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No book can ever be truly accomplished.

As we work around it, we learn enough to find it immature

by the time we step away from it.

-Karl Raimund Popper
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Sommario

L’analisi di dati nell’ambito del microbioma e della metagenomica è stato

il tema principale del mio dottorato. L’obiettivo primario di questa tesi si

muove attorno all’osservazione dei limiti dei metodi per lo studio dell’ab-

bondanza differenziale e culmina con la creazione di un framework analitico

che permette la loro misurazione e comparazione. Come obiettivo secon-

dario, inoltre, la tesi vuole enfatizzare la necessità di una solida analisi

statistica esplorativa ed inferenziale nei dati di metabarcoding, tramite la

presentazione di alcuni casi studio.

Inizio presentando 2 studi strettamente collegati in cui i metodi per l’analisi

di abbondanza differenziale sono i protagonisti. L’analisi di abbondanza

differenziale è lo strumento principale per individuare differenze nelle com-

posizioni delle comunità microbiche in gruppi di campioni di diversa prove-

nienza. Rappresenta quindi il primo passo per la comprensione delle comu-

nità microbiche, delle relazioni tra i loro membri e di questi con l’ambiente.

Il primo studio riguarda un lavoro di confronto tra metodi. A partire da

una collezione di dataset metagenomici, l’obiettivo era di valutare le per-

formance di metodi per l’analisi dell’abbondanza differenziale, anche nati

in altri ambiti di ricerca (e.g., RNA-Seq e single-cell RNA-Seq). Invece,

con il secondo studio presento un software che ho sviluppato grazie ai risul-

tati ottenuti dalla precedente ricerca. Attualmente, il pacchetto software,

in linguaggio R, è disponibile su Bioconductor (i.e., una piattaforma open-

source per l’analisi e la visualizzazione di dati biologici). Esso consente agli

utenti di replicare sui propri dataset il confronto tra metodi per lo studio

dell’abbondanza differenziale e la conseguente analisi delle performance.

Infine, mostro alcune delle sfide che ho incontrato nell’analisi di questo tipo

di dato attraverso 2 casi studio riguardanti il microbioma umano, la sua

composizione e dinamica, sia in stato di salute che malattia. Nel primo

studio, dei soggetti sani sono stati trattati con una mistura di probiotici per

valutare variazioni del microbiota intestinale ed eventuali associazioni con

alcuni aspetti psicologici. Un’attenta analisi esplorativa, l’impiego di tec-



niche di clustering e l’utilizzo di modelli di regressione lineare ad effetti misti

hanno consentito di svelare un forte effetto soggetto-specifico e la presenza

di diversi batteriotipi di partenza che mascheravano l’effetto complessivo

del trattamento probiotico. Invece, nel secondo studio mostro come, a par-

tire da campioni salivari, sono stati individuati dei biomarcatori associati

all’esofagite eosinofila (i.e., una malattia cronica immuno-mediata a carico

dell’esofago che causa disfagia, occlusioni e stenosi esofagee). Nonostante

la bassa numerosità campionaria è stato possibile costruire un modello per

discriminare tra casi e controlli con una buona accuratezza. Anche se an-

cora prematuro, questo risultato rappresenta un passo promettente verso la

diagnosi non invasiva di questa malattia che per il momento viene fatta solo

tramite biopsia esofagea.

Keywords: Microbioma, Analisi di Abbondanza Differenziale, Confronto

tra metodi, Analisi Esplorativa, Analisi dei Dati, Probiotici, Esofagite Eosi-

nofila.



Abstract

Microbiome and metagenomics data analysis has been the main theme of

my PhD programme. As a main goal, the thesis moves from the observed

limitations of the differential abundance analysis tools to a benchmark and

a framework against which they could be measured and compared. Fur-

thermore, as a secondary goal, the presentation of some case studies wants

to emphasise the need for a sound exploratory and inferential statistical

analysis in metabarcoding data.

Firstly, I present two closely related studies in which differential abundance

analysis methods play the main role. The differential abundance analy-

sis is the principal approach to detect differences in microbial community

compositions between different sample groups, and hence, for understand-

ing microbial community structures and the relationships between microbial

compositions and the environment. I start by introducing a benchmarking

study in which differential abundance analysis methods, even from different

domains (e.g., RNA-Seq and single-cell RNA-Seq), were used in a collection

of microbiome datasets to evaluate their performance. Then, I continue

with the presentation of software package that I developed from the results

obtained in the previous research. The software package, in R language, is

currently available on Bioconductor (i.e., an open-source software platform

for analysing and visualising biological data). It allows users to replicate

the benchmarking of differential abundance analysis methods and evalute

their performances on their own datasets.

Secondly, I highlight the microbiome data analysis challenges presenting

two case studies about the human microbiome and its composition and

dynamics in both disease and healthy states. In the first study, healthy

volunteers were treated with a probiotic mixture and the changes in the

gut microbiome were studied in conjunction with some psychological as-

pects. A careful data exploration, clustering, and mixed-effects regression

models, unveiled subject-specific effects and the presence of different bac-

teriotypes which masked the probiotic effect. Instead, in the second study



I show how to identify disease-related microbial biomarkers for eosinophilic

oesophagitis (i.e., a chronic immune-mediated inflammatory disease of the

oesophagus that causes dysphagia, food impaction of the oesophagus, and

esophageal strictures) from saliva. Despite the low sample size it was possi-

ble to train a model to discriminate between case and control states with a

decent accuracy. While still premature, this represents a promising step for

the non-invasive diagnosis of eosinophilic oesophagitis which is now possible

only through esophageal biopsy.

Keywords: Microbiome, Differential Abundance Analysis, Benchmarking,

Data Exploration, Data Analysis, Probiotics, Eosinophilic Oesophagitis.
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Chapter 1

General Introduction

1.1 The Microbiome

1.1.1 De�nition

According to the 1988 de�nition given by Whipps et. al [1], the micro-

biome may be de�ned as a characteristic microbial community occupying a

reasonably well-de�ned habitat which has distinct physio-chemical proper-

ties. The term thus not only refers to the microorganisms involved but also

encompasses their theatre of activity.

In 2019, leading microbiome researchers from academic, governmental, and

industry groups representing diverse areas of expertise, considered the def-

inition still valid and extended it by adding two explanatory sentences to

distinguish the terms microbiome and microbiota and emphasise its dy-

namic character [2]. The living microorganisms populating the microbiome

(Prokaryotes [Bacteria, Archaea], Eukaryotes [e.g., Protozoa, Fungi, and Al-

gae]) compose the microbiota, while their �theatre of activity� includes mi-

crobial structures, metabolites, mobile genetic elements (e.g., transposons,

phages, and viruses), and relic DNA (extracellular DNA derived from dead

cells) embedded in the environmental conditions of the habitat. The mi-
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crobiome, which forms a dynamic and interactive micro-ecosystem prone

to change in time and scale, is integrated in macro-ecosystems including

eukaryotic hosts, and is crucial for their functioning and health (Fig. 1.1).

Figure 1.1: A schematic, rearranged from [2], highlighting the composition of the
term microbiome containing both the microbiota (community of microorganisms)
and their �theatre of activity� (structural elements, metabolites/signal molecules,
and the surrounding environmental conditions).

1.1.2 Microbiome research

Microbiome research started back in the seventeenth century originating

from microbiology. Progress in this �eld has often been driven by the devel-

opment of new equipment, techniques, and technological inventions. Start-

ing from microscopy and cultivation based approaches, passing through elec-

tron and scanning transmission microscopy and the discovery of the DNA,

to date we have sequencing technologies, PCR, and cloning techniques that

enable the investigation of microbial communities using cultivation inde-

pendent, DNA and RNA-based approaches. To this regard, the advent of

the Next Generation Sequencing (NGS) technologies coupled with bioinfor-

matics development, reduced the underlying costs associated with di�erent
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methods and strategies for sequencing genomes. As a result, the scienti�c

community could enlarge the scope and scale of almost all genomics research

projects. Over the past few decades several large-scale projects and initia-

tives such as the Human Microbiome Project [3], the Earth Microbiome

Project [4], and many others [5�7], began to investigate the microbes that

inhabit the human body, soils, oceans, and elsewhere.

The main scope of microbiome research is certainly the improvement of

health for humans, animals, plants, and the ecosystem as a whole. It is not

a coincidence that microbes are the predominant and the �rst form of life on

the planet. Their ability to inhabit hostile environments incompatible with

most forms of life demonstrates a spectrum of evolutionary, functional and

metabolic diversity that vastly exceeds that of all other organisms in the tree

of life [8]. Moreover, they cover the surfaces of all other organisms (occupy-

ing internal and even intracellular niches) and in�uence diverse physiological

activities of their hosts, including nutrition, health�disease status and hence

well-being [8]. Apparently, microbes provide ecosystems' services that are

crucial to local and global sustainability, whether we are talking about a

human body, a plant, a cultivated �eld, a farming facility, a food industry,

or a wastewater treatment system.

Just to cite a glaring example, studies suggest that the microbiome of a

newborn is widely stimulated when �rst exposed to microorganisms during

neonatal life and the type of delivery plays a role in his/her immune system

maturation [9�11], microbiome research in this �eld shows the need for the

development of strategies for minimising or limiting the impact of caesarean

on the microbiome development, favouring future health [9]. Other emerg-

ing applications of microbiome research in human health are presented by

Cullen and colleagues [12]. Some of them are related to diet and its e�ect

on gut microbiome composition and function. Indeed, gut microbiota in-

teractions are related to alteration of immune response, susceptibility to or

protection against in�ammatory diseases such as irritable bowel syndrome,

irritable bowel disease, and colorectal cancer [13�15]. Diet itself, but also
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probiotics and prebiotics supplementation can be used as an interventional

tool to prevent or ameliorate the symptoms of a growing list of neurologi-

cal disorders including autism, schizophrenia, Parkinson's disease, multiple

sclerosis, bipolar mood disorders, anxiety, and depression which are asso-

ciated with the gut-brain axis [16] (i.e., the bidirectional communication

network that links the enteric and central nervous systems related to the

neurologic, endocrine, humoral/metabolic, and immune pathways [17]). In

addition, microbiome can also be used as a possible diagnosis/prognosis tool

for a wide range of pathologies,e.g., irritable bowel disease, progression of

diabetes, and others [18, 19]. An example, also detailed in Chapter 6, is

related to the diagnostic power of microbiome in Eosinophilic oEsophagitis

(EoE), a chronic immune-mediated in�ammatory disease of the oesophagus

that causes dysphagia, food impaction of the oesophagus, and oesophageal

strictures [20]. Diagnosis is possible through oesophageal biopsy but sali-

vary microbiome analysis in combination with machine learning approaches

could become a valid, cheap, non-invasive test to segregate between EoE and

non-EoE patients [21]. Many other success stories based on microbiome re-

search in the �elds of plant health, feed products and livestock health, food

production and human health are presented by Rocìo and colleagues [22].

Among these, we �nd the boosting of sustainable crop productivity through

nitrogen-�xing microorganisms inoculation in soybean seeds [23], the reduc-

tion of antibiotics use in livestock by improving the animal gut microbiome

through prebiotics and feed additives [24], the identi�cation of sources and

microbial transmission routes for the improvement of food security and hy-

giene through the study of microbiome composition and distribution in a

food-processing plant [25].

In summary, microbiome research has the potential to contribute substan-

tially on many levels to global e�orts to achieve sustainability [8]. Nev-

ertheless, microbiome research continues to be prevalently performed one

ecosystem at-a-time, leading to fragmentation of the landscape. Such frag-

mentation shadows new biological concepts to be discovered: patterns in
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microbiome interaction, diversity of functions and roles may not be seen

[26]. As a consequence, international e�orts are oriented towards a systems

approach needed to connect research between scienti�c �elds to create a

holistic understanding on how microbiomes can be modulated for desirable

functions.

1.1.3 Microbiome data

As already mentioned, cultivation independent approaches to assess mi-

crobial communities and their metagenomes were enabled by technological

advancements. From a biological sample, DNA, RNA, small molecules,

proteins, and other information can be extracted as summarised in Fig. 1.2

from the work of Weinstock [27].

To better introduce the terminology, the term �metagenomics� was born in

1998 by Handelsman et. al [28], and it refers to the study of the theoreti-

cal collection of all genomes from members in a microbial community from

a speci�c environment. A decade later, according to Gilbert and Dupont

[7], metagenomics was most appropriately divided into two research areas

driven by technological application: single-gene surveys on one side, and

random shotgun studies of all environmental genes on the other. The �rst

can be seen as a directed, focused metagenomic study. Brie�y, single tar-

gets are ampli�ed using Polymerase Chain Reaction (PCR), and then the

products are sequenced, providing an analysis of the range of di�erent or-

thologs for that target within a given community. This approach is also

called metabarcoding as it relies on the use of several taxonomically infor-

mative amplicon barcodes such as the 16S (e.g., one or more hypervariable

regions of the bacterial small subunit of the 16S ribosomal RNA gene, used

for prokaryotic DNA), 18S (for eukaryotic DNA), and Internal Transciber

Spacer (ITS) (i.e., non coding DNA between genes). In order to investigate

biodiversity paired reads are aggregated into sequences. They were usu-

ally organised into Operational Taxonomic Units (OTUs),i.e., clusters of

sequencing reads that di�ered by less than a �xed dissimilarity threshold,
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and more recently, into Amplicon Sequence Variantss (ASVs) with a single

nucleotide resolution, thanks to new methods that control errors based on

the quality of the sequencing run [29, 30]. Metabarcoding data can be used

to take a community census and create tables of taxa abundances, com-

pute ecological metrics, perform competition and symbiosis analysis, assess

microbial di�erential abundance between groups of samples, and so forth.

In the second approach, Whole Metagenome shotgun Sequencing (WMS),

total DNA is isolated from a sample and then sequenced resulting in a

pro�le of all genes within the community. WMS data can be used to per-

form genome assembly and gene predictions, identify gene variants, study

population genetics, build pathways, and reconstruct the capabilities of a

community.

Nowadays, other authors prefer to divide metagenomics according to the

research aspect it pursues [31]. On one hand, a structural approach to

study the structure of the uncultivated microbial population and the recon-

struction of the complex metabolic network established between community

members [32, 33]. On the other hand, a functional approach to identify

genes that code for a function of interest [34, 35].

Given the latter division, 16S rRNA gene surveys are excluded from the

metagenomics de�nition. Indeed, in 16S rRNA gene analysis, the study is

focused on a single gene (often a portion of it) used as a taxonomic marker.

Nevertheless, targeted sequencing is a cheap and the most common method

for pro�ling bacterial communities. Moreover, it is also possible to partly

overcome the limited functional and genetic information. Some recently de-

veloped bioinformatics tools infers the genes and functional capabilities of

the community by leveraging the genome sequences of known microorgan-

isms in databases [27, 36].
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