
Effective interactive visualization of neural relightable images in a

web-based multi-layered framework

Leonardo Righetto1, Fabio Bettio 2, Federico Ponchio 3, Andrea Giachetti 1 Enrico Gobbetti 2

1University of Verona, Italy, 2CRS4, Italy, 3ISTI-CNR, Italy,

Figure 1: Interactive neural relighting. Left: interactive exploration on a laptop with integrated graphics (full HD display, Intel Coffee

Lake GT2 graphics); Right: interactive exploration on a 98-inch multi-touch display connected to a desktop PC (4K, NVIDIA RTX 2080 Ti

graphics). Both applications use the same code executing in a web browser. The model on the left is derived from a high-resolution MLIC

capture of textile artifacts from the Oseberg Find, coming from a Viking Age burial mound at Oseberg in South Norway. The model on the

right is of an organ door with an announcing angel, 17th century, belonging to the Diocesan Museum of Vicenza and reconstructed from a

handheld-light MLIC capture in collaboration with the Accademia delle Belle Arti of Verona.

Abstract

Relightable images created from Multi-Light Image Collections (MLICs) are one of the most commonly employed models for

interactive object exploration in cultural heritage. In recent years, neural representations have been shown to produce higher-

quality images, at similar storage costs, with respect to the more classic analytical models such as Polynomial Texture Maps

(PTM) or Hemispherical Harmonics (HSH). However, their integration in practical interactive tools has so far been limited due

to the higher evaluation cost, making it difficult to employ them for interactive inspection of large images, and to the difficulty in

integration cost, due to the need to incorporate deep-learning libraries in relightable renderers. In this paper, we illustrate how

a state-of-the-art neural reflectance model can be directly evaluated, using common WebGL shader features, inside a multi-

platform renderer. We then show how this solution can be embedded in a scalable framework capable to handle multi-layered

relightable models in web settings. We finally show the performance and capabilities of the method on cultural heritage objects.

CCS Concepts

• Computing methodologies → Reflectance modeling; Graphics systems and interfaces; • Applied computing → Arts and

humanities;

1. Introduction

The interactive inspection of the shape and appearance of objects is
of fundamental importance in many application fields. In the Cul-
tural Heritage (CH) domain, it is routinely used by both experts
(e.g., scholars and conservators) and the wider public to replace,
augment, or complement the inspection of real objects [SCC∗11].
In this context, in parallel to interactive viewers focusing mostly

on the shape of 3D virtual replicas [PCD∗15, Ske19], relighting
approaches, popularized by Reflectance Transformation Imaging
(RTI) viewers [CHI19], have emerged as one of the most common
and effective ones.

Relighting viewers operate on a 2D view of the scene of interest,
and on top of offering panning and zooming, make it possible to
control a virtual light to re-illuminate the scene during an inspec-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

EUROGRAPHICS Workshop on Graphics and Cultural Heritage (2023)

A. Bucciero, B. Fanini, H. Graf, S. Pescarin, and S. Rizvic (Editors)

DOI: 10.2312/gch.20231158 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-0948-5289
https://orcid.org/0000-0002-2974-0577
https://orcid.org/0000-0002-7523-6806
https://orcid.org/0000-0003-0831-2458
https://doi.org/10.2312/gch.20231158


L. Righetto et al. / Interactive neural relightable images

tion, as well as to present multiple facets of it using stratigraphic
rendering techniques [JAP∗21, BAMG21]. The success of this ap-
proach is due to the ease with which such scenes can be acquired
using a fixed camera and a variety of setups [PDC∗19], as well
as to a number of practical reasons that facilitate the deployment
and usage of such viewers. First of all, many cultural objects (e.g.,
paintings, coins, bas-reliefs, or manuscripts) have a dominant view-
ing direction, and many others are naturally inspected from one or
a few preferential views (e.g., many statues). Second, restricting
camera control to 2D panning and zooming removes the complex-
ity of 3D camera control, which is one of the main difficulties of 3D
exploration applications, reducing learning curves [JH15]. Finally,
a relighting interface supports a type of visualization very appro-
priate to inspect fine surface and appearance details and resembles
the classical physical inspection with raking light sources to reveal
surface detail of actual objects under study. For this reason, the
interactive inspection of relightable images has been applied to a
wide range of items and has shown to be very appropriate both for
expert and casual users [PDC∗19].

Performing realistic interactive re-illumination based on a
(physically-based) shape and material model, however, practically
restricts the method to the limited number of cases in which
computing such a model is feasible, and requires non-trivial run-
time illumination computation at rendering time to take into ac-
count non-local lighting effects and/or transparency and translu-
cency [PDC∗19]. For this reason, the vast majority of relighting
viewers employ Reflectance Transformation Imaging (RTI) meth-
ods that simply reproduce the acquired reflectance field, without
any separation into shape and reflectance components. Starting
from a Multi-Light Image Collection (MLIC), i.e., a set of pho-
tographs acquired with a fixed camera under varying lighting con-
ditions, such methods strive to compactly encode acquired data us-
ing view-dependent per-pixel reflectance functions, allowing effi-
cient transmission, storage, and generation of new images using
any light direction in the hemisphere around the camera place.

A large variety of solutions have been proposed to model re-
flectance functions and perform fitting to input data. Classic inter-
active solutions to perform RTI, however, rely on low-frequency
representations that fail to suitably represent the subtle illumina-
tion effects generated by the intertwining of complex local geo-
metric and appearance characteristics [PDC∗19]. In recent years,
reflectance functions based on artificial neural networks have been
shown to produce higher-quality images, at similar storage costs,
with respect to classical analytical formulations (see Sec. 2). How-
ever, their integration into interactive tools has so far been limited,
due to a number of practical reasons. First of all, current approaches
still have a higher computational cost, making the per-pixel evalua-
tion on massive models and large pixel-count displays incompatible
with interactivity constraints, especially on commodity and mobile
platforms. Moreover, their deployment in viewers typically requires
the integration of libraries and frameworks for neural inference that
require non-trivial programming efforts and complicate data com-
munication with the rest of the graphics infrastructure (see Sec. 2).
This is particularly true for current web-based viewers that must
rely on standard WebGL, HTML5, and JavaScript features to en-
sure portability.

In this paper, we report on our work aiming at integrating com-
plex relightable representations into modern scalable systems for
inspecting stratigraphic models. After providing a short overview
of the related work (Sec. 2), we illustrate how a state-of-the-art
neural reflectance model based on an asymmetric auto-encoder de-
sign [DFP∗20] can be efficiently integrated into a shader archi-
tecture, evaluating it directly into fragment shaders using common
WebGL features (Sec. 3). Similar techniques could be used on other
current low-complexity decoders. Then, we show how this solution
can be embedded in a scalable framework capable to handle multi-
layered relightable models in web settings. We do so by exploiting
interpolation of the latent representation to construct level-of-detail
(LOD) approximations of the neural representation, using it both
offline, to build a discrete LOD hierarchy, and at run-time, to sup-
port fine-grained adaptive time-critical rendering through resam-
pling (Sec. 4). Finally, we analyze the performance and capabilities
of the method on the inspection of cultural heritage models (Sec. 5)
and conclude with a discussion and view of future works (Sec. 6).

The solutions introduced in this paper will be released as open-
source software within the OpenLIME framework [Ope22], a new
open-source initiative focused on the web-based exploration of
stratigraphic relightable models.

2. Related work

Image-based relighting techniques using specialized reflectance
models, and web deployment of those solutions are vast and well-
researched subjects, and complete coverage of the literature is out
of the scope of this paper. We discuss here only the approaches
most closely related to ours, and we refer the reader to established
surveys for a wider coverage [PDC∗19, TFT∗20].

Relightable image models and neural representations. Image-
based relighting relies on storing for each image location a de-
scription that is used in real-time to produce, while panning and
zooming, the rendering of areas of the image under a novel, virtual
illumination. Methods that separate shape and material informa-
tion can produce flexible physically-based descriptions (e.g., nor-
mal/depth fields and BRDFs) that generate realistic images and
can be integrated into standard real-time and high-quality render-
ers. However, they are very hard to generate from sampled data
and are limited in terms of classes of objects and material be-
haviors [GGG∗16, PAZ∗23]. For this reason, the vast majority of
methods approximate the reflectance field with a formulation that
provides the mapping from lighting parameters to final render-
able values, without explicitly separating shape and material in-
formation [PDC∗19]. The seminal approach is Polynomial Tex-
ture Mapping (PTM) [MGW01], which stores per-pixel coefficients
of a bi-quadratic polynomial that best fits the color variations of
the pixel as a function of the incident light direction. Follow-
ups increased the quality by changing the polynomial formula-
tion [ZD14], using a Hemi-Spherical Harmonics (HSH) formula-
tion to better fit angular data [GKPB04], or a Discrete Modal De-
composition (DMD) [PLGF∗15]. The compactness and low com-
plexity make these techniques suitable for fast interactive relight-
ing in local and remote visualization. Without extra information,
however, these methods are limited to model only low-frequency
behavior [DHOMH12]. Radial Basis Function (RBF) interpolation

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

58



L. Righetto et al. / Interactive neural relightable images

has been proposed as an alternative to simple parametric func-
tions [GCD∗18], but the method requires run-time access to the
original massive image stack and is not suitable for interactive re-
lighting. The approach was later combined with Principal Compo-
nent Analysis (PCA) compression of the image stack and RBF in-
terpolation in light space to improve efficiency at the cost of a slight
reduction in quality [PCS18]. In recent years, neural networks have
emerged as a viable technique for compression, approximation,
and interpolation tasks from large amounts of data, and have been
also applied to similar settings [TFT∗20]. Representative examples
are light-transport-matrix interpolation [RDL∗15] and deep relight-
ing [XSHR18]. These approaches, however, were not directly ap-
plied in a MLIC setting. The NeuralRTI approach [DFP∗20,PB23]
uses a fully connected asymmetric autoencoder to encode the orig-
inal per-pixel information into a low-dimensional vector and to de-
code it to reconstruct pixel values from the pixel encoding and a
novel light direction. The method has improved quality with re-
spect to classic solutions but has performance limitations that make
interactive relighting difficult for large models and/or screen sizes.
In this work, we show how to exploit the continuity of the latent
representation to produce a multiresolution structure that can be ef-
ficiently encoded in web- and GPU-friendly formats and exploited
in a flexible adaptive rendering pipeline.

Integration of neural models in web viewers. Running deep-
learning-powered Web applications in browsers has been the tar-
get of many recent efforts since the web environment promises
to simplify cross-platform portability and serves a large variety of
users [MXZ∗19]. For this reason, several JavaScript-based deep-
learning frameworks and libraries have been introduced in the re-
cent past. These include ConvNetJS [Kar22], WebDNN [HKUH17],
Mind [Mil22] and TensorFlow.js [STA∗19]. These solutions, how-
ever, strive to offer general-purpose ways to build entire applica-
tions or embed complex networks. Interoperability with existing
rendering systems is possible but requires particular care, in partic-
ular for the processing and post-processing of data. Since relighting
networks are typically extremely small and simple in their struc-
ture (e.g, reduced feed-forward decoders), realizing them directly
within the shader infrastructure simplifies the deployment of appli-
cations by reducing dependencies, and makes it possible to stream-
line the data encoding, as well as efficiently integrate pre- and post-
processing within a single shader pass.

Interactive relighting tools. Many interactive exploration tools
for flat but visually and geometrically rich models have been pro-
posed and, sometimes, deployed for open, public use [PDC∗19].
While some of these methods target static exploration of im-
age data (e.g., multispectral or stratigraphic data [MAD∗18] or
multi-light image collections [VHW∗18, Mac15]), the vast major-
ity exploit specific compact reflectance models for supporting dy-
namic exploration through virtual relighting. Tools that support
shape and material models, e.g. normals and BRDFs [JAP∗21],
make it possible to emulate realistic local lighting at negligi-
ble costs but are applicable only when such a representation ex-
ists or is reasonable to generate [AAB∗22]. For this reason, the
vast variety of tools exploits specific relightable image formats,
such as PTM [MGW01] and HSH [GKPB04]. While early soft-
ware tools were designed for desktop use and locally resident
data [CHI19], recently web-based solutions have emerged as a flex-

ible means to support multi-platform exploration. These tools typ-
ically use JavaScript, HTML5, and WebGL to interactively dis-
play the models and to tailor the exploration experience to a va-
riety of setups and displays [PCD∗15, BEJZ09]. Web-based tools
for image-based relighting, e.g., WebRTIViewer [P∗19a], PLD-

Webviewer [KUL19], Digital Materiality [DHL17, FBKR17], and
Relight [P∗19b, PCS18], typically support only specific paramet-
ric formulations of relightable images (in particular, PTM and/or
HSH), and use them to provide interactive relighting and some en-
hancement capabilities. In this work, we extend the open-source
OpenLIME framework [Ope22] to flexibly support neural relight-
ing in addition to PTM, HSH, Normal and BRDF, and RBF for-
mats. In addition to showing for the first time an effective integra-
tion of neural models through simple WebGL shaders into a mul-
tiscale tiled renderer, we also introduce adaptive resampling tech-
niques that could be employed to ensure interactivity also for other
computationally-costly techniques.

3. Neural relightable representation

NeuralRTI [DFP∗20] is the neural network that we employ for our
relightable image representation. In this section, we provide back-
ground information on the network structure and training process
and detail how it can be efficiently encoded and executed using
shaders to compute per-pixel colors as a function of light direc-
tion. In the next section, we will detail how we build a tiled mul-
tiresolution format on top of the single-resolution representation
described here, and how we exploit the representation for adaptive
time-critical rendering during interaction.

3.1. Network structure and training

NeuralRTI [DFP∗20] uses an asymmetric encoder-decoder struc-
ture. The encoder processes all the observations of a single pixel
(N RGB tuples associated with the N sampled input light direc-
tions) with fully connected layers and ELU activation functions
(Fig. 2 top), and produces K ≪ 3N latent-space features. The de-
coder takes latent-space features, concatenates them with a given
light direction, and produces the single associated RGB value for
the pixel. The network is trained end-to-end on all the pixels (or
a random subset of) the original MLIC, by minimizing the mean
squared loss between predicted and ground truth pixel values on
the set of given light directions. As a result, the network learns, per
pixel, how to produce the color associated with light directions. By
suitably distributing input lights over the visible hemisphere, we
can approximate continuous relighting functions.

Once the training phase is finished, it is possible to use the en-
coder to produce a final version of the latent features associated
with the observations of each pixel, and to encode them in a map of
per-pixel latent features. Afterward, the encoder is discarded, and
relighted images can be computed just from the learned decoder’s
parameters (weights and biases of the decoder network), which are
common for the entire image, and the per-pixel latent features, as-
sociating them to interactively-set light directions to produce the
input of the decoder (Fig. 2 bottom).

In our implementation, we reduced the number of fully con-
nected layers in the decoder and added one more layer in the en-

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

59



L. Righetto et al. / Interactive neural relightable images

Figure 2: NeuralRTI scheme. In our modified implementation, the

encoder (top image, on the left) has 4 layers, and the decoder (top

image, on the right) has 3 layers. The latent features array K is

concatenated with the light directions vector L = [Lx,Ly]. At infer-

ence time, the encoder is replaced by a precomputed latent feature

map, and only the decoder needs to be executed.

coder, as this choice reduces the rendering complexity without a
relevant impact on the quality of the results. The number of latent
features and the size of the intermediate network layers are constant
in this model and chosen freely in our framework. For the results in
this paper, we used K = 9 as it has been shown that this number of
features is sufficient to provide a relighting with better quality than
3rd-order HSH encoding using 48 per-pixel parameters [DFP∗20].
Similarly to previous work, we also set the size of inner layers to
the number of lights of a typical dome, e.g., S = 50.

In our model, the total number of decoder weights (W ) and biases
(B) is thus calculated using the following expressions:

W = (K +2)×S+S×S+S×3

B = S+S+3
(1)

With decoder layers of size S= 50 and a latent feature vector of size
K = 9, the number of weights and related multiplications is W =
3200, and the number of biases and related additions is B = 103.
K = 9 latent code values are, instead, stored per pixel. We currently
perform feature quantization after training, to store each latent code
in 8 bits. In the future, we plan to include quantization directly in
the training process, to further improve accuracy.

3.2. Practical decoding and custom fragment shader

While the NeuralRTI relighting has improved quality over standard
relighting methods at similar or minor storage costs, this comes at
the cost of a more complex online rendering procedure. A Neural-
RTI real-time decoder must, in fact, perform the following calcula-
tions for each pixel: internal product between the layer’s input and
weights matrix, addition with biases vector, and application of the
activation function.

We implemented a custom WebGL 2 shader to perform these
tasks, avoiding external library dependencies and easing the inte-
gration with a rendering subsystem. The network sequence of op-
erations is the following: sample the latent space feature using the

pixel’s coordinate, combine it with a given light direction, and per-
form forward propagation of these values in the network until we
reach the final stage with the output color, each layer computing
its output as a dot product of input and weights, a sum with biases,
and an application of the activation function (ELU for inner layers,
identity for the final one).

Figure 3: The 9 per-pixel latent features are quantized and stored

in three parallel RGB textures

The latent space features are generated as a matrix of size
H ×W × K, where H ×W is the resolution of the input images
and K is the number of features saved for each pixel, that we set
equal to 9 in the experiments. In order to facilitate the sampling
of this representation, we encode them in a series of RGB tex-
tures. The matrix is, thus, split into sub-matrices of dimensions
H ×W × 3, and values quantized to 8 bits, with associated per-
channel slope/intercept values for floating point conversion. We
will see in Sec. 4 that we further split these textures into tiles,
and build a multiresolution hierarchy, to enable adaptive render-
ing. Fig. 3 shows the texture encoding of the latent feature map of
a 256x256 portion of the dataset explored in Fig. 1 left.

At the beginning of the shader, all the textures are sampled at the
target pixel coordinates, and the result is stored in a vector of size
K + 2, with the last two components filled with the light direction
communicated to the shader in a uniform variable. This vector con-
stitutes the input of the first network layer. Also, note that it would
be possible to control per-pixel light direction through a light map.

The storage cost of the weights and biases of the decoding net-
work, which has to be transmitted once per image, is less than 3.5K
floating point values for typical network configurations (Equa-
tion 1). We have thus decided to store it in uniform arrays of 4-
component vectors (vec4). This grouping makes it possible to fit
the full network within the limits on array size for uniform arrays
and, most importantly, allows us to exploit alignment and vector-
ized dot products and sums to compute the input to the activation
function. By padding arrays of size not multiple of four with ze-
ros, we can handle any network configuration. The same padding
to a multiple of four is performed on the K + 2 input vector (fea-
tures+light direction), leading to three vec4 variables when K = 9.

Since all the pixels compute the exact same sequence of vector-
ized operations to produce the output pixel, and all dot products
and sums are aligned on 16-byte boundaries, there is no divergence
in the shading threads.

Even though the network is customizable with different numbers
of features and layer sizes, a size-specific shader is produced at
compile time, transforming all network configuration parameters

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

60



L. Righetto et al. / Interactive neural relightable images

to constants in the shader source. This permits to use constant-size
uniform arrays and fixed-size loops that can be effectively unrolled.

Moreover, we exploit the dataflow design of OpenLIME

shaders [Ope22] to combine NeuralRTI color computation with a
sequence of post-processing operations, without the need for mul-
tipass rendering. In this design, the shading functions associated
with each representation are not implemented in the main() func-
tion of the fragment shader, but as a shader function that produces a
fragment color given their input. Filtering functions can then be ap-
pended to the shader, each one modifying the input fragment color
to produce another one. The system takes care to generate a suit-
able main() function for the fragment shader, that calls all the
individual shading functions in the correct sequence. We use this,
in particular, to perform gamma, brightness, color-remapping, and
contrast correction on neural renderings using the same tools the
framework makes available to all other rendering representations
(Normal+BRDF, PTM, HSH, RBF).

4. Scalable exploration of multi-layered models

Interactive exploration of large datasets on web platforms requires
the usage of adaptive techniques to ensure sufficient low-latency
and high-frequency feedback while coping with limitations in end-
to-end bandwidth, memory available on client devices, and compu-
tation power. Multi-layered relightable models require additional
resources both for the number of layers and the complexity and cost
of the mathematical models used for rendering. At the core of these
methods is the precomputation of levels-of-detail (Sec. 4.1), their
efficient storage and transmission (Sec. 4.2), and their exploitation
in adaptive rendering methods that maintain and render an adaptive
working set (Sec. 4.3)

4.1. Precomputed level-of-detail structure

Scalability on large planar or 2.5D datasets is usually achieved with
precomputation and storage of the source model in a pyramidal for-
mat, typically a quadtree [PG07]. To construct the pyramidal repre-
sentation, the dataset is iteratively filtered and scaled by a factor of
two, and each level of detail (LOD) is cut into small tiles. This al-
lows to explore arbitrarily large datasets with limited resources. By
matching the tile resolution in the working set with the screen reso-
lution, rendering can be achieved with just one sample per pixel
at all scales, and the amount of resources (the number of tiles)
required to be transmitted, locally stored, and processed is deter-
mined only by the size of the screen.

This approach, originally developed for large image exploration,
is routinely employed for relighting models. The construction of
the various levels of detail, however, requires performing repeated
filtering of higher-resolution data to construct the coarser levels, as
wall as to interpolate among them to avoid restricting adaptivity
to power-of-two resolutions. In order to avoid aliasing, this filter-
ing cannot be a simple sub-sampling but has to suitably combine
the values in the filter’s kernel. Using simple image processing fil-
ters (e.g., averaging), on PTM and HSH models has been shown to
produce reasonable results, which is justified by the linearity (with
respect to the per-pixel coefficients) of the mathematical model.
Performing these operations off-line on the original data prior to

encoding is not a full solution, as it does not support run-time adap-
tation to non-power-of-two scales.

While the NeuralRTI representation is not linear, we have also
empirically verified, in practice, that averaging nearby latent space
features also tend to produce a pixel whose relighting behavior is
similar to that of the averaged pixels (i.e., close to averaging the re-
flected colors at similar incident angles). As one can see in Fig. 3,
the distribution of values in latent textures mimics the color distri-
bution in the original image. Fig. 4 compares a reference zoomed
image of a portion of the Oseberg Find dataset in Fig. 1 left, ob-
tained by performing relighting and then resampling the relighted
colors, with the image obtained by resampling the latent features
at the output resolution and then performing relighting. The two
images are very similar, as also visible in the FLIP [ANA∗20] dif-
ference map and FLIP difference histogram and statistics. For this
reason, we are directly performing resampling and filtering in latent
space, using the same tools as for other representations. It should be
noted that this approach has also been used for creating mipmaps
for nonlinear representations, such as BRDFs (e.g, [JAP∗21], that
builds a pyramid over Ward parameters). While the results are al-
ready acceptable for the datasets we have used, we plan, for the
future, to explicitly introduce constraints in the network to ensure
the interpolability conditions at training time, as done, e.g., in gen-
erative networks for image interpolation [CXTJ19, LXL∗23]

4.2. Web-friendly compression and decompression

In remote visualization, data compression is essential to cope with
bandwidth constraints. In our case, the transmission cost is almost
entirely due to the latent feature maps storing per-pixel data, since
the network structure, weights, and biases are shared for the entire
dataset and amount to a few kilobytes (see Sec. 3). For compress-
ing the latent maps, the execution on a web platform encourages
the usage of PNG, JPEG, or WebP, which are the formats natively
supported in all common browsers [MDN23]. As seen in Fig. 3, the
images resulting from the coefficient planes exhibit a structure sim-
ilar to that of RGB photographic images, making JPEG a suitable
choice for efficient compression of the image tiles that encode per-
pixel latent-space features. The default parameters for JPEG com-
pression are, however, optimized for perceptually-aware quantiza-
tion. For example, the compressor handles chroma and luminance
at different sampling rates and strives to take advantage of the cor-
relation among RGB planes. However, neural coefficients do not
exhibit a direct or strong correlation with these characteristics in
the final image (unlike, e.g., PTM). As a result, we have chosen to
disable the default conversion to the YUV color space, deactivate
chroma subsampling, and utilize non-biased quantization tables.

4.3. Adaptive rendering

The computational power required for interactive neural network
relighting can easily become a bottleneck depending on the hard-
ware available, especially over the web, where a wide variety of
devices needs to be supported. Therefore, we optimized our server
to be able to meet time constraints. Since the computation of the
final color given the latent space features and a light direction is
the most costly operation, we can improve performance by control-
ling the number of relighted pixels. All the optimizations exploit

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

61



L. Righetto et al. / Interactive neural relightable images

Figure 4: From the left: reference zoomed image obtained by relighting and then resampling in color space; zoomed image obtained by

resampling in latent space and relighting individual pixels; FLIP difference map; FLIP difference histogram and statistics.

auxiliary memory (framebuffer) to render offline the tiles before
presenting them on screen.

The first optimization exploits the decoupling between camera
motion and shading under direct illumination. Since the final color
is independent of camera motion, we can cache the relighted result,
and reuse already available shaded tiles when the camera moves. In
particular, under panning, only a few newly entering tiles per frame
need to be computed.

The second optimization introduces time-critical features, in
which we adaptively control the number of relighted pixels per
frame. We do so indirectly, by setting a target framerate (e.g.,
30fps) and deriving the relighted pixel budget from performance
measures. At each frame, we then dynamically adapt the resolution
of intermediate textures to the available budget by setting the vir-
tual rendering resolution to be the minimum between the viewport
resolution and the resolution dictated by the available budget. The
input coefficients for each target pixel are then resampled from the
closest available LOD. This LOD is the first one with a resolution
higher or equal to the required resolution, if available, or the high-
est resolution parent if not available. Bilinear interpolation is used
for sampling.

5. Implementation and results

An experimental software library supporting the methods described
in this work has been implemented using JavaScript and WebGL2
and integrated within the OpenLIME framework [Ope22]. The ba-
sic features for neural rendering have been implemented in a spe-
cific shader class, while the features describing interactive adap-
tive rendering have been realized by modifying the overall render-
ing framework and are, therefore, available also to other rendering
tools. The preprocessing features for the offline creation of image
pyramids containing the neural coefficients were, instead, realized
using Python and Keras for the fitting part and the creation of the
full resolution representation, and vips [VIP22] for the conversion
to the multiresolution deepzoom format [Mic08]. We employed a
tile size of 256× 256 with no overlap. Using the tarzoom utility
provided by OpenLime, the directory tree containing all the tiles is
then sequentially concatenated into a single file, augmented with an
index that contains the start offset of each tile (and thus implicitly
also its size). Having a single data file makes it possible to move
the entire representation quickly among different machines and file
systems, and supports very efficiently the extraction of individual

tiles with simple range queries on a locally stored file (through
mmap) or remotely (through any modern HTTP server).

5.1. Relighting quality

The improved quality of data-driven neural relighting with re-
spect to methods using fixed bases with a similar or moder-
ately higher number of coefficients has been assessed in previous
works [DFP∗20], and we do not perform an extensive analysis here.
We just report that our modified version of NeuralRTI, with a re-
duced decoder and an improved encoder, provides results that are
better than the original code. Tab. 1 summarizes the results obtained
on the SyhthRTI benchmark [DFP∗20]. We report results obtained
with a 3rd order HSH (16 coefficients per color channel and a total
of 48 bytes per pixel), the original NeuralRTI (9 bytes per pixel),
and our modified architecture (9 bytes per pixel). As we can see,
the proposed method has a significantly higher PSNR not only with
respect to the original NeuralRTI at the same storage cost but also
with respect to an HSH representation with over 5 times the storage
and bandwidth requirements.

Visually, the improved quality is clearly visible in the reproduc-
tion of specular highlights and global illumination effects. An ex-
ample can be seen in Fig. 5.

Dataset HSH 3rd ord. Neural (orig) Ours

Texture Bytes/pixel 48 9 9

SynthRTI Single 33.33 31.00 34.60

SynthRTI Multi 26.46 27.39 28.80

Table 1: Comparison of average PSNR obtained on the SyhthRTI

benchmark [DFP∗20]. We report results obtained with a 3rd-order

HSH (48 coefficients), the original NeuralRTI (9 coefficients), and

our modified architecture (9 coefficients).

5.2. Rendering performance

We have extensively tested our system with a number of datasets,
evaluating the relighted image quality and testing the effect of the
different optimization choices on the performance of the interac-
tive relighting on different platforms. As a representative example
of typical use cases, Fig. 1 presents an exploration of two cultural

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

62



L. Righetto et al. / Interactive neural relightable images

(a) Ground truth (b) 3rd-order HSH (c) Neural (d) HSH FLIP difference (e) Neural FLIP difference

Figure 5: (a) Original image from a a MLIC of modern carnelian beads, Indian origin (Angkur Gems society), courtesy of Modern Repository

from F. Debrabant and Captured by Mercurio Imaging; (b) Image relighted with the same light direction using a 3rd order HSH model fitted

on the original MLIC. (c) Image relighted with the same light direction using our neural relighting implementation trained on the original

MLIC. (d) FLIP difference map comparing the HSH relighting with the ground truth. High values are clearly visible in the regions with

highlights and shadows. (d) FLIP difference map comparing the neural relighting with the ground truth: perceptual differences are strongly

decreased.

Figure 6: Frames from one of the sequences in the accompanying video. Real-time capture of the exploration of the Oseberg Find dataset

using the neural representation for the entire image and PTM inside a virtual lens. The user interacts on a large touch-screen display driven

by a desktop PC.

heritage dataset on a laptop with integrated graphics and on a mu-
seum installation driven by a desktop PC. The dataset in the left
image is a High-resolution RTI capture of textile artifacts from the
Oseberg Find, coming from a Viking Age burial mound at Ose-
berg in south Norway. Data is courtesy of Tomasz Łojewski (AGH
University of Science and Technology, Kraków). The resolution of
the processed images is 6240x4140. The dataset on the right im-
age, instead, depicts an organ door with an announcing angel, 17th
century, belonging to the Diocesan Museum of Vicenza and cap-
tured with handheld-light RTI in collaboration with the Accademia
delle Belle Arti of Verona. The cropped and processed dataset has a
resolution of 6555x3942. In terms of hardware configurations, the
laptop has an Intel Coffee Lake GT2 graphics, and drives a full-

HD display. The desktop PIC, instead, has an NVIDIA RTX 2080
Ti graphics board, driving a 4K 98-inch multi-touch display. Both
PCs run Linux and use the Chromium Web browser.

The accompanying video illustrates the performance and quality
achieved by showing interactive captures of exploration sequences.
Fig. 6 shows representative frames from an inspection sequence
included in the video.

In this paper, we report on the performance obtained for the ex-
ploration of the Oseberg Find dataset on the laptop PC, which is
the most challenging situation given the much lower performance
of the mobile integrated graphics board with respect to the gaming
card used in the desktop PC.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

63



L. Righetto et al. / Interactive neural relightable images

Figure 7: Selected frames from the inspection of the Oseberg Find dataset used for benchmarking (adaptive version). The frames are ordered

left to right, top to bottom. The sequence starts with the interactive motion of the light (frames 1-3), followed by a zooming sequence (frames

3=5), another light motion (frames 5-6), and a final panning (frames 7-8). The application is running on a laptop with integrated graphics.

We recorded a short inspection sequence that involved manipu-
lating the lighting, followed by zooming, another lighting adjust-
ment, and finally panning the dataset. Representative frames are
Fig. 7). We recorded user interaction, and repeated the sequence
with and without the adaptive rendering optimization, with data res-
ident on a local HTTP server and cleared cache, with the browser
taking the entire full HD screen.

Without optimization, the renderer achieves, on average,
14.79fps and recomputes on average 393216 pixels/frame. In this
benchmark, the recomputed pixel count is about 20% of the view-
port size, since caching reduces the amount of required relighting
during panning motion, and zooming on the dataset achieves a 2x
magnification. It should be noted, also, that the renderer performs
asynchronous loading. Since rendering takes some time, there are
visual discontinuities when new tiles arrive and are incorporated
within the view.

When adaptive optimization is enabled with a target frame rate
of 30fps, the renderer achieves a performance of 35.16fps (i.e.,
close to the target). The higher and more constant performance is
obtained by adaptively reducing the number of shaded pixels per
frame during the motion to an average of 148226. Since about half
of the pixels are shaded in the adaptive version, there is some slight
blurring during motion with respect to the non-adaptive version, but
with the advantage of a much smoother constant frame rate. When
the image becomes still, moreover, the renderer progressively im-
proves quality until the maximum attainable.

The accompanying video illustrates the behavior of the system,
also when combining multiple layers. In particular, we present a use
case in which the neural representation is used for the entire image,
while a PTM representation is displayed inside a visualization lens.
Fig. 6 shows selected frames from a recorded sequence included in
the video, in which the user directly manipulates camera, light, and
lens with touch interaction on a 98-inch 4K multitouch display. The
example shows the possibility of using the web-based interface also
for museum installations, by configuring the browser to run in kiosk
mode.

Even though the inspected model is opaque and has a diffuse
BRDF, in the video and the frames, it is also possible to see that the

neural representations provides more details than PTM at the same
storage and bandwidth cost. In particular, the shadows in the lens
area appear oversmoothed, making it more difficult to perceive the
patterns in the textile. Shadows in the neural relighting are more
similar to ground truth data, and their improved contrast can help
the experts’ analysis. An even larger improvement would occur in
the analysis of objects with more complex or specular appearances,
such as the artefact in Fig. 5.

Since the neural representation has the same storage and band-
width cost of PTM, and can be constructed from the exact same
input data with a similar end-to-end pipeline, we expect that our
approach for providing interactive performance inside a web-based
platforms will boost its adoption and increase the quality of re-
lightable models.

6. Conclusions

We have reported on our work targeting the integration of com-
plex relightable models based on neural encoding into modern web
frameworks for the inspection of stratigraphic relightable models.

By relying on the fact that typical neural reflectance field ap-
proximations need only to implement a simple decoder (typically a
low-depth fully-connected network), we have shown that it is pos-
sible to directly encode weights and input data into web- and GPU-
friendly formats that exploit common image formats and texturing
features. By doing so, we have been able to implement the network
in a way that does not significantly differ from the design of other
typical RTI shaders. This solution has made it possible to avoid the
incorporation of, and communication with, external deep-learning
libraries, and to incorporate extra per-fragment filtering steps (e.g.,
gamma correction) without the need to resort to multipass solu-
tions.

We have also empirically demonstrated that, in practice, the
latent representation of nearby pixels, in the employed network,
can be combined, filtered, and resampled without producing sig-
nificant disturbing artifacts on the generated output image. This
fact has made it possible to use filtering and resampling as ma-
jor building blocks to build levels of detail and adaptive rendering

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

64



L. Righetto et al. / Interactive neural relightable images

solutions. It should be noted that the assumption that some deep
neural networks can model input data as flat and smooth distri-
butions are specifically employed, e.g., in latent-space image in-
terpolation approaches, where, if x and y are sampled from two
respective domains X and Y , moving from x toward y in the la-
tent space continuously produces realistic images from domain X
to Y [CXTJ19, LXL∗23]. While this property was only empiri-
cally verified for our network [DFP∗20], an important avenue of
research is the design of other (guaranteed) interpolable networks
for reflectance function encoding. This sort of approach has already
been explored for Neural BRDFs [SRRW21], but, to the best of our
knowledge, not in reflectance modeling for RTI.

Furthermore, the solutions employed for ensuring interactivity
through a combination of precomputed discrete levels of details,
run-time adaptive resampling, smart caching, and exploitation of
decoupling between lighting and camera control, are not limited to
neural representations but promise to be general solutions to also
efficiently incorporate other costly relighting methods into an in-
teractive viewer. Interesting candidates are those based on RBF in-
terpolation [GCD∗18, PCS18].

The presented results on cultural heritage item inspections have
shown the method’s appeal and flexibility. As the method supports
the same features of more standard PTM and HSH solutions, we
expect it to become a possible plug-in replacement that provides
a higher-quality experience with respect to current low-frequency
solutions. To the benefit of the community, we plan to release
its implementation as open source within the OpenLIME frame-
work [Ope22].

Acknowledgments. The authors thank Tomasz Łojewski (AGH
University of Science and Technology, Kraków) for the provision
of the Oseberg Find data, Mercurio Imaging for capturing the mod-
ern carnelian beads, and the Diocesan Museum of Vicenza and
Accademia delle Belle Arti of Verona for giving access to their
artworks for the purpose of digitization. This study was partially
partially carried out within the PNRR research activities of the
consortium iNEST (Interconnected North-Est Innovation Ecosys-
tem) funded by the European Union Next-GenerationEU (Piano
Nazionale di Ripresa e Resilienza (PNRR) – Missione 4 Compo-
nente 2, Investimento 1.5 – D.D. 1058 23/06/2022, ECS00000043).
We also thank Fabio Marton for collaboration in the development
of OpenLime tools. Authors EG and GB acknowledge the contri-
bution of Sardinian Regional Authorities under project XDATA.

References

[AAB∗22] AHSAN M., ALTEA G., BETTIO F., CALLIERI M., CA-
MARDA A., CIGNONI P., GOBBETTI E., LEDDA P., LUTZU A.,
MARTON F., MIGNEMI G., PONCHIO F.: Ebb & flow: Uncovering
Costantino Nivola’s Olivetti sandcast through 3D fabrication and vir-
tual exploration. In Proc. GCH (September 2022), pp. 85–94. doi:

10.2312/gch.20221230. 3

[ANA∗20] ANDERSSON P., NILSSON J., AKENINE-MÖLLER T., OS-
KARSSON M., ÅSTRÖM K., FAIRCHILD M. D.: FLIP: A Difference
Evaluator for Alternating Images. ACM Trans. Graph. 3, 2 (2020), 15:1–
15:23. doi:10.1145/3406183. 5

[BAMG21] BETTIO F., AHSAN M., MARTON F., GOBBETTI E.: A
novel approach for exploring annotated data with interactive lenses.
Computer Graphics Forum 40, 3 (2021), 387–398. doi:10.1111/

cgf.14315. 2

[BEJZ09] BEHR J., ESCHLER P., JUNG Y., ZÖLLNER M.: X3DOM:
a DOM-based HTML5/X3D integration model. In Proceedings of the

14th international conference on 3D web technology (2009), pp. 127–
135. doi:10.1145/1559764.1559784. 3

[CHI19] CHI: Cultural heritage imaging website, 2019.
[Online; accessed 22-May-2023]. URL: http://

culturalheritageimaging.org. 1, 3

[CXTJ19] CHEN Y., XU X., TIAN Z., JIA J.: Homomorphic latent space
interpolation for unpaired image-to-image translation. In Proc. CVPR

(2019), pp. 2403–2411. doi:10.1109/CVPR.2019.00251. 5, 9

[DFP∗20] DULECHA T. G., FANNI F. A., PONCHIO F., PELLACINI
F., GIACHETTI A.: Neural reflectance transformation imaging.
The Visual Computer 36 (2020), 2161–2174. doi:10.1007/

s00371-020-01910-9. 2, 3, 4, 6, 9

[DHL17] DHLAB: RTI tools at DHLAB Basel, 2017. [Online; accessed
22-May-2023]. URL: https://github.com/dhlab-basel/

rti.js. 3

[DHOMH12] DREW M. S., HEL-OR Y., MALZBENDER T., HAJARI
N.: Robust estimation of surface properties and interpolation of
shadow/specularity components. Image and Vision Computing 30, 4-5
(2012), 317–331. doi:10.1016/j.imavis.2012.02.012. 2

[FBKR17] FORNARO P., BIANCO A., KAISER A., ROSENTHALER
L.: Enhanced RTI for gloss reproduction. Electronic Imaging 2017,
8 (2017), 66–72. doi:10.2352/ISSN.2470-1173.2017.8.

MAAP-284. 3

[GCD∗18] GIACHETTI A., CIORTAN I., DAFFARA C., MARCHIORO
G., PINTUS R., GOBBETTI E.: A novel framework for highlight re-
flectance transformation imaging. Computer Vision and Image Under-

standing 168 (2018), 118–131. doi:10.1016/j.cviu.2017.05.
014. 3, 9

[GGG∗16] GUARNERA D., GUARNERA G. C., GHOSH A., DENK C.,
GLENCROSS M.: BRDF representation and acquisition. Computer

Graphics Forum 35, 2 (2016), 625–650. doi:10.1111/cgf.12867.
2

[GKPB04] GAUTRON P., KRIVÁNEK J., PATTANAIK S. N., BOUA-
TOUCH K.: A novel hemispherical basis for accurate and efficient ren-
dering. Rendering Techniques 2004 (2004), 321–330. doi:10.2312/
EGWR/EGSR04/321-330. 2, 3

[HKUH17] HIDAKA M., KIKURA Y., USHIKU Y., HARADA T.:
WebDNN: Fastest DNN execution framework on web browser. In Proc.

ACM Multimedia (2017), pp. 1213–1216. doi:10.1145/3123266.
3129394. 3

[JAP∗21] JASPE VILLANUEVA A., AHSAN M., PINTUS R., GIACHETTI
A., GOBBETTI E.: Web-based exploration of annotated multi-layered
relightable image models. ACM JOCCH 14, 2 (2021), 24:1–24:31. doi:
10.1145/3430846. 2, 3, 5

[JH15] JANKOWSKI J., HACHET M.: Advances in interaction with 3d
environments. Comput. Graph. Forum 34, 1 (2015), 152–190. doi:

10.1111/cgf.12466. 2

[Kar22] KARPATHY A.: ConvNetJS: Deep learning in your browser,
2022. [Online; accessed 19-May-2023]. URL: https://cs.

stanford.edu/people/karpathy/convnetjs/. 3

[KUL19] KUL: PLD software KU-Leuven, 2019. [Online; ac-
cessed 22-May-2023]. URL: https://portablelightdome.
wordpress.com/software. 3

[LXL∗23] LIU Y., XIONG Z., LI Y., TIAN X., ZHA Z.-J.: Domain gen-
eralization via encoding and resampling in a unified latent space. IEEE

Transactions on Multimedia 25 (2023), 126–139. doi:10.1109/

TMM.2021.3121564. 5, 9

[Mac15] MACDONALD L. W.: Realistic visualisation of cultural heritage

objects. PhD thesis, UCL (University College London), 2015. 3

[MAD∗18] MOUTAFIDOU A., ADAMOPOULOS G., DROSOU A., TZO-
VARAS D., FUDOS I.: Multiple material layer visualization for cul-
tural heritage artifacts. In Proc. GCH (2018), pp. 155–159. doi:

10.2312/gch.20181353. 3

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

65

https://doi.org/10.2312/gch.20221230
https://doi.org/10.2312/gch.20221230
https://doi.org/10.1145/3406183
https://doi.org/10.1111/cgf.14315
https://doi.org/10.1111/cgf.14315
https://doi.org/10.1145/1559764.1559784
http://culturalheritageimaging.org
http://culturalheritageimaging.org
https://doi.org/10.1109/CVPR.2019.00251
https://doi.org/10.1007/s00371-020-01910-9
https://doi.org/10.1007/s00371-020-01910-9
https://github.com/dhlab-basel/rti.js
https://github.com/dhlab-basel/rti.js
https://doi.org/10.1016/j.imavis.2012.02.012
https://doi.org/10.2352/ISSN.2470-1173.2017.8.MAAP-284
https://doi.org/10.2352/ISSN.2470-1173.2017.8.MAAP-284
https://doi.org/10.1016/j.cviu.2017.05.014
https://doi.org/10.1016/j.cviu.2017.05.014
https://doi.org/10.1111/cgf.12867
https://doi.org/10.2312/EGWR/EGSR04/321-330
https://doi.org/10.2312/EGWR/EGSR04/321-330
https://doi.org/10.1145/3123266.3129394
https://doi.org/10.1145/3123266.3129394
https://doi.org/10.1145/3430846
https://doi.org/10.1145/3430846
https://doi.org/10.1111/cgf.12466
https://doi.org/10.1111/cgf.12466
https://cs.stanford.edu/people/karpathy/convnetjs/
https://cs.stanford.edu/people/karpathy/convnetjs/
https://portablelightdome.wordpress.com/software
https://portablelightdome.wordpress.com/software
https://doi.org/10.1109/TMM.2021.3121564
https://doi.org/10.1109/TMM.2021.3121564
https://doi.org/10.2312/gch.20181353
https://doi.org/10.2312/gch.20181353


L. Righetto et al. / Interactive neural relightable images

[MDN23] MDN M.: Image file type and format guide, 2023. [Online;
accessed 28-May-2023]. URL: https://developer.mozilla.
org/en-US/docs/Web/Media/Formats/Image_types. 5

[MGW01] MALZBENDER T., GELB D., WOLTERS H.: Polynomial tex-
ture maps. In Proc. SIGGRAPH (2001), pp. 519–528. doi:10.1145/
383259.383320. 2, 3

[Mic08] MICROSOFT: DeepZooom, 2008. [Online; accessed 22-
May-2023]. URL: http://www.seadragon.com/developer/
creating-content/file-formats/. 6

[Mil22] MILLER S.: MIND: Deep learning in your browser, 2022.
[Online; accessed 19-May-2023]. URL: https://github.com/
stevenmiller888/mind. 3

[MXZ∗19] MA Y., XIANG D., ZHENG S., TIAN D., LIU X.: Moving
deep learning into web browser: How far can we go? In Proc. WWW

(2019), pp. 1234–1244. doi:10.1145/3308558.3313639. 3

[Ope22] OPENLIME TEAM: OpenLime: Open Layered IMage Ex-
plorer, 2022. URL: https://github.com/cnr-isti-vclab/
openlime and https://github.com/crs4/openlime [On-
line; accessed 22-May-2023]. 2, 3, 5, 6, 9

[P∗19a] PALMA G., ET AL.: Webrti viewer, 2019. [Online; ac-
cessed 22-May-2023]. URL: http://vcg.isti.cnr.it/rti/
webviewer.php. 3

[P∗19b] PONCHIO F., ET AL.: Relight, 2019. [Online; accessed 22-May-
2023]. URL: http://vcg.isti.cnr.it/relight/. 3

[PAZ∗23] PINTUS R., AHSAN M., ZORCOLO A., BETTIO F., MARTON
F., GOBBETTI E.: Exploiting local shape and material similarity for ef-
fective sv-brdf reconstruction from sparse multi-light image collections.
ACM JOCCH (2023). doi:10.1145/3593428. 2

[PB23] PISTELLATO M., BERGAMASCO F.: On-the-go reflectance
transformation imaging with ordinary smartphones. In Proc.

ECCV Workshops, Part I (2023), pp. 251–267. doi:10.1007/

978-3-031-25056-9_17. 3

[PCD∗15] POTENZIANI M., CALLIERI M., DELLEPIANE M., CORSINI
M., PONCHIO F., SCOPIGNO R.: 3DHOP: 3D heritage online presenter.
Computers & Graphics 52 (2015), 129–141. doi:10.1016/j.cag.
2015.07.001. 1, 3

[PCS18] PONCHIO F., CORSINI M., SCOPIGNO R.: A compact repre-
sentation of relightable images for the web. In Proc. ACM Web3D (2018),
pp. 1:1–1:10. doi:10.1145/3208806.3208820. 3, 9

[PDC∗19] PINTUS R., DULACHE T., CIORTAN I., GOBBETTI E., GIA-
CHETTI A.: State-of-the-art in multi-light image collections for surface
visualization and analysis. Computer Graphics Forum 38, 3 (2019), 909–
934. doi:10.1111/cgf.13732. 2, 3

[PG07] PAJAROLA R., GOBBETTI E.: Survey on semi-regular multireso-
lution models for interactive terrain rendering. The Visual Computer 23,
8 (2007), 583–605. doi:10.1007/s00371-007-0163-2. 5

[PLGF∗15] PITARD G., LE GOÏC G., FAVRELIÈRE H., SAMPER S.,
DESAGE S.-F., PILLET M.: Discrete modal decomposition for sur-
face appearance modelling and rendering. In Optical Measurement Sys-

tems for Industrial Inspection IX (2015), vol. 9525, SPIE, pp. 489–498.
doi:10.1117/12.2184840. 2

[RDL∗15] REN P., DONG Y., LIN S., TONG X., GUO B.: Image based
relighting using neural networks. ACM TOG 34, 4 (2015), 111:1–111:12.
doi:10.1145/2766899. 3

[SCC∗11] SCOPIGNO R., CALLIERI M., CIGNONI P., CORSINI M.,
DELLEPIANE M., PONCHIO F., RANZUGLIA G.: 3D models for cul-
tural heritage: Beyond plain visualization. Computer 44, 7 (2011), 48–
55. doi:10.1109/MC.2011.196. 1

[Ske19] SKETCHFAB: Sketchfab - publish and find 3d models on-
line, 2019. [Online; accessed 22-May-2023]. URL: https://

sketchfab.com/. 1

[SRRW21] SZTRAJMAN A., RAINER G., RITSCHEL T., WEYRICH T.:
Neural BRDF representation and importance sampling. Computer

Graphics Forum 40, 6 (2021), 332–346. doi:10.1111/cgf.14335.
9

[STA∗19] SMILKOV D., THORAT N., ASSOGBA Y., NICHOLSON C.,
KREEGER N., YU P., CAI S., NIELSEN E., SOEGEL D., BILESCHI S.,
ET AL.: Tensorflow.js: Machine learning for the web and beyond. Proc.

Machine Learning and Systems 1 (2019), 309–321. 3

[TFT∗20] TEWARI A., FRIED O., THIES J., SITZMANN V., LOMBARDI
S., SUNKAVALLI K., MARTIN-BRUALLA R., SIMON T., SARAGIH J.,
NIESSNER M., ET AL.: State of the art on neural rendering. Computer

Graphics Forum 39, 2 (2020), 701–727. doi:10.1111/cgf.14022.
2, 3

[VHW∗18] VANDERMEULEN B., HAMEEUW H., WATTEEUW L.,
VAN GOOL L., PROESMANS M.: Bridging multi-light & multi-spectral
images to study, preserve and disseminate archival documents. In Proc.

Archiving Conference (2018), vol. 2018, pp. 64–69. doi:10.2352/

issn.2168-3204.2018.1.0.15. 3

[VIP22] VIPS: libvips:a fast image processing library with low memory
needs, 2022. [Online; accessed 09-May-2023]. URL: https://www.
libvips.org/. 6

[XSHR18] XU Z., SUNKAVALLI K., HADAP S., RAMAMOORTHI R.:
Deep image-based relighting from optimal sparse samples. ACM TOG

37, 4 (2018), 126:1–126:13. doi:10.1145/3197517.3201313. 3

[ZD14] ZHANG M., DREW M. S.: Efficient robust image interpolation
and surface properties using polynomial texture mapping. EURASIP

Journal on Image and Video Processing 2014, 1 (2014), 25. doi:

10.1186/1687-5281-2014-25. 2

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

66

https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_types
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Image_types
https://doi.org/10.1145/383259.383320
https://doi.org/10.1145/383259.383320
http://www.seadragon.com/developer/creating-content/file-formats/
http://www.seadragon.com/developer/creating-content/file-formats/
https://github.com/stevenmiller888/mind
https://github.com/stevenmiller888/mind
https://doi.org/10.1145/3308558.3313639
https://github.com/cnr-isti-vclab/openlime
https://github.com/cnr-isti-vclab/openlime
https://github.com/crs4/openlime
http://vcg.isti.cnr.it/rti/webviewer.php
http://vcg.isti.cnr.it/rti/webviewer.php
http://vcg.isti.cnr.it/relight/
https://doi.org/10.1145/3593428
https://doi.org/10.1007/978-3-031-25056-9_17
https://doi.org/10.1007/978-3-031-25056-9_17
https://doi.org/10.1016/j.cag.2015.07.001
https://doi.org/10.1016/j.cag.2015.07.001
https://doi.org/10.1145/3208806.3208820
https://doi.org/10.1111/cgf.13732
https://doi.org/10.1007/s00371-007-0163-2
https://doi.org/10.1117/12.2184840
https://doi.org/10.1145/2766899
https://doi.org/10.1109/MC.2011.196
https://sketchfab.com/
https://sketchfab.com/
https://doi.org/10.1111/cgf.14335
https://doi.org/10.1111/cgf.14022
https://doi.org/10.2352/issn.2168-3204.2018.1.0.15
https://doi.org/10.2352/issn.2168-3204.2018.1.0.15
https://www.libvips.org/
https://www.libvips.org/
https://doi.org/10.1145/3197517.3201313
https://doi.org/10.1186/1687-5281-2014-25
https://doi.org/10.1186/1687-5281-2014-25

