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Abstract This paper celebrates the scientific discoveries and the service to the
automated reasoning community of Lawrence (Larry) T. Wos, who passed away in
August 2020. The narrative covers Larry’s most long-lasting ideas about inference
rules and search strategies for theorem proving, his work on applications of theorem
proving, and a collection of personal memories and anecdotes that let readers
appreciate Larry’s personality and enthusiasm for automated reasoning.
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1 Introduction

by Maria Paola Bonacina and Geoff Sutcliffe

Larry Wos was born on 13 July 1930 in Chicago, USA. His parents were Pol-
ish immigrants, a background that he remembered with pride. Wos was an ac-
complished mathematician and computer scientist, with an exceptional vision for
theorem proving, an inexhaustible enthusiasm for its application in mathematics
and logic, and a vivid curiosity for computer experiments. There was a certain
playfulness about him, as if research was a bit like a game or puzzle, where he
found joy in the discovery of patterns.

After studying at the University of Chicago (BS and MS) and at the Univer-
sity of Illinois at Urbana-Champaign (PhD), Wos spent his entire career at the
Mathematics and Computer Science (MCS) Division of Argonne National Labo-
ratory, in Argonne near Chicago. Argonne was the birth place of resolution: (John)
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Università degli Studi di Verona, Italy, E-mail: mariapaola.bonacina@univr.it ORCID 0000-
0001-9104-2692

M. Kinyon
University of Denver, USA, E-mail: mkinyon@math.du.edu ORCID 0000-0002-5227-8632

G. Sutcliffe
University of Miami, USA, E-mail: geoff@cs.miami.edu ORCID 0000-0001-9120-3927



2 M. Beeson, et al.

Alan Robinson alternated summer jobs at Argonne and at Stanford University
in the years 1961-1966, with an implementation of the Davis-Putnam procedure
as his initial task in the summers at Argonne. It was at Argonne that Robinson
worked on resolution and unification in 1962-1964, writing his milestone paper on
“A Machine-Oriented Logic Based on the Resolution Principle” in 1963 [62]. Larry
Wos, at Argonne since 1957, seized the moment and developed Argonne into the
cradle of automated theorem proving.

Larry Wos understood right away the power of resolution, as well as the need
to control it by appropriate strategies. Control strategies remained central in his
research, and in his relentless experimentation with theorem provers. This was the
reason why he preferred the name automated reasoning over automated deduc-
tion, feeling that “reasoning” better captures the mix of inference and search that
constitutes theorem proving by machine. This was also a motivation for the name
of the Association for Automated Reasoning. When the International Joint Con-
ference on Automated Reasoning (IJCAR) conference series was being planned
around 2000, Larry was delighted that the new event would use the phrase “Au-
tomated Reasoning”.

Larry Wos was also a pioneer in recognizing how crucial it was to start building
equality into resolution. To this end, he developed the concept of demodulation,
a first attempt at mechanizing the replacement of equals by equals. Even more
importantly, George A. Robinson and Wos were the first to propose the paramod-

ulation inference rule, marking the beginning of most of the ensuing research on
paramodulation and superposition.

Not only was Larry Wos a discoverer of strategies and inference rules, he was
also exceptional in leading the theorem proving group at Argonne, including Larry
J. Henschen of Northwestern University, Ewing (Rusty) Lusk, the late William W.
(Bill) McCune, Ross Overbeek, Robert (Bob) Veroff of (later) the University of
New Mexico, Steven K. Winker, and in connecting with other scientists invited to
Argonne, including Deepak Kapur, Hantao Zhang, and Maria Paola Bonacina. Wos
also collaborated with numerous mathematicians, especially from the University
of Chicago. He was fond of applying the Argonne provers, mainly Bill McCune’s
Otter, to search for proofs of mathematical theorems, constantly seeking shorter
or more elegant proofs, as if he wanted to show that automated theorem proving
can display not only brute force but also insightfulness and beauty. Many of his
quests were reported in his books [82,86,93,94], the latter two written with Gail W.
Pieper, coordinator of writing and editing at MCS. These books show how keen he
was on scientific writing, directed also to the non-specialists. He also maintained an
online page1 to share his theorem proving experiments. Under Larry’s leadership,
the Argonne group played a key role in the establishment of the Conference on
Automated Deduction (CADE), the Journal of Automated Reasoning (JAR), and
the Association for Automated Reasoning (AAR).

The Conference on Automated Deduction is the oldest conference on auto-
mated reasoning. Prior to the inception of CADE, papers on theorem proving and
related topics could appear at only theory or artificial intelligence conferences.
CADE provided a dedicated venue for presentation of research in this area. Af-
ter a Symposium on Automatic Demonstration held at Rocquencourt, France in
1968, an IEEE Workshop on Automated Theorem Proving was organized by Wos

1 http://www.automatedreasoning.net

http://www.automatedreasoning.net
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and Henschen at Argonne in 1975. According to Gérard Huet, use of the term
“Automated Deduction” for the event began in 1977, and indeed a Workshop
on Automated Deduction met later that year in Cambridge, USA. The acronym
“CADE” was suggested by Wolfgang Bibel and used for the first time in 1980
for the 5th Conference on Automated Deduction held in Les Arcs, France. (The
prior events were retrospectively named CADE when the history of the conference
was reconstructed in 2012). CADE returned to Argonne in 1988, when CADE-9
was organized by Rusty Lusk and Ross Overbeek. It was at CADE-9 that Bill
McCune released the first publicly available version of Otter. Larry gave a mem-
orable banquet speech at the Natural History Museum in Chicago, delving into a
comparison of theorem proving with gambling, which he was fond of.

The Journal of Automated Reasoning, founded in 1985 with Wos as editor-
in-chief, and Gail Pieper as managing editor, played the same role at the journal
level as CADE did at the conference level. Prior to the creation of the JAR,
journal papers on automated reasoning could be submitted to only theory, artifi-
cial intelligence, or symbolic computation journals. The foundation of a dedicated
journal witnessed and furthered the growth of the field. The first issue of JAR
in March 1985 included a foreword by Wos and an overview paper with several
co-authors [92].

The Association for Automated Reasoning was established in 1983, with Larry
Wos as president, Bill McCune as secretary, and Larry Henschen as treasurer. The
first issue of the AAR Newsletter appeared in March 1983, with Gail Pieper as
technical editor. Larry was a warm supporter of the AAR as a way of connect-
ing people beyond conference attendance. He collaborated enthusiastically with all
AAR secretaries (after Bill: Bob Veroff, Maria Paola Bonacina, Amy Felty, Wolf-
gang Ahrendt, Martin Giese, and currently Philipp Rümmer), and AAR Newslet-
ter editors (after Gail: Jasmin Blanchette, and currently Sophie Tourret), relent-
lessly contributing reports of theorem proving experiments and theorem proving
challenges to the newsletter.

Larry Wos was honored with the first Automated Theorem Proving Prize of
the American Mathematical Society (with Steve Winker) in 1982 and with a liber
amicorum in 1997 [75]. Wos won the first Herbrand Award in 1992, in recognition
of his research and his role as a founder of automated reasoning. His acceptance
speech in the CADE-11 proceedings is still inspiring today [83]. The Herbrand
Award to Bill McCune in 2000 sealed the pioneering season when Argonne was a
beacon for theorem proving, a season that would not have been possible without
Larry Wos’ leadership. He will be remembered by many in automated reasoning
and beyond.

2 The Inference Rules

by Maria Paola Bonacina

Larry Wos’ research program was centered on the design of inference rules and
control strategies, the two components of a theorem proving strategy, and their refine-
ment through experiments. In Wos’ work, the inspiration for new approaches came
from a mix of theoretical quests and experimental trials. This style of conducting
research emerges vividly from the written records of Wos’ greatest inventions that
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are surveyed in this section: the set-of-support strategy for resolution theorem prov-
ing [95], the unit-resulting resolution refinement of resolution [96], the demodulation

inference rule for equational replacement [96], and the paramodulation inference
rule for equality reasoning [60]. This section is subdivided into four subsections,
each devoted to one of these major contributions to the foundations of automated
theorem proving.

Precisely because in Wos’ research the conception of new ideas was constantly
interleaved with their experimental evaluation with theorem provers, it is impor-
tant to mention the systems that Wos used and contributed to, before delving into
his theoretical work. Wos used several theorem provers based on Robinson’s reso-

lution inference rule [62], contributing to their development (see [43] for a detailed
account). The first one was P1, written by Wos with Dan Carson: five variants of
P1, called PG1-5, were used in the experiments described in Wos’ seminal papers
on the set of support strategy [95] and unit-resulting resolution [96].

The second prover, called RW1 from the initials of George A. Robinson and
Wos, offered the first implementation of Wos’ own inference rules, demodula-
tion [96] and paramodulation [60]. Wos’ collaboration with Ross Overbeek led
to a third system named WOS1 [54], which implemented also hyperresolution [61],
and formed the basis for the NIUTP1-7 series of Argonne provers. With this series
the Argonne group pioneered the notion of building theorem provers from a toolkit
of subroutines, leading to the development of the LMA library. Subsequently Wos
used ITP [44], built from the LMA library, and AURA [68], which was a sub-
stantial step forward largely driven by Wos himself. The system that Wos used
the most is undoubtedly Bill McCune’s Otter [52,49], which remained Larry’s
favorite even after Bill had built the equational prover EQP [47,48] from the Otter

Parts Store library, which was LMA’s successor, and later Prover9 [46].

2.1 Resolution with Set of Support

A main motivation for the set-of-support strategy was the idea that a theorem
proving strategy should minimize irrelevant inferences, that is, those that appear
in the derivation but not in the proof [95]. The derivation is the sequence of all
inferences performed by the strategy during the search, whereas the proof is the
resolution proof tree with the empty clause � at the root and the input clauses at
the leaves. The idea was that a way to reduce irrelevant inferences is to make the
strategy sensitive to the goal [95], where the goal is the negation of the conjecture
ϕ to be proved from a set H of assumptions. Since resolution works refutationally

with clauses, the formulae in H and ¬ϕ are transformed into clausal form. The
resulting set of clauses is the input to the theorem prover, which searches for a
contradiction. At this point, however, the distinction between clauses that come
from the assumptions and the clauses that come from the goal is lost. The set-of-
support strategy addresses this by partitioning the input set of clauses into two
sets A and SOS , where A contains the clauses in the clausal form of H and SOS

contains the clauses in the clausal form of ¬ϕ. The set SOS is the set of support,
and the clauses in the clausal form of ¬ϕ are called goal clauses.

The key element in the set-of-support strategy came from Larry Wos’ keen
interest in the application of automated theorem proving to mathematics. If H is
the axiomatization of a mathematical theory, it is known that H is consistent, and
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so is A, as transformation to clausal form preserves satisfiability. Wos’ insight was
that there is little point in generating resolvents from clauses in A, because that
will not lead to a contradiction. Therefore, after a preprocessing step in which all
factors of clauses in A are added to A, the set-of-support strategy applies resolution
with the restriction that at least one of the two parents is in SOS . In other words,
resolution steps where both parents are in A are forbidden. All generated resolvents
are added to SOS , so that the SOS is expanded and A remains fixed. Clauses in
SOS are said to be supported, and a resolution inference is supported if at least one
parent is. The set-of-support strategy is goal-sensitive, in the sense that all clauses
added to SOS have at least one goal clause as an ancestor. The set-of-support
strategy inspired the definition of goal-sensitive strategies [58]: a theorem proving
strategy is goal-sensitive if it generates only clauses connected via inferences to goal
clauses.

Wos proved that the set-of-support strategy preserves the refutational com-
pleteness of resolution and also suggested two incomplete refinements. The first
one forbids generating a clause if the depth of its resolution proof tree is higher
than a given bound. The second one forbids generating a clause if the number of
its literals is higher than a given bound [95]. Indeed, Wos knew all too well the
difficulty of simultaneously achieving completeness and efficiency in automated
theorem proving. Throughout his amazingly long activity as an experimenter with
Otter, he was interested in trying incomplete strategies. Proving the refutational
completeness of an inference system is indispensable, but it is only a beginning.
Incomplete strategies can enable the theorem prover to prove more theorems, and
can be a starting point for developing new complete strategies that are more effi-
cient.

The impact of the set-of-support strategy has been vast and long-lasting. The
given-clause algorithm, also known as the closure algorithm, was originally designed
as a way to implement the set-of-support strategy in several Argonne provers,
and then evolved into the central algorithm of automated theorem provers (e.g.,
Otter, E [65], SPASS [79], Vampire [42], Waldmeister [35], Prover9, and Zip-

perposition [27]), and as such it is still being investigated, e.g., [66,34].
Resolution with set of support inspired semantic resolution [67], where A is the

set of clauses satisfied by a fixed guiding interpretation. Semantic resolution is
a hyperinference rule, as it combines multiple resolution inferences into one with-
out generating intermediate resolvents, in order to generate only resolvents that
are false in the guiding interpretation. Semantic resolution generalizes hyperresolu-

tion [61], where the guiding interpretation is either all positive (all positive literals
are satisfied) or all negative (all negative literals are satisfied). The set-of-support
strategy opened the way to goal-sensitive strategies, semantically guided strategies,
and supported strategies with different definitions of set of support (see, e.g., [58,
18,20] for surveys and [24,25] for recent developments).

2.2 A Practical Hyperinference Rule: Unit-Resulting Resolution

When discussing features of inference rules Larry Wos mentioned generality – the
use of most general unifiers as in resolution, immediacy – avoiding the generation of
intermediate clauses, and convergence – preventing the generation of consequences
of intermediate clauses [60]. While hyperresolution has these properties, and res-
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olution with set of support is goal-sensitive, Wos considered these refinements of
resolution still not powerful enough to conquer many interesting theorem proving
problems [96].

A well-known disadvantage of (binary) resolution is that a resolvent inherits
all the literals of its parents except the two literals resolved upon. Inferred clauses
grow longer and longer, and hence more expensive to process. The only exception
to this shortcoming, which was later studied as duplication by combination [58], is
represented by unit resolution, which originated in the Davis-Putnam procedure
[28]. In unit resolution one of the two parents is a unit clause (a clause made of a
single literal), and the resolvent is one literal shorter than its non-unit parent.

Wos proposed a unit-preference strategy [89], where unit resolution steps have
priority over other resolution steps, a very natural choice also when executing
inferences manually. Also, Wos understood that it would be beneficial to extend
as much as possible the unit sections of a derivation, as he called the series of unit
resolution steps [96]. This requires in turn the availability of unit clauses. Thus,
Wos devised unit-resulting (UR) resolution [96,45] as a hyperinference rule designed
to produce unit clauses. Given a nucleus clause with k + 1 literals, where k ≥ 1,
and k unit satellite clauses, if the k literals of the satellites simultaneously unify
with k literals of opposite sign in the nucleus, UR resolution generates the unit
resolvent obtained by performing these resolution steps as one. If the nucleus is
allowed to have only k literals, UR resolution can establish a contradiction.2

While semantic resolution performs hyperinferences in order to get a resolvent
that is false in the guiding interpretation, and in hyperresolution the guiding in-
terpretation is based on syntax (the sign of literals), UR resolution is an outright
syntactic hyperinference rule, as the feature that a resolvent must have is purely
syntactic, having only one literal. UR resolution represents well the style of Wos’
research, his interest in what is practical, besides being refutationally complete.
Indeed, UR resolution is not refutationally complete on its own, but in practice it
is a useful addition to a refutationally complete inference system (e.g., [71]).

2.3 A First Foray into Equational Reasoning: Demodulation

Many theorem proving problems involve equality, and this is especially true for
problems in mathematics, which was Larry Wos’ favorite domain of application. A
fundamental meta-theorem in mathematics known as Birkhoff’s theorem says that
replacing equals by equals is complete for equational reasoning. In other words,
given a set of equations E and an equational conjecture s ' t, where ' is equality
and all variables are implicitly universally quantified, s ' t is a theorem of E if and
only if it is possible to transform s into t, or t into s, by applying the equations in E
as replacement rules. However, Birkhoff’s theorem does not provide a mechanical
procedure because it requires that the equations can be applied in either direction,
which means that a mechanical procedure would loop. The quest to automate
Birkhoff’s theorem is one of the most fascinating stories in automated theorem
proving. Wos broke new ground in this pursuit with the demodulation inference
rule [96].

2 According to [16], the concept of UR resolution appeared independently in the NEU strat-
egy [74], in the same year as [96].
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Wos was not specifically interested in purely equational problems as described
above. His objective was to introduce equational replacement in the more general
setting of clausal theorem proving by resolution. Given an equality unit clause l '
r, and a clause C with a subterm t, denoted C[t], such that l matches t (i.e.,
t = lσ for a substitution σ), the new clause C[rσ] obtained by replacing t with
rσ is an immediate modulant of C. A k-modulant, for k > 0, is the outcome of k
such replacement steps, and a modulant is a k-modulant for some k. The non-
termination of replacing equals by equals in a mechanical rendering of Birkhoff’s
theorem arises also in the context of demodulation: a clause can have infinitely
many modulants in general. However, for a fixed k, there are only finitely many
k-modulants. Thus, Wos defined k-modulation as the generation of a resolvent of
parents Ck and Dk, where Ck and Dk are k-modulants of clauses C and D. In
order to capture equational replacement independent of resolution, and without
the parameter k, he defined demodulation as replacement by a modulant, where
each immediate modulant has strictly fewer symbols than its predecessor, and the
final modulant has no immediate modulant with fewer symbols.

In theorem proving the signature (the set of predicate, function, and constant
symbols) is finite, but an infinite supply of variable symbols is assumed to be avail-
able. Every clause has its own variables and every clause has infinitely many vari-

ants (clauses differing only by a renaming of variables). Thus, there are infinitely
many clauses with the same number of symbols. It follows that demodulation
in its original definition cannot be considered, strictly speaking, a well-founded
replacement rule.

Clearly, Wos was interested in a practical inference rule: a clause to be demod-
ulated can be considered a ground clause, since a matching substitution and not
a unifier is applied. A ground clause can be measured by its size (the number of
occurrences of predicate, function, and constant symbols), and the sizes of ground
clauses can thus be compared. Nevertheless, the size ordering does not allow the
prover to apply demodulation when the two sides of the applied equation have the
same number of symbols, because such an application does not decrease size. Fur-
thermore, the size ordering may not allow the system to demodulate in the desired
direction. For example, equations used to define a function symbol are meant to
be applied so as to unfold the definition by replacing a term with a term of usu-
ally larger size, and demodulation driven by symbol count cannot do that. Thus,
the problem of well-founded demodulation remained open. Moreover, well-founded
demodulation alone cannot implement Birkhoff’s theorem, because once the ap-
plication of equations in E is restricted in order to be well-founded, it is necessary
to complete the set of equations E by generating equations from equations in order
to be able to prove any equational conjecture. Both these issues were solved by
the Knuth-Bendix completion procedure [41,39] for rewrite rules (equations that can
be oriented by a well-founded ordering), and the unfailing or ordered completion
procedure for equations [37,5,3,4]. The fundamental ingredient of completion is a
well-founded ordering on terms that is used to orient demodulation, called simplifi-

cation or rewriting, and to define superposition, the more general inference rule that
generates new equations from existing equations.

Independently of completion, and in the more general setting of clausal the-
orem proving by resolution, Wos approached the problem of designing a more
general inference rule that would use equations to generate clauses from clauses:
the paramodulation inference rule.
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2.4 The True Beginning of Equational Reasoning: Paramodulation

Since resolution is refutationally complete for first-order logic, if the theorem prov-
ing problem involves equality, then the axioms of equality can be added to the input
set: reflexivity, symmetry, transitivity, and substitutivity axioms for every function
and predicate symbol in the signature of the problem. Unfortunately, these equal-
ity axioms are so general that their presence causes resolution to generate so many
clauses that any resolution-based strategy becomes too inefficient to be practical
in most cases. In order to address this problem, Larry Wos proposed paramodula-

tion [60] as a generalization of resolution where equality is built-in: given a clause
l ' r ∨ C where one of the literals is an equation l ' r, and a clause D[t] with
a subterm t such that l and t unify with most general unifier σ, paramodulation

generates the paramodulant (C ∨D[r])σ. The clause l ' r ∨ C and the literal l ' r

are called the clause and literal paramodulated from, whereas the clause D and the
literal containing t are called the clause and the literal paramodulated into.

The appearance of paramodulation was nothing short of revolutionary. How-
ever, the proof of refutational completeness required paramodulation into variable
terms, and also augmenting the input set with the reflexivity axiom (x ' x) and
functionally reflexive axioms (the instances of reflexivity of the form f(x̄) ' f(x̄),
for all function symbols f in the signature of the input clause set). Wos and
Robinson conjectured that both requirements could be dropped, a conjecture that
became known as the Wos-Robinson conjecture. Since a variable unifies with any
term, paramodulation into variables makes the inference rule exceedingly prolific,
as do the functionally reflexive axioms. The presence of these axioms meant that
equality was still only partially built into the inference system. Several researchers
endeavoured for years to settle the Wos-Robinson conjecture and the related prob-
lem of merging resolution and paramodulation on the one hand, with completion
by superposition and simplification on the other, to obtain refutationally com-
plete inference systems for first-order logic with equality [26,56,36,63,38,64]. The
resulting inference systems combine resolution, paramodulation, and superposi-
tion, with well-founded demodulation and subsumption – subsumption is another
inference rule that Wos deemed fundamental [91].

These inference systems have been called completion-based, rewrite-based, satu-

ration-based, or ordering-based, given the key role played by well-founded orderings
on terms, literals, and clauses [57,7,18,53,19]. They were implemented first in
Otter and then in most subsequent theorem provers for first-order logic with
equality, up to those that represent the current state of the art (e.g., E, SPASS,
Vampire, Waldmeister, and Zipperposition). These inference systems specialize
to unfailing completion in the purely equational case [64,6,22]. The growth of the
inference system beyond resolution contributed to the evolution of the given-clause
algorithm from an implementation of the set of support strategy into a general
algorithm for implementing multiple strategies. Indeed, the set of support strategy
is not complete in general in the presence of equality, unless the complement of the
set of support is saturated with respect to the inference system in a preprocessing
phase [6], which defeats the spirit of the strategy.

As additional evidence of the amazing impact of the theorem proving approach
that Wos pioneered with paramodulation and demodulation, it suffices to men-
tion that these inference systems yield decision procedures (e.g., [33,2,31]), get
integrated with other reasoning paradigms (e.g., [23,59,29]), form the basis of ap-
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proaches to parallel theorem proving (e.g., [21,17] and [19] for a recent survey),
and are generalized to higher-order logic as in lambda-superposition [11,12,77,78]
and combinatory superposition [13,14,15].

3 The Applications

by Michael Kinyon

This section discusses some of the applications of automated reasoning that
Larry Wos worked on. The presentation gives a representative sample of his many
interests, in topical order, rather than an exhaustive survey in chronological order.
Particular attention is paid to Wos’ ongoing interest in proof simplification.

3.1 Logic

Much of Larry Wos’ direct work in the application of automated reasoning (espe-
cially with Otter) was within the realm of logic. This subsection gives an overview
of his and his collaborators’ work.

Starting in the area of propositional calculus, Wos showed that for Meredith’s
single axiom there is a proof (in fact several) of  Lukasiewicz’s three-axiom sys-
tem that uses only condensed detachment [88]. Meredith’s original 38-step proof
uses condensed detachment but also uses substitution and (regular) detachment.
Wos originally found a 41-step proof using only condensed detachment by checking
Meredith’s proof and then went on to find “fully automated” proofs (meaning inde-
pendent of other proofs, particularly Meredith’s). A notable observation was that
blocking double negation from occurring led to more efficient searches. At about
the same time Fitelson and Wos were able to find, among other results, condensed
detachment proofs that  Lukasiewicz’s 23-symbol single axiom axiomatizes proposi-
tional calculus [32,90]. (Alluding to the discussion in Sect. 3.3, some of this work is
devoted to consideration of how to find simple proofs.) Later, Beeson, Veroff, and
Wos returned their attention to the goal of blocking double negations and looked
for conditions guaranteeing the existence of double-negation-free proofs when the
conclusion to be proved is also free of double negations. They found conditions that
address this in general, and then focused on the  Lukasiewicz three-axiom system
as one whose use for theorems with double-negation-free conclusions guarantees
the existence of a double-negation-free proof [8]. In the broader context of Boolean
algebra, McCune, Veroff, Fitelson, Harris, Feist, and Wos found shortest single ax-
ioms, including identities of length 22 in terms of conjunction and negation, and
identities of length 15 in terms of the Sheffer stroke [50].

Turning to classical equivalential calculus (the calculus of equivalence rela-
tions), Wos, Winker, Veroff, Smith, and Henschen showed that four of seven can-
didate shortest single axioms do not have sufficient strength to serve as single
axioms [100]. Later Wos, Ulrich, and Fitelson settled in the affirmative the open
question of whether the formula XCB = e(x, e(e(e(x, y), e(z, y)), z)) is a single ax-
iom under the inference rules of detachment and substitution [98,99]. This was
the only remaining unresolved case in the list of shortest possible axioms.

In combinatory logic, Wos used a unique strategy, which he dubbed the kernel
strategy, to solve several open problems regarding whether or not certain combina-
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tors have fixed point properties [84]. In the same paper, he posed many problems
which remain open.

In the area of non-classical logics, Ernst, Fitelson, Harris, and Wos found a
concise three-clause axiomatization of the implicational fragment RM→ of the
Dunn-McCall system RM , a cousin of relevance logic. Ernst, Fitelson, Harris, and
Wos also found several shortest possible axiomatizations for the strict implicational
fragments of the modal logics S4 and S5 [30].

3.2 Tarskian geometry

Tarskian geometry is a single-sorted axiom system that deals with only congruence
and betweenness relations [9]. This is in contrast to Hilbert-style axiom systems
that are less economical. Tarskian geometry is of more interest in metamathemat-
ical or formal (especially automated) investigations. Michael Beeson and Larry
Wos used Otter to prove theorems in Tarskian geometry. The papers were not
the first to apply automated reasoning to Tarskian geometry, but of particular note
were their solutions to four challenge problems to prove the following properties
without any parallel axiom or line-circle continuity: Every line segment has a mid-
point; every segment is the base of some isosceles triangle; the outer Pasch axiom
(assuming inner Pasch as an axiom); and the first outer connectivity property of
betweenness. In addition, Beeson and Wos found Otter proofs of all of Hilbert’s
axioms starting from Tarski’s axioms [10].

3.3 Proof Simplification

Anyone who encountered Larry Wos in a professional context very quickly learned
of his long-standing interest in finding elegant and simple proofs. There are two
likely reasons for this interest. First, Wos was a mathematician before he began his
seminal work in automated reasoning. The culture of mathematics, especially pure
mathematics of the sort in which he originally did research, has always placed a
high aesthetic value on elegant proofs. A well-known example of this aesthetic was
expressed by the late Paul Erdős, who always valued what he called “proofs from
the Book”, meaning the Book in which God kept the best proof of every theorem
[1]. (Erdős, incidentally, doubted God’s existence but believed in the existence of
the Book.) Although Wos apparently never expressed his views on elegant proofs
quite so colorfully, he was certainly steeped in the same mathematical milieu.
Second, as noted in [40], an automated theorem prover will report the first proof
it finds, but such a proof is rarely optimal or elegant by any measure. These two
observations, Wos’ background as a mathematician and the standard behavior of
automated theorem provers, suggest why Wos maintained an interest in finding
elegant and simple proofs.

The quest for elegant proofs leads to the question of how to measure the sim-
plicity of a proof (generated by an automated theorem prover). The measure that
Wos used most often was the number of inference steps: Shorter proofs are sim-
pler. There are a few tacit assumptions being made here when comparing proofs
for relative simplicity. First, the axioms of the proved theorems are presumed to be
the same. Second, the rules of inference are assumed to be fixed. The latter point
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also means, for example, that it does not make sense to compare a proof using
hyperresolution with a proof that replaces each hyperresolution step with mul-
tiple binary resolution steps. As another possible measure, forward proofs might
be considered to be simpler than proofs that contain steps reasoning backwards
from the denial of the conjecture. It is certainly conceivable that proofs that mix
forward and backward reasoning could be shorter than strictly forward proofs,
and thus this prescription reveals that sometimes other aesthetic considerations
can override the desire for short proofs. Note that strictly forward and mixed
proofs are never compared, since the latter usually include inference rules such as
UR resolution that are not allowed in the former. Third, no secondary inferences,
rewriting in particular, are allowed in a simple proof. This tacit rule mostly applies
to problems with equality. In Otter/Prover9 jargon, back demodulation must be
turned off so that rewrites have to be replaced with “top-level” paramodulations.
This rule may seem somewhat arbitrarily restrictive, and it is generally true that
a proof with rewrites can have a more structured appearance than a proof with-
out rewrites. However, it is almost always the case that proofs with rewrites are
longer than similar proofs where all inferences are primary. Thus the restriction is
somewhat natural if the primary measure of simplicity is proof length.

None of this is to suggest that Wos was not aware of the difficulty of coming
up with a robust measure of the simplicity of a proof. An exploration of other
possible factors was discussed in his collaboration with Rüdiger Thiele [73,97].
The following is a summary of a similar discussion in [40]: If a proof is visualized
as a directed graph with clauses as vertices and an edge connects clause A to clause
B if A is an immediate parent of the second, then the complexity of that graph
is an interesting measure of proof simplicity. One would intuitively expect a proof
with fewer edges emanating from the axioms to be simpler than a proof with more
such edges. Experimentally, this measure of simplicity does seem to be rather well
correlated with proof length, because when the proof clauses are arranged in a
sequence, fewer paths emanating from the axioms generally means there are fewer
inference steps.

Other measures of proof simplicity could be based on clause size, for example,
the maximum or average clause size. This measure can, however, conflict with
proof length. Wos did many experiments in which he used Otter to find shorter
proofs of the Robbins problem originally solved by McCune. The clauses in the
shorter proofs are very large (according to a talk given by Wos at the 2004 Argonne
Workshop on Automated Deduction and Mathematics). Thus there is a simplicity
trade-off: Is a shorter proof in which the clauses themselves are more complex
really a simpler proof? Wos was certainly aware of this issue and others like it,
but was just as aware that the overall problem of determining criteria for simplicity
and how such criteria interact with each other requires much more investigation.

One of Otter’s “fringe features”, ancestor subsumption, seems to have been
implemented by McCune in response to Wos’ desire to search for short proofs
(cf. [93], p. 299). Clause A ancestor subsumes clause B if either (1) A properly
subsumes B in the usual sense, or (2) A and B are variants and the derivation
length of A is shorter than that of B. There seems to be little to no evidence that
ancestor subsumption helps in basic proof search. It does, however, help quite a
bit in searching for short proofs.

It is probably fair to say that Wos’ interests in proof simplification have not
generally been shared by many in the automated reasoning community. The rea-



12 M. Beeson, et al.

sons for this are quite practical: Developing automated theorem provers that can
find proofs faster and more efficiently seems to yield a better return on invested
time than developing provers that can find elegant proofs (e.g., the annual CADE
ATP system competition does not have an award for shortest or simplest proofs).

Wos’ interest in proof simplification seems to have been partially historically
justified for him by similar interests among earlier logicians, such as Meredith
and Prior. Wos found even more historical justification in the well-known can-
celled 24th Problem of David Hilbert. This led to Wos’ collaboration with Rüdiger
Thiele, mentioned above. In 2000 Thiele discovered from Hilbert’s unpublished
notebooks that he had planned to include a 24th problem in addition to the fa-
mous 23 problems that he discussed in his Paris lecture of 1900. The lecture was
already long, and apparently Hilbert was unable to formulate the problem quite to
his liking, so he decided to omit it. The wording of the cancelled problem exactly
matches Wos’ interests [72]: “Criteria of simplicity, or proof of the greatest sim-
plicity of certain proofs. Develop a theory of the method of proof in mathematics
in general. Under a given set of conditions there can be but one simplest proof.”

3.4 Pure Proofs

As part of his general interest in the elegance of proofs, which was mostly expressed
in terms of proof simplification, Larry Wos also worked on other possible ways that
elegance could be expressed. For instance, Wos was very interested in the notion
of what he called a “pure” proof [85,87]. This specifically arises when proving a
theorem of the following form:

Theorem. Assume [various hypotheses]. Then the following are equivalent.

1. Statement 1

2. Statement 2

3. Statement 3

4. etc.

In practice it might be proved, for examples, that Statements 1 and 2 are
equivalent, that together they imply Statement 3, and so on, perhaps via a very
tortured path, eventually coming back to some Statement implying Statement 1
(or 2). To Wos, a pure proof of one of the implications, say Statement 2 implies
Statement 3, is one that does not prove any other Statement along the way. The
challenge in automated theorem proving is to steer the prover in such a way that
in the course of proving an implication between Statements it does not prove one
of the other Statements.

Wos discussed the specific example of the thirteen shortest single axioms for
equivalential calculus, subject to condensed detachment being used as the sole rule
of inference [85]. A single application of condensed detachment to the (shortest
single) axiom known as P4 with itself yields the (shortest single) axiom P5, and two
applications of condensed detachment beginning with P5 yields P4. This means
that starting with P4 cannot yield a pure proof of any of the axioms other than
P5 (because one application of condensed detachment must yield P5). Thus, a
derivation of P5 must be present in the proofs of all the other axioms.
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Wos also considered pure proofs for the four Moufang identities from loop
theory [87]. Any one of the identities can be used to define the variety of Moufang
loops; that is, the identities are all equivalent. With four identities this means
there are 12 pure proofs to seek out, and Wos found them all with Otter. See
also Veroff’s solution of Wos’ pure proof challenge [76].

It is interesting to note that Wos’ dissertation advisor, Reinhold Baer, had a
strong preference for “the following are equivalent” types of theorems; they can
be found throughout his work. It is amusing to speculate that Wos might have
inherited some of his interest in such theorems from his advisor.

3.5 Miscellaneous

This subsection collects some of Larry Wos’ “one-shot” work that doesn’t seem to
fit in any of the other subsections.

• In [81], Winker, Wos, and Lusk settled an open problem first proposed by Ka-
plansky in the theory of semigroups: Does there exist a finite semigroup (a set
with an associative binary operation) with an antiautomorphism (a permutation
f such that f(xy) = f(y)f(x) for all x, y) but no involutions (antiautomorphisms
satisfying f2 = id)? What made the problem particularly challenging was not the
prescription of the given antiautomorphism of order higher than 2, but rather
specifying the conditions that guarantee that there are no involutions at all. The
unnamed Argonne ATP system used in the paper did not solve the problem di-
rectly, but rather assisted in the generation of models that eventually led to a “by
hand” solution.

• In [69], Smith and Wos solved some problems in the theory of Jordan rings.
The mathematician who proposed the problems to them thought that automated
reasoning would be helpful, but amusingly, it turned out that the solved problems
were handled simply by some clever algorithms and intense computation. See Wos’
reminiscence on pp. 395-396 of [93].

• In [80], Winker and Wos found models and counterexamples to conjectures re-
garding the independence of axioms in ternary Boolean algebras, which are essen-
tially Boolean algebras axiomatized by a single ternary operation. Their approach
used then existing automated deduction tools and an iterative procedure to add
properties to a potential model until it was completed.

• In [55], Parrello, Kabat, and Wos studied the job-shop scheduling problem for
production of cars. The problem is known to be NP-complete, so rather than seek
optimal solutions the authors used the ITP system to study “good” sequences of
cars, as measured by economic considerations.

• In [51], McCune and Wos studied a known theorem in combinatorial logic: The
strong fixed point property is satisfied in a system that contains the B and W
combinators. They used the colorful formulation due to R.M. Smullyan [70]: A
sage exists in a forest that contains both a bluebird and a warbler. One sage was
known to exist already; McCune and Wos found four more with the assistance of
ITP and some of its extensions.
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4 The Persona

by Michael Beeson

with contributions from Jim Boyle, Branden Fitelson, Deepak Kapur, Ranganathan

Padmanabhan, Gail W. Pieper, and Brian Smith

Larry knew a lot of people. He did not make much distinction between personal
and scientific relations; he treated everyone as a whole person. He could entertain
a table (or two) at dinner, a scientific lecture audience, or his bowling companions.
He used the telephone a lot, carrying on both scientific and personal conversations
with great intensity. He was never in a hurry to finish these conversations. He was
always in a hurry to make progress on the next proof. I sent Larry a challenge
problem in October 2000. I did not know him then, so I was surprised to get a
phone call. These phone calls went on for the next twenty years. When we were
working on a project together, they were often daily. This was the way Larry
worked. Listen, for example, to Branden Fitelson’s story:

I was a graduate student at UW-Madison, and (through Ken Kunen – who
also sadly passed recently) I heard about Otter. I used it to solve a historical
problem in sentential logic (the dependence of one of Frege’s Begriffsschrift

axioms for sentential logic, which was first pointed out by  Lukasiewicz).
I cold-emailed Larry with my solution of the problem. He immediately
replied with his phone number. We talked more than three hours that first
day, and we had many, many long phone conversations regularly for the
next eight years or so. He was so encouraging and energetic. We published
several papers on open problems in sentential logics during those years. I
will cherish those memories. Larry was one of a kind.

Larry did not like to waste time. He would start talking as soon as I picked up
the phone – no wasting time with “Hello, this is Larry”. He said that if I identified
myself I would be insulting his ability to recognize voices. If my wife picked up
the phone, he would say, “Is he there?” On the other hand, he was always will-
ing to spend time on personal issues. But he would never discuss politics or the
news: “why should I waste my time thinking about something I can’t do anything
about?” He also wasn’t much interested in discussing theoretical aspects of auto-
mated reasoning, even though he had invented several fundamental methods. If
you wanted to get his attention, you had to send him an Otter input file! Nothing
else would work. Send him a file that should get a proof, but didn’t; or better yet,
one that did get a proof, but should get a shorter proof. You would hear from him
very soon.

Another person with whom Larry worked was “RP”, that is, Ranganathan
Padmanabhan. Here is his story of his work with Larry:

Thanks to the suggestions of Dr. Stanley Burris (University of Waterloo)
and Dr. David Kelly (University of Manitoba), I wrote my first e-mail to
Larry Wos in 1993, proposing some problems of equational nature. I first
met Larry in 1993 during an Argonne Workshop. After that, I visited Ar-
gonne almost every summer. These workshops were very informal. Each
participant would describe the problem he or she was currently working
on, and others participated in the discussion. I was perhaps the only non-
computer scientist in the group. In the beginning, I never actually used
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Otter. Using all sorts of mathematical tools, I manufactured several the-
orems of first-order logic relevant to my research (lattices, quasigroups,
group theory, geometry) and passed on these theorems to Bill (McCune)
during these workshops and subsequently through emails. It was Bill (and
later Bob Veroff with Prover9) who fine-tuned the various settings, proved
the theorems and emailed me back the proofs in the form I liked. This went
on for some three years. All my conjectures turned out to be true. Towards
the end of one such workshop, Larry exclaimed with a gleaming smile, “I
know how RP gets these conjectures. He already has proofs using some
kind of maximal principle, Zorn’s Lemma, axiom of choice or some such
fancy second order tool and he wants to get a real down-to-earth equa-
tional proof, am I right, RP?”. Well, he was 100 percent right. Larry had
a clear perception of the subtle distinction between a first-order proof and
a second-order proof and what kind of hypotheses were ideal candidates
for Otter or Prover9. On several occasions, Larry would “elegantize” the
equational proofs by simplifying or reducing the length of the proof etc.
My monograph with McCune and subsequent papers with Bill and Bob
Veroff may be described as corollaries to our interactions and discussions
with Larry Wos.

Larry always liked Indian food, especially when we went together for
lunch or dinner during the Argonne workshops. His favorite choice would
be Saag Paneer, a vegetarian dish. Was it because of his epicurean taste or
was it because of his innate desire to accommodate my food habits?

I can testify that Larry liked Indian food even when RP was not there. In April,
2004, his wife Nancy died, and I offered to fly out to Chicago and keep him company
for a few days. He accepted that offer, and I cooked several good Indian meals in his
kitchen. During that visit, I prodded Larry repeatedly to get out of the house and
go for a walk. Reluctantly he did so, but he took his revenge on me. He managed to
time his conversation on the elevator so that as we passed through the apartment
house lobby (with several others and the doorman present) he could make a loud
reference to my “criminal past” and my upcoming appointment with my parole
officer! He was so amused at my supposed discomfiture. When I congratulated him
on his timing, he was amused and said he had tried to make it appear an accident.
On that walk, I told him, “Larry, life is like white-water rafting: sometimes you
have to paddle like crazy, but other times, you should just take it easy and float
downstream”. “This is one of those times”, I said. I will never forget his reply:
“Michael, I’ve been paddling as hard as I can all my life, and I’m not about to
stop now!”. This was very true; over the years I heard how Larry had struggled
to overcome his lack of vision, something he only talked about after knowing me
very well.

In the days before I knew him Larry had played a lot of poker, sometimes
for very large stakes. He played regularly with some rather shady characters. He
described these games for me in some detail. He taught me that poker is a mental
game, it’s about understanding how the other players think, how they make de-
cisions. Of course you had to master the probabilities, but that was child’s play
compared to the real game, which was all psychological. Although Larry could
not see, he was very good at interpreting tones of voice, small sounds of clothing
rustling, etc. Sometimes his fellow players would insist on writing down their bets,
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and having someone else read them, because “Wos gets too much information” if
they speak. These people grew to respect Larry. He told me, “If you ever need
someone bumped off, or just kneecapped, I can help you with that”. By the time
he said that to me, I had realized that Wos loved to say things that were just at
the borderline of truth – if I couldn’t decide if what he said was true or just fiction,
that was what he was aiming for.

Poker was not the only thing on which Wos gambled. He bet on sports (at
least baseball and football) and on horse races. For example, in November 2006,
he asked me to help him find streaming audio for the Breeder’s Cup race, on which
he “had some bets.” He would typically bet on the “spread” rather than just the
raw win-or-loss outcome of games, and bookies would call him sometimes to help
estimate the spread, unless of course, that was just something he told me to see if
I would believe it or not.

When it came time to write up some of our work for publication, I found that
Larry had some fixed ideas about style. For example, it had to be “There exists”
and never just “There is”. He was also very particular about the correct use of
“which” and “that”. He was a very careful proofreader. His favorite story about
editing was one in which Tarski had quotation marks inside the period at the end
of a sentence, throughout his paper, and the editor changed them, citing numerous
authorities. Tarski changed them all back, telling the editor, “I am Tarski!”. Tarski
was Larry’s ideal in regard to editors. The only person whose writing advice he
would accept was Gail Pieper. Here is her story:

Larry and I were colleagues and friends for over 40 years. When I first
was introduced to him as the Mathematics and Computer Science Division
editor, we started discussing a paper of his I had just looked at. I sug-
gested that he change the em dash to a simple comma, maintaining in my
most “professional” voice that the em dash should be reserved for empha-
sis. “Exactly!” he replied. (I lost that round.) But Larry did respect style
and grammar and word choice, and he would look carefully at each of my
editing comments. One day I remember he called me and groaned, “Do
you know how many changes you are suggesting I consider? One hundred
and seventy!”. “Exactly!” I replied. (I won that round.) Counting needed
changes was typical of Larry’s interest in numbers and perhaps explains his
many decades of research focusing on finding shorter proofs. He also liked
challenges, and he frequently included one or more challenge problems in
his “President’s Column” in the AAR Newsletter. I once took advantage
of these two interests when he called in delight one day to tell me he had
reduced a proof of 136 steps to 103 (I am not sure of the exact number).
My response was to point out that the number 100 would be much more
satisfying. He agreed, and a few days later I received another call. He had
succeeded, and we both shared in his success in meeting my challenge.

Larry could not see. Of course that was a central fact in his life experience,
but he hated to be characterized by that limitation. The word “blind” was to
him like the “N-word” is to those with dark skin. It took time (on my part) and
effort (on his part) for me to understand the discrimination that the unsighted
(his preferred word) face. Here is what his long-time colleague (since 1974-75) at
Argonne National Laboratory, Brian Smith, has to say about how Larry dealt with
his lack of vision:
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Working with Larry was a challenging but most enjoyable experience. Al-
though he was blind, Larry never let you mention that about himself. He
would use words like “look” and “see” that surprised you when he uttered
them. On the other hand, you would be writing something on the black-
board to explain something, and he would correct what you had written
as if he could see it. He would walk the halls of our office and turn at the
correct places to get to a meeting or a seminar in the building without
assistance. The only time he would accept assistance was to walk outside
to the cafeteria roughly a quarter of a mile from our offices. But he was
always quick to tell you about a curb or obstruction as if instead he was
leading you rather than the other way around.

The only context in which Larry ever used the word “blind” was in the phrase
“blind bowling.” I was astonished to learn that there is such a sport, but he set
aside one night a week for it and was proud that he was the best in the league.
Brian Smith has a story about that:

One of the most enjoyable experiences I had was to have him invite me to
be on his bowling team of blind bowlers. It was a blind bowling league in
which they would request a sighted person to join the team to write down
the scores and in addition tell them what pins were left standing after they
bowled the first ball. They bowled by using a portable guide rail that the
blind bowlers would hold onto with their left hand while bowling the ball
with their right hand. Larry’s ten pin bowling average was in the mid 140s
if I recall correctly, but most other blind bowlers would bowl on average
in the 120s. So I was there to keep score and call the standing pins after
the first ball. I would announce 8 pins down on the first ball with pins 1
and 2 left standing and then on the bench behind me I would hear the
correction that only 7 pins were down and pin 5 was also back there, still
standing. If I said mistakenly the 1 and 2 pin was still standing, I would
hear the correction that it was the 1 and 3 pin. And of course he was always
right. He could tell from the sound of the ball hitting the pins what was
likely left standing, and he was always right. And of course that experience
convinced him I was more blind than he was and he would always challenge
me playfully about my eyesight.

In his professional work at the laboratory, Larry had to find a way to interface
with a computer; when he first started, the usual way was via paper tape! Brian
Smith describes what happened:

In the late 1960s the engineers at Argonne modified a paper tape writer
so that it embossed the tape rather than punched holes in the paper tape.
The tape was wide enough to have up to 8 lumps embossed across the
tape, instead of the usual 8 holes. Wos learned the tape code. This is how
he would read computer output, and how he would read programs he wrote.
Later in the 1980s, the lab bought a Braille printer that would print output
for him. He would carry rolls of paper tape around with him in his pocket,
and walk the halls of building reading the tapes by rubbing his fingers
across the tape.
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By the time I stayed in his apartment in 2004, he had a teletype with Braille
printer in his bedroom. The lights were never turned on, unless I turned them on;
I watched in awe as Larry sat in the dark, running Otter on the lab’s computers.

Jim Boyle was another colleague of Larry at Argonne, who knew him even
before Brian Smith did. Here is part of his story about working with Larry, starting
from his first day at Argonne in 1967. Jim wrote it in the form of a “letter to Larry”:

I was given an office one down the hall from yours, and I was duly ensconced
in it with the door closed, trying to work. I remember hearing loud talk
and laughter in the hallway outside my door and wondering how I could
get any thinking done while that was going on. Finally, I stepped out into
the hall to see if I could tone it down, and there you were, talking and
joking with another member of the Division. Before I could finish saying
something (I should say, complaining) about the noise, you had included
me in the conversation and were telling a story that left me in stitches!
A bit later I went into your office, and I found you, sitting at a teletype
machine, complete with a paper tape reader and punch attached. Soon the
machine began to chatter, spewing both paper and tape, and I watched
you grab the end of the tape and run your fingers over it as it came out of
the punch. I asked what you were doing, and you told me you were reading
it, reading the output from the latest run of your program.

Larry loved to play with people, telling them things just to see how they would
react. Eventually I learned to play this game too, reacting in unexpected ways, or
telling him things “on the edge of believability”. Here is one of Jim Boyle’s favorite
stories illustrating how Larry did things like this:

We all knew Larry as Lawrence T. Wos, but when I asked what the ‘T’
stood for, he answered with this story, about playing poker with a group
of friends when he was a student at the University of Chicago. One of the
players was Bernie, who was eighteen – younger than the other players and
a tad naive. At some point, the game broke for dinner, and Bernie sat down
next to Larry. After a bit, he asked, “Hey, Larry, I hear your middle initial
is ‘T’, what does that stand for?”. “Just ‘T’, Bernie, it just stands for ‘T’”.
“Awww, c’mon Larry, it must stand for something!”. “No, Bernie, it’s just
‘T’”. Not one to take a hint, Bernie began to bounce in his chair, and
repeated, “Please tell me what it stands for!”. After Bernie had demanded
this several times, Larry finally said, with a small smile, “Well, you know my
mother is a Latin scholar, and she chose a Latin word for my middle name.
But, it’s embarrassing – I never tell anyone what it is”. Bernie continued to
wheedle, “Please, pretty please, Larry, tell me what it is!”. Finally, Larry
said, “ALL RIGHT! She named me Lawrence Terraponesta Wos”. Amidst
general laughter at the table, Bernie exclaimed, “Terraponesta! That is
embarrassing, is that REALLY your middle name? I don’t think I believe
that”. To which Larry replied, “Well, then, I bet you five dollars that it is
Terraponesta”. “You want me to bet five dollars that you don’t know your
own middle name, to bet that it ISN’T Terraponesta? You must be crazy!”.
“Well, you said you didn’t believe it – put your money where your mouth
is!”. “No, man, I’m not gonna waste five dollars!”. At this point, Bernie’s
brother Allen, who was 26, an ex-Marine, and worldly wise, said, “BET
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HIM, BERNIE! BET HIM! If you don’t, you’ll come back to the room to
find that I’ve locked you out”. Finally, Bernie said despondently, “OK, I
bet five dollars that your middle name isn’t Terraponesta”. At which point,
Larry handed him a five-dollar bill!

For the record, Larry’s middle name was “Thomas”.

Here are some memories of Larry by Deepak Kapur:

I first met Wos at CADE at NYU in New York city in 1982 where I was
essentially ignored. My second encounter was in 1987/88, when Hantao
Zhang and I got invited to Argonne National Lab by Overbeek and Lusk,
after they heard that we had been able to prove many ring identities fast
using associative-commutative (AC) Knuth-Bendix completion procedure
implemented in our Rewrite Rule Laboratory (RRL). I recall being taken
to a Thai restaurant for lunch by Overbeek, one of Wos’ favorite places
in the neighborhood where Wos lived in Chicago. Larry did not remember
meeting me in NYC, but soon started mimicking my Indian accent despite
Overbeek politely suggesting that he should not do so given that he had
just met me. Wos asked me to explain what we had done in RRL and
immediately challenged me to prove the Robbins algebra problem, which
was open at that time. Wos was skeptical about using Knuth-Bendix over
paramodulation and demodulation, but immediately grasped the power of
the use of AC unification. This visit led McCune to integrate AC unification
in his theorem prover EQP, leading to settling the long standing conjecture
that Robbins’ algebras are indeed Boolean.

Wos was the key note speaker of CADE-11 in Saratoga Springs in 1992,
where he also got the first Herbrand award. When he arrived at the Rens-
selaer/Albany train station, he asked me to take his wife and him to the
front of the train to feel its engine as he was very fond of hearing sounds
generated by rail engines. My family invited him to our home for dinner
where he met my then 4-year old daughter. She was amazed to learn that
a blind person could be such an accomplished scientist.

In 1993 Wos started contemplating to step down from the editor-in-chief
of JAR. He called one night and told me he had a proposition to which I
would not and could not refuse: “How would you like to be the next editor-
in-chief of JAR?”. He graciously agreed to mentor me, which meant calls
late nights and over the weekends. Whenever he called, he never bothered to
find out whether I was busy or doing anything else, and instead just dived
into whatever issue he wanted to talk about. When I decided to become
the chair of the CS department at the University of New Mexico in late
1998, Wos told me that my career as an automated reasoning researcher
was over. However, he still insisted on me continuing being the editor-in-
chief of JAR. Our interactions became less frequent even though I would
occasionally get late night and weekend calls, and the conversation would
start with whether I was still interested in theorem proving and whether I
was doing research. Sadly, I did not get a chance to visit Argonne for over
the last 20 years, consequently missed my interaction with Wos.

Larry was a faithful and generous person; he helped various people that he
encountered in the course of life, for example various unsighted persons whom he
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advised or helped financially. If you were Larry’s friend, you could count on him
absolutely; he would be there. Larry had strong opinions about people; some of
them earned his respect, and others his contempt. Of course, those with whom he
worked were in the first group. All the people that I know who worked with him
agree that he made them feel good about working with him. As Jim Boyle put it,
he “had a talent for identifying the individual strengths of the people with whom
he worked. He said it was his way of getting what he needed from each of us, but
it made us feel enabled and competent”. He was quick to praise and very slow to
criticize. We will always remember what it was like in the days when we could
pick up the phone and hear Larry begin to speak. Let this paper record that we
return the respect that Larry paid to us all.

5 Conclusion

by Geoff Sutcliffe

Larry Wos’ interests in automated reasoning were broad and influential: Larry
valued and developed underlying theory, but he did not stop there. Larry pushed
the theory into effective system implementations, but he did not stop there. Larry
used the implementations in a range of applications, but he did not stop there.
Larry inspired many people to join his efforts, through publications and conversa-
tions, thus contributing to the development of the thriving automated reasoning
community that we have today.

This paper has surveyed the highlights of Larry Wos’ deep contributions to the
discipline of automated reasoning:

the how - his inference rules;
the what - his applications;
and the style - his persona.

Each section has been appropriately and adequately laudatory, so that more is
unnecessary. Let it simply be said, he touched the heart of automated reasoning.
Larry Wos died on 20 August 2020 in Chicago, USA.
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