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Abstract

In this paper we present the theorem prover SBR3 for equational logic and its
application in the many-valued logic of Lukasiewicz. We give a new equational ax-
iomatization of many-valued logic and we prove by SBR3 that it is equivalent to the
classical equational presentation of such logic given by Wajsberg. We feel that our
equational axiomatization of Wajsberg algebras is more suited for automated reason-
ing than the classical one. Indeed, it has allowed us to obtain a fast mechanical proof
of the so called “fifth Lukasiewicz conjecture”, which is regarded as a challenge prob-
lem for theorem provers. We present many-valued logic in Section 1, the mechanical
proofs by SBR3 in Section 2 and SBR3 itself in Section 3.

1 Many-valued logic

Many-valued propositional logic was first introduced by Jan Lukasiewicz in the 1920’s. All
the following results about early work on many-valued logic are reported in [TL-56].

The original definition of many-valued logic is purely semantical. No axioms and no
inference rules are given. Lukasiewicz defines first a model and then the logic is defined
as the set of all sentences in propositional calculus which are true in that model. More
precisely, the n-valued logic Ln is defined as the set of all sentences satisfied by the structure

Ln =< { k

n− 1
|0 ≤ k ≤ n− 1}, g, f >

where An = { k
n−1 |0 ≤ k ≤ n − 1} is the domain, g : An → An is the unary function

g(x) = 1− x and f : An ×An → An is the binary function f(x, y) = min(1− x + y, 1).

L1 is the set of all legal propositional sentences, L2 is classical two-valued propositional
logic with model

L2 =< {0, 1}, g, f >

where the functions g and f are classical negation and implication. L3 is three-valued
logic, the first one introduced by Lukasiewicz.
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As n increases, the domain An grows:

A1 = {1}, A2 = {0, 1}, A3 = {0, 12 , 1},

A4 = {0, 13 ,
2
3 , 1}, A5 = {0, 14 ,

2
4 ,

3
4 , 1} . . .

The limit of this sequence is the set Q0 of all rational numbers in the interval [0, 1],
which is the domain of the many valued logic

Lℵ0 =< {k
l
|0 ≤ k ≤ l}, g, f >

As n increases, the set Ln shrinks and Lℵ0 is the smallest such set, i.e. the intersection of
all the Ln. It has been proved by Lindenbaum that the domain Lℵ0 can be any arbitrary
set of numbers {x|0 ≤ x ≤ 1} closed with respect to g and f .

Lukasiewicz conjectured that the following axioms are an axiomatization for Lℵ0 :

(1) p⇒ (q ⇒ p)

(2) (p⇒ q)⇒ ((q ⇒ r)⇒ (p⇒ r))

(3) ((p⇒ q)⇒ q)⇒ ((q ⇒ p)⇒ p)

(4) ((p⇒ q)⇒ (q ⇒ p))⇒ (q ⇒ p)

(5) (not(p)⇒ not(q))⇒ (q ⇒ p)

where not and ⇒ are interpreted as g and f in the model Lℵ0 . We will write not, ⇒ and
true rather than g, f and 1 whenever we are working on the axiomatization rather than
on the model. The fourth axiom was later proved to be dependent on the others.

The Wajsberg algebras are a class of algebras related to Lukasiewicz logic [FRT-84].
The following is the equational axiomatization of Wajsberg algebras as reported in [FRT-
84], which we denote by W:

(1) true⇒ x == x

(2) (x⇒ y)⇒ ((y ⇒ z)⇒ (x⇒ z)) == true

(3) ((x⇒ y)⇒ y == (y ⇒ x)⇒ x

(4) (not(x)⇒ not(y))⇒ (y ⇒ x) == true

Our interest in many-valued logic has been originally motivated by the so called Fifth
Lukasiewicz conjecture, brought to our attention by [Mu]. The problem consists in proving
from W that

(x⇒ y) ∨ (y ⇒ x) == true,

where the operator ∨ is defined by:

x ∨ y == (x⇒ y)⇒ y.

This problem was originally given by Lukasiewicz as a conjecture [TL-56] and proved
several years later [RR-58, MC-58].

We succeeded in obtaining a mechanical proof of this conjecture as reported in [AB-90].
During the effort of proving the Fifth Lukasiewicz conjecture we have obtained by our
prover SBR3 a new equational axiomatization of many-valued logic, which we present in
this paper.



2 A new set of axioms for Wajsberg algebras

We start from the observation that the connective ∨, which occurs in the Fifth Lukasiewicz
conjecture, is not classical disjunction. The classical definition of disjunction in terms of
implication and negation is

or(x, y) = not(x)⇒ y.

Since in the model Lℵ0 the operator⇒ is interpreted as min(1−x+y, 1), such connective
or is interpreted as min(1− (1−x) + y, 1) = min(x+ y, 1). On the other hand, according
to the above definition of the operator ∨ , x ∨ y is interpreted as max(x, y):

min(1−min(1− x + y, 1) + y, 1) =

{
min(1− 1 + y, 1) = y if y ≥ x
min(1− 1 + x− y + y, 1) = x if x ≥ y

Thus ∨ and or are different connectives, except when the domain of interpretation is {0, 1},
i.e. when the logic is 2-valued.

Our first bunch of experiments consists in adding to the axiomsW, the two definitions

or(x, y) = not(x)⇒ y

and(x, y)⇒ z = (x⇒ y)⇒ z

where the second one is an implicit definition of classical conjunction1.

Our first goal is to prove by SBR3 that or and and are associative and commutative
(AC). The proof has been obtained in three steps:

Lemma 1. Prove that not(x)⇒ not(y) == y ⇒ x in the theory W.

The proof of Lemma 1 also generates the following important result: not(not(x)) == x.

Lemma 2. Prove that the connective and is commutative, that is x⇒ (y ⇒ z) ==
y ⇒ (x⇒ z) follows from W and Lemma 1.

Lemma 3. Prove that the connective or is AC from W and Lemmas 1 and 2.

This proof also produces the equation: and(x, y) = not(or(not(x), not(y))), which
defines and in terms of or and shows that and is also AC.

Since not(not(x)) == x, we may write henceforth x ⇒ y = or(not(x), y). Thus and
and or can replace ⇒ as basic connective of many-valued logic. This has been important
to our purposes, since the possibility to express implication in terms of other operators
has been fundamental to achieve a proof of the Fifth Lukasiewicz conjecture.

Our second goal is to obtain an axiomatization of many-valued logic in terms of and
and exclusive or. Therefore, we define

x ∗ y = and(x, y) == not(or(not(x), not(y))) and

x + y == or(and(x, not(y)), and(not(x), y)).

1The reason for introducing conjunction in this way is in the details of our proof of the Fifth Lukasiewicz
conjecture [AB-90].



If we add to W these two definitions, we can prove by SBR3 the following set of
theorems, which we denote by W ′:

not(x) == x + 1

x + 0 == x

x + x == 0

x ∗ 1 == x

x ∗ 0 == 0

(1 + x) ∗ x == 0

x + (1 + y) == (x + 1) + y

((1 + x) ∗ y) + 1) ∗ y == ((1 + y) ∗ x) + 1) ∗ x
where ∗ is AC, while + is commutative only. Furthermore, the prover generates the

definition of or in terms of +:

or(x, y) = 1 + ((1 + x) ∗ (1 + y)).

Inversely, if we start with W ′ as axiomatization and we add the definition:

(x⇒ y) = 1 + (x ∗ (1 + y)) ,

we obtain by SBR3 all the equations of W as theorems. Therefore, we have proved the
following

Theorem The sets W and W ′ are equivalent axiomatizations.

Our axiomatization W ′ for many-valued logic is partly resemblant of the system of
axioms for the Boolean ring given by J. Hsiang. However, there are three substantial
differences: our + is only commutative, whereas it is AC in the Boolean case. Distributivity
of ∗ on + does not hold in many-valued logic, whereas it does in the Boolean ring. Finally,
∗ is not idempotent.

The experience gathered so far with SBR3 suggests that the axiomatizationW ′ is more
suited for automated equational reasoning than the original W. For instance, we have
observed that if we start with W ′, we obtain a proof of the Fifth Lukasiewicz conjecture
which is faster than the one reported in [AB-90].

3 The equational theorem prover SBR3

We conclude with an overview of our prover. SBR3 is a term rewriting based theorem
prover for equational logic. It is the latest offspring of the Reve family. The Reve family
is mostly concerned with completing a set of equations into a canonical system. Although
well-worthy in its own right, such systems are not ideal for the purpose of proving a specific
equational theorem.

In 1986, Mzali and Hsiang started to develop a new system, SbReve1 [AM-88], based
on Reve2.4. The goal of SbReve1 was to modify the completion process in order to
efficiently prove a single theorem of an equational theory rather than generating a canon-
ical system. SbReve1 was overhauled into SbReve2 [AHM-89] and finally into SBR3 by
Anantharaman.

The entire SbReve family provers employ the overall methodology of simplification-
first. Critical pairs are never generated as long as there is still room for simplification.



Even if the superposition procedure is invoked, critical pairs are generated one at a time,
and the simplification process is re-started as soon as a divergent critical pair is generated.
This is the most significant design difference between the SbReve and Reve families.

The major difference between SBR3 and its predecessors is the incorporation of much
more sophisticated search strategies, which we will describe in the following subsections.

Finally, SBR3 is making further progress. First, the approach adopted in SBR3 has
recently been extended to Horn theories with equality [AA-91]. Second, SBR3, which is
currently available in CLU, for SUN-3/VAX, is being rewritten in C/C++. A first version
for Horn theories, in C/C++ and for all SUNs is expected by fall 1991.

3.1 The Inference Mechanisms of SBR3

SBR3 takes as inputs an equational theory E and an equation s = t and tries to prove
refutationally that s = t is a theorem of E.

In addition to the theory and the equation, the user should also provide an ordering
to order the terms. Usually the ordering should be a complete simplification ordering (a
simplification ordering which is total on ground terms). In SBR3 the user has the choice
of assigning a precedence among the operators in the theory and choose an ordering from
a list implemented in the system. However, SBR3 will not check the totality for the user,
so that this constraint is relaxed. This relaxation is very important for two reasons. First,
no practical cso compatible with AC is known. If the totality requirement were enforced,
it would be an obstacle to the application of the C/AC-UKB procedures [AM-88], which
are the backbones of SBR3. Second, the lack of totality on ground terms may help in
getting shorter proof, by the Order-Saturation strategy [AH-90, AA-90].

The inference mechanism of SBR3 includes inference rules for the cancellation axioms
[HRS-87], for functional subsumption and simplification, that is an array of powerful rules
to replace large equations by smaller ones.

3.2 The Search Mechanisms of SBR3

The simplification-first search strategy coupled with cancellation controls the growth of
the number and size of rules to some extent, but more clever means are quite often needed.

The first problem is to find a shorter path to a solution. UKB, being complete, gua-
rantees the existence of a proof through simplification and superposition should there be
one. It does not, however, guarantee to provide a short proof. Suppose the prover can
look at several different inequalities and tries to find a contradiction simultaneously2, then
conceivably one can find a proof faster. On the other hand, one should also keep in mind
not to inundate the search space with irrelevant inequalities. SBR3 provides a facility for
working on a reasonable number of inequalities. This is the above mentioned Ordered-
Saturation strategy, which has proved indispensable, together with the Cancellation-Laws,
to prove some of the more difficult problems we succeeded to prove [AH-90].

Another challenge is to eliminate redundant critical pairs, especially in AC-completion,
due to the potentially astronomical number of AC-unifiers. The critical pair criteria defined
for this purpose are not sufficiently effective, since all of them are designed not to destroy
the confluence property of any given two terms. In refutational theorem proving, on the

2The basic UKB only looks at one.



other hand, we are only interested in the confluence of the two terms of the target theorem.
Therefore a critical pair can be deleted or suspended as long as it does not destroy the
confluence of the intended terms.

In SBR3, we attack this probelm by employing measures. A measure estimates the
likelihood of whether a critical pair may contribute to an eventual proof of the intended
theorem. Such measures are defined syntactically on the structure of terms, based for
instance on the number of occurrences of a specific operator. Critical pairs are ordered
according to the measure which decides the next equation to be chosen to perform superpo-
sition. Certain measures even allow us to delete critical pairs if they are deemed irrelevant
for producing a proof. This search strategy is called filtration-sorted strategy. All the
details can be found in [AA-90]. Several such strategies are implemented in SBR3 and
they have played a decisive role in our experiments so far, including the above application
to many-valued logic.
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