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The integration of intra-operative sensors into surgical robots is a hot research topic

since this can significantly facilitate complex surgical procedures by enhancing surgical

awareness with real-time tissue information. However, currently available intra-operative

sensing technologies are mainly based on image processing and force feedback, which

normally require heavy computation or complicated hardware modifications of existing

surgical tools. This paper presents the design and integration of electrical bio-impedance

sensing into a commercial surgical robot tool, leading to the creation of a novel smart

instrument that allows the identification of tissues by simply touching them. In addition, an

advanced user interface is designed to provide guidance during the use of the system and

to allow augmented-reality visualization of the tissue identification results. The proposed

system imposes minor hardware modifications to an existing surgical tool, but adds the

capability to provide a wealth of data about the tissue being manipulated. This has great

potential to allow the surgeon (or an autonomous robotic system) to better understand

the surgical environment. To evaluate the system, a series of ex-vivo experiments were

conducted. The experimental results demonstrate that the proposed sensing system can

successfully identify different tissue types with 100% classification accuracy. In addition,

the user interface was shown to effectively and intuitively guide the user to measure

the electrical impedance of the target tissue, presenting the identification results as

augmented-reality markers for simple and immediate recognition.

Keywords: electrical bio-impedance, tissue identification, da Vinci Research Kit, user interface, intra-operative

sensing, augmented reality

1. INTRODUCTION

Robot-assisted Minimally Invasive Surgery (RMIS) has come to the forefront in the last decades
since this technology can provide enhanced dexterity and 3D perception of the surgical field.
These advantages produce a surgical approach that is more ergonomic for surgeons and safer
for patients, as described in Elhage et al. (2007). Specifically, RMIS allows the surgeon to
access small and complex anatomical districts (e.g., digestive tract), and perform surgery with
reduced invasiveness and in a more intuitive and confident way according to Pavan et al. (2016).
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Additionally and consequently, the patient can benefit from
lower occurrence of intra and post operative complications,
shorter hospitalization, less pain, and faster recovery.

The incorporation of real-time sensing technologies during
complex medical procedures is an essential component for novel
surgical robotic platforms. In fact, vision is currently the only
sensing technology that provides real-time feedback from the
surgical site in most of the existing surgical robotic systems
(such as the da Vinci robot by Intuitive Surgical Inc., Sunnyvale,
California, USA). However, it is challenging for the surgeon to
recognize different tissues in the surgical field due to the fact that
the visual properties of most organs are very similar from the
endoscopic camera, especially when the field of view is under
poor illumination conditions, occluded by smoke produced
during electrocautery or by surgical tools. As reported by Penza
et al. (2014), additional assistive technologies such as multi-
modal data registration and image guided navigation systems
are very helpful in these complex conditions. Also, a study by
Katić et al. (2016) introduced a method for providing surgical
context awareness by identifying surgical activity and retrieving
anatomical structures in the image. Alternatively, another study
by Moccia et al. (2018) proposed to use deep learning approach
for identifying different tissue types in endoscopic video images.
However, the identification accuracy can be significantly affected
by the illumination condition of the target. In addition, such
technologies commonly require heavy computation which also
limits their application in realistic surgical conditions.

To address this difficulty, intra-operative sensing technologies
have been developed to ensure safer and faster RMIS procedures.
For instance, a force sensor was developed and integrated into
an articulated surgical tool for proving haptic feedback to the
surgeon (Konstantinova et al., 2014). However, in addition to the
complexity of the sensor design, this technology requires heavy
modifications to existing surgical tools, as well as complicated
control schemes to feedback the haptic signal without making the
system unstable.

Despite the specific type of advanced sensing technology,
the introduction of novel sensing requires proper integration
to the standard surgical interface such that the surgeon can
easily read and interpret the sensing information or medical
instructions. Simorov et al. (2012) described that the user
interface needs to be merged with the surgeon console of
the robotic system in an ergonomic and comfortable way,
without interfering with surgeon’s perception or requiring
complex training. However, the design of such a user interface
can be difficult since the add-in information to the interface
should avoid distractions and prevent an increase of the surgeon’s
cognitive overload, which was demonstrated to be already
high during critical steps of a complex surgical procedure
by Guru et al. (2015). A good example of such advanced
sensing and user interface integration is the incorporation of
the Firefly fluorescence imaging into the da Vinci surgical
robotic system. The feature based on venous injection of a
contrast agent (indocyanine green) has been introduced to
provide enhanced visualization for discrimination of vessels
and anomalies in soft tissue perfusion. Its user interface allows
the surgeon to toggle the view between normal illumination

and fluorescence imaging mode via the surgeon console
(Meershoek et al., 2018).

In consideration of the limitations of the state-of-the-art work
presented above, we propose a novel sensing system for intra-
operative tissue identification, which includes an Electrical Bio-
Impedance (EBI) sensor and an Advanced User Interface (AUI).
The EBI sensing technology is used in this study, which has
demonstrated to provide significant improvements to various
surgical procedures such as in Kalvøy and Sauter (2016), Cheng
et al. (2017), and Schoevaerdts et al. (2018). An EBI sensor is
designed and integrated into a standard bipolar tool for providing
fast and accurate tissue detection and identification. In addition,
the AUI is designed and merged to the surgeon console to
provide the surgeon with augmented reality (AR) visualization
of additional information about the surgical scene. In addition,
the kinematics information retrieved from the robotic system is
also displayed on the AUI for guiding the EBI measurements and
tissue classification.

The rest of the paper is organized as follows. Section 2 provides
details about the EBI sensor and the AUI, as well as a description
of their integration into a surgical robot platform. Section 3
presents the experiments to assess the proposed system in terms
of tissue identification accuracy and AUI mark position accuracy.
Then, a discussion of the experimental results is provided in
section 4. Finally, section 5 draws conclusions and presents future
directions of this work.

2. THE SYSTEM DESIGN

2.1. System Overview
The proposed system can be seen in Figure 1A. The EBI sensing
technology and the AUI are designed and integrated into a da
Vinci Research Kit (dVRK) for providing tissue identification
(Kazanzides et al., 2014). The EBI sensor, which is integrated
to the bipolar robotic forceps, is mounted on the Patient Side
Manipulator (PSM) of the da Vinci robot. It measures the
electrical bio-impedance of the tissue contacting the tool tips.
The measured values are sent to the connected computer for
signal processing and tissue identification. The AUI runs on
the same computer and uses the master console stereo-viewers
to provide visual guidance to the user during the EBI sensing
procedure. In addition, the tissue identification results and the
augmented-reality labels are displayed on the AUI.

Figure 1B shows the hardware of the EBI sensor directly
mounted on a bipolar robotic tool from the da Vinci surgical
robot. In this study, we choose a standard Maryland bipolar
forceps (Ref. 400172) as an example. More details related to the
EBI sensing will be described in section 2.2.

As shown in Figure 1C, the AUI is designed to show three
different pieces of information in real time. Firstly, it shows
the result of the classification in text form. Secondly, a tri-
dimensional point on the measurement site is created on the
AUI to mark the classified tissue. Thirdly, a visual feedback of
the insertion depth which is derived from the robotic kinematic
information is displayed for guiding the user during the EBI
measurement. A detailed description of the AUI is provided in
section 2.3.
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FIGURE 1 | (A) The schematic of the proposed system; (B) The designed EBI sensor is mounted on the top surface of a standard Maryland bipolar forceps; (C) The

Advanced User Interface is designed to control the EBI sensing and display the identification results.

2.2. The Electrical Bio-impedance Sensing
System
2.2.1. EBI Sensing Principle
In this study, the two jaws of the bipolar forceps are exploited
as an electrode pair for EBI sensing. To measure the electrical
impedance of a tissue sample, an excitation alternate voltage U
is applied through the tissue sample. By measuring the feedback
current I, the impedance of the tissue Z can be computed as the
ratio of voltage to current, and furthermore I can be computed as
an integration of the current density (Jtot):

Z =
U

I
=

U
∫

Jtot
(1)

The total current density (Jtot) includes two components: the real
part Jc and the virtual part Jd, and it can be computed as

Jtot = Jc + Jd = σE− iωεE (2)

where σ and ε represent the conductivity and the permittivity
of the contacted material, E is the electric field, and ω is used to
denote the excitation frequency. Therefore, the modulus of the
measured EBI value |Z| can be calculated as

|Z| =
|U|

|σ − iωε| × |
∫

E|
(3)

In this study, the modulus |Z| is used for the tissue identification,
which is a function of the excitation voltage |U|, the material
electric characteristics (|σ − iωε|) and the electric field generated
by the bipolar forceps (|

∫

E|).
In Equation (3), the modulus |σ − iωε| represents the electric

characteristics of the bio-material when the applied voltageU has
a constant frequency ω. The electric field E depends only on the
electrodes’ geometry such as electrode sizes and intra-distance,
which is explained in the study ofMartinsen and Grimnes (2011).
Since the jaw opening distance L and the pressing depth on
the tissue d can significantly impact the generated electrical

field (see Figure 2A), these two parameters are acquired and
controlled in real time during the EBI measurement. We provide
the detailed characterization of the EBI sensing system with these
two acquisition parameters considered below.

2.2.2. Design the EBI Sensor
As shown in Figure 1B, the EBI sensor’s compact dimensions
(14 × 20 × 64mm) enable it to be mounted directly on the top
surface of a standard da Vinci surgical tool. The sensor measures
the EBI of the tissue contacting its jaws through the proximal end
of the forceps, using the same electric connections already used
for bipolar electrification.

The EBI sensor electronic design is based on an electrical
impedance converter (AD5933, Analog Devices, Norwood, USA)
and a micro-controller (Atmega328P, Atmel Inc., USA). The EBI
sensor is connected to the master computer via USB. Therefore,
the user can control the master computer to set the excitation
frequency of the EBI sensor (up to 100 kHz), command the EBI
sensor to sleep or request the sensor to stream the measured
data |Z|.

In this study, the excitation frequency of the EBI sensor was
set to 100 kHz for the tissue measurement for two considerations.
First, a higher sampling rate could be achieved by executing
a higher excitation frequency (Cheng et al., 2017). The system
can have a 50Hz sampling rate with a 100 kHz excitation
frequency to ensure the EBI sensing in real time. Second, in
their previous studies (Rigaud et al., 1995; Kalvøy et al., 2009)
illustrated that the EBI modulus of most tissue types are easier
to be distinguished when a higher frequency is applied. This
is because at higher excitation frequencies (f > 50 kHz), the
cell membrane are electrically shortened and the measured
impedance can give information of both intracellular impedance
and extracellular impedance, leading to a better description of
the tissue’s electric properties according to the study of Kyle
et al. (2004). Therefore, 100 kHz is chosen to be the excitation
frequency for the EBI sensing.

To characterize the measurement performance of the
proposed sensor, the EBI system was calibrated using several
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FIGURE 2 | (A) We used L and d to estimate the electrodes configuration and

thus the electric field. (B) The system setup for measuring EBI of the four

tissue types with different L and d.

resistors of known values ranging from 786� to 8.2 k�,
which covers the expected range for biological tissue electrical
impedance. The error rate was found to be 0.59% in average, and
the maximum error was found to be 1.2%. For a more detailed
analysis of the measurement performance of the proposed system
please refer to Cheng et al. (2016, 2018).

2.2.3. Tissue Classification Protocol
A classifier was designed to identify the tissue in contact with
the forceps’s tip. For this, we first collected data sets of the |Z|
values of different tissue types with different d and L (Figure 2A).
Then a statistical model was used to fit the collected data
set for each tissue type. When the system is used for tissue
identification, Mahalanobis distances between the new acquired
value and the distributions of different tissue types are calculated.
By seeking the shortest Mahalanobis distance, the tissue type can
be estimated.

The setup for collecting data from different tissue types is
shown in Figure 2B. The EBI sensor was connected andmounted
to the bipolar robotic forceps, which was then fixed on the
4th stage of the motion stage (Siskyou, USA). The jaw opening
distance of the forceps L was adjusted from 2 to 8mm with 2mm
increments. The pressing depth d was controlled by tuning the
4th stage manually. The EBI measurements were collected with d
from 2 to 4mm in every 1mm, because the results of d = 0 and
1mm showed large standard deviation due to unstable contact.
For each measurement, the collected data x includes the modulus
of EBI |Z| and the corresponding L, d values:

x = [L, d, |Z|]T (4)

Subsequently, for each tissue type 2i, a multivariate normal
distribution was used to fit the collected data: 2i ∼ N(µi,6i),
where µ is the mean value and 6 is the covariance matrix.

During the application, the sensing system and the forceps
are integrated to the da Vinci Research Kit (dVRK) described in

Kazanzides et al. (2014). The user controls the forceps to press
on the tissue manually via the surgeon console. The EBI sensor
measures the impedance of the touching material at the tool
tip continuously. Initially, the forceps is exposed in the air and
the measured |Z| is close to infinity. When the tool tip starts
touching a tissue, a relatively small |Z| is detected and d is set to
0 at this moment. Assuming the tool forceps pressing direction
is vertical, the d value can be derived from the dVRK kinematic
information. Under the assumption that the tool is touching the
tissue along the normal direction with respect to the surface, the
computed d value is a reasonable approximation of an actual
touching depth d.

As mentioned above, we only use the data with d from 2
to 4mm. When the d value is within this range, the EBI value
|Z|, the depth d and the jaw opening distance L (acquired
from the dVRK directly) are sent to the master computer for
tissue type identification. In order to reduce the noise level,
the newly collected value x̃ is processed with a low pass filter
by averaging every 5 continuous values. Then the Mahalanobis
distances between x̃ and the distributions of different tissue types
2i are calculated as

Di(x̃) =

√

(x− µi)T6
−1
i (x− µi) (5)

The tissue type under measure is estimated to be 2j if the
Mahalanobis distance to it is the shortest.

x̃ ∈ 2j, if j = argmin
i

{

Di(x̃)|i = 1, 2, ..., c
}

(6)

2.3. The Advanced User Interface
The AUI is based on the Unity3D (Unity Technologies,
USA) cross platform virtual reality framework, which provides
a straightforward way to create complex computer graphics
applications. This framework is based on C# programming
language and provides an extensible architecture based on
external plug-ins. The integration with dVRK is based on the
Robotic Operating System (ROS) interface by creating a C++
native plugin, which exposed required ROS commands to C#
Unity scripts. The virtual environment (see Figure 3) replicates
the real surgical setup. In the virtual world, the real stereo-
endoscope is modeled by two juxtaposed cameras (Virtual
Camera Left, VCL, and Virtual Camera Right, VCR) that record
a textured plane each. The two textures (Image Left, IL, and
Image Right, IR) are mutually visible by the virtual cameras
and they are continuously updated with the images recorded by
the dVRK stereo-endoscope during the experimental procedure.
The virtual environment preserves the depth perception of the
surgical scene and allows the projection of additional information
(e.g., user interfaces, 3D models or point-clouds). The graphical
user interface (GUI) is placed close to the virtual cameras, such
that it can be seen in both fields of views without being occluded
by other objects as shown in Figure 3.

In addition, the projective transformation between the
surgical tool tip and the camera reference frames are computed
so that punctual EBI information can be overlapped to the
endoscopic images in the AUI. To achieve this goal, a registration
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FIGURE 3 | The AUI virtual environment: two virtual cameras (VCL and VCR)

record a textured plane each, where the textures (IL and IR) are the images

obtained with the real stereo-endoscope. The GUI is placed close to the

cameras, while 3D objects are positioned between the textured planes and

the GUI.

FIGURE 4 | The coordinate transformations for registering the tool tip location

in the camera view.

procedure based on the hand-to-eye calibration method
proposed by Strobl and Hirzinger (2006) was implemented.
Figure 4 shows the involved reference Frames (F) and
Transformations (T). We selected a number (N = 15) of
fiducial points on a ChArUco board [i.e., a checkerboard
augmented with fiducial visual markers introduced by Romero-
Ramirez et al. (2018)]. These points have known coordinates
in the World Frame (WF) (i.e., the ChArUco board Frame).
Then, we set the board in the endoscopic camera field of view,
so that the Camera Frame (CF) can be registered to the World
Frame by online extrinsic calibration of the camera (finding
CTW). We placed the tip of the robotic tool on each fiducial
point of the ChArUco board and we recorded the corresponding
coordinates in the Robot Base Frame (RF) by computing the
Forward Kinematics. Quaternion matching method was applied
to estimate the transformation between the Robot Base Frame
and theWorld Frame: RTW . Finally, the transformation between
the Camera Frame and the Robot Base Frame is derived as
CTR = CTW · WTR. Thanks to this registration procedure, the
position of the tool tip is known in the AUI frame and can be
exploited to display the EBI results in the field of view.

TABLE 1 | For each tissue type, a normal distribution was used to describe the

measurements with d from 2 to 4mm.

Tissue µ 6

Muscle [5, 3, 667.5]T









4.81 0 150.24

0 0.67 −86.84

150.24 −86.84 3.14E4









Liver [5, 3, 1464.1]T









4.75 0 360.44

0 0.67 −178.13

360.44 −178.13 1.43E5









Lung [5, 3, 5878.3]T









5.26 0 398.25

0 0.67 −529.18

398.25 −529.18 1.20E6









The registration is assessed by computing the average
positional error of the control points in and out of the calibration
board plane (total number of points = 50). The positional error
is defined as the Euclidean distance between the points in the
world frame and the position calculated by the robot’s forward
kinematics, and it is found to be 4.1mm.

As mentioned in section 2.2, the EBI measurement depends
on several variables including the jaw opening distance L and
the insertion depth d, which are related to different current
densities applied to the tissue and thus result in different
EBI measurements. Since L is accessible from the robot joint
encoders, this parameter is directly exploited for the tissue
classification. In addition, the contacting depth d is required to
be controlled asmentioned in section 2.2.3. Therefore, the correct
position of the surgical tool with respect to the tissue surface and
its required range are provided on the AUI.

After the tissue identification is done, the identified tissue
type is shown in the text box of the AUI. In addition, a dot
is marked in a predefined color on the AUI to represent the
corresponding tissue type. In this way, we can display the EBI
measurements directly on the measurement site, which makes
data interpretation intuitive, avoiding increasing the surgeon’s
cognitive load. In addition, the surgeon is able to disable the AUI
data visualization at any time during the operation.

3. EXPERIMENTAL EVALUATION

3.1. Experimental Design
To evaluate the designed system, three types of ex vivo
porcine tissues including abdominal muscle, liver and lung were
selected, which simulated the common environment of an RMIS
procedure. The tissue samples were obtained from a butcher
shop and most likely belonged to different animals. Surgeons
often operate in ambiguous environments containing these three
types of tissue, thus one application of the proposed system is to
provide real time guidance to enhance the surgeon’s awareness of
the surgical environment.

In total, 18 pieces of porcine tissues were prepared (6 pieces
for each tissue type), among which 9 pieces were used for training
the statistical models as described in section 2.2.3 and the other 9
pieces were used for system evaluation.
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As for evaluating the system, three tests were conducted on
three random places of each tissue sample, resulting in 27 tests
in total. For each test, the experimenter manipulated the bipolar
forceps with integrated EBI sensor to touch the tissue samples
through the console of the da Vinci robot. During the pressing
of the tissue, the experimenter was guided to reach the required
depth (2–4mm) by the AUI as d was updating in real time. The
value of the forceps jaws opening distance L was also computed
in real time based on the jaw opening angle provided by the
robotic system. The evaluation of the designed system considers
the identification result which is shown on the text box of the
AUI. A mark in the corresponding color of the tissue type is
added to the position of the tool tip: red dots for lung tissues,
blue dots for liver tissues and green dots for muscle tissues.

3.2. Experimental Results
We firstly present the statistical model of three tissue types 2i

as shown in Table 1. In Figure 5A, 200 points were generated
to describe the statistical model of each tissue type including
the EBI measurement |Z| and the L and the d used for the
measurement. Figure 5B provides a magnified view for better
showing the normal distributions of muscle and liver. Given 95%
confidence (±2σ ), the experimental results prove that these three
tissue types can be successfully classified by the proposed sensing
system since there are no intersections among them.

Regarding the test results, the AUI demonstrated to be able
to show the d value in real time (9.1Hz), guiding the user to
press the forceps on the tissue in the required depth range for
the EBI sensing. In addition, the EBI sensor proved to be capable
of measuring the EBI of the tissue being touched and to identify
the tissue type accurately. Among all 27 tests, the designed system
could successfully identify the tissues in all the cases. Finally, the
identified tissue types were successfully shown on the AUI text
box and corresponding marks were added to the AUI over the
sensing positions as shown in Figure 6.

4. DISCUSSION

A novel tissue identification method was proposed and designed
by sensing the EBI of tissue touched by a bipolar forceps. As
demonstrated by the experimental results, by controlling the
pressing depth and the jaw opening distance, the EBI sensing
system can identify different tissue types such as muscle, lung
and liver with 100% accuracy. According to Equation (3), the
measured EBI value |Z| actually represents the tissue electric
property |σ − iωε|, given the electric field generated by a
specific setting of pressing depth and jaw opening distance. In
fact, the electrical property of a specific tissue type reflects the
intracellular-extracellular-membrane relationship according to
Martinsen and Grimnes (2011). Therefore, different tissue types
can be distinguishable based on their EBI value since their cell
compositions are different.

FIGURE 6 | The AUI visualization components: the lateral bar provides a visual

feedback of the insertion depth and it turns green when the optimal distance is

reached; the upper central box contains the classification outcome in text

form; marks in corresponding color are added to the view to indicate the

tissue types.

FIGURE 5 | (A) For each tissue type, a group of 200 points are used to describe the multivariate normal distribution of the collected EBI measurements |Z|, the jaw

opening distance L, and the pressing depth d. (B) A magnified view of the data points of muscle and liver.
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In addition, the AUI provides integrated AR data visualization
and indications of the surgical tool positioning to obtain
consistent measurements. The visual feedback on the tool
pressing depth assures a more accurate tissue identification. Also,
it allows to map the surgical scene with information of the tissues
touched by the tool tip. In terms of the positioning accuracy of
the marks, the calibration method allows to obtain an accuracy
(reprojection error) in the order of millimeters. The main reason
for the limited accuracy obtained is probably due to the intrinsic
error of the dVRK forward kinematics (Kwartowitz et al., 2006).

This study still have some limitations. One of them is related
to the error in estimating the pressing depth d. In this study,
the vertical displacement of the forceps was used to estimate
the pressing depth without considering the tissue indentation
and movement. Fortunately, the parameter d in this study was
controlled to be relatively small, and thus we expect a minimum
impact of this error when more generic acquisition conditions
will be used. Another limitation is that interstitial fluids or blood
on the organ surface can easily contaminate the acquired EBI
value. Therefore, it is necessary to remove liquids from the tissue
surface (for instance with suction tool) to obtain meaningful
EBI values.

5. CONCLUSION

This study presents the design of novel sensing system that can
be easily integrated into a commercial surgical robotic system
for identifying different tissue types. The system includes two
components: an EBI sensor which is connected to a bipolar
forceps for measuring the electric property of the touching
tissue; and an AUI for guiding the EBI measurement and
displaying the tissue types. The designed system has potential to
be very helpful given its remarkable capability of on-site tissue
identification in real time, especially when the visual feedback
provided by an endoscope fail to allow such identification
(e.g., in case of blurred camera or smoke in the field of
view). Most importantly, the system could potentially help in
tumors resections because Laufer et al. (2010) have demonstrated
that EBI sensing is able to discriminate between healthy and
cancerous tissues, which is difficult to be achieved based on only
visual inspection.

Future work will focus on the following aspects. We plan
to extend the system evaluation and characterization by
considering more tissue types in different conditions (e.g.,
with different moisturize levels, considering the presence of
blood or other physiological liquid on the surface). In order
to identify similar tissue types or to discriminate between
healthy and cancerous tissues, multiple frequencies can
be applied for improving the EBI sensing. Also, advanced
machine learning algorithms will be applied on the improved
EBI sensing for obtaining robust tissue classification. In
addition, 3D reconstruction based on stereo endoscope
images will be integrated into the current system for a more
accurate pressing depth estimation, especially when the
surgical instrument is contacting the tissue with a generic
orientation during EBI measurements. As for the AUI, the
implementation of tracking algorithms can be improved in
order to adjust the position of the classification dots in case of
tissue displacement.
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