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Abstract

A multiplicative subset of a commutative ring contains the zero element precisely if the set in question meets
every prime ideal. While this form of Krull’s Lemma takes recourse to transfinite reasoning, it has recently
allowed for a crucial reduction to the integral case in Kemper and the third author’s novel characterization
of the valuative dimension. We present a dynamical solution by which transfinite reasoning can be avoided,
and illustrate this constructive method with concrete examples. We further give a combinatorial explanation
by relating the Zariski lattice to a certain inductively generated class of finite binary trees. In particular,
we make explicit the computational content of Krull’s Lemma.
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1. Introduction

In 2002 Lombardi [12] characterized constructively the Krull dimension of a commutative ring A by means
of certain relations between the elements of A. More precisely, he showed that for a positive integer n, we have
dim(A) < n if and only if any given elements a1, . . . , an ∈ A are dependent with respect to the lexicographic
monomial order. This is to say that they satisfy a relation P (a1, . . . , an) = 0 where P ∈ A[X1, . . . , Xn]
is such that lclex(P ) = 1, i.e., the smallest monomial of P with respect to the lexicographic order lex has
coefficient 1. For example, a ring A has dimension 6 0 if and only if

(∀x ∈ A)(∃n ∈ N)(∃a ∈ A)(xn = axn+1). (1)

Recently, Kemper and the third author [10] have obtained a constructive characterization of the valuative
dimension, in the vein of Lombardi’s characterization of the Krull dimension, only by replacing the lexico-
graphic monomial order with the graded (reverse) lexicographic order or, in fact, with any graded rational
monomial order.

Recall that the valuative dimension of a domain A, denoted by dimv(A), is the supremum of the Krull
dimensions of all overrings of A, where an overring of A is a subring B of the quotient field Quot(A) of A such
that B ⊇ A. As pointed out by Gilmer [7, Theorem 30.9], dimv(A) 6 n if and only if dim(A[t1, . . . , tn]) 6 n
for all t1, . . . , tn ∈ Quot(A). In the case of an integral domain, this can be interpreted as a constructive
characterization of the valuative dimension, and it is in fact the definition adopted by Lombardi and Quitté
in the integral case [13]. If A is a ring which need not be a domain, dimv(A) is defined as the supremum of
all dimv(A/p), where p ranges over the class Spec(A) of prime ideals of A (see Jaffard [8, p. 56]).
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In their aforementioned constructive characterization of the valuative dimension à la Lombardi, the
only non-constructive argument that Kemper and the third author have employed is a reduction to the
integral case. This goes as follows: fix a monomial order < and consider, for any given a1, . . . , an ∈ A, the
multiplicative set

S := { P (a1, . . . , an) | P ∈ A[X1, . . . , Xn] with lc<(P ) = 1 } ⊆ A.

Assume then that for every p ∈ Spec(A) the sequence a1, . . . , an is <-dependent in A/p, whence S ∩ p 6= ∅.
By a well-known non-constructive argument with Zorn’s Lemma, this means 0 ∈ S, which is to say that
a1, . . . , an are <-dependent in A. To constructivize this is the initial motivation for the present note: we
transform and reshape that non-constructive argument—in fact, any sufficiently concrete instance of the
general method to show that a multiplicative subset S of a ring A contains 0 by showing that it meets any
prime ideal of A—into a constructive one.1

More specifically, we show that 0 ∈ S means that there is a finite binary tree labelled by finitely generated
ideals such that S meets each of the ideals sitting at the leaves. The class of those trees, moreover, is
inductively generated with the only branching rule corresponding to the characteristic axiom of ring without
zero-divisors. We thus prove constructively a combinatorial version of Krull’s Lemma [11] in the form that
0 ∈ S precisely when S meets every prime ideal.

On method and foundations

This note is written in Bishop-style constructive algebra [13, 14]. Its content can be formalized, e.g., in
an appropriate fragment of Aczel’s constructive set theory [1].

2. A dynamical solution

Recall that A is said to be without zero-divisors [13] if

(∀a, b ∈ A)(ab = 0 → a = 0 ∨ b = 0).

Constructively, this is a special case of integrity. To carry over a proof from the case in which A is without
zero-divisors to the general case of an arbitrary ring A, start with A = A/〈0〉. At each disjunction

a = 0 ∨ b = 0,

as given rise to by elements a, b such that ab = 0, and produced when computing in the integral case,
replace the “current” ring A/〈c1, . . . , cr〉 with A/〈c1, . . . , cr, a〉 and A/〈c1, . . . , cr, b〉, in each of which the
computations can be carried on. Note that if

r ∈ S ∩ 〈c1, . . . , cr, a〉 and s ∈ S ∩ 〈c1, . . . , cr, b〉, then rs ∈ S ∩ 〈c1, . . . , cr〉 (2)

as ab = 0. If the proof given modulo a generic prime ideal is sufficiently “uniform”, then there is a bound
for the depth of the (a priori infinite) binary tree we thus obtain. Hence the tree is finite and we get an
algorithm. At the end of this rereading, a finite family of rings (A/〈c1,j , . . . , crj ,j〉)16j6k (rings at leaves)
along with sj ∈ S ∩ 〈c1,j , . . . , crj ,j〉 will have been obtained, witnessing 0 =

∏
16j6k sj ∈ S by construction

of the tree, especially by (2).
To illustrate this in the case of the valuative dimension [10] recalled before, suppose that for a1, . . . , an ∈

A, fixing a monomial order <, the tree produced by the dynamical method we have just sketched is the
following, with depth 3:

1The overall strategy bears a certain resemblance to the third author’s method to make the use of maximal ideals construc-
tive [25, 26]. The later part of this note owes to the approach taken in dynamical algebra [6], has grown out of [18–20], and
takes some clues from [24]. For a recent algorithmic approach to the existence of prime ideals in (countable) commutative rings
we refer to [16].
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This means that at the leaves (corresponding to rings A/〈c1,j , c2,j , c3,j〉) we have computed polynomials
Pj ∈ A[X1, . . . , Xn] (8 6 j 6 15) such that lc<(Pj) = 1 and Pj(a1, . . . , an) ≡ 0 mod 〈c1,j , c2,j , c3,j〉. It
follows that P :=

∏
86j615 Pj vanishes at a1, . . . , an with lc<(P ) = 1, as desired.

3. Examples

Example 1. Consider 10 in the zero-dimensional ring A = Z/12Z, and let us try to find P ∈ A[X] such
that P (10) = 0 and lc<(P ) = 1 (as in (1)) using the dynamical method described above.

We will do as if A were integral (and thus a field), i.e., as if 12 were prime (its gcd with another integer
is either 1 or 12). Computing gcd(12, 10) = 2 /∈ {1, 12} yields a partial factorization 12 = 2 × 6. Hence A
gets replaced with A1 := A/〈2〉 ∼= F2 and A2 := A/〈6〉 ∼= Z/6Z. Since A1 is a field, we are done: P1 = X
is a solution to our problem (10 = 0 in this ring). Next continue with A2 as if 6 were prime. Computing
gcd(6, 10) = 2 /∈ {1, 6} yields a factorization 6 = 2 × 3. Now A2 gets replaced with A3 := A2/〈2〉 ∼= F2

and A4 := A2/〈3〉 ∼= F3. As before, a solution in A3 is P3 = X. In the field A4 a solution is P4 = 1 −X
(10 is invertible with inverse 1). We conclude that P = P1P3P4 = X2(1−X) is a solution to our problem.
The dynamical evaluation tree we obtain is the following, at the three leaves of which 10 is either zero (two
leaves) or invertible (one leaf).

Z/12Z

F2 Z/6Z

F2 F3

Example 2. Let A = K[x] = K[x1, . . . , xn] = K[X1, . . . , Xn]/I = K[X]/I be the coordinate ring of a zero-
dimensional algebraic variety V (I), where I = 〈g1, . . . , gs〉 ⊆ K[X] and K is a field. The Krull dimension of
A is zero.

Let us conceive an algorithm that for any f0(x) ∈ A finds a collapse as in (1), applying the dynamical
method described above, combined with the fact that any nonzero element in A is either invertible or a
zero-divisor. If f0(x) = 0 (that is, f0(X) ∈ I) or f0(x) ∈ A× (that is 1 ∈ 〈f0(X), g1(X), . . . , gs(X)〉) then we
are clearly done. Else compute an f1(x) ∈ A\{0} such that f0(x)f1(x) = 0 (this can be done via computing
an element of [I : 〈f0(X)〉] which is not in I). Now the ring A gets replaced with A1 := A/〈f1(x)〉 =
K[X]/〈f1(X), g1(X), . . . , gs(X)〉 and B1 := A/〈f0(x)〉 = K[X]/〈f0(X), g1(X), . . . , gs(X)〉. If f0(x) = 0 in
A1 or f0(x) ∈ A×

1 then we are done. Else compute f2(x) ∈ A1 \ {0} such that f0(x)f2(x) = 0, and so
on. After a finite number of iterations (mind that A is Noetherian), we find fN (x) ∈ A such that either
f0(x) ∈ 〈f1(x), . . . , fN (x)〉 or f0(x) is invertible modulo 〈f1(x), . . . , fN (x)〉. In the first case, the desired
collapse in A is fN+1

0 = 0; in the second case, denoting by h the inverse of f0(x) modulo 〈f1(x), . . . , fN (x)〉,
the desired collapse in A is fN0 (1− hf0) = 0.
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To give a concrete example, let A = Q[x, y] = Q[X,Y ]/I be the coordinate ring of the algebraic variety
V (I) with I = 〈X2 − Y 2 − 1, X4Y 2 − 2X3Y 3 + Y 6 + Y 4〉. With Buchberger’s algorithm we find G =
{Y 4 + Y 2, X2 − Y 2 − 1} as reduced Gröbner basis for I according to the lexicographic order with X > Y .
Thus, LT(I) = 〈Y 4, X2〉 (the leading terms ideal of I), and the dimension of the variety V (I) (which is
also the Krull dimension of the ring A) is zero since A has finite dimension as a Q-vector space. Taking
f0 = x2y2 +xy, the obtained fi’s are: f1 = y3 + y, f2 = y2 + 1, and finally f3 = x with f0 ∈ 〈f1, f2, f3〉. The
desired collapse in A is f40 = 0. It corresponds to the following binary tree, at all leaves of which f0 is zero.

A

A/〈f0〉 A/〈f1〉

A/〈f0, f1〉 A/〈f1, f2〉

A/〈f0, f1, f2〉 A/〈f1, f2, f3〉

4. Zariski lattice and trees

In this final section we put the reduction trick once more under constructive scrutiny, yet from a slightly
different angle. Let A again be a commutative ring. The Zariski lattice [2, 9] Zar(A) of A is the distributive
lattice generated by symbols D(a) for a ∈ A, subject to the so-called support relations

D(0) = 0, D(1) = 1, D(ab) = D(a) ∧D(b), D(a+ b) 6 D(a) ∨D(b).

For elements b1, . . . , bn of A it is common to write D(b1, . . . , bn) as a shorthand for D(b1)∨ · · · ∨D(bn). By
way of the support relations, every element of Zar(A) can be written in the form D(b1, . . . , bn) for suitable
elements bi of A. What is sometimes known as the formal Nullstellensatz provides proper control over
Zar(A) by asserting that [4]

D(a) 6 D(b1, . . . , bn) if and only if a ∈
√
〈b1, . . . , bn〉. (3)

Next we generate a collection T of finite binary trees T , the nodes of which are labelled with elements
of A. Given a path π of such a tree T , we write 〈π〉 for the ideal generated by the elements labelling the
nodes of π. Similarly, D(π) is meant to denote the join of the D(a)’s for labels a that occur along π. Note
here that we understand paths to lead from the root of a tree to one of its leaves.

Definition 3. We generate T inductively according to the following rules.

1. The trivial tree (i.e., the root-only tree) labelled with 0 belongs to T .
2. If a, b ∈ A and T ∈ T has a path π such that ab ∈ 〈π〉, then the tree obtained from T by adding at the

leaf of π two children labelled with a and b, respectively, also belongs to T .

For instance, any pair a, b such that ab = 0 yields a member of T :

0

a b

The dynamical method described in Section 2 generates trees which correspond to those in T . Branchings,
as given rise to by dynamic evaluation, can now be “folded up” by computation in Zar(A).
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Lemma 4. Let π1, . . . , πn be the distinct paths of T ∈ T . If s1, . . . , sn ∈ A are such that D(si) 6 D(πi) for
1 6 i 6 n, then D(s1 · · · sn) = 0.

Proof. By induction on the construction of T ∈ T . The base case is trivial. Consider next the case in
which T has been extended at the leaf of one of its paths π by children labelled with a and b, respectively,
where ab ∈ 〈π〉. Suppose now that r, s ∈ A are such that D(r) 6 D(π) ∨ D(a) and D(s) 6 D(π) ∨ D(b).
Distributivity and the third support relation imply that

D(rs) = D(r) ∧D(s) 6 (D(π) ∨D(a)) ∧ (D(π) ∨D(b)) 6 D(π) ∨D(ab).

Since D(ab) 6 D(π), it follows that D(rs) 6 D(π), whence the induction hypothesis applies.

Now let S be a multiplicative subset of A, and let T ∈ T . Let us say (for lack of a better term) that T
terminates in S if, for every path π of T , we can find s ∈ S for which D(s) 6 D(π), which is to say that S
meets 〈π〉.

This allows us to phrase, and prove constructively, the following combinatorial version of Krull’s Lemma:

Proposition 5. Let S be a multiplicative subset of A. The following are equivalent.

1. 0 ∈ S.
2. There is T ∈ T which terminates in S.

Proof. If 0 ∈ S, then the trivial tree terminates in S. Conversely, if T ∈ T terminates in S, then by Lemma
4 there is s ∈ S such that D(s) = 0, which in view of (3) is tantamount to 0 ∈ S.

Remark 6. Let T ∈ T . For every prime ideal p of A there is a path π through T such that p ⊇ 〈π〉.

Proof. The path can be constructed by induction, keeping in mind that 0 ∈ p to begin with. Once the path
has arrived at a certain node, the prime ideal axiom ensures that one of the successors can be added to the
path so as to stay within p.

In particular, if T terminates in S, then p meets S for every prime ideal p. As recalled before, non-
constructively this entails 0 ∈ S. Proposition 5 thus underpins constructively the reduction method around
which the present note revolves.

Last but not least, it is worth pointing out the resulting computational content of a variant of Krull’s
Lemma.

Corollary 7. For every a ∈ A, the following are equivalent.

1. a is nilpotent.

2. There is T ∈ T which terminates in { an | n ∈ N }.

In particular, A is trival if and only if there is T ∈ T terminating in 1.

Proof. Direct consequence of Proposition 5. For the particular case, set a = 1.

The litmus test for Corollary 7 is the well-known theorem that every nonconstant coefficient of an
invertible polynomial is nilpotent.2 On a case by case basis, this can indeed be read off a corresponding tree
of coefficients, for which [21, 22] is instructive.

2This theorem, which admits an elegant proof by reduction to the integral case, has already seen many a constructive
treatment in the literature, among which [3, 5, 15–17, 21, 22], as well as, most recently, [23], which the present note has given
rise to.
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Example 8. For sake of a simple illustration, let f = a0 + a1X and g = b0 + b1X in A[X], and suppose
that fg = 1, which information amounts to a0b0 = 1 and a0b1 + a1b0 = a1b1 = 0. Branching out from the
latter, and since a1b0 ∈ 〈b1〉, we obtain a corresponding member of T :

0

a1 b1

a1 b0

Note that the rightmost path generates A as b0 is invertible. Thus, according to Corollary 7, this tree tells
us that a1 is indeed nilpotent.
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