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We introduce the notion of a Bishop topological group i.e., a group X equipped with a 
Bishop topology of functions F such that the group operations of X are Bishop morphisms 
with respect to F . A closed subset in the neighborhood structure of X induced by its 
Bishop topology F is defined in a positive way i.e., not as the complement of an open 
subset in X . The corresponding closure operator, although it is not topological, in the 
classical sense, does not involve sequences. As countable choice (CC) is avoided, and in 
agreement with Richman’s critique on the use of CC in constructive mathematics, the 
fundamental facts on closed subsets in Bishop topological groups shown here have a clear 
algorithmic content. We work within Bishop’s informal system of constructive mathematics 
BISH, without countable choice, equipped with inductive definitions with rules of countably 
many premises.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The constructive non-viability of the notion of topological space is corroborated by the fact that many classical topological 
phenomena, like the duality between open and closed sets, are compatible only with classical logic. In a straightforward, 
constructive translation of general topology we cannot accept that the set-theoretic complement of a closed set is open. E.g., 
{0} is a closed subset R, with respect to the topology on R induced by its standard metric, while its complement cannot be 
accepted constructively as open, since that would imply the implication ¬(x = 0) ⇒ (x > 0 ∨ x < 0), which is (constructively) 
equivalent to the constructively unacceptable principle of Markov (see [6], p. 15). The standard use of negative definitions 
in classical topology does not permit a smooth translation of classical topology to a constructive framework.

In [3], chapter 3, Bishop defined a neighborhood space N := (X, I, ν), where X, I are sets, and (νi)i∈I is a family of 
subsets of X indexed by I (see [35] for an elaborate study of this notion) that satisfies the following covering (NS1) and 
neighborhood-condition (NS2):

(NS1)
⋃

i∈I ν(i) = X .
(NS2) ∀x∈X∀i, j∈I

[
x ∈ ν(i) ∩ ν( j) ⇒ ∃k∈I

(
x ∈ ν(k) & ν(k) ⊆ ν(i) ∩ ν( j)

)]
.

If C ⊆ X , its interior C◦ is defined by

C◦ := {x ∈ X | ∃i∈I (x ∈ ν(i) & ν(i) ⊆ C)}.
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A subset O of X is called ν-open, if O  ⊆ O ◦ . An ν-closed set C is not defined negatively, as the complement of a ν-open 
set, but positively by the condition C ⊆ C , where

C := {x ∈ X | ∀i∈I (x ∈ ν(i) ⇒ ν(i) � C)},
and if A, B are subsets of X , then A � B :⇔ ∃y∈X (y ∈ A ∩ B). If (Y , J , μ) is a neighborhood space, a function h : X → Y
is neighborhood-continuous, if h−1(μ( j)) is ν-open, for every j ∈ J . The concept of neighborhood space was proposed as a 
set-theoretic alternative to the notion of topological space, and it is a formal topology in the sense of Sambin [45], [46].

In [3], chapter 3, Bishop also defined the notion of function space F := (X, F ), where X is a set and F is a subset of 
F(X), the real-valued functions on X , that satisfies the closure conditions of the set Bic(R) of Bishop-continuous functions 
from R to R. Bishop called F a topology (of functions) on X . The set Bic(R) of Bishop-continuous functions φ : R → R is 
the canonical topology of functions on R. Bishop also defined inductively1 the least topology of functions on X that includes 
a given subset F0 of F(X). The concept of function space was proposed as a function-theoretic alternative to the notion of 
topological space.

In [5], p. 77, Bishop and Bridges expressed in a clear way the superiority of the function-theoretic notion of function 
space to the set-theoretic notion of neighborhood space. As Bridges and Palmgren remark in [8], “little appears to have 
been done” in the theory of neighborhood spaces. Ishihara has worked in [16] (and with co-authors in [15]) on their 
connections to the apartness spaces of Bridges and Vîţă (see [7]), and in [17] on their connections to Bishop’s function 
spaces, while in [18] Ishihara and Palmgren studied the notion of quotient topology in neighborhood spaces.

Bridges talked on Bishop’s function spaces at the first workshop on formal topology in 1997, and revived the subject 
of function spaces in [9]. Motivated by Bridges’s paper, Ishihara showed in [17] the existence of an adjunction between 
the category of neighborhood spaces and the category of �-closed pre-function spaces, where a pre-function space is an 
extension of the notion of a function space. In [26–34] and in [36,43] we try to develop the theory of function spaces, or 
Bishop spaces, as we call them. In [35,36] we also study the applications of the theory of set-indexed families of Bishop 
sets in the theory of Bishop spaces. In [13] connections between the theory of Bishop spaces and the theory of C-spaces of 
Escardó and Xu, developed in [50] and in [12], are studied.

A group X is a topological group, if there is a topology of open sets T on X such that the corresponding operations 
+: X × X → X and −: X → X are continuous functions with respect to T . The theory of topological groups is very well-
developed, with numerous applications (see [2], [14] and [49]). A locally compact metric group is a group G equipped with 
a metric that makes its operations continuous. Based on a method of Cartan, and in combination with his integration theory 
of locally compact metric spaces, Bishop [3,5] defined the Haar measure on a locally compact metric group. The spectral 
theorem is used to establish the Fourier transform, and the Pontryagin duality theorem is shown. Bishop did not extend 
his theory of metric spaces to a general theory of some kind of constructive topological spaces. The reasons for that are 
explained in [43].

In analogy to the definition of a topological group, we call a group X , equipped with a Bishop topology of functions 
F , a Bishop topological group, if the corresponding group operations +: X × X → X and −: X → X are Bishop morphisms 
with respect to F . The relation of Bishop topological groups to locally compact metric groups is described in Theorem 4.4. 
A Bishop morphism between Bishop spaces is the notion of arrow in the category of Bishop spaces that was introduced by 
Bridges in [9] and corresponds to the notion of a continuous function between topological spaces. Most of the concepts of 
the theory of Bishop spaces are function-theoretic i.e., they are determined by the Bishop topology of functions F on X . 
Each Bishop topology F generates a canonical neighborhood structure, a family of basic open sets in X , described in section 3. 
As explained above, a closed set C with respect to this neighborhood structure is defined positively, and independently from 
its set-theoretic complement. Generally we cannot show constructively that the set-theoretic complement X \ C of a closed 
set C is open. What we show in Theorem 3.4 though, is that a positive notion of complement, determined by F , the uniform 
F -complement X \u

F C of C , is the largest open set included in X \ C .
In the main core of this paper we prove some fundamental properties of the closed sets in Bishop topological groups. 

Using functions to describe general properties of sets, and working with the aforementioned positive notion of closed set 
gives us the opportunity to find constructive proofs with a clear computational content of results, which in many cases in 
the classical theory of topological groups depend on the use of classical negation. Moreover, our concepts and results avoid 
the use even of countable choice (CC). Although practitioners of Bishop-style constructive mathematics usually embrace CC, 
avoiding it, and using non-sequential or non-choice-based arguments instead, forces us to formulate “better” concepts and 
find “better” proofs. This standpoint was advocated first by Richman (see [44] and [48]).

The study of closed sets in the neighborhood structure induced by the Bishop topology of a Bishop topological group 
shows the fruitfulness of combining the two constructive proposals of Bishop to the classical topology of open sets. More-
over, the group-structure of a Bishop space X helps us “recover” part of the classical duality between closed and open sets. 
As Corollary 5.10 indicates, there are many cases of closed sets in a Bishop topological group for which we can show that 
their set-theoretic complement is open! We structure this paper as follows:

1 This definition, together with the notion of the least algebra of Borel sets generated by a family of complemented subsets of X , relative to a given set 
of real-valued functions on X , are the main inductive definitions found in [3], both in chapter 3. The notion of the least algebra of Borel sets is avoided 
in [4] and [5], and the notion of the least topology is not developed neither in [3] nor in [5].
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• In section 2 we include all definitions and facts on Bishop spaces that are necessary to the rest of the paper.
• In section 3 we give all definitions and results on the canonical neighborhood structure of a Bishop topology that are 

used in later sections. Theorem 3.4 is the result of this section that is most relevant to the study of closed sets in Bishop 
topological groups.

• In section 4 we introduce Bishop topological groups and we prove some of their basic properties. In Theorem 4.4 we 
relate (locally) compact metric groups, as these are defined by Bishop and Bridges in [5], with metric groups equipped 
with the corresponding canonical Bishop topology.

• In section 5, a central section of this work, we prove fundamental properties of closed sets in Bishop topological 
groups. As we work with functions and positively defined concepts, avoiding the use of choice, our proofs generate 
clear algorithms.

• In section 6 we briefly describe some important open questions and future tasks stemming from our work.

We work within Bishop’s informal system of constructive mathematics BISH, without countable choice, equipped with 
inductive definitions with rules of countably many premises. A set-theoretic formal framework for this system2 is Myhill’s 
[23] CST∗ without countable choice, or CZF, equipped with a weak form of Aczel’s regular extension axiom REA (see [1]
and [24]). For a recent reconstruction of the theory of Bishop (non-inductive) sets within BISH see [32,35–37,40,42].

2. Fundamentals of Bishop spaces

We include here all definitions and facts on Bishop spaces that are necessary to the rest of the paper. For all proofs on 
Bishop spaces that are not given here, we refer to [27]. For all results on constructive analysis that are used here without 
proof, we refer to [5].

We denote by F(X, Y ) the set of all functions from the set X to the set Y . Let also F(X) = F(X, R), where R is the 
set of reals. If a, b ∈R, let a ∨ b := max{a, b} and a ∧ b := min{a, b}. Hence, |a| = a ∨ (−a). If f , g ∈ F(X), let f =F(X) g :⇔
∀x∈X

(
f (x) =R g(x)

)
. If f , g ∈ F(X), ε > 0 and � ⊆ F(X), let

U (g, f , ε) :⇔ ∀x∈X
(|g(x) − f (x)| ≤ ε

)
,

U (�, f ) :⇔ ∀ε>0∃g∈�

(
U (g, f , ε)

)
.

A set X is inhabited, if it has an element. We denote by aX , or by a, or even by a, the constant function on X with value 
a ∈ R, and by Const(X) their set. The set of functions of type R → R that are uniformly continuous on every3 bounded 
subset of R is denoted by Bic(R).

Definition 2.1. A Bishop space is a pair F := (X, F ), where X is an inhabited set and F is an extensional subset of F(X) i.e., 
∀ f ,g∈F(X)

([ f ∈ F & g =F(X) f ] ⇒ g ∈ F
)
, such that the following conditions hold:

(BS1) Const(X) ⊆ F .
(BS2) If f , g ∈ F , then f + g ∈ F .
(BS3) If f ∈ F and φ ∈ Bic(R), then φ ◦ f ∈ F .
(BS4) If f ∈ F(X) and U (F , f ), then f ∈ F .

We call F a Bishop topology on X . If G := (Y , G) is a Bishop space, a Bishop morphism from F to G is a function h : X → Y
such that ∀g∈G

(
g ◦ h ∈ F

)
. We denote by Mor(F , G) the set of Bishop morphisms from F to G . If h ∈ Mor(F , G), we say 

that h is open, if ∀ f ∈F ∃g∈G
(

f = g ◦ h
)
. If h ∈ Mor(F , G) is a bijection and h−1 is a Bishop morphism, we call h a Bishop 

isomorphism.

A Bishop morphism h ∈ Mor(F , G) is a “continuous” function from F to G . If h ∈ Mor(F , G) is a bijection, then h−1 ∈
Mor(G, F) if and only if h is open. Let R be the Bishop space of reals (R, Bic(R)). It is easy to show that if F is a topology 
on X , then F = Mor(F , R) i.e., an element of F is a real-valued “continuous” function on X . By condition (BS3) a Bishop 
topology F on X is closed under the operations |.|,2 , − of absolute value, square and minus, respectively, and hence it is 
an algebra and a lattice, using the following equalities:

f · g = ( f + g)2 − f 2 − g2

2
,

λ f = λ f .

2 Extensional Martin-Löf Type Theory or the theory of setoids within intensional Martin-Löf Type Theory are possible type-theoretic systems for this 
informal system (see [10]), although there choice, in the form of the distributivity of the Pi-type over the Sigma-type, is provable.

3 This definition can be formulated predicatively using quantification only over N .
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f ∨ g := max { f , g} = f + g + | f − g|
2

,

f ∧ g := min { f , g} = −max {− f ,−g} = f + g − | f − g|
2

.

If F∗(X) denotes the bounded elements of F(X), then F ∗ := F ∩ F∗(X) is a Bishop topology on X . If x =X y is the given 
equality on X , a Bishop topology F on X separates the points of X , or F is separating (see [26]), if

∀x,y∈X
[∀ f ∈F

(
f (x) =R f (y)

) ⇒ x =X y
]
.

An apartness relation on X is a positively defined inequality on X . E.g., if a, b ∈R, then

a �=R b :⇔ |a − b| > 0 ⇔ a > b ∨ a < b.

The canonical apartness relation on X induced by F is defined by

x �=F y :⇔ ∃ f ∈F
(

f (x) �=R f (y)
)
.

If f witnesses the apartness f (x) �=R f (y), we write f : x �=F y. In Proposition 5.1.2. of [27] we show that a �=R b ⇔
a �=Bic(R) b.

Definition 2.2. Turning the definitional clauses (BS1) − (BS4) into inductive rules, the least topology 
∨

F0 generated by a 
set F0 ⊆ F(X), called a subbase of 

∨
F0, is defined by the following inductive rules:

f0 ∈ F0

f0 ∈ ∨
F0

,
f ∈ ∨

F0, g ∈ F(X), g =F(X) f

g ∈ ∨
F0

,
a ∈R

a ∈ ∨
F0

,

f , g ∈ ∨
F0

f + g ∈ ∨
F0

,
f ∈ ∨

F0 φ ∈ Bic(R)

φ ◦ f ∈ ∨
F0

,

g1 ∈ ∨
F0 & U (g1, f , 1

2 ), g2 ∈ ∨
F0 & U (g2, f , 1

22 ), g3 ∈ ∨
F0 & U (g3, f , 1

23 ), . . .

f ∈ ∨
F0

.

The above rules induce the corresponding induction principle Ind∨
F0 on 

∨
F0.

Clearly, Bic(R) = ∨{idR}. If h : X → Y and G = ∨
G0, then one can show inductively i.e., with the use of Ind∨

G0 , that 
h ∈ Mor(F , G) ⇔ ∀g0∈G0

(
g0 ◦ h ∈ F

)
. We call this property the 

∨
-lifting of morphisms.

Definition 2.3. If F = (X, F ) and G = (Y , G) are given Bishop spaces, their product is the structure F × G = (X × Y , F × G), 
where

F × G :=
∨

{ f ◦ π1 | f ∈ F } ∪ {g ◦ π2 | g ∈ G} =:
g∈G∨
f ∈F

f ◦ π1, g ◦ π2,

and π1, π2 are the projections of X × Y to X and Y , respectively. If A ⊆ X , the relative Bishop topology F |A on A induced 
by F is defined by

F |A :=
∨

{ f |A | f ∈ F }.

It is straightforward to show that F ×G satisfies the universal property for products and that F × G is the least topology 
which turns the projections π1, π2 into morphisms. If F0 is a subbase of F and G0 is a subbase of G , then we show 
inductively that

∨
F0 ×

∨
G0 =

∨
{ f0 ◦ π1 | f0 ∈ F0} ∪ {g0 ◦ π2 | g0 ∈ G0} =:

g0∈G0∨
f0∈F0

f0 ◦ π1, g0 ◦ π2.

Consequently, Bic(R) × Bic(R) = ∨
idR ◦ π1, idR ◦ π2 = ∨

π1, π2.

Corollary 2.4. Let H= (Z , H), F = (X, F ), G = (Y , G) be Bishop spaces.

(i) If h1 : Z → X, h2 : Z → Y , the map 〈h1, h2〉 : Z → X × Y , defined by z �→ (h1(z), h2(z)), is in Mor(H, F × G) if and only if 
h1 ∈ Mor(H, F) and h2 ∈ Mor(H, G).
131



I. Petrakis Theoretical Computer Science 935 (2022) 128–143
(ii) If e1 : X → Z , e2 : Y → Z , then the map e1 × e2 : X × Y → Z × Z , defined by (x, y) �→ (e1(x), e2(y)), is in Mor(F ×G, H×H)

if and only if e1 ∈ Mor(F , H) and e2 ∈ Mor(G, H).

Proposition 2.5. Suppose that F = (X, F ), G = (Y , G), H = (Z , H) are Bishop spaces, x ∈ X, y ∈ Y , φ : X × Y → R ∈ F × G and 
� : X × Y → Z ∈ Mor(F × G, H).

(i) ix : Y → X × Y , y �→ (x, y), and i y : X → X × Y , x �→ (x, y), are open morphisms.
(ii) φx : Y →R, y �→ φ(x, y), and φy : X →R, x �→ φ(x, y), are in G and F , respectively.

(iii) �x : Y → Z , y �→ �(x, y), and �y : X → Z , x �→ �(x, y), are in Mor(G, H) and Mor(F , H), respectively.

Proof. (i) We show it only for i y . By the F -lifting of morphisms we have that i y ∈ Mor(F , F × G) ⇔ ∀ f ∈F (( f ◦ π1) ◦ i y ∈
F ) & ∀g∈G((g ◦ π2) ◦ i y ∈ F ). If f ∈ F , then ( f ◦ π1) ◦ i y = f , which shows also that i y is open, while if g ∈ G , then 
(g ◦ π2) ◦ i y = g(y) ∈ F .
(ii) We show it only for φy . We have that φy = φ ◦ i y , since (φ ◦ i y)(x) = φ(x, y) = φy(x), for each x ∈ X . Since i y ∈
Mor(F , F × G) and φ ∈ F × G , we get that φ ◦ i y = φy ∈ F .
(iii) The proof is similar to the proof of (ii). Actually, (ii) is a special case of (iii). �
3. The neighborhood structure of a Bishop topology

Here we give all definitions and basic results on the canonical neighborhood structure of a Bishop topology that are used 
subsequently. In this section F is a Bishop topology on X and G is a Bishop topology on Y . The neighborhood structure N(F ) on X
induced by F is the family

N(F ) := (U ( f )) f ∈F

of subsets of X , where, for every f ∈ F ,

U ( f ) := {x ∈ X | f (x) > 0}.
The covering condition (NS1) follows trivially from the equality U (aX ) = X , where a > 0, and the neighborhood-condition 
(NS2) follows from the equality U ( f ) ∩ U (g) = U ( f ∧ g), for every f , g ∈ F . Consequently, if C ⊆ X , from the general 
definition of the interior and the closure of a subset of a neighborhood space we get

C◦ = {
x ∈ X | ∃ f ∈F

(
f (x) > 0 & U ( f ) ⊆ C

)}
,

C = {
x ∈ X | ∀ f ∈F

(
f (x) > 0 ⇒ ∃c∈C

(
f (c) > 0

))}
.

Impredicatively speaking, C◦ is the largest open set included in C and C is the smallest closed set4 including C . The closure 
operator A �→ A is not topological, in the classical sense, as we cannot show constructively that the union of two closed 
sets is closed, in general (see also [5], p. 79). If A, B ⊆ X and F is a Bishop topology on X , then it is straightforward to 
show that (i) A ⊆ A, (ii) A ⊆ A, (iii) A ⊆ B ⇒ A ⊆ B , and (iv) A ∪ B ⊆ A ∪ B . The inverse inclusion A ∪ B ⊆ A ∪ B cannot be 
shown constructively. Next we define the various notions of complements of subsets that we are going to use.

Definition 3.1. If C ⊆ X , besides the classical, negatively defined complement

X \ C := {x ∈ X | ¬(x ∈ C)},
we define positively the F -complement X \F C and the uniform F -complement X \u

F C of C by

X \F C := {
x ∈ X | ∀c∈C (x �=F c)

}
,

X \u
F C := {

x ∈ X | ∃ f ∈F
(

f : x /∈F C
)}

,

f : x /∈F C :⇔ f (x) > 0 & ∀c∈C
(

f (c) = 0
)
.

Clearly, X \u
F C ⊆ X \F C ⊆ X \ C .

Proposition 3.2. Let F = (X, F ), G = (Y , G) be Bishop spaces, f ∈ F and h : X → Y .

4 The notions of an open and closed set and of the interior and closure of a set mentioned here are always with respect to a given neighborhood structure 
on X induced by an extensional subset F of F(X).
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(i) O is open in N(Bic(R)) if and only if it is open in the standard neighborhood structure of R.
(ii) If h ∈ Mor(F , G), then h is neighborhood-continuous.

(iii) If h ∈ Mor(F , G), the inverse image of a closed set in Y under h is closed in X.
(iv) If h ∈ Mor(F , G) and A ⊆ X, then h(A) ⊆ h(A).
(v) The classical complement X \ U ( f ) of U ( f ) in X is closed in X, for every f ∈ F .

(vi) The zero set ζ( f ) := {x ∈ X | f (x) =R 0} of f is closed.

Proof. For (i)-(v) see [27], Proposition 4.4, and for (vi) see [27], Proposition 5.3.2. �
Proposition 3.3.

(i) If O is open, its F -complement X \F O is closed.
(ii) The cozero set coζ( f ) := X \F ζ( f ) := {x ∈ X | f (x) �=R 0} of f ∈ F is open.

Proof. (i) Let x ∈ X \F O i.e., ∀ f ∈F
(

f (x) > 0 ⇒ ∃w∈X\F O
(

f (w) > 0
)
. We show that x ∈ X \F O . Let z ∈ O . As O  ⊆ O ◦ , there 

is g ∈ F such that g(z) > 0 and U (g) ⊆ O . Suppose that g(x) > 0. Then g(w) > 0, for some w ∈ X \F O . Hence w ∈ O too, 
which is a contradiction. By the constructively valid implication ¬(a > 0) ⇒ a ≤ 0, for every a ∈ R (see [5], Lemma 2.18), 
we get g(x) ≤ 0, hence g(x) ≤ 0 < g(z). Consequently g : x �=F z.
(ii) Let x ∈ X with f (x) �=R 0. Without loss of generality let f (x) > 0 (if f (x) < 0, we work with | f | ∈ F ). If y ∈ X such that 
f (y) > 0, then y ∈ coζ( f ), hence x ∈ U ( f ) and U ( f ) ⊆ coζ( f ). �

One needs Markov’s principle to show that the classical complement X \ ζ( f ) is open. Notice that constructively, one 
cannot show, in general, that X \F C is open, if C is closed. This can be shown though, for its uniform F -complement. Next 
we show that the uniform F -complement of an arbitrary subset is the largest open set included in its classical complement.

Theorem 3.4. If C ⊆ X, then X \u
F C = (X \ C)◦ .

Proof. We have already seen that X \u
F C ⊆ X \ C . First we show that X \u

F C is open. If x ∈ X \u
F C , let f ∈ F such that 

f : x /∈F C . Clearly, x ∈ U ( f ), and if y ∈ X such that y ∈ U ( f ), then f : y /∈F C i.e., y ∈ X \u
F C . As X \u

F C is an open subset of 
X \ C , it is trivially a subset of its interior. Next we show the inverse inclusion i.e., if x ∈ (X \ C)◦ , then x ∈ X \u

F C . By the 
definition of (X \ C)◦ there is g ∈ F such that g(x) > 0 and U (g) ⊆ (X \ C)◦ ⊆ X \ C . We claim that g(c) ≤ 0, for every c ∈ C . 
Suppose that g(c) > 0, for some c ∈ C , i.e., c ∈ U (g), hence c ∈ X \ C , which is a contradiction. Hence, by Lemma 2.18 in [5]

again, we get g(c) ≤ 0. Since g ∨ 0
X ∈ F , we conclude that g ∨ 0

X : x /∈F C , hence x ∈ X \u
F C . �

Classically, one can show that the topology induced by F is always completely regular i.e., if C is closed in X and x /∈ C , 
then there is f ∈ F such that f : x /∈F C (see [27], Proposition 3.7.6). Constructively, by Theorem 3.4 we only show that 
X \u

F C is the interior of X \ C . Although we cannot show in general that X \ C is open, and hence X \ C = X \u
F C , we 

can replace this computationally dubious result by the computationally meaningful fact that X \u
F C is the largest open set 

included in X \ C . The next result is used in the proofs of Theorem 5.6(ii) and Theorem 5.7(ii).

Proposition 3.5. The following are equivalent:

(i) F separates the points of X.
(ii) The inequality �=F generated by F is tight i.e., ¬(x �=F y) ⇒ x =X y, for every x, y ∈ X.

(iii) The singleton {x} is closed, for every x ∈ X.

Proof. (i)⇒(ii) Let ¬(x �=F y) :⇔ ¬[∃ f ∈F
(

f (x) �=R f (y)
)], for some x, y ∈ X . We show that ∀ f ∈F

(
f (x) =R f (y)

)
. Let f ∈ F

such that f (x) �=R f (y). By our hypothesis on x, y this is impossible, hence by the tightness of �=R we conclude that 
f (x) =R f (y). As F separates the points of X , we conclude that x =X y.
(ii)⇒(iii) Let x, y ∈ X such that ∀ f ∈F

(
f (y) > 0 ⇒ f (x) > 0

)
. We show that y =X x, by showing that ¬(

y �=F x
)
. Suppose 

that y �=F x and, without loss of generality, let g ∈ F such that g(y) = 1 and g(x) = 0. By the hypothesis on x we have that 
g(y) > 0 ⇒ g(x) > 0, and we get the required contradiction.
(iii)⇒(i) Let x, y ∈ X such that ∀ f ∈F

(
f (x) =R f (y)

)
. We show that y ∈ {x}, hence y = x. Let f ∈ F such that f (y) > 0. Since 

f (x) = f (y), we get f (x) > 0. �
Proposition 3.6. If C is closed in X and D is closed in Y , then C × D is closed in X × Y .

Proof. Let (x, y) ∈ C × D i.e., if h(x, y) > 0, there is (u, w) ∈ C × D such that h(u, w) > 0, for every h ∈ F × G . We show that 
x ∈ C and (similarly) y ∈ D , hence (x, y) ∈ C × D . Let f ∈ F such that f (x) > 0. Since ( f ◦ π1)(x, y) > 0 and f ◦ π1 ∈ F × G , 
there is (u, w) ∈ C × D such that ( f ◦ π1)(u, w) := f (u) > 0, hence there is u ∈ C with f (u) > 0. �
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4. Bishop topological groups

Definition 4.1. We call the structure F := (X, +, 0, −; F ) a Bishop topological group, if X := (X, +, 0, −) is a group and 
F := (X, F ) is a Bishop space such that + : X × X → X ∈ Mor(F ×F , F) and − : X → X ∈ Mor(F , F). If necessary, we may 
use the notations +X , 0X , and −X for the operations of the group X . If f ∈ F , let f+ := f ◦ + and f− := f ◦ −. We use bold 
letters to denote Bishop topological groups.

By the definition of a Bishop morphism we get

+ ∈ Mor(F ×F,F) :⇔ ∀ f ∈F
(

f ◦ + ∈ F × F
) :⇔ ∀ f ∈F

(
f+ ∈ F × F

)
,

− ∈ Mor(F,F) :⇔ ∀ f ∈F
(

f ◦ − ∈ F
) :⇔ ∀ f ∈F

(
f− ∈ F

)
.

Example 4.2 (The additive group of reals). The structure R := (R, +, 0, −; Bic(R)) is a Bishop topological group. By the 
∨

-
lifting of morphisms + ∈ Mor(R × R, R) ⇔ idR ◦ + ∈ Bic(R) × Bic(R). If x, y ∈ R, then 

(
idR ◦ +)

(x, y) := x + y := (π1 +
π2)(x, y) i.e., idR ◦ + = π1 + π2 ∈ Bic(R) × Bic(R) = ∨

π1, π2. Similarly, − ∈ Mor(R, R) ⇔ idR ◦ − ∈ Bic(R). If x ∈R, then (
idR ◦ −)

(x) := −x := −idR(x) i.e., idR ◦ − = −idR ∈ Bic(R).

Example 4.3 (The trivial Bishop topological group). If X := (X, +, 0, −) is a group, then Const(X) is the trivial Bishop topology 
on X that also makes the group X topological; if a ∈ R, then aX ◦ + = aX×X ∈ Const(X × X) = Const(X) × Const(X), and 
aX ◦ − = aX ∈ Const(X).

Next we describe the relation between the metric groups defined in [5] and Bishop topological groups. Within BISH, a 
metric space (X, d) is compact, if it is complete and totally bounded. A compact metric group is a compact metric space and 
a group such that its group operations are continuous. This means that + is uniformly continuous on the compact metric 
space (with the product metric) X × X , in symbols + ∈ Cu(X × X, X) and − is uniformly continuous on X , in symbols 
− ∈ Cu(X, X). The canonical Bishop topology on a compact metric space X is the set Cu(X) of uniformly continuous, real-
valued functions on X .

Within BISH, an inhabited metric space (X, d) is locally compact, if every bounded subset of X is included in a compact 
subset of X .5 A locally compact metric group is a locally compact metric space and a group such that its group operations 
are continuous. This means that + is uniformly continuous on every bounded subset of (the locally compact metric space 
with the product metric) X × X , in symbols + ∈ Bic(X × X, X), and − is uniformly continuous on every bounded subset 
of X , in symbols − ∈ Bic(X, X). The canonical Bishop topology on a locally compact metric space X is the set Bic(X) of 
Bishop-continuous,6 real-valued functions on X , where f : X → R ∈ Bic(X) if and only if f is uniformly continuous on 
every bounded subset of X (this notion is shown to be predicative in [27], p. 24).

Theorem 4.4. Let X be a metric space and a group.

(i) If X is a compact metric group, then it is a Bishop topological group (in the canonical sense).
(ii) If X is compact and a Bishop topological group (in the canonical sense), then it is a compact metric group.

(iii) If X is locally compact and a Bishop topological group (in the canonical sense), then it is a locally compact metric group.

Proof. (i) As − is uniformly continuous, it is trivially a Bishop morphism from (X, Cu(X)) to itself. Actually, by Corollary 
3.8.9 in [27] the Bishop morphisms from (X, Cu(X)) to itself is the set Cu(X, X) of uniformly continuous functions from X to 
itself. If + is uniformly continuous, then for every f ∈ Cu(X) we have that f+ ∈ Cu(X × X), and by Theorem 4.2.8 in [27] we 
have that the Bishop topology Cu(X × X) is the product of the Bishop topologies Cu(X) × Cu(X), hence f+ ∈ Cu(X) × Cu(X)

and + ∈ Mor
(
(X × X, Cu(X × X)), (X, Cu(X)

)
. Consequently, a compact metric group is a Bishop topological group.

(ii) If − is a Bishop morphism from (X, Cu(X)) to itself, then by Bridges’s backward uniform continuity theorem (see [9]
and [27]-Corollary 3.8.9) we conclude that − is uniformly continuous. If + is a Bishop morphism from 

(
X × X, Cu(X) ×

Cu(X)
)

to (X, Cu(X)), and since X × X is compact and Cu(X) × Cu(X) = Cu(X × X), then by Corollary 3.8.9 in [27] again we 
conclude that + is uniformly continuous.
(iii) If − is a Bishop morphism from (X, Bic(X)) to itself, then by Bridges’s Proposition 16 in [9] the map − is in Bic(X, X). 
According to that Proposition, − is what is called there B-continuous i.e., uniformly continuous near each compact image, 

5 The impredicativity in Bishop’s notion of a locally compact metric space is avoided by Mandelkern in [21], and by us in [41], where a modulus of local 
compactness is added to the definition of a locally compact metric space.

6 The notion of a compact metric group is a special case of a locally compact metric group. Clearly, if X is compact, then Bic(X) = Cu(X).
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but as X is locally compact, a function on X is B-continuous if and only if it is uniformly continuous on every bounded 
subset of X (see [9] p. 107). Suppose next that + is a Bishop morphism from 

(
X × X, Bic(X) ×Bic(X)

)
to (X, Bic(X)). Clearly, 

X × X is locally compact and by a straightforward inductive proof we get that the product Bishop topology Bic(X) × Bic(X)

is included in Bic(X × X). Hence, + is a Bishop morphism from 
(

X × X, Bic(X × X)
)

to (X, Bic(X)). By Bridges’s Proposition 
16 in [9] again we conclude that + is B-continuous, or, equivalently, + ∈ Bic(X × X, X). �

Suppose that X is a locally compact metric group i.e., − ∈ Bic(X, X) and + ∈ Bic(X × X, X). The fact that − is a morphism 
from (X, Bic(X)) to itself follows immediately from the fact that the composition of uniformly continuous functions on 
bounded subsets is uniformly continuous on bounded subsets. We still do not have a proof of + ∈ Bic(X) × Bic(X).7

Unless otherwise stated, from now on, X, Y are Bishop topological groups with F and G Bishop topologies on X and Y , re-
spectively. Next we show that the Bishop topology of a Bishop topological group contains the left (right) translates of its 
elements.

Proposition 4.5.

(i) The function − : X → X is a Bishop isomorphism.
(ii) For every x0 ∈ X the functions +1

x0
, +2

x0
: X → X, defined by +1

x0
(x) := x0 + x and +2

x0
(x) := x + x0 , for every x ∈ X, are Bishop 

morphisms.
(iii) If f ∈ F , the functions f 1

x0
, f 2

x0
: X →R, defined by f 1

x0
(x) := f (x0 + x) and f 2

x0
(x) := f (x + x0), for every x ∈ X, are in F .

(iv) For every x0 ∈ X the functions +1
x0

, +2
x0

: X → X are Bishop isomorphisms.

Proof. (i) By definition − ∈ Mor(F , F), and it is a bijection. It is also open i.e., ∀ f ∈F ∃g∈F
(

f = g−
)
. If f ∈ F , we have that 

f = ( f−)− and f− ∈ F .
(ii) and (iii) If i1

x0
: X → X × X is defined by i1

x0
(x) := (x0, x), for every x ∈ X , then i1

x0
∈ Mor(F , F ×F) and +1

x0
:= + ◦ i1

x0
∈

Mor(F , F) as a composition of Bishop morphisms

X X × X X R.
i1
x0 + f

+1
x0

f 1
x0

f 1
x0

= f ◦ +1
x0

∈ F , as a composition of Bishop morphisms. For +2
x0

we work similarly.
(iv) Clearly, +1

x0
is a bijection. It is also open, since for every f ∈ F we have that f = f 1−x0

◦ +1
x0

, and by (iv) f 1−x0
∈ F . For 

f 2
x0

we work similarly. �
Proposition 4.6. The function k : X × X → X × X, defined by k(x, y) := (x, −y), for every (x, y) ∈ X × X, is a Bishop isomorphism.

Proof. Clearly, k is a bijection. By the 
∨

-lifting of morphisms we have that k ∈ Mor(F×F , F×F) if and only if ( f ◦π1) ◦k ∈
F × F and ( f ◦ π2) ◦ k ∈ F × F , for every f ∈ F . Let f ∈ F and (x, y) ∈ X × X . Since [( f ◦ π1) ◦ k](x, y) := ( f ◦ π1)(x, −y) :=
f (x) =: ( f ◦ π1)(x, y), we get ( f ◦ π1) ◦ k = f ◦ π1 ∈ F × F . Moreover, [( f ◦ π2) ◦ k](x, y) := ( f ◦ π2)(x, −y) := f (−y) :=
f−(y) := ( f− ◦ π2)(x, y), i.e., ( f ◦ π2) ◦ k = ( f− ◦ π2) ∈ F × F , since f− ∈ F . Since (k ◦ k)(x, y) := (x, −(−y)) = (x, y), k is its 
own inverse, hence k is a Bishop isomorphism. �
Proposition 4.7. Let X := (X, +, 0, −) be a group, F a Bishop topology on X, and sub : X × X → X be defined by sub(x, y) := x − y, 
for every (x, y) ∈ X × X. Then F := (X, +, 0, −; F ) is a Bishop topological group if and only if sub ∈ Mor(F ×F , F).

Proof. If F is a Bishop topological group, then sub= + ◦ k ∈ Mor(F ×F , F)

7 We also do not know yet if Bic(X × X) is included in the product Bishop topology Bic(X) × Bic(X). Hence, we still do not know if a locally compact 
metric group is a Bishop topological group. See also the discussion in section 6.
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X × X X × X

X

X .

k

+

sub

sub

+

For the converse, notice that + = sub ◦ k ∈ Mor(F × F , F). By Proposition 2.5(iii) we get − = sub0 ∈ Mor(F , F), where 
sub0(y) := sub(0, y) := −y, for every y ∈ X . �
Proposition 4.8. Let F := (X, +, 0, −; F ) be a Bishop topological group and G := (Y , G) a Bishop space. Let the functions +→ :
Mor(G, F) × Mor(G, F) → Mor(G, F), −→ : Mor(G, F) → Mor(G, F), and 0→ : Y → X be defined by (h1 +→ h2)(y) := h1(y) +
h2(y), (−→h)(y) := −h(y), and 0→(y) := 0, for every y ∈ Y , and h1, h2, h ∈ Mor(G, F). Then 

(
Mor(G, F), +→, 0→, −→)

is a group.

One can show that the group 
(
Mor(G, F), +→, 0→, −→)

, equipped with the pointwise exponential Bishop topology 
(see [27], section 4.3), is a Bishop topological group. Notice that if Y has also a group structure compatible with G , and if 
h1, h2, h are group homomorphisms, then h1 +→ h2, −→h and 0→ are also group homomorphisms.

Definition 4.9. Let F := (X, +X , 0X , −X ; F ) and G := (Y , +Y , 0Y , −Y ; G) be Bishop topological groups. If h ∈ Mor(G, F) such 
that h is a (X , Y)-group homomorphism, then we call h a Bishop group homomorphism, or simpler, a Bishop homomorphism. 
We denote by Mor(F , G) the set of all Bishop homomorphisms from F to G . Let BTopGrp be the category of Bishop 
topological groups with Bishop group homomorphisms.

Proposition 4.10. Let a ∈ R and let ha : R → R be defined by ha(x) = ax, for every x ∈ R. Then ha ∈ Mor(R, R). Conversely, if 
h ∈ Mor(R, R), there is a ∈R such that h = ha.

Proof. Clearly, ha is a group homomorphism, and by the 
∨

-lifting of morphisms we have that ha ∈ Mor(R, R) ⇔ idR ◦ha :=
ha ∈ Bic(R), which holds, since ha := a · idR ∈ Bic(R). If h ∈ Mor(R, R), let its restriction h|Q , where h|Q : Q → Q is a 
group homomorphism defined by 

(
h|Q

)
(q) = h(1)q, for every q ∈Q. Since Q is metrically dense in R, by Proposition 4.7.15 

in [27] we have that

Bic(Q) = Bic(R)|Q = {φ|Q | φ ∈ Bic(R)}.
Hence, h|Q ∈ Bic(Q). By Lemma 4.7.13. in [27] there is a unique (up to equality) extension of h|Q in Bic(R). Consequently, 
h = hh(1) . �
Proposition 4.11. Let F := (X, +X , 0X , −X ; F ) and G := (Y , +Y , 0Y , −Y ; G) be Bishop topological groups. Let the functions +X×Y :
(X × Y ) × (X × Y ) → X × Y , −X×Y : X × Y → X × Y , and 0X×Y ∈ X × Y be defined by (x, y) +X×Y (x′, y′) := (

x +X x′, y +Y y′), 
−X×Y (x, y) := ( −X x, −Y y

)
, and 0X×Y := (

0X , 0Y
)
. Then F ×G := (X × Y , +X×Y , 0X×Y , −X×Y ; F × G) is a Bishop topological group.

Proof. The proof that X × Y is a group is omitted as trivial. By the 
∨

-lifting of morphisms +X×Y ∈ Mor
([F × G] × [F ×

G], F × G
)

if and only if

∀ f ∈F ∀g∈G

((
f ◦ π X

) ◦ +X×Y ∈ [F × G] × [F × G]& (
g ◦ π Y

) ◦ +X×Y ∈ [F × G] × [F × G]
)

,

where by the 
∨

-lifting of the product Bishop topology

[F × G] × [F × G] =
g∈G∨
f ∈F

(
f ◦ π X

) ◦ π X×Y
1 ,

(
g ◦ π Y

) ◦ π X×Y
1 ,

(
f ◦ π X

) ◦ π X×Y
2 ,

(
g ◦ π Y

) ◦ π X×Y
2 .

If f ∈ F , x, x′ ∈ X , and y, y′ ∈ Y , and if z := (
(x, y), (x′, y′)

)
, then

[(
f ◦ π X

) ◦ +X×Y
](

z
) := (

f ◦ π X
)(

x +X x′, y +Y y′)
:= f (x +X x′)
:= ( f ◦ +X)(x, x′)
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:= ( f ◦ +X)
(
π X(x, y),π X(x′, y′)

)

:= ( f ◦ +X)

([
π X ◦ π X×Y

1

](
z
)
,
[
π X ◦ π X×Y

2

](
z
))

:= [
( f ◦ +X) ◦ h

)]
(z),

where by Corollary 2.4 the function h : [(X × Y ) × (X × Y )] → X × X , where h := [
π X ◦ π X×Y

1

] × [
π X ◦ π X×Y

2

]
is a Bishop 

morphism. Since 
(

f ◦ π X
) ◦ +X×Y = ( f ◦ +X) ◦ h

(X × Y ) × (X × Y ) X × X X R,
h +X f

(
f ◦π X

)◦+X×Y

we get 
(

f ◦ π X
) ◦ +X×Y ∈ Mor

([F × G] × [F × G], R)
as a composition of Bishop morphisms, hence 

(
f ◦ π X

) ◦ +X×Y ∈
[F × G] × [F × G]. Working similarly, we get 

(
g ◦ π Y

) ◦ +X×Y ∈ [F × G] × [F × G]. By the 
∨

-lifting of morphisms we also 
have that

−X×Y ∈ Mor
(
F × G,F × G

) ⇔ ∀ f ∈F ∀g∈G

((
f ◦ π X

) ◦ −X×Y ∈ F × G &
(

g ◦ π Y
) ◦ −X×Y ∈ F × G

)
.

If f ∈ F , x ∈ X , and y ∈ Y , then

[
(
(

f ◦ π X
) ◦ −X×Y

]
(x, y) := (

(
f ◦ π X

)( −X x,−Y y
) := f (−X x) := f−(x) := (

f− ◦ π X
)
(x, y)

i.e., (
(

f ◦ π X
) ◦ −X×Y = f− ◦ π X ∈ F × G , since f− ∈ F . Similarly, 

(
g ◦ π Y

) ◦ −X×Y ∈ F × G . �
Since the projections π X , π Y are homomorphisms, they are Bishop homomorphisms. By the universal property of the 

product Bishop topology, F ×G is the product in BTopGrp.

5. Closed subsets

In this section we prove fundamental properties of the closed subsets in Bishop topological groups. For all algebraic 
notions within BISH used here without further explanation, we refer to [22].

Proposition 5.1. Let C ⊆ X and x0 ∈ X.

(i) If C is closed, then −C := {−c | c ∈ C} is closed.
(ii) −C = −C.

(iii) If C is closed, then x0 + C := {x0 + c | c ∈ C} is closed.
(iv) x0 + C = x0 + C .

Proof. (i) We suppose that u ∈ −C i.e., if f (u) > 0, there is w ∈ −C such that f (w) > 0, for every f ∈ F , and we show that 
u ∈ −C i.e., −u ∈ C . Since C is closed, it suffices to show that −u ∈ C . Let f ∈ F such that f (−u) > 0 :⇔ f−(u) > 0. By our 
hypothesis on u there is w ∈ −C such that f−(w) := f (−w) > 0, and −w ∈ C .

(ii) Since C ⊆ C , we get −C ⊆ −C . Since C is closed, by (i) −C is also closed, hence −C ⊆ −C = −C . To show the converse 
inclusion −C ⊆ −C , let x ∈ −C , hence −x ∈ C i.e., if f (−x) > 0, there is u ∈ C with f (c) > 0, for every f ∈ F . We show that 
x ∈ −C . Let f ∈ F with f (x) = f (−(−x)) = f−(−x) > 0. By our hypothesis on −x, there exists u ∈ C with f−(u) := f (−u) >
0, and −u ∈ −C .
(iii) We suppose that y ∈ x0 + C i.e., if f (y) > 0, there is c ∈ C such that f (x0 + c) > 0, for every f ∈ F , and we show 
that y ∈ x0 + C by showing that −x0 + y ∈ C . As C is closed, it suffices to show that −x0 + y ∈ C . Let f ∈ F such that 
f (−x0 + y) > 0 ⇔ f 1−x0

(y) > 0. We show that there is c ∈ C such that f (c) > 0. By our hypothesis on y, there is c ∈ C such 
that f 1−x0

(x0 + c) := f (−x0 + x0 + c) = f (c) > 0.

(iv) Since C is closed, and x0 + C ⊆ x0 + C , we get x0 + C ⊆ x0 + C = x0 + C . For the converse inclusion, let x := x0 + y with 
y ∈ C . We show that x ∈ x0 + C . Let f ∈ F such that f (x0 + y) > 0 ⇔ f 1

x0
(y) > 0. We find c ∈ C such that f (x0 + c) > 0. By 

our hypothesis on y though, there is c ∈ C such that f 1
x0

(c) := f (x0 + c) > 0. �
Corollary 5.2. F separates the points of X if and only if {0X } is closed.
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Proof. If {0X } is closed, then by Proposition 5.1(iii) {x} = x + {0X } is closed, for every x ∈ X . By Proposition 3.5 F is separat-
ing. The converse follows immediately from Proposition 3.5. �
Proposition 5.3. If C is an open subgroup of X, then C is closed in X

Proof. Let x ∈ C i.e., if f (x) > 0, there is u ∈ C such that f (u) > 0, for every f ∈ F . We show that x ∈ C . Since C is a 
subgroup of X , we have that 0 ∈ C . Since C is open in X , there is g ∈ F such that g(0) > 0 and U (g) ⊆ C . Since g1−x ∈ F and

g1−x(x) := g(−x + x) = g(0) > 0,

by our hypothesis on x there is u ∈ C such that g1−x(u) := g(−x + u) > 0. Since U (g) ⊆ C , we get −x + u ∈ C , and since C is 
a subgroup of X , we get x ∈ C . �

Classically, C is closed, since its complement in X is the open set 
⋃{x + C | x /∈ C}, where x + C is open, for every x ∈ X , 

as C is open (this holds also constructively). The double use of negation in the classical proof is replaced here by the clear 
algorithm of the previous proof.

Lemma 5.4. The commutator map abel : X × X → X is defined by abel(x, y) := x + y − x − y, for every (x, y) ∈ X × X.

(i) abel ∈ Mor(F ×F , F).
(ii) If x, y ∈ X, then x + y =X y + x ⇔ abel(x, y) = 0X .

(iii) If x ∈ X, the mapping abelx : X → X, where abelx(y) := abel(x, y), for every y ∈ X, is in Mor(F , F), and for every f ∈ F
the composition f ◦ abelx ∈ F

X X R.
abelx f

f ◦abelx

(iv) If x, y ∈ X, then abelx(y) = −abely(x).
(v) If x, y ∈ X, then abelx(y) = 0X ⇔ abely(x) = 0X .

Proof. (i) By the definition of the product Bishop topology π1, π2 ∈ Mor(F ×F , F). Since abel := π1 + π2 − π1 − π2, by 
Proposition 4.8 we get abel ∈ Mor(F ×F , F).
(ii) and (iii) The proof for (ii) is immediate. By (i) and Proposition 2.5(iii) abelx ∈ Mor(F , F), hence by the definition of a 
Bishop morphism f ◦ abelx ∈ F , for every f ∈ F .
(iv) is trivial and (v) follows immediately from (iv). �
Lemma 5.5. Let x ∈ X and H ⊆ X. The maps normalx : X → X and Normalx : X → X are defined, for every x ∈ X, respectively, by 
normalx(y) := x + y − x and Normalx(y) := y + x − y. Let normalH

x , NormalH
x : H → X be the restrictions of normalx and 

NormalX to H, respectively.

(i) If x, y ∈ X, then normalx(y) = Normaly(x).
(ii) normalx ∈ Mor(F , F) and Normalx ∈ Mor(F , F).

(iii) If H is a subgroup of X (H ≤ X), then H is normal if and only if normalH
x : H → H, for every x ∈ X.

(iv) If f ∈ F , the compositions f ◦ normalx ∈ F and f ◦ Normalx ∈ F .

X X R.XR
normalxf f

f ◦normalx

Normalx

f ◦Normalx

(v) If H is normal, then normalH
x ∈ Mor

(
F|H , F|H

)
.

(vi) If NormalH
x : H → H, then NormalH

x ∈ Mor
(
F|H , F|H

)
.

Proof. (i) The proof is immediate. For the proof of (ii), the function cx : X → X , defined by cx(y) := x, for every y ∈ X , is in 
Mor(F , F); if f ∈ F , then ( f ◦ cx)(y) := f (x), for every y ∈ X , hence f ◦ cx = f (x)

X ∈ F . The identity map idX on X is also in 
Mor(F , F). Since normalx := cx + idX − cx , by Proposition 4.8 normalx ∈ Mor(F , F). Since Normalx := idX + cx − idX , we 
get Normalx ∈ Mor(F , F). (iii) and (iv) are immediate to show. For the proof of (v), by the 

∨
-lifting of morphisms we have 
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that normalH
x ∈ Mor

(
F|H , F|H

)
if and only if ∀ f ∈F

(
f |H ◦ normalH

x ∈ F |H
)
. If f ∈ F and v ∈ H , then 

(
f |H ◦ normalH

x

)
(v) :=

f |H (x + v − x) := f (x + v − x) := (
f ◦ normalx

)
(v) := (

f ◦ normalx
)
|H (v) i.e., f |H ◦ normalH

x = (
f ◦ normalx

)
|H ∈ F |H , 

since f ◦ normalx ∈ F . For the proof of (vi), we proceed as in the proof of (v). �
Theorem 5.6. Let H be a subgroup of X.

(i) The closure H of H is also a subgroup of X.
(ii) If F is a separating Bishop topology and H is abelian, then H is abelian.

(iii) If H is normal, then H is normal.

Proof. (i) Since H ⊆ H and 0 ∈ H , we get 0 ∈ H . Let x, y ∈ H , where by definition

x ∈ H :⇔ ∀ f ∈F
(

f (x) > 0 ⇒ ∃v∈H ( f (v) > 0)
)
,

y ∈ H :⇔ ∀ f ∈F
(

f (y) > 0 ⇒ ∃v∈H ( f (v) > 0)
)
.

We show that x + y ∈ H i.e., ∀ f ∈F
(

f (x + y) > 0 ⇒ ∃v∈H ( f (v) > 0)
)
. Let f ∈ F such that f (x + y) > 0. By Proposition 4.5(iii) 

the map f 2
y : X → R ∈ F , where f 2

y (u) := f (u + y), for every u ∈ X . By hypothesis, f 2
y (x) > 0. Since x ∈ H , there is z ∈ H

such that

f 2
y (z) > 0 :⇔ f (z + y) > 0 :⇔ f 1

z (y) > 0,

where by Proposition 4.5(iii) the map f 1
z : X →R ∈ F , where f 1

z (u) := f (z + u), for every u ∈ X , is in F . Since y ∈ H , there 
is w ∈ H such that f 1

z (w) > 0 :⇔ f (z + w) > 0. Since H ≤ X , we get z + w ∈ H , which is what we need to show. Next we 
show that −x ∈ H i.e.,

∀ f ∈F
(

f (−x) > 0 ⇒ ∃v∈H ( f (v) > 0)
)
.

Let f ∈ F such that f (−x) > 0 ⇔ f−(x) > 0. Since f− ∈ F and x ∈ H , there is v ∈ H such that f−(v) := f (−v) > 0. Since 
H ≤ X , we get −v ∈ H , and our proof is completed.
(ii) Case I: x ∈ H and y ∈ H .
We show that abelx(y) =X 0X . Suppose that abelx(y) �=F 0X . By Proposition 5.2.5 in [27] there is f ∈ F such that 
f
(
abelx(y)

) = 1 and f
(
0X

) = 0. Since y ∈ H , and ( f ◦ abelx)(y) = 1 > 0, and f ◦ abelx ∈ F , there is v ∈ H such that 
( f ◦ abelx)(v) > 0. Since x, v ∈ H and H is abelian, we have that abelx(v) = 0X , hence 0 = f

(
0X

) = ( f ◦ abelx)(v) > 0, 
which is a contradiction. Since F is separating, the canonical apartness relation �=F of F is tight (see Proposition 5.1.3 
in [27]), hence the negation of abelx(y) �=F 0X implies that abelx(y) =X 0X .
Case II: x ∈ H and y ∈ H .
We show that abelx(y) =X 0X . Suppose that abelx(y) �=F 0X . As in the previous case, there is f ∈ F such that 
f
(
abelx(y)

) = 1 and f
(
0X

) = 0. Since y ∈ H , and ( f ◦ abelx)(y) = 1 > 0, there is v ∈ H such that ( f ◦ abelx)(v) > 0. By 
case I we have that abelv(x) = 0X , hence by Lemma 5.4(v) we get abelx(v) = 0X , hence 0 = f

(
0X

) = ( f ◦ abelx)(v) > 0, 
which is a contradiction. Since F is separating, we conclude, similarly to Case I, that abelx(y) =X 0X .
(iii) By Lemma 5.5(ii) it suffices to show that normalH

x : H → H , for every x ∈ X . If x ∈ X and y ∈ H , we show that

normalH
x (y) := x + y − x ∈ H .

Let f ∈ F such that f (x + y − x) > 0 ⇔ ( f ◦ normalx)(y) > 0. We need to find u ∈ H such that f (u) > 0. Since y ∈ H and 
f ◦ normalx ∈ F , there is v ∈ H with

( f ◦ normalx)(v) := f (x + v − x) > 0.

Since H is normal and v ∈ H , we have that u := x + v − x ∈ H and f (u) > 0. �
As we explain in [27], section 5.8, by the Stone-Čech theorem for Bishop spaces we have that the separating hypothesis 

on F in case (ii) of the previous proposition is not a serious restriction on F . Note that classically, if X is a Hausdorff 
topological group, then if H is an abelian subgroup, then H is abelian. The F -version of a Hausdorff topology is the following 
(see [27], section 5.2): if �= is a given apartness relation on X , then F is �=-Hausdorff, if �=⊆�=F . In Proposition 5.2.3. of [27]
we show that this is equivalent to the positive �=-version of the induced neighborhood structure being Hausdorff. If F is 
�=-Hausdorff, n-many pairwise �=-apart points of X are mapped to given n-many real numbers. This is essential to the proof 
we gave above. In this way, we capture computationally the requirement of a Hausdorff topology for H being abelian. By 
Proposition 3.5 the tightness of �=F in a Bishop topological group implies that the induced topology is Hausdorff in the 
classical sense (classically, a topological group is Hausdorff if and only if there is a closed singleton). In the next proposition 
the subset H of X is extensional i.e., H is closed under the given equality =X on X , so that the defining property of 
NormalX (H) in the use of the separation scheme is also extensional.
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Theorem 5.7. Let H be an extensional subset of X. The normalizer NormalX (H) of H in X and the center CenterX (H) of H in X, 
are defined by

NormalX (H) := {
x ∈ X | NormalH

x : H → H
}
,

CenterX (H) := {
x ∈ X | ∀v∈H

(
abelx(v) = 0X

)}
.

(i) If H is closed, then NormalX (H) is closed.
(ii) If F is separating, then CenterX (H) is closed.

Proof. (i) We suppose that H is closed i.e.,

(Hyp1) ∀x∈X

(
∀ f ∈F

(
f (x) > 0 ⇒ ∃v∈H

(
f (v) > 0

)) ⇒ x ∈ H

)
,

and we show that NormalX (H) is closed i.e.,

(Goal1) ∀x∈X

(
∀ f ∈F

(
f (x) > 0 ⇒ ∃u∈NormalX (H)

(
f (u) > 0

)) ⇒ x ∈ NormalX (H)

)
.

For that we fix some x ∈ X , we suppose that

(Hyp2) ∀ f ∈F
(

f (x) > 0 ⇒ ∃u∈NormalX (H)

(
f (u) > 0

))
,

and we show (Goal2) x ∈ NormalX (H) :⇔ NormalH
x : H → H . If we fix v ∈ H , we show next (Goal3) NormalH

x (v) :=
v + x − v ∈ H . By Hyp1 it suffices to show the following

(Goal4) ∀ f ∈F

(
f
(
NormalH

x (v)
)
> 0 ⇒ ∃w∈H

(
f (w) > 0

))
.

If we fix f ∈ F , we suppose that

(Hyp3) f
(
NormalH

x (v)
)
> 0 ⇔ f

(
normalv(x)

)
> 0 ⇔ ( f ◦ normalv))(x) > 0,

and we show (Goal5) ∃w∈H
(

f (w) > 0
)
. Since f ◦ normalv ∈ F , by (Hyp2) there is u ∈ NormalX (H) with ( f ◦

normalv)(u) := f (v + u − v) > 0. Since u ∈ NormalX (H), NormalH
u : H → H , and since v ∈ H , we get NormalH

u (v) :=
v + u − v ∈ H . Hence, w := v + u − v ∈ H and f (w) > 0.
(ii) We fix x ∈ X , we suppose that

(Hyp∗
1) ∀ f ∈F

(
f (x) > 0 ⇒ ∃u∈CenterX (H)

(
f (u) > 0

))
,

and we show (Goal∗
1) x ∈ CenterX (H) :⇔ ∀v∈H

(
abelx(v) = 0X

)
. Let v ∈ H be fixed. Since F is a separating Bishop 

topology, it suffices to prove ¬(
abelx(v) �=F 0X

)
. If we suppose that abelx(v) �=F 0X , there is f ∈ F such that

f
(
abelx(v)

) = 1 > 0 & f
(
0X

) = 0.

By Lemma 5.4(iv) we get

1 = f
(
abelx(v)

) = f
( − abelv(x)

) := f−
(
abelv(x)

)
& 0 = f

(
0X

) = f−
(
0X

)
.

Since f ∈ F , we have that f− ◦ abelv ∈ F and ( f− ◦ abelv)(x) > 0. By (Hyp∗
1) there is u ∈ CenterX (H) such that ( f− ◦

abelv)(u) > 0. Since u ∈ CenterX (H), we get ∀w∈H
(
abelu(w) = 0X

)
. Moreover, ( f− ◦abelv)(u) := f−(v +u − v −u) > 0. 

Since v ∈ H , we get

v + u − v − u := abelv(u) = −abelu(v) = −0X = 0X ,

hence f−
(
0X

)
> 0, which contradicts the previously established equality f−

(
0X

) = 0X . �
Proposition 5.8. If G is a separating Bishop topology on Y and h ∈ Mor(F , G), the kernel Ker(h) := {

x ∈ X | h(x) =Y 0Y
}

of h is a 
closed set in F .

Proof. Let x ∈ X such that ∀ f ∈F
(

f (x) > 0 ⇒ ∃v∈Ker(h)

(
f (v) > 0

))
. Since �=G is tight, it suffices to show that ¬(

h(x) �=G 0Y
)
. 

If h(x) �=G 0Y , there is g ∈ G such that g(h(x)) = 1 > 0 and g
(
0Y

) = 0. Since h ∈ Mor(F , G), we have that g ◦ h ∈ F . As 
(g ◦ h)(x) > 0, there is v ∈ Ker(h) such that 0 = g

(
0Y

) = g(h(v)) := (g ◦ h)(v) > 0, which is a contradiction. �

140



I. Petrakis Theoretical Computer Science 935 (2022) 128–143
Theorem 5.9 (Characterization of a closed (open) subgroup). Let C be a subgroup of X.

(i) C is closed if and only if there is an open set O in X such that O  ∩ C is inhabited and closed in O .
(ii) C is open if and only if there is an inhabited, open set O in X such that O  ⊆ C.

Proof. (i) Let O be open in X such that O  ∩ C is inhabited and closed in O . We show that C is closed. Suppose that x ∈ C
i.e., if f (x) > 0, there is u ∈ C such that f (u) > 0, for every f ∈ F . We prove that x ∈ C . Let c0 ∈ O  ∩ C . Since O is open, 
there is g ∈ F such that g(c0) > 0 and U (g) ⊆ O . Since g1−x+c0

∈ F and

g1−x+c0
(x) := g(x − x + c0) = g(c0) > 0,

by our hypothesis on x there is c ∈ C such that

g1−x+c0
(c) := g(c − x + c0) > 0.

As U (g) ⊆ O , we get c − x + c0 ∈ O . The hypothesis “O  ∩ C is closed in O ” means

∀z∈O
(
z ∈ O ∩ C ⇒ z ∈ O ∩ C

)
.

Let z0 := c − x + c0 ∈ O . We show that z0 ∈ O ∩ C , hence z0 ∈ O  ∩ C . Since C is a subgroup, and since then z0 ∈ C , we 
get the required membership x ∈ C . To show that z0 ∈ O ∩ C , let f ∈ F such that f (z0) > 0. We find w ∈ O  ∩ C such that 
f (w) > 0. Since f (z0) > 0 and g(z0) > 0, we have that ( f ∧ g)(z0) > 0 (see [7], p. 57). By Theorem 5.6(i) C is a subgroup 
of X . Since C ⊆ C , and c, c0, −x ∈ C , we get z0 ∈ C . Since f ∧ g ∈ F and ( f ∧ g)(z0) > 0, there is w ∈ C such that

( f ∧ g)(w) > 0.

Since g(w) ≥ ( f ∧ g)(w) > 0, we get w ∈ O , hence w ∈ O  ∩ C . Since f (w) ≥ ( f ∧ g)(w) > 0, we conclude that f (w) > 0, 
as required. For the converse, if C is closed, then X is open, C = C ∩ X is inhabited by 0 and it is trivially closed in X .
(ii) Let O be open in X such that O  ⊆ C , and let c0 ∈ O . Suppose that g ∈ F with g(c0) > 0 and U (g) ⊆ O . Since also 
U (g) ⊆ C , we get c0 ∈ C . Let c ∈ C . The function g1−c+c0

∈ F and g1−c+c0
(c) = g(c0) > 0. We show that U (g1−c+c0

) ⊆ C , hence, 
since c is an arbitrary element of C , we conclude that C is open. Let u ∈ X such that g1−c+c0

(u) := g(u − c + c0) > 0. As 
U (g) ⊆ O  ⊆ C , we get u − c + c0 ∈ C . As c, c0 ∈ C and C is a subgroup of X , we have that u ∈ C . For the converse, if C is 
open, then C is an inhabited open set included in C . �

The classical proof of Theorem 5.9(i) is based on multiple use of negation (see [19]). In accordance to the standard prac-
tice of constructive mathematics, we replaced the “non-empty intersection” of O and C in Theorem 5.9(i) with the positive 
notion O  � C of inhabited intersection, and the “non-emptyness” of O in Theorem 5.9(ii) with the stronger inhabitedness of 
O . Although, in general, it is not possible to show that the uniform F -complement X \u

F C of a closed set in a Bishop space 
X is equal to X \ C , there is a number of cases in the theory of Bishop topological groups where this is possible.

Corollary 5.10. If C is closed in X, such that X \ C is a subgroup of X and X \u
F C is inhabited, then X \ C = X \u

F C and X \ C is clopen.

Proof. By Theorem 3.4 we have that X \u
F C is open in X and X \u

F C ⊆ X \ C . Since X \u
F C is inhabited and X \ C is a 

subgroup of X , by Theorem 5.9(ii) we have that X \ C is open. As X \ C ⊆ (X \ C)◦ , by Theorem 3.4 we get X \ C ⊆ X \u
F C , 

hence X \ C = X \u
F C . As X \ C is an open subgroup, by Proposition 5.3 we have that X \ C is also closed. �

Notice that classically a subgroup C of a topological group is either clopen or has empty interior. By replacing the 
hypothesis of “non-empty interior of C” with the positive “existence of an inhabited open subset of C”, constructively we 
prove the following corollary.

Corollary 5.11. Let C be a subgroup of X. If O is an inhabited open set in X such that O  ⊆ C , then C is clopen.

Proof. By Theorem 5.9(ii) C is open, and by Proposition 5.3 C is also closed. �
6. Concluding remarks

We have presented some very first, fundamental results in the theory of Bishop topological groups and their closed sub-
sets. Clearly, we can study similarly other algebraic structures, like rings and modules, equipped with a compatible Bishop 
topology. For example, it is important to investigate how a theory of Bishop topological rings relates to the constructive 
theory of Zariski spectrum in [20].
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There is a plethora of open questions related to Bishop topological groups. The study of “compact” subsets of Bishop 
topological groups is a natural extension of this work, which depends though, on the notion of compactness considered 
within the theory of Bishop spaces. The notion of 2-compactness developed in [27,29] seems hard to work with, while the 
development in [39] of a constructive version of Comfort-compactness [11] is more promising.

The question whether

Bic(X × Y ) ⊆ Bic(X) × Bic(Y ),

which implies that a locally compact metric group, in the sense of Bishop and Bridges, is a Bishop topological group (in the 
canonical sense), is an important open problem of independent interest. Categorically speaking, the assignment

X �→ (
X, Cu(X)

)
is a full and faithful functor from the category of compact metric spaces into 2-compact Bishop spaces (see Theorem 3.10, 
Proposition 3.11, and Corollary 3.14 in [28]). The assignment

X �→ (
X,Bic(X)

)
should be compared with Palmgren’s full and faithful embedding (that preserves products) of the category of locally compact 
metric spaces into the category of locally compact formal topologies, which is given in [25].

By Theorem 4.4(i)-(ii) compact metric groups, in the sense of Bishop and Bridges, are identified with the compact metric 
groups equipped with the canonical Bishop topology of uniformly continuous functions. By Theorem 4.4(iii) locally compact 
metric spaces that are also groups and they are equipped with the canonical Bishop topology of uniformly continuous 
functions on bounded subsets are locally compact metric groups in the sense of Bishop and Bridges. Consequently, the Haar 
measure theory of locally compact (abelian) metric groups, developed in [5], Chapter 8, applies to these Bishop topological 
groups.

The generalization of the Haar measure theory of locally compact metric spaces to a Haar measure theory of locally 
compact Bishop topological groups, for an appropriate notion of a locally compact Bishop space, is an important research 
project. In our work under construction [38] we study the integration theory of Bishop spaces. Using ideas from the “forgot-
ten” Bishop measure theory in [3], we define the notion of an algebra of test functions T included in a Bishop topology of 
functions F in an abstract way. An integral on T is extended then to an integral on F . The key idea is to discover function 
theoretic translations of the principal steps taken in the integration theory of locally compact metric spaces and incorporate 
them into the integration theory of Bishop spaces, such that the integration theory of locally compact metric spaces will be 
a special case of the integration theory of Bishop spaces. In the integration theory of locally compact metric spaces the set 
of test functions T is the set of continuous functions with compact support and the Bishop topology F = Bic(X). The next 
step is to apply this method to the Haar measure theory of locally compact groups. That is, one has to find abstract, function 
theoretic characterizations of the key-lemmas in the proof of the existence of the Haar measure of a locally compact metric 
group and use these characterizations to define the notion of a locally compact Bishop space.
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[15] H. Ishihara, R. Mines, P. Schuster, L.S. Vîţă, Quasi-apartness and neighborhood spaces, Ann. Pure Appl. Log. 141 (2006) 296–306, https://doi .org /10 .

1016 /j .apal .2006 .01.004.
[16] H. Ishihara, Two subcategories of apartness spaces, Ann. Pure Appl. Log. 163 (2013) 132–139, https://doi .org /10 .1016 /j .apal .2011.06 .022.
[17] H. Ishihara, Relating Bishop’s function spaces to neighborhood spaces, Ann. Pure Appl. Log. 164 (2013) 482–490, https://doi .org /10 .1016 /j .apal .2012 .10 .

009.
[18] H. Ishihara, E. Palmgren, Quotient topologies in constructive set theory and type theory, Ann. Pure Appl. Log. 141 (2006) 257–265, https://doi .org /10 .

1016 /j .apal .2005 .11.005.
[19] L. Kramer, Locally Compact Groups, Lecture Notes, 2017.
[20] H. Lombardi, C. Quitté, Commutative Algebra: Constructive Methods, Springer Science+Business Media Dordrecht, 2015.
[21] M. Mandelkern, Metrization of the one-point compactification, Proc. Am. Math. Soc. 107 (4) (1989) 1111–1115.
[22] R. Mines, F. Richman, W. Ruitenburg, A Course in Constructive Algebra, Springer, 1988.
[23] J. Myhill, Constructive set theory, J. Symb. Log. 40 (1975) 347–382.
[24] R.S. Lubarsky, M. Rathjen, On the regular extension axiom and its variants, Math. Log. Q. 49 (5) (2003) 511–518, https://doi .org /10 .1002 /malq .

200310054.
[25] E. Palmgren, A constructive and functorial embedding of locally compact metric spaces into locales, Topol. Appl. 154 (2007) 1854–1880, https://

doi .org /10 .1016 /j .topol .2007.01.018.
[26] I. Petrakis, Completely regular Bishop spaces, in: A. Beckmann, et al. (Eds.), Evolving Computability, CiE 2015, in: LNCS, vol. 9136, 2015, pp. 302–312.
[27] I. Petrakis, Constructive Topology of Bishop Spaces, PhD Thesis, LMU, Munich, 2015.
[28] I. Petrakis, The Urysohn extension theorem for Bishop spaces, in: S. Artemov, A. Nerode (Eds.), Symposium on Logical Foundations in Computer Science 

2016, in: LNCS, vol. 9537, 2016, pp. 299–316.
[29] I. Petrakis, A constructive function-theoretic approach to topological compactness, in: Proceedings of the 31st Annual ACM-IEEEE Symposium on Logic 

in Computer Science (LICS 2016), July 5–8, 2016, NYC, USA, pp. 605–614, https://doi .org /10 .1145 /2933575 .2933582.
[30] I. Petrakis, Constructive uniformities of pseudometrics and Bishop topologies, J. Log. Anal. 11:FT2 (2019) 1–44, https://doi .org /10 .4115 /jla .2019 .11.FT2.
[31] I. Petrakis, Borel and Baire sets in Bishop spaces, in: F. Manea, et al. (Eds.), CiE 2019, in: LNCS, vol. 11558, 2019, pp. 240–252.
[32] I. Petrakis, Dependent sums and dependent products in Bishop’s set theory, in: P. Dybjer, et al. (Eds.), TYPES 2018, in: LIPIcs, vol. 130, 2019, 3.
[33] I. Petrakis, Embeddings of Bishop spaces, J. Log. Comput. exaa015 (2020), https://doi .org /10 .1093 /logcom /exaa015.
[34] I. Petrakis, Functions of Baire-class one over a Bishop topology, in: M. Anselmo, et al. (Eds.), Beyond the Horizon of Computability CiE 2020, in: LNCS, 

vol. 12098, 2020, pp. 215–227.
[35] I. Petrakis, Families of Sets in Bishop Set Theory, Habilitationsschrift, LMU, Munich, 2020.
[36] I. Petrakis, Direct spectra of Bishop spaces and their limits, Log. Methods Comput. Sci. 17 (2) (2021) 4, https://doi .org /10 .23638 /LMCS -17(2 :4 )2021.
[37] I. Petrakis, Proof-relevance in Bishop-style constructive mathematics, Math. Struct. Comput. Sci. (2022), https://doi .org /10 .1017 /S0960129522000159, 

in press.
[38] I. Petrakis, Integration theory of Bishop spaces, 2022, in preparation.
[39] I. Petrakis, Constructive Comfort-compactness, 2022, in preparation.
[40] I. Petrakis, Sets completely separated by functions in Bishop set theory, arXiv:2208 .07826, 2022.
[41] I. Petrakis, L.F. Grubmüller, Constructive and predicative integration theory of locally compact metric spaces, 2022, in preparation.
[42] I. Petrakis, D. Wessel, Algebras of complemented subsets, in: U. Berger, et al. (Eds.), Revolutions and Revelations in Computability, in: LNCS, vol. 13359, 

Springer, 2022, pp. 246–258.
[43] I. Petrakis, Bases of pseudocompact Bishop spaces, in: D.S. Bridges, et al. (Eds.), Handbook of Constructive Mathematics, Cambridge University Press, 

2023, in press.
[44] F. Richman, Constructive Mathematics Without Choice, in [47], 2001, pp. 199–205.
[45] G. Sambin, Intuitionistic formal spaces - a first communication, in: D. Skordev (Ed.), Mathematical Logic and Its Applications, Plenum Press, 1987, 

pp. 187–204.
[46] G. Sambin, The Basic Picture: Structures for Constructive Topology, Oxford University Press, in press.
[47] P. Schuster, U. Berger, H. Osswald (Eds.), Reuniting the Antipodes Constructive and Nonstandard Views of the Continuum, Proc. 1999 Venice Symposium, 

Kluwer, Dordrecht, 2001.
[48] P. Schuster, Countable choice as a questionable uniformity principle, Philos. Math. (3) 12 (2004) 106–134.
[49] S. Warner, Topological Rings, North-Holland Mathematics Studies, vol. 178, Elsevier Science Publishers B.V., 1993.
[50] C. Xu, A continuous computational interpretation of type theories, PhD Thesis, University of Birmingham, 2015.
143

http://refhub.elsevier.com/S0304-3975(22)00532-1/bib486F9C3957EFF3C0BABC3DD3381AD267s1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bib48FBB469F5706EDA5B072BFFE1C17E98s1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bib48FBB469F5706EDA5B072BFFE1C17E98s1
https://doi.org/10.1016/j.apal.2016.04.011
https://doi.org/10.1016/j.apal.2016.04.011
http://refhub.elsevier.com/S0304-3975(22)00532-1/bib00AF927D5391599AC040DE5DA20469F8s1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bib5F843128CCB980D1B90EE81CD0D5D216s1
https://doi.org/10.1016/j.apal.2006.01.004
https://doi.org/10.1016/j.apal.2006.01.004
https://doi.org/10.1016/j.apal.2011.06.022
https://doi.org/10.1016/j.apal.2012.10.009
https://doi.org/10.1016/j.apal.2012.10.009
https://doi.org/10.1016/j.apal.2005.11.005
https://doi.org/10.1016/j.apal.2005.11.005
http://refhub.elsevier.com/S0304-3975(22)00532-1/bib01E89E6DB1883724DF50DCA932B274C8s1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bib0D4949561B6305DD6B19C918998C9E28s1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bibF82E77542A0B7C0C01D128FA131AA219s1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bibD345D6D15E7623F46B1C8639EBAD6C3Fs1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bibF66359B0F9F737C3C661C57BE44AE62As1
https://doi.org/10.1002/malq.200310054
https://doi.org/10.1002/malq.200310054
https://doi.org/10.1016/j.topol.2007.01.018
https://doi.org/10.1016/j.topol.2007.01.018
http://refhub.elsevier.com/S0304-3975(22)00532-1/bib66C92C3ED6335F62A425A74C9F8CE492s1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bibF0C26FDE57E831A57A02BFD1096638E5s1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bibAA1DDA2325F7D7734968C5C37C27229As1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bibAA1DDA2325F7D7734968C5C37C27229As1
https://doi.org/10.1145/2933575.2933582
https://doi.org/10.4115/jla.2019.11.FT2
http://refhub.elsevier.com/S0304-3975(22)00532-1/bibEC92BEF3C484C8ACCB62F2C826219685s1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bib73804A8290CDDF1149A1F0AADAC0CBE2s1
https://doi.org/10.1093/logcom/exaa015
http://refhub.elsevier.com/S0304-3975(22)00532-1/bibC0EDD636B8D2DF779F51B78245EBA25Ds1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bibC0EDD636B8D2DF779F51B78245EBA25Ds1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bib925623EC6036D254F9A4B5DC131DCFD6s1
https://doi.org/10.23638/LMCS-17(2:4)2021
https://doi.org/10.1017/S0960129522000159
http://refhub.elsevier.com/S0304-3975(22)00532-1/bibB5B79FB225510654980F02607B3A92FAs1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bibDB7136307963C7F657F39C5E9BBEF007s1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bibDB7136307963C7F657F39C5E9BBEF007s1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bibDF4043731745743F425A094113BA2330s1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bibDF4043731745743F425A094113BA2330s1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bib5AF73A0CBDF680F49D7EA4E80B532A33s1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bib2CAB54DFFB4A86308905487A770B26F8s1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bib2CAB54DFFB4A86308905487A770B26F8s1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bibC8EC3AEE4C65DC338439DB34D44F252As1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bibC8EC3AEE4C65DC338439DB34D44F252As1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bib5E87973B8EB897B3837AA32BE5B0837Fs1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bib186E3E41707863A72398A4750CA6F5A2s1
http://refhub.elsevier.com/S0304-3975(22)00532-1/bib677394A04FBB54AF1401CEFF25A9DC62s1

	Closed subsets in Bishop topological groups
	1 Introduction
	2 Fundamentals of Bishop spaces
	3 The neighborhood structure of a Bishop topology
	4 Bishop topological groups
	5 Closed subsets
	6 Concluding remarks
	Declaration of competing interest
	Acknowledgements
	References


