process regression assumes that the ϵt follows a Gaussian distribution with
a mean of 0 and a variance of σ2

n : εt ∼ N (0, σ2
n) [24]. Gaussian process regression offers

probabilistic predictions, capturing uncertainty, adaptability to small datasets, and natural
noise handling, making it particularly useful for applications where uncertainty estimation
is crucial.

In [74], the authors evaluated a set of models for short-term electricity demand (G)
forecasting in Queensland, Australia. These models were developed based on support
vector regression (SVR), the autoregressive integrated moving average (ARIMA) model,
and the multivariate adaptive regression spline (MARS) for forecasting short-term (24 h)
electricity deamnd. G-data were adopted using 0.5 h, 1.0 h, and 24 h forecasting horizons.
Determination of the MARS and SVR model inputs was carried out by applying the partial
autocorrelation function (PACF) to historical (area aggregated) G-data in the training
period to discriminate between the significant (lagged) inputs. This approach utilized
time-lagged information to determine temporal dependencies in the time series. Thus,
inputs for each time lag (0.5 h, 1.0 h, and 24 h) were identified by statistically verifying
lagged G combinations and their respective correlation coefficient (r). In this study, the
authors studied the impact of data length on forecasting accuracy by applying the SVR
and MARS models over different periods and multiple forecast horizons. However, as
the ARIMA model’s mechanism differs because the lagged data are created through the
p and q parameters developed in the identification phase, single-input G-data are used
to implement the univariate ARIMA model for all forecasting horizons. The radial basis
function (RBF) has been employed in developing the SVR model to map non-linear input



Energies 2024, 17, 6106 24 of 46

samples onto a high-dimensional feature space because it examines the non-linearities
between target and input data. A grid-search procedure was used to optimize the selection
of hyperparameter values, with an objective function to minimize MSE. MARS models
were tuned with a piecewise multivariate regression function based on the lowest GCV
statistic, while the ARIMA models were optimized by a trial-and-error process. The results
reported in this paper indicate that the MARS models outperform the SVR and ARIMA
models for 0.5 h and 1.0 h forecasting horizons. Meanwhile, for the 24 h forecasting horizon,
the SVR performed considerably better.

Ref. [10] introduced a probabilistic data-driven predictive model for energy consump-
tion forecasting in residential buildings. They used a Bayesian-based framework to model
the dependencies between various contributing factors in demand forecasting in the smart
grid, with free prior assumptions and thereby more efficient capture of input variables’
uncertainties and quantifying their influence on system outputs. Their main contribution is
applying the Bayesian model to sensor-based probabilistic load forecasting, emphasizing
its adaptability and flexibility in handling high-dimensional variables. Ref. [91] provides a
comprehensive review and analysis of various ML models frequently employed in energy
modelling tasks.

7.3. Unsupervised ML

Unlike supervised learning, where the model is trained on labelled data with known
outcomes, unsupervised ML algorithms identify underlying relationships or hidden struc-
tures in unlabeled datasets. This type of learning is often used to explore data, discover
patterns, and group data points based on their similarity. Some everyday unsupervised
ML tasks include clustering, dimensionality reduction, anomaly detection, and exploratory
data analysis [48,76]. Standard unsupervised methods include the stacked autoencoder
(SAE), deep belief network (DBN ), and data clustering algorithms. While SAE and DBN
are mainly used for marking the main characteristics of processing data, clustering, a well-
known unsupervised ML technique, is the process of partitioning data instances (objects)
of a dataset into several groups (called clusters) based on a determined level of similarity.
Clustering algorithms are widely employed to extract the underlying patterns from data
generated by sensing and tracking technologies in energy consumption systems. The uti-
lization of clustering methods is beneficial for studying household electricity consumption
behavior (ECB) to support the deployment of distributed energy systems, the development
of differentiated tariff policies, and accurate load forecasting. As an example, a typical
clustering of electricity customers includes the following five stages [32]: (1) electricity
consumption data gathering; (2) data size reduction and feature extraction; (3) selection of
clustering techniques and parameters depending on various factors; (4) clustering perfor-
mance assessment; (5) formation of customer classes based on real-world scenarios.

In [32], the authors extensively reviewed significant clustering techniques (including
K-means, k-medoids, fuzzy C-means (FCM), hierarchical models, self-organizing map
(SOMs), and other methods) and their applications to the load curves of customers in the
power system. The authors compared these clustering techniques and studied the impacts
of the various parameters of the presented algorithms on the clustering of daily load curves
of electricity customers.

In a recent work by [48], the authors introduced a novel method for optimizing residen-
tial energy management, employing a fuzzy c-Means clustering algorithm to automatically
determine the optimal number of customer groups for demand-side management (DSM).
The proposed model performs a four-step approach to capturing the relationship between
residential electricity consumption profiles and socio-demographic information: (1) data
preparation; (2) identifying typical consumption patterns of consumers’ data by applying
the robust-learning fuzzy C-means (RL-FCM) clustering algorithm; (3) feature engineering
to identify a highly correlated subset of decisive socio-demographic information for each
clustering load pattern; and (4) evaluating the mapping relationship between household
consumption patterns and the selected socio-demographic information. The primary ob-
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jective is to elucidate the relationship between household electricity consumption and
socio-demographic factors. This approach can help electricity providers to provide more
adapted services and effective policies for demand-side management. The dataset used in
their experiments was obtained from the Commission for Energy Regulation (CER), which
contains data on 4232 residential households in Ireland.

Ref. [76] introduced an unsupervised dynamic anomaly detection algorithm for build-
ing energy consumption data, aiming to improve energy-efficient building management.
The method combines a particle swarm optimization (PSO)-optimized k-medoids clus-
tering algorithm with a semi-supervised mechanism, integrating KNN, DTW distance,
and LOF algorithms for point and collective anomaly detection. Point anomalies are data
points that are significantly different from the rest of the data, while collective anomalies
are groups of data points that are abnormal together.

7.4. Neural Networks

Neural networks offer several advantages over traditional statistical ML algorithms
(such as SVM, DT and LR), making them good choice for tackling complex data analysis
and modelling tasks. Their ability to handle non-linear relationships, automate feature
extraction, adapt to new data, handle high-dimensional data, and process unstructured
data has made them indispensable tools for various applications in various fields. Deep
learning methods have exhibited immense potential in addressing a range of power sys-
tems challenges, particularly in light of the burgeoning data generated by electric power
systems, encompassing sensor data, intelligent metering, and supervisory control and data
acquisition (SCADA) systems [92].

This section briefly introduces the main artificial neural network (ANN) algorithms,
while Section 7.5 reviews some examples of their applications in energy market modelling.

7.4.1. Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNNs) are a class of neural networks designed for
sequential data processing, capable of capturing temporal dependencies in information. In
the context of electricity markets, RNNs find extensive applications due to their capacity
to model time series data, making them suitable for forecasting tasks. Notable RNN
architectures such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
have gained prominence for their effectiveness in handling long-range dependencies and
mitigating the vanishing gradient problem. Their popularity in forecasting stems from
their ability to capture intricate patterns and dynamic behaviors within time series data.

• Long Short-Term Memory (LSTM) networks are a special kind of RNN designed to
overcome the limitations of traditional RNNs in capturing long-range dependencies
in sequential data. LSTMs are equipped with a unique memory cell that facilitates
the retention and modulation of information over extended time intervals. Key
components, such as gates, enable the network to update, forget selectively, or output
information, enhancing its ability to process and learn from sequential data while
mitigating the vanishing or exploding gradient issues commonly encountered in
standard RNNs. The architecture’s focus on preserving contextual information makes
LSTMs particularly effective in tasks involving time series analysis, natural language
processing, and other sequential data applications. To briefly introduce the concept of
the LSTM, we use a similar naming convention as in [93]. Let x1, x2, ..., xT represent a
typical input sequence for an LSTM, with xt ∈ Rk indicating a k-dimensional vector
of real values at the t-th time step. To establish temporal connections, the LSTM
defines and sustains an internal memory cell state throughout its entire life cycle,
constituting the pivotal element within the LSTM structure. The interaction between
the memory cell state st1 , the intermediate output ht1 , and the subsequent input xt
guides the decision-making process on updating, maintaining, or erasing specific
elements within the internal state vector. This determination relies on the outputs
from the previous time step and the inputs from the current time step. The LSTM
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architecture also specifies the input node gt, input gate it, forgetting gate ft, and
output gate ot. The expressions for all nodes within an LSTM structure are provided
as follows:

ft =σ
(

W f xxt + W f hht−1 + b f

)
it =σ(Wixxt + Wihht−1 + bi)

gt =ϕ
(

Wgxxt + Wghht−1 + bg

)
ot =σ(Woxxt + Wohht−1 + bo)

st =gt ⊙ it + st−1 ⊙ ft

ht =ϕ(st)⊙ ot

where Wgx , Wgh , Wix , Wih , W f x , W f h , Wox and Woh are weight matrices of inputs of
the activation functions;

⊙
stands for an element-wise multiplication; σ represents

the sigmoid activation function; and ϕ represents the tanh function.
• Gated Recurrent Unit (GRU) has a simplified architecture with two gates: the update

gate (z) and the reset gate (r). The update gate manages the retention of the prior
hidden state, while the reset gate determines the degree of past information to forget.
GRU can be considered a simpler version of the Long Short-Term Memory (LSTM)
architecture. Though simpler in design than LSTMs, GRU can still learn to capture
long-term dependencies effectively. Furthermore, having fewer parameters makes
GRU more computationally efficient.

RNN networks are commonly integrated into hybrid approaches, combining them
with statistical methods and other artificial neural networks (ANNs) to enhance the accu-
racy with which electricity markets are modelled.

7.4.2. Convolution Neural Networks (CNNs)

Convolutional neural networks (CNNs) are deep learning architectures primarily
designed for image recognition tasks. However, their versatile architecture and ability to
capture spatial dependencies have led to their adoption in diverse domains. In energy
markets, CNNs are valuable for extracting complex spatial and temporal patterns from
various data sources, such as sensor readings, grid images, or geographical information.
Their application within the energy sector extends to tasks like load forecasting, anomaly
detection, and renewable energy generation prediction [31]. The adaptability of CNNs to
different data formats, coupled with their feature extraction capabilities, positions them
as practical tools for enhancing the accuracy of predictive models in energy market appli-
cations. Key components in a typical CNN include convolutional layers, pooling layers,
activation functions, and fully-connected layers. The convolutional layers apply learnable
filters (kernels) to extract features from input data. Their repeated application across differ-
ent data areas allows CNNs to capture local patterns and spatial relationships. The pooling
layers downsample the data, reducing its resolution while retaining essential information.
This helps to control overfitting and computational complexity. The activation functions
introduce non-linearity into the network, allowing it to learn complex relationships in the
data. Popular choices include ReLU and sigmoid. The fully connected layers perform
traditional neural network operations in the later stages of the network, often for tasks
like classification.

7.4.3. Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) represent a cutting-edge class of artificial
intelligence models with diverse applications. GANs consist of two neural networks, a
generator and a discriminator, which are engaged in a competitive training process. This
dynamic enables GANs to generate new data instances resembling the original dataset. In
the energy sector, GANs have been employed for tasks such as synthetic data generation
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and enhancing the diversity and quantity of available datasets. This proves particularly
useful for training models where obtaining large labelled datasets can be challenging. Ad-
ditionally, GANs have been applied to generate realistic scenarios for load forecasting and
simulate different energy market conditions. Their ability to learn and replicate complex
data distributions positions GANs as innovative tools for improving the performance and
robustness of models within the dynamic landscape of the energy market.

7.5. ANN Applications to Electricity
7.5.1. Electricity Forecasting

Forecasting is a cornerstone in energy market modelling, serving as a critical compo-
nent that guides decision-making processes and resource allocation. Within power systems,
various types of forecasting play pivotal roles in ensuring the reliability and efficiency of
operations. Load forecasting is fundamental, predicting future electricity demand and
enabling utilities to plan and optimize their generation and distribution strategies. Price
forecasting is equally essential, particularly in competitive electricity markets, providing
valuable insights for market participants to anticipate and navigate through fluctuations
in market prices. Additionally, renewable energy forecasting holds significance, focusing
on predicting the variable output of renewable sources such as wind and solar, which is
crucial for seamlessly integrating these resources into the grid. These diverse forecasting
approaches collectively contribute to the comprehensive modelling of energy markets,
offering valuable insights for stakeholders across the power industry. Energy forecasting
generally encompasses a wide range of time horizons and applications. Short-term fore-
casts, typically covering periods of up to a day, focus on predicting electricity load and price,
enabling real-time grid operations and trading strategies. Medium-term forecasts, spanning
a few days to weeks, are used for planning resource procurement and grid scheduling.
Long-term forecasts, extending to multiple years or decades, guide investment decisions,
infrastructure planning, and energy policy formulation [94].

Beyond the inherent characteristics of the data used for forecasting, many external
factors can also significantly influence the accuracy of forecasts. These external factors
can be identified differently based on the forecasting areas. However, they can be broadly
categorized into main groups, including socio-economic development, geographical cli-
mate, and state policies. These external factors introduce additional complexity into the
forecasting process and model generalization, as they contribute unique dynamics that
extend beyond the data’s intrinsic properties.

In [79], the authors evaluated different ML models, such as support vector machine
and RNN deep learning, for predicting electricity price forecasting on the day-ahead market
over other areas of Europe on separated test periods, focusing on the impact of adding new
predictive features.

LSTM and GRU Models

Among the diverse RNN architectures, Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) networks stand out as prominently employed tools in the field of
energy forecasting. LSTMs excel at handling long-range dependencies by introducing
gating mechanisms that regulate the flow of information through the network. These gates
act as filters, enabling LSTMs to selectively remember or forget important information
from previous time steps while suppressing irrelevant or outdated information. This
allows LSTMs to learn and retain long-range temporal relationships, even in noise or
irregular patterns. GRUs, on the other hand, are a simplified version of LSTMs that offer
a slightly faster and more efficient architecture. The widespread use of LSTM and GRU
can be attributed to their ability to capture temporal dependencies and effectively handle
sequential data [95].

In the paper by [93], which has attracted significant attention, the authors proposed an
LSTM-based framework for short-term residential load forecasting. The authors incorpo-
rated time- and date-related features, such as weekdays and holidays, alongside historical
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energy consumption data. The dataset was scaled to the range of (0, 1), and the time and
date features were encoded using a one-hot encoder. The input for the LSTM layer is a
matrix of the concatenation of the four, i.e.,

X =
{

ẼT, ĨT, D̃T, H̃T
}

(28)

where E is the sequence of energy consumptions for the past K time steps; I is the incre-
mental sequence of the time of day indices for the past K time steps; D is the corresponding
day of the week indices for the past K time steps, each of which ranges from 0 to 6; H is the
related binary holiday, each of which can either be 0 or 1.

Several LSTM blocks are stacked, and the outputs of the top LSTM layer are fed to a
conventional feedforward neural network, which maps the intermediate LSTM outputs to
a single value (the energy consumption forecast of the target time interval).

In [21], the authors presented a novel method based on stacked GRU-RNN and
monitoring parameters for predicting renewable energy and electricity load. The impact of
monitoring on improving prediction accuracy has been empirically evaluated by correlation
analysis between the parameters and output. AdaGrad and adjustable momentum were
combined to modify the training algorithm with an adaptive learning rate to improve
training efficiency. The authors customize a variant gate to reduce the time complexity of
the traditional GRU-RNN structure. In particular, each gate is computed using only the
previous hidden state and the bias, which largely reduces the total number of the trained
parameters. The gate variant of the proposed GRU-RNN is expressed by

zt = σ(Uhzht−1 + bz) (29)

rt = σ(Uhrht−1 + br). (30)

RNN and Self-Attention Approaches

Self-attention, at its core, is a mechanism that enables neural network models to attend
selectively to different parts of an input sequence, thus capturing long-range dependencies
and relationships. Self-attention’s ability to capture long-range dependencies has made
it a game-changer in NLP. The Transformer architecture, built entirely on self-attention,
achieved state-of-the-art results in NLP tasks. In traditional LSTM or GRU networks,
information is passed sequentially through the memory cells, leading to difficulties in
capturing long-range dependencies in time series data. Many researchers have employed
self-attention mechanisms to overcome this limitation by allowing the network to “focus”
on specific parts of the sequence based on their importance, even if it is far in the past. The
basic idea behind using self-attention in LSTM networks for time series forecasting is to
enhance the model’s ability to capture relevant temporal dependencies across various time
steps [23,78].

Ref. [23] proposed a novel day-ahead residential load forecasting method based on
feature engineering, self-attention LSTM, and pooling. Initially, feature engineering is
carried out through a two-stage preprocessing approach applied to the data for each user.
The preprocessing stages encompass decomposition and the reconstruction of multi-source
input dimensions. The data and numerical weather prediction (NWP) data undergo distinct
processing steps. The historical load time series is decomposed into three components
using variational mode decomposition (VMD), and the input features of these components
are subsequently reconstructed to enable the extraction of temporal correlations. In contrast,
NWP data undergo a similar processing procedure but without decomposition. Feature
engineering, which includes input dimension reconstruction, is conducted on individual
user data to streamline feature extraction. Subsequently, pooling is employed to consolidate
data from interconnected users, enhancing the incorporation of additional information re-
garding the electricity consumption behavior of the target user and mitigating overfitting by
reducing relative differences in complexity between the input data and the model. Finally, a
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hybrid model featuring two input channels is established through the fusion of LSTM and
the self-attention mechanism, thereby addressing any shortcomings in LSTM functionality.

CNN-LSTM Approach

One popular hybrid approach combines convolutional neural networks (CNNs) with
recurrent neural networks (RNNs). CNNs are well suited to extracting spatial features from
time series data, while RNNs excel at capturing temporal dependencies. Hybrid CNN-RNN
architectures can effectively capture spatial and temporal patterns by integrating these
two models.

Ref. [31] proposes a novel approach combining CNN and LSTM neural networks to
extract spatial and temporal features to effectively predict housing energy consumption.
The main idea is to exploit CNN to remove noise and to take into account the correlation
between multivariate variables, while LSTM models temporal information and maps time
series into separable spaces to generate forecasts, inspired by the success of this approach in
many various fields such as NLP and speech/video processing. The spatial characteristics
of a multivariate time series variable (variables that affect energy consumption prediction,
such as date, time, the behavior of the residents, voltage, intensity, and sub-metering) are
extracted from the convolution and pooling layers of the CNN layer. The outputs of these
CNN layers are passed to the LSTM layer after removing the noise. The last output of
the LSTM layer, which remembers the irregular trend factor of energy consumption, is
passed to a fully connected layer to generate the prediction values. The proposed model
accurately predicted performance in various time unit resolutions (minutely, hourly, daily,
and weekly). Another example of using CNN/CNN-LSTM for energy forecasting can be
found in [96–98].

Graph Convolutional Networks (GCNs)

GCNs have emerged as a valuable tool for multi-factor forecasting in energy, lever-
aging the inherent relationships between different energy variables to capture complex
interactions and improve forecasting accuracy. GCNs explicitly model the relationships
between energy variables using graph-based representations. These graphs capture the
connections between different entities, allowing GCNs to propagate information across the
graph and learn the underlying patterns that drive energy dynamics [12,99,100].

Transformer Approaches

Many research works have explored the use of Transformers for forecasting appli-
cations, especially with high-frequency data. Initially developed for natural language
processing (NLP), Transformers have succeeded in various domains, including computer
vision and time series forecasting. Transformers rely on encoder–decoder architecture and
self-attention mechanisms. The encoder–decoder architecture lets transformers learn the
temporal dependencies between data points and make informed forecasts. The attention
mechanism will enable them to attend to different parts of the input sequence, focusing
on the most relevant features for each time step. Over the last three years, a family of
Transformer-based models has emerged, including noteworthy examples such as Auto-
former [20] and Informer [81]. These models have undergone evaluation across various
datasets, encompassing multivariate electricity demand and weather time series data.
However, as Transformers evolve, their potential for time series forecasting is expected
to grow.

The Autoformer model presented in [20] is a Transformer-based architecture designed
to tackle the long-term time series forecasting problem. The model has been evaluated on
several datasets, including an electricity dataset containing the hourly electricity consump-
tion of 321 customers from 2012 to 2014 and a weather dataset recorded every 10 min for the
whole year of 2012, which includes 21 meteorological indicators, such as air temperature,
humidity, etc. This model employs a decomposition layer to decompose time series into
seasonality and trend-cycle components. The decomposition is incorporated as internal
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operations. The encoder and decoder utilize these decomposition blocks to merge the
trend-cyclical component and systematically extract the seasonal part from the series. Addi-
tionally, the model introduces an innovative auto-correlation mechanism that replaces the
standard self-attention used in the vanilla transformer. This mechanism allows the model
to leverage dependencies based on periods of attention, enhancing overall performance.
Mathematically, given a time lag T , autocorrelation for a single discrete variable y is used
to measure the Pearson correlation between the variable’s current value at time t to its
past value at time t − T . Autocorrelation(T ) = Corr(yt, yt−T ). Using this autocorrelation
mechanism, the model extracts frequency-based dependencies from the queries and keys
instead of the standard dot-product between them.

GAN Models

The performance of the above-mentioned deep learning networks relies heavily on
the quality and quantity of data available for training. Over the last few years, generative
adversarial networks (GANs) have showcased their ability to solve the data shortage
problem by generating synthetic data through learning from existing datasets. GANs can
produce novel samples that have not been encountered previously, but they should also
have distributional properties similar to original data. One of the strengths of GANs in
time series forecasting is that they can model data distribution and consider noise.

GANs consist of a pair of neural networks (generator G and discriminator D) engaged
in a competitive relationship. In this respect, the training of GANs relies on game theory
scenarios. The generator directly generates samples from a random distribution (e.g.,
normal and uniform distributions) as input, and the discriminator attempts to distinguish
between original samples (from the training dataset) and generated data. The discriminator
output represents the probability that a sample is drawn from the actual data distribution.
In contrast, the generator output represents a sample drawn from the distribution learned
from the training data. The competition between the generator and discriminator, which is
a linear function that heuristically shows the adversarial nature of the competition, can be
expressed mathematically as a min–max game:

min
G

max
D

V(D, G) = min
G

max
D

(
Ex∼µ[log(D(x))]

+Ez∼γ[log(1 − D(G(z)))])
(31)

where D(x) : Rn 7→ [0, 1] and G(z) : Rd 7→ Rn. Here, random samples z ∈ Rd from a
distribution γ are transformed into generated samples G(z) by generator G. The output of
the discriminator is a binary variable (D(x) = 1 for real samples, and D(x) = 0 for fake
samples), while the generator output is a vector.

Ref. [54] proposed a parallel prediction scheme for building energy consumption using
generative adversarial nets (GANs). The model is implemented in two stages: generating
data energy consumption and training the prediction model. The main idea is to use a
small number of the original data series to generate the parallel data via GAN and then
form the mixed dataset, which includes the original data and the artificial data. Then,
the prediction models (NN, SVM, etc.) will be trained using the mixed data. This model
is based on the parallel learning theory, which is a new framework for ML that utilizes
computational experiments to conduct predictive learning. It maps the source data to a
parallel space then evaluates and analyzes the effects of actions through a series of virtual
experiments and finally returns the optimal action result to the reality space. This model is
mathematically expressed as follows. Consider a dataset of N1 days of real building energy
consumption data: {

xt =
[
xt

1, xt
2, · · · , xt

n
]T
}N1

t=1
. (32)

where t is the day number, and n is the number of sampling data in each day. The parallel
data generation function can be seen as a state transition function and can be realized by
the GAN. A filter is applied to remove irregular parallel data generated by the GAN. Then,
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the mixed data are created by mixing the original and parallel data as follows: Consider
that the GAN has generated a building energy consumption time series data of N2 days:{

yt =
[
yt

1, yt
2, · · · , yt

n
]T
}N2

t=1
. (33)

Then the mixed data are obtained as follows:

x1
1, · · · , x1

n, · · · , xN1
1 , · · · , xN1

n , y1
1, · · · , y1

n, · · · yN2
1 , · · · , yN2

n . (34)

Ref. [56] studied the efficacy of four GAN models (RCGAN, TimeGAN, CWGAN, and
RCWGAN) for synthetic data generation for individual electricity consumption. The study
suggests using GAN models to avoid data privacy concerns and increase load modelling
efficiency for grid modelling. Recurrent conditional GAN (RCGAN) is a standard archi-
tecture of a regular GAN, replacing the generator and discriminator with recurrent neural
networks to generate sequences of realistic data subject to some conditional inputs. The
time-series GAN model (TimeGAN) contains four neural network components: two autoen-
coding components (embedding and recovery functions) and two adversarial components
(generator and discriminator). The main idea is that TimeGAN integrates autoencoding and
adversarial components in a joint training process (i.e., it simultaneously learns to encode
features, generate replicas, and iterate across time). This model updates temporal features
in the dataset over time (e.g., electricity consumption), while no changes are applied to
static features. Recurrent conditional Wasserstein GAN (RCWGAN) follows the standard
architecture of the CWGAN, replacing the generator and discriminator with recurrent
neural networks (RNNs). The idea behind the Wasserstein generative adversarial network
(WGAN) concept is to tackle mode collapse and the vanishing gradients encountered in
traditional GANs by optimizing the Wasserstein-1 distance. Meanwhile, the conditional
WGAN(CWGAN) extends WGAN by adding a vector of other information.

Ref. [14] implemented a novel technique, known as normalizing flows, to produce
accurate scenario-based probabilistic forecasts. Normalizing flows (NFs) are a class of
generative models that learn to generate complex distributions from a simple distribution
(e.g., a Gaussian distribution) through a series of invertible transformations. They have
attracted increasing interest in recent years. For example, Glow, by OpenAI, has garnered
interest because of its immense power to model probability distributions. The strength of
NFs is that they can directly learn the stochastic multivariate distribution of the underlying
process by maximizing the likelihood. They have proven to be an effective method of
modelling complex data distributions with neural networks in many domains, such as
speech synthesis. The aforementioned author compared, both in terms of quality and value,
the proposed conditional normalizing flows with conditional versions of state-of-the-art
deep learning generative models, i.e., generative adversarial networks and variational
autoencoders. The implementation of the conditional NF model presented in this paper can
be summarised in three steps: (1) a model fθ is trained by maximizing the log-likelihood
of the model’s parameters given a dataset which consists of historical observations of PV
and weather forecasts; (2) fθ establishes a one-to-one mapping (bijection) between the
variable of interest x, PV generation, and a normal distribution z; (3) the PV scenarios X̂
are generated through the inverse of fθ , which takes samples of the normal distribution z
and the weather forecasts c as inputs. This paper reports the superiority of the normalizing
flows model over generative adversarial networks and variational autoencoders for this
forecasting task.

Hybrid Approach

Hybrid deep learning approaches for electricity market modelling have become a
common strategy for enhancing accuracy and robustness. These approaches involve
combining multiple deep learning networks, such as convolution neural networks (CNNs)
or Long Short-Term Memory (LSTM) networks and often integrating them with other
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statistical time series analysis methods, for instances [101–105]. By leveraging the strengths
of different models, hybrid approaches aim to capitalize on the complementary nature
of their capabilities. This combination improves the overall predictive performance and
enhances the model’s adaptability to diverse market dynamics.

Ref. [77] proposed a novel robust deep learning framework, namely a long- and
short-term time series network (LSTNet) for multivariate time series forecasting. This
model has been evaluated using several forms of time series data, including solar power
production and electricity consumption. LSTNet combines the strengths of convolutional
and recurrent neural networks and an autoregressive component. The convolutional
layer extracts short-term patterns in the time dimension and local dependencies between
variables. The output obtained from this convolutional layer is passed to recurrent and
recurrent skip components. The recurrent component is the gated recurrent unit (GRU).
In contrast, the recurrent skip component is a recurrent skip component with temporal
skip connections used to extend the temporal span of the information flow. In particular,
skip links are added between the current hidden cell and the hidden cells in the same stage
in adjacent periods. The main idea behind the recurrent skip component is to leverage
the periodic pattern in real-world sets to capture very long-term correlations. A dense
layer combines the outputs of the recurrent and recurrent skip components. So, this dense
layer takes the hidden states of the recurrent component at time t, and p hidden states of
recurrent-skip component from time t − p + 1 as inputs, where p is the number of hidden
cells skipped (e.g., p = 24 in an hourly electricity consumption dataset). However, a
temporal attention layer is proposed as an alternative for the recurrent skip component,
particularly for non-seasonal time series datasets where the period length is dynamic over
time. To address the potential loss of proportionality between input and output scales
caused by using non-linear RNN and CNN functions in the model, the authors decomposed
the final prediction of the LSTNet model. This decomposition separates the prediction into
a linear component that handles local scaling issues (using an autoregressive model) and a
non-linear component that captures recurring patterns. The study’s findings emphasize
the AR model’s effectiveness in improving prediction accuracy.

Numerous studies have explored different hybrid approaches. For instance, ref. [80]
proposes using Gated Recurrent Unit (GRU) and random forest (RF) to estimate the electric
power load. GRU has been employed to predict the electric load, whereas RF has been
applied to reduce the input dimensions of the model. Ref. [106] proposes a multi-step
ahead PV power forecasting (PPF) model, which combines three key components: (1) time
series generative adversarial networks (TimeGAN) for data augmentation of PV power
data; (2) soft dynamic time warping (DTW)-based K-medoids clustering algorithms used
to improve the accuracy of photovoltaic power classification; and (3) a hybrid neural
network model computed by a convolutional neural network (CNN) and Gated Recurrent
Units (GRUs) to produce photovoltaic power forecasts. Ref. [107] presents an electricity
forecasting method based on empirical mode decomposition (EMD) and a bidirectional
Long Short-Term Memory (BI-LSTM) network.

Beyond hybrid models, ensemble methods also represent a popular approach. This
strategy involves combining forecasts from multiple individual models to generate a single,
potentially more accurate prediction. This principle behind ensemble methods lies in the
notion that diverse models are less likely to share the same errors, leading to a more robust
final forecast. Several well-established methods exist for combining individual models into
an ensemble forecast, such as simple averaging, weighted averaging, and support vector
machines (SVMs). For instance, ref. [108] introduced an ensemble of deep learning belief
networks (DBNs) for regression and time series forecasting. A support vector regression
(SVR) model aggregates the output forecasts obtained from various DBNs.

7.5.2. Operation and Optimization

By analyzing vast amounts of data and identifying complex patterns, DL algorithms
enable utilities and grid operators to make more informed decisions, improve grid efficiency,



Energies 2024, 17, 6106 33 of 46

and enhance overall system reliability. ML algorithms have been employed in various areas,
such as enhancing power quality, optimizing operations, and detecting faults and anomalies.

Paper [33] introduces a novel methodology for pricing options on flow forwards using
infinite-dimensional neural networks. In particular, the authors propose a unique approach
for pricing options on flow forwards, commonly encountered in commodity markets like
electricity, gas, and others, where the underlying commodity or service is delivered over a
contracted period rather than at a specified future time. This approach involves recasting
the pricing problem as an optimization problem within a Hilbert space of real-valued
functions. This Hilbert space represents the state space for the term structure dynamics,
which is essential for modelling these financial instruments. The solution to this optimiza-
tion problem is approached through a feedforward neural network architecture designed
explicitly for approximating continuous functions within this state space. Accordingly, the
paper details the derivation of properties of the pricing function, enabling the recasting
of the pricing problem into an optimization problem over a space of continuous functions
defined on a Hilbert space. This approach narrows the optimization to a specific subset
of constant functions, namely those that are part of Hilbert space neural networks. The
authors demonstrate how these neural networks can be efficiently implemented using
standard stochastic gradient descent algorithms for optimization. This methodology has
the advantage of automatically delivering option prices for a broad range of initial market
conditions, significantly reducing computational effort compared to traditional methods
like Monte Carlo simulations. Indeed, through numerical case studies, the authors validate
the efficiency of their methodology, especially in dealing with high-dimensional noise. This
aligns with the general understanding that neural networks can effectively overcome the
problem of dimensionality. The paper compares the proposed infinite-dimensional neural
network approach in a Hilbert space with traditional methods in which term structure
curves are sampled and transformed into high-dimensional input objects. The results
strongly favor the superiority of the proposed infinite-dimensional network, especially in
terms of interpretability and the ability to approximate the Greeks of the option (sensitivi-
ties) using numerical or analytical differentiation. This is contrasted with classical networks
trained by sampling, which do not offer easy approximations of these sensitivities.

Ref. [45] presented a real-time stochastic optimization method for energy storage man-
agement. The authors proposed an integrated controller combining stochastic dual dynamic
programming (SDDP) for energy management strategy and a real-time rule-based con-
troller. This integrated approach optimizes battery energy storage (BES) charge/discharge
schedules based on forecast profiles while adapting to real-time changes with high granu-
larity. The proposed framework is implemented in three hierarchical steps: First, solar PV
generation and load demand profiles are forecasted for the next 24 h in 15 min intervals.
Date features (such as holiday/working day and day of the month ) alongside previous 15
historical data features are considered as input features for an LSTM forecasting model. Sec-
ondly, multistage stochastic optimization is performed. The overall objective is to minimize
household electricity purchase costs by optimizing the integrated solar PV system storage
operation. In this step, the future load and solar generation uncertainties are modelled by a
scenario tree to represent possible events for the random parameters. This finite scenario
tree is constructed by independently sampling values for photovoltaic (PV) generation and
household electricity demand from their probability distributions. The SDDP algorithm has
been employed to solve the multistage stochastic program by constructing a piecewise lin-
ear approximation of the future cost function. Finally, a rule-based controller is integrated
with the SDDP optimization to enhance decisions obtained from SDDP in real time.

In [39], the authors introduce a novel ML algorithm to address high-dimensional
optimal switching problems in energy markets as follows. In particular, the paper focuses
on optimizing electricity production in energy markets, where both electricity and fossil
fuel prices exhibit stochastic jumps. This optimization is crucial for energy producers if they
are to operate efficiently amid volatile electricity demand and fuel availability. Optimal
switching problems in this context involve a stochastic state process, such as exogenous
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electricity demand and fuel prices, influencing an objective function. Decisions are made at
discrete switching times from a set of production modes, with penalties for switching. A
backwards-in-time ML algorithm using a sequence of neural networks is developed to solve
these optimal switching problems. This approach is applied to various energy scheduling
problems, including novel high-dimensional challenges. The stochastic model underlying
the problem is defined on a filtered probability space, involving a d-dimensional Wiener
process and a one-dimensional Poisson random measure for the jump-diffusion processes.
Feedforward neural networks are employed, where each layer creates an affine function
from weighted sums of inputs processed through an activation function. This structure
allows for approximating unknown functions effectively. The neural network architecture is
designed to be a universally good approximator, per the universal approximation theorem.
The parameter space is compact, ensuring the existence of a minimizing parameter set for
the loss function associated with the problem. The practical applications of this algorithm
are broad, including various energy scheduling and planning problems where decisions
must be made dynamically in response to fluctuating market conditions.

Ref. [44] explored the impact of stochastic approaches and distribution assumptions
on strategic investment decisions in energy planning problems. This study introduces a
two-stage stochastic programming model with various distribution assumptions for input
parameters, revealing substantial differences between stochastic and other robust solu-
tions in the existing literature. To address this sensitivity, the paper proposes a combined
approach using ML and distributionally complete optimization (DRO). Considering un-
certainty assumptions, this combined approach results in more robust and stable strategic
investment decisions. DRO is applied to handle ambiguous probability distributions, and
ML is employed to limit the DRO model to essential uncertain parameters for computa-
tional feasibility.

Another paper presented by [46] proposes a novel approach for micro-PMU place-
ment in smart distribution grids, considering the ability to change the network topology.
The proposed method is based on a stochastic framework that combines integer linear
programming (ILP) and the whale optimization algorithm (WOA). The ILP formulation
determines the optimal location of micro-PMUs, while the WOM optimizes the network
reconfiguration. To model the uncertainties in the problem, the authors proposed a point
estimation method (PEM).

Ref. [109] proposed an interdisciplinary mechanism that integrates ML, optimization,
and data structure design for creating an integrated and adaptable demand response (DR)
and household energy management (HEM) system that can effectively handle variable and
real-world conditions. This innovative DR and HEM technique can effectively adapt to
real-time variations in weather, seasons, and household conditions. The paper classifies the
loads of significant home appliances into three categories: fixed loads, regulateable loads,
and deferrable loads. The proposed system uses historical data and real-time information
to predict HVAC energy consumption and optimize thermostat settings. The learned
HVAC model determines 24 h next-day thermostat temperature settings based on weather
forecasts and electricity prices. These temperature settings are then sent to the thermostat
for actual HVAC operation.

The work presented in [41] discusses how artificial intelligence (AI) and smart moni-
toring can be used to improve energy sustainability in smart cities. The authors propose
a framework prototype based on three main components: smart monitoring, AI-based
optimization, and feedback mechanisms. Smart monitoring involves collecting data on
energy consumption patterns from various sources, such as smart meters and sensors.
These data can then be used to identify inefficiencies and opportunities for improvement.
AI-based optimization algorithms can analyze the collected data and develop strategies for
reducing energy consumption. These algorithms can consider weather patterns, occupancy
levels, and energy prices. The paper presents a non-intrusive load monitoring (NILM)
method that utilizes a genetic algorithm (GA) to optimize the parameters of a multiple
kernel learning (MKL) classifier. The authors aim to improve the performance of NILM by
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combining GA with MKL and introducing a method for reducing the number of classes the
classifier needs to learn. However, modelling security and abnormal and fraud detection
are other critical areas in which ML algorithms have been exploited.

Ref. [52] proposed using wide and deep convolutional neural networks (CNNs)
to learn electricity consumption data and identify electricity thieves. This framework
consists of two main components: the wide component and the deep CNN component.
The wide component is a fully connected neural network layer which learns the frequent
co-occurrence of features by memorising 1D time series data. The CNN component is used
to transform the 1D electricity consumption data into 2D data according to weeks. The
objective is to identify abnormal electricity usage by analyzing electricity consumption data
for several weeks simultaneously.

However, many researchers have investigated the intersection of the IoT and blockchain
technologies with AI for energy modeling, aiming to optimize energy operations in urban
and building environments. Recent review papers have thoroughly examined these re-
search avenues and advancements, providing valuable insights into the current state of the
field [110,111].

7.6. Large Language Models and Future Trends

The advent of large language models (LLMs), such as ChatGPT, is reshaping the AI
landscape and providing innovative solutions to longstanding challenges across various
fields. Unlike traditional domain-specific models which are developed and trained individ-
ually for specific use cases, LLMs are trained on vast datasets, proving able to achieve great
performance among different tasks. These models exhibit advanced reasoning skills, so-
phisticated pattern recognition, and the ability to learn from a few examples, making them
versatile tools suitable for multiple applications. Leveraging these qualities, LLM-based
approaches could offer innovative solutions to long-term limitations in energy market
modelling, such as the lack of sufficient annotated datasets that can comprehensively rep-
resent energy dynamic market contexts. Moreover, integrating LLMs can enhance model
generalization, scalability, and interoperability, also thanks to their robust language under-
standing and adaptability to unseen scenarios. This could enable direct communication
between IoT devices, end-users, and control systems without requiring domain experts,
retraining of models, or infrastructure modifications. Over the past two years, researchers
have started exploring the potential of these models for energy market modelling and
forecasting, inspired by their success in computer vision and natural language processing,
see, e.g., [112]. However, this area is still in its early stages, with a need for established
methodologies to guide future developments.

Moreover, several authors have started to explore and highlight LLMs’ capacity for
building energy modelling applications. As a case study, in [113], the authors fused
ChatGPT-4 , the version running in July 2023. with a piece of building energy modelling
software called EnergyPlus (https://energyplus.net/, accessed on 25 November 2024);
their goal was to simulate input and output generation and error analysis. The authors
reported their effectiveness across a range of tasks, from simplifying data analysis with
code generation to integrating multiple LLMs into a multi-agent system for intricate simu-
lation input generation. However, there were underlying challenges due to computational
demands and potential self-consistency issues.

The latter issues will surely be at the core of future studies in the energy sector,
providing significant mathematical challenges. Indeed, as we mentioned in all the previous
sections, the forecasting of energy-related quantities involves predicting future values of
variables, e.g., electricity demand, renewable energy generation, energy prices, etc. We
know that all of these exhibit complex temporal dynamics due to several factors, e.g.,
weather conditions, human behavior, market fluctuations, etc. In this scenario, LLMs, as
mentioned, can offer new powerful solutions to address the above tasks. In particular, we
think that they will be particularly useful when grounded in Transformer architectures,
also offering an effective alternative by leveraging self-attention mechanisms to model

https://energyplus.net/
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intricate dependencies in sequential data. To this end, let us specify how such solutions
could be designed.

Let {xt}T
t=1 be a multivariate time series representing energy-related variables, where

xt ∈ Rd at each time step t; accordingly, we aim to predict future values
{xT+1, xT+2, . . . , xT+H}, with H being the forecast horizon, using Transformer models
which employ self-attention to weigh the influence of different time steps on the pre-
diction. Therefore, we shall consider their core component represented by the scaled
dot-product attention:

Attention(Q, K, V) = softmax

(
QK⊤
√

dk

)
V, (35)

where Q = XWQ (queries), K = XWK (keys), V = XWV (values), X ∈ RT×dmodel is the input
sequence, WQ, WK, WV ∈ Rdmodel×dk are projection matrices, and dk is the dimensionality of
the keys and queries. By its definition, the model proceeds to process the entire sequence
simultaneously, then capturing dependencies across any distance without the recurrent
structure’s limitations.

To solve the Transformer’s lack of an inherent notion of sequence order, positional
encoding is added to the input embeddings to incorporate temporal information:

PE(t,2i) = sin
(

t
10, 0002i/dmodel

)
, PE(t,2i+1) = cos

(
t

10, 0002i/dmodel

)
, (36)

for i = 0, 1, . . . , dmodel/2 − 1 .
Moreover, we will consider the role played by exogenous variables (e.g., weather data

wt, economic indicators et), which can be integrated into the model as follows:

Xt = [xt; wt; et], (37)

[·; ·] denotes concatenation, so that the model now processes an enriched input sequence
{Xt}T

t=1.
Then, a possible extension could be to capture information from different representa-

tion subspaces, thus implementing a multi-head attention mechanism:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO, (38)

where each head computes the following:

headi = Attention(QWQ
i , KWK

i , VWV
i ), (39)

and WQ
i , WK

i , WV
i ∈ Rdmodel×dk , WO ∈ Rhdk×dmodel .

Accordingly, the model outputs a sequence x̂T+1:T+H , whose loss function defined as

L =
1
H

H

∑
h=1

∥xT+h − x̂T+h∥2. (40)

Alternatively, for probabilistic forecasting, the model predicts parameters of a distri-
bution (e.g., Gaussian with mean µt and variance σ2

t ):

L = − 1
H

H

∑
h=1

log p(xT+h|µT+h, σT+h), (41)

where

p(xT+h|µT+h, σT+h) =
1√

2πσT+h
exp

(
− (xT+h − µT+h)

2

2σ2
T+h

)
. (42)
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As mentioned before, such approaches have already been shown to be efficient in mod-
eling long-term dependencies, mainly because of the self-attention mechanism that allows
the model to consider all time steps when making a prediction, effectively capturing long-
term dependencies that are prevalent in energy data due to seasonal effects and recurrent
patterns. Moreover, Transformers can adapt their functioning to handle the typical non-
stationary behavior of energy time series; indeed, they adapt themselves by re-weighting
attention dynamically, allowing for better modelling of shifts in the data distribution.

It is worth mentioning that, by their nature, Transformer architectures enable efficient
training on large datasets, which is essential given the high-resolution data in energy
systems; it also minimizes computational efforts that, as mentioned before, will especially
affect the numerical implementations/approximations of SDE-based approaches. The latter
advantage is even more evident when incorporating exogenous variables directly into the
input sequence, since, in doing so, the model can leverage additional information that
influences energy quantities, thereby improving forecasting accuracy without significantly
increasing the hardware effort needed to obtain the results.

For the sake of completeness, let us underline that what is above is mathematically
justified. Indeed, the ability of Transformers to capture complex temporal patterns can be
linked to their universal approximation capabilities. Given that the self-attention mech-
anism is a form of weighted averaging over the input sequence, the model can formally
represent any sequence-to-sequence mapping given sufficient capacity. In particular, we
know that if we consider the approximation of a function f : RT×d → RH×d, then, under
suitable conditions, there exists a Transformer model T , such that

sup
X∈X

∥ f (X)− T (X)∥ < ϵ, (43)

for any ϵ > 0 and compact set X .

8. Conclusions

In this paper, we have provided a comprehensive exploration of advanced methodolo-
gies in energy market modelling, ranging from sophisticated statistical methods, particu-
larly SDE-based models, to recent developments in ML and LLMs, thus offering a cohesive
framework that addresses the complexities inherent in several settings as, e.g., industrial,
climate, and economic/commercial.

The synthesis of diverse methodologies presented in this paper lays the groundwork
for future research and technological developments. In particular, the interplay between
stochastic modelling, optimization strategies, and ML-based algorithms offers a robust
toolkit for both analysts and practitioners aiming to develop and/or to use increasingly
efficient solutions dealing with forecasting energy-related quantities.

We began by reviewing the methodologies and applications of SDEs in modelling
energy markets, focusing on their success in capturing, e.g., the inherent uncertainty in the
forecasting of the spot price of electricity St, which can be modelled using mean-reverting
processes to reflect the tendency of prices to return to a long-term equilibrium, as in the
case of implementing the Ornstein–Uhlenbeck process:

dSt = κ(θ − St)dt + σdWt, (44)

where κ is the rate of reversion, θ represents the long-term mean price level, and σ is the
volatility parameter. The model is steered by a stochastic process of the the Wiener type.
Along the same line, we recalled how to account for the seasonal effects and sudden spikes
often observed in energy markets. Indeed, we cited references in which authors extended
the model by incorporating a seasonal function Φ(t) and a jump process Jt:

dSt = [κ(θ − St) + Φ(t)]dt + σdWt + JtdNt, (45)
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hence exploiting Nt to represent the (random) occurrence of jumps, and of (possibly stochas-
tic) jump size Jt, which is typically modeled using a log-normal or exponential distribution.

We then delved into the bidding and operation strategies of market participants,
addressing mean field game (MFG) applications and stochastic algorithms in electricity
modelling to consider the interactions of a large number of agents, e.g., power producers,
consumers, etc., who make decisions based on the aggregate behavior of the popula-
tion. Within this context, we recall the typical stochastic control problem addressed in
the literature:

J(α) = E
[∫ T

0
L(t, Xα

t , αt, mt)dt + g(Xα
T , mT)

]
, (46)

which is subject to the following state dynamics:

dXα
t = b(t, Xα

t , αt, mt)dt + σ(t, Xα
t )dWt, (47)

where αt is the control strategy, Xα
t is the state process, L is the running cost, g is the

terminal cost one, and mt is the distribution of states across agents at time t. The latter task
has been typically addressed in finding the associated system equilibrium by exploiting
analytical tools typically used to consider the coupled Hamilton–Jacobi–Bellman (HJB) and
Fokker–Planck–Kolmogorov (FPK) equations. Analogously, we cited stochastic algorithms,
such as the stochastic dual dynamic programming (SDDP) method, to solve multi-stage
stochastic optimization problems in electricity generation and distribution.

Then, we explored the commonly employed ML approaches, highlighting their diverse
capabilities in various energy-related tasks. Deep learning models, such as convolutional
neural networks (CNNs) and recurrent neural networks (RNNs), have been applied to fore-
cast energy consumption and production. In particular, Long Short-Term Memory (LSTM)
networks are shown to be effective in modelling temporal dependencies in time series data.
Then, particularly in view of future developments, we considered existing studies in which
authors have incorporated the use of LLMs, particularly Transformer-based architectures,
in energy forecasting and market analysis. Indeed, LLMs have also been employed to
analyze textual data relevant to energy markets, such as news articles, policy documents,
and social media feeds. Natural language processing (NLP) techniques extract sentiment
scores and topic distributions, which are then incorporated into quantitative models to
predict market movements.

This field, which is basically at the intersection of stochastic analysis, ML-based ap-
proaches, and IoT/blockchain tasks, has attracted a lot of interest within the community of
both practitioners and academics because of the intrinsic uncertainties of energy production,
distribution, and consumption, particularly with the increasing prominence of renewable
energy sources.

As outlined in the present paper, electricity prices can also be modelled using SDEs,
e.g., starting with exploiting the standard Ornstein–Uhlenbeck process:

dPt = θ(µ − Pt)dt + σdWt (48)

where Pt represents the electricity price, provided that the parameter θ is used to consider
possible mean reversion toward µ, i.e., the long-term mean price, and subject to market
volatility σ. Then, we noted how ML methods can effectively enhance the latter type of
approach, e.g., by implementing DL architectures, such as RNNs networks and LSTM, to
model temporal sequences and then capture complex non-linear relationships in energy
data. In particular, they improve the forecasting of demand, supply, and prices, which
is crucial for operational planning and market participation. Analogously, reinforcement
learning algorithms enable the development of adaptive strategies for energy trading and
resource allocation by learning optimal policies through interaction with the environment,
particularly taking into account IoT devices, which are being used more and more within
the energy sector, that generate (tons of) real-time data streams from smart meters, sensors,
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and grid equipment. This information has been used to feed previously cited hybridization
of stochastic and ML models, thus enhancing their accuracy and responsiveness. One
example is the case of real-time load forecasting achieved by integrating IoT data with
stochastic state-space models and Kalman filtering techniques, which provide recursive
estimates of the system states, allowing for real-time updates as new data arrives.

Let us also mention that in the realm of renewable energy integration, stochastic
weather modelling combined with ML can enhance the forecasting of renewable genera-
tion. In particular, we are thinking about exploiting copulas, which couple multivariate
distribution functions to their one-dimensional margins in order to model dependencies
between different weather variables effectively. Indeed, according to Sklar’s theorem,
such an approach allows for the simulation of correlated weather variables, improving the
accuracy of renewable energy forecasts.

Concerning blockchain technology, it introduces a decentralized ledger system that
ensures secure, transparent, and immutable records of transactions in energy markets.
Moreover, smart contracts and programmable agreements executed on the blockchain
automate transactions and settlements without intermediaries. In the context of peer-
to-peer energy trading, blockchain enables prosumers to trade surplus energy directly,
fostering a decentralized energy markets. Accordingly, particularly within the practitioners’
community, the combination of blockchain with stochastic models and ML facilitates the
creation of platforms where energy prices and transactions adapt dynamically to supply
and demand conditions.

In particular, the latter can be formalized through stochastic control and optimization
frameworks, e.g., by considering the Hamilton–Jacobi–Bellman (HJB) setting, whose associated
solution yields the optimal control policy for energy storage operations under uncertainty.

Furthermore, stochastic optimization methods are pivotal in training ML models on
energy data. Indeed, algorithms like the SGD are employed to minimize loss functions L(θ)
by iteratively updating the model parameters θ:

θk+1 = θk − ηk∇LBk (θk) (49)

where ηk is the learning rate, while ∇LBk is the gradient computed on a mini-batch Bk of
data. Enhancements to SGD, such as adaptive learning rates in algorithms like Adam or
RMSprop, improve convergence speed and model performance.

Moreover, it is worth mentioning that in blockchain technology, advancements in
interoperability protocols will allow different blockchain networks to communicate and
transact seamlessly. Cross-chain communication protocols, such as atomic swaps and relay
chains, enable assets and data to move across disparate blockchains, fostering a more
interconnected energy market ecosystem.

Nevertheless, let us underline that despite the promising potential, challenges remain
in implementing these integrated systems. Scalability issues in blockchain, particularly
concerning transaction throughput and energy consumption of consensus mechanisms
like Proof of Work, necessitate the development of more efficient alternatives, such as
Proof of Stake or Directed Acyclic Graphs (DAGs). Moreover, data privacy and security
are critical, given the sensitivity of consumption patterns and the risks of cyber attacks
on interconnected devices. Techniques like differential privacy and secure multiparty
computation can mitigate these risks by allowing data analysis without exposing individual
data points.

Last but not least, regulatory frameworks need to evolve to accommodate the afore-
mentioned technological advancements. Indeed, energy markets are heavily regulated,
and the integration of decentralized and automated systems must align with policies on
grid reliability, market fairness, and consumer protection. The latter implies that a proac-
tive and collaborative agreement between technology developers, energy companies, and
regulators is essential to establish standards and protocols that ensure interoperability
and compliance.
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To summarize, we would like to underline that what we provided is not to be consid-
ered a mere juxtaposition of different sources, different forecasting methods, or solutions to
specific problems related to forecasting aspects in the energy sector; rather, it is to be viewed
as an examination of the state of the art of those methods that, particularly in the field of
applied stochastic analysis, can be further refined and placed in proactive competition in
order to obtain integrated tools of extreme precision and computational usability.
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NNs Neural Networks
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SPDEs Stochastic Partial Differential Equations
RL Reinforcement Learning
LP Linear Programming
MILP mixed-integer Linear Programming
NIG Normal Inverse Gaussian
EM Euler–Maruyama
fBm Fractional Brownian Motion
EEX European Energy Exchange
PIDE Partial Integral Differential Equation
ODEs Ordinary Differential Equations
EEX European Energy Exchange
MFC Mean Field Control
EEX European Energy Exchange
FBSDE Forward-Backward Stochastic Differential Equation
MGs Micro Grids
MMGs Multi-Micro Grids
ESS Energy Storage Systems
DGs Dispatchable Generators
EVs Electric Vehicles
CVaR Conditional Value-at-Risk
WT Wind Turbines
PV PhotoVoltaic
MCS Monte Carlo Simulation
MPEC Mathematical Programming with Equilibrium Constraints
DNO Distribution Network Operator
MCP Market Clearing Price
VPPs Virtual Power Plants
CPP Conventional Power Plant
WP Wind-Power
DA Day-Ahead
RT Real-Time
MDP Markov Decision Process
SVM Support Vector Model
GP Gaussian Processes
GBDT Gradient Boosting Decision Trees
LR linear Regression
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MAPE Mean Absolute Percentage Error
ARMA Auto Regressive Moving Average
LDR Leap Days Removal
GPR Gaussian Process Regression
SVR Support Vector Regression
ARIMA Autoregressive Integrated Moving Average
MARS Multivariate Adaptive Regression Spline
PACF Partial Autocorrelation Function
RBF Radial Basis Function
MSE Mean Squared Error
GCV Generalized Cross-Validation
SAE Stacked Autoencoder
DBN Deep Belief Network
ECB Electricity Consumption Behavior
FCM Fuzzy C-Means
SOM Self-organizing Map
DSM Demand-Side Management
RL-FCM Robust-Learning Fuzzy C-Means
CER Commission for Energy Regulation
PSO Particle Swarm Optimisation
KNN K-Nearest Neighbors
DTW Dynamic Time Warping
LOF Local Outlier Factor
ANN Artificial Neural Networks
DT Decision Trees
SCADA Supervisory Control and Data Acquisition
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
CNN Convolution Neural Network
NWP Numerical Weather Prediction
VMD Variational Mode Decomposition
GCN Graph Convolutional Network
NLP Natural Language Processing
GAN Generative Adversarial Network
WGAN Wasserstei Generative Adversarial Network
RCGAN Recurrent Conditional Generative Adversarial Network
CWGAN Conditional Wasserstei Conditional Generative Adversarial Network
RCWGAN Recurrent Conditional Wasserstei Conditional Generative Adversarial Network
NF Normalising Flow
EMD Empirical Mode Decomposition
ML Machine Learning
SDDP Stochastic Dual Dynamic Programming
BES Battery Energy Storage
DRO Distributionally Complete Optimisation
PMU Phasor Measurement Unit
ILP Integer Linear Programming
WOA Whale Optimization Algorithm
PEM Point Estimation Method
DR Demand Response
HEM Household Energy Management
HVAC Heating, Ventilation, and Air Conditioning
AI Artificial Intelligence
NILM Non-Intrusive Load Monitoring
GA Genetic Algorithm
MKL Multiple Kernel Learning
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