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Living on the Edge: An Unified Approach to
Antithetic Sampling
Roberto Casarin, Radu V. Craiu, Lorenzo Frattarolo and Christian P. Robert

Abstract. We identify recurrent ingredients in the antithetic sampling liter-
ature leading to a unified sampling framework. We introduce a new class of
antithetic schemes that includes the most used antithetic proposals. This per-
spective enables the derivation of new properties of the sampling schemes:
(i) optimality in the Kullback–Leibler sense; (ii) closed-form multivariate
Kendall’s τ and Spearman’s ρ; (iii) ranking in concordance order and (iv) a
central limit theorem that characterizes stochastic behaviour of Monte Carlo
estimators when the sample size tends to infinity. The proposed simulation
framework inherits the simplicity of the standard antithetic sampling method,
requiring the definition of a set of reference points in the sampling space and
the generation of uniform numbers on the segments joining the points. We
provide applications to Monte Carlo integration and Markov Chain Monte
Carlo Bayesian estimation.

Key words and phrases: Antithetic variables, countermonotonicity, Monte
Carlo, negative dependence, variance reduction.

1. INTRODUCTION

The Monte Carlo method is at the core of model-
based scientific exploration. In its simplest form, it re-
lies on approximating an integral I = ∫

f (x)π(dx) with
Îd = 1

d

∑d
i=1 f (Xi ) when π is a probability measure,

Fπ is the corresponding cumulative distribution function
(CDF), f : Rp �→ R is a integrable function with respect
to π , d is the Monte Carlo sample size and X1, . . . ,Xd

are independent, identically distributed (henceforth, i.i.d.)
samples from π .

In modern computational problems, sampling from the
distribution π may be expensive, in terms of either com-
putational effort or time, so techniques needed to reduce
the Monte Carlo sample size d , while maintaining the
desired precision in estimation, are essential. A relevant
class is represented by the variance reduction techniques
that use statistical properties induced by the sampling de-
sign to reduce the variance Var(Îd). For instance, in the
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case p = 1, if the independence condition between sam-
ples X1, . . . ,Xd is dropped then, Var(Îd) becomes

(1)
1

d2

d∑
i=1

Var
(
f (Xi)

) + 1

d2

∑
i �=j

Cov
(
f (Xi), f (Xj )

)
,

which is reduced, compared to independent sampling, if
the average covariance is negative.

Antithetic sampling designs aim at minimizing the co-
variances between samples while preserving their margi-
nal distribution. A historical perspective on the strategies
for antithetic sampling (e.g., Hammersley and Mauldon
(1956), Hammersley and Morton (1956)) allows us to
better understand the rationale behind various construc-
tions and to establish useful relationships with the re-
sults available from related fields, such as stochastic or-
ders (e.g., Barlow and Proschan (1975)), optimal transport
(e.g., Gaffke and Rüschendorf (1981)), Fréchet classes
(e.g., Whitt (1976)), and group transformation (e.g.,
Andréasson (1972)). Our historical review identifies some
key recurrent ingredients used to propose a unified frame-
work for antithetic sampling. We introduce a new class of
antithetic constructions that also includes some of the, to
our knowledge, most used antithetic proposals, which are
reviewed later in this section. The sampling schemes in
the class are simple and consist in choosing once for all
a deterministic set of points in a given dimension and the
way those points are joined with segments. Then random
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vectors from the schemes are obtained by sampling on the
segments.

Moreover, this new perspective enables the derivation
of new properties of the sampling schemes for p stochas-
tically independent replications (p ≥ 1): (i) optimality in
the Kullback–Leibler sense; (ii) closed-form multivariate
Kendall’s τ and Spearman’s ρ; (iii) ranking in concor-
dance order, and (iv) a central limit theorem that charac-
terizes stochastic behavior when d tends to infinity.

The pairwise antithetic coupling introduced by Ham-
mersley and Morton (1956) achieves variance reduction
by generating d/2 (we assume d is even in (1)) i.i.d. pairs
of negatively correlated random variables (X1i ,X2i), i =
1, . . . , d/2. The joint bivariate distribution of (X1i ,X2i)

for each i = 1, . . . , d/2 achieves the lower Fréchet bound,

W
(
Fπ(X1i ),Fπ(X2i )

)
= max

(
Fπ(X1i ) + Fπ(X2i ) − 1,0

)
,

that represents the pointwise minimal joint cumulative
distribution among the class of distributions having Fπ as
marginal (see Fréchet (1935)). This is achieved by sam-
pling using the quantile coupling:

(2) X1i ∼ π, X2i = F−1
π

(
1 − Fπ(X1i )

)
.

This procedure minimizes the correlation for any mono-
tonic f in the case d = 2 and p = 1. The explanation of
this reduction, as correctly pointed out by Whitt (1976),
can be found in Höffding (1940) and Fréchet (1951), and
it is due to the rearrangement inequality (see Chapter X of
Hardy et al. (1934)). Interestingly, the construction can-
not be unambiguously extended beyond pairs because the
lower Fréchet bound of all d-variate distributions is a dis-
tribution only when d = 2. In particular, in dimension
d = 2, for a given Fπ , the Fréchet lower bound is the
unique element in the set of bivariate distributions that
is minimal for most dependence orders, that is, there is
no other element ranking lower than Fréchet bound in
those orders. Beyond dimension d = 2, minimal elements
are not unique. In the following, we focus on the concor-
dance order, establishing a relationship with the variance
of functions in one variable, that is, p = 1.

DEFINITION 1.1 (Concordance Order (Joe, 1990)).
Let X and Y be random vectors with CDFs F and G and
survival function F̄ and Ḡ, respectively. Then Y is more
concordant than X (written X ≺C Y) if

(3) F ≤ G and F̄ ≤ Ḡ.

As remarked by Joe (1990), for d-dimensional vectors,
X ≺C Y implies

(4) Var

(
d∑

l=1

blf (Xl)

)
≤Var

(
d∑

l=1

blf (Yl)

)
,

with f monotonic and any bl ≥ 0, l = 1, . . . , d . Equation
(4) implies that concordance order is an efficiency order

for Monte Carlo estimators when considering monotonic
functions of dimension p = 1.1 It follows that the best
candidates for variance reduction, in the monotone case
with p = 1 and d > 2, are the elements in the set of d-
variate distribution with given marginals that are minimal
in concordance order. We remark that given other notions
of dependence order that imply concordance order, such
as supermodular order (Müller and Scarsini (2000)) and
correlation order (Lu and Yi (2004)), the set of minimal
elements with respect to the other order is contained in
the set of minimal elements with respect to concordance
order (cf. Remark 3.1 in Ahn and Fuchs (2020)).

If we drop the monotonicity assumption about f in
(1), the discussion and derivation of lower bounds for
the variance are more complex and less general. If p = 1
and d = 2, for nonmonotonic, bounded f , Hammersley
and Mauldon (1956) prove that the lower bound of the
variance can be attained only by a multivariate trans-
formation of a single standard uniform random variable
which, almost surely, is coordinatewise monotonic. The
proof relies on two main ingredients. First, the mono-
tonic transformation introduces an approximate represen-
tation of the class of bivariate distributions with uniform
marginals. The candidate member of the class is approx-
imated by partitioning the unit square in subsquares of
side 1/n. The approximation is a doubly stochastic ma-
trix in which each element corresponds to a subsquare and
has a value equal to the mass assigned to the correspond-
ing subsquare. This construction relies on the bijective re-
arrangement (Puccetti and Wang (2015)) also known as
measure-preserving transformation (e.g., Brown (1966),
Vitale (1990)). In the interpretation of Vitale (1990), for
every random vector (U1,U2) on the unit square, with
standard uniform marginals, there is a sequence of bijec-
tive maps fn such that (U1, fn(U1)) weakly converges
to (U1,U2). Bijective rearrangements and the induced
stochastic dependence (Durante and Sánchez (2012)) are
relevant to our discussion of the antithetic constructions
for d > 2.

The second ingredient is the Birkhoff–Von Neumann’s
decomposition (Birkhoff (1946), von Neumann (1953))
of doubly-stochastic matrices in which they are repre-
sented as convex combinations of permutation matrices.
Handscomb (1958) extends the latter result to character-
ize the extremal points of multistochastic arrays as higher-
dimension permutation arrays and to provide a generaliza-
tion for d > 2 of the results in Hammersley and Mauldon
(1956).

1The statement remains valid for importance sampling estimators.
In the Markov Chain Monte Carlo theory, a related result is in Daduna
and Szekli (2006) showing the equivalence of concordance order and
the South West order (Mira (2002)) of asymptotic variances of Markov
chains.



LIVING ON THE EDGE 117

Those early results based on discretization give suf-
ficient conditions to characterize the transformations
needed to obtain a minimum variance. Unfortunately, the
characterizations are not constructive and do not provide
feasible random sampling algorithms. Moreover, the exis-
tence of the optimal transformation minimizing the vari-
ance is not guaranteed.

This led earlier researchers to propose feasible yet
suboptimal sampling solutions, including Hammersley
and Morton’s (Hammersley and Morton (1956)) pro-
posal for d > 2. Andréasson (1972), Andréasson and
Dahlquist (1972), and Roach and Wright (1977) follow
a group theoretic approach to span the set of antithetic
vectors. In particular, Roach and Wright (1977), build
on Andréasson (1972), Andréasson and Dahlquist (1972)
and Tukey (1957), and draws a parallel with systematic
sampling. Roach and Wright (1977) sampling solutions
for d = 2, in the case of nonmonotonic f ’s, rely on dis-
cretization, optimal transport, and use a branch and bound
algorithm to explore the group of transformations lead-
ing to antithetic vectors. The group theoretic approach of
Roach and Wright (1977) was also used in Fishman and
Huang (1983) to obtain a reinterpretation of the original
Hammersley and Morton (1956) proposal for d > 2. Their
construction, named rotation sampling, is described next.

EXAMPLE 1 (Rotation sampling).

U1 = U ∼ U[0,1],

Ul =
(

l − 1

d
+ U

)
mod 1, l ∈ {2, . . . , d},

(5)

where U[0,1] denotes the standard uniform distribution.

This proposal is a particular case of our stochastic rep-
resentation.

The extension to unbounded functions of the theorems
in Hammersley and Mauldon (1956) and Handscomb
(1958) can be found in Wilson (1979) for d ≥ 2 and
p = 1 and in Wilson (1983) for d ≥ 2, p ≥ 1. The lat-
ter paper combines discretization and bijective rearrange-
ment with the optimal transport assignment problem to
prove the results. Bijective rearrangement and Monge-
Kantorowitch transportation problem are used in Gaffke
and Rüschendorf (1981) to obtain minimum variance con-
structions for f equal to the identity function. The authors
are the first to realize that the Hammersley and Morton
(1956) bivariate antithetic vector has an almost sure con-
stant sum, which is one of the main ingredients of our
unified approach. Thus they minimize the variance in the
case p = 1 and f equal to the identity function.

The relationship between constant sum and variance re-
duction is trivial. Random vectors of dimension d ≥ 2
with constant sum achieve the smallest variance for the
sum of their components. Beyond that, a recent stream of
papers (see Ahn and Fuchs (2020), and references therein)

proves that the constant sum vectors are among the mini-
mal vectors with respect to the concordance order. In par-
ticular, one possible generalization of the constant sum
constraint is the following one.

DEFINITION 1.2 (l-countermonotonic). A d-dimen-
sional random vector U with uniform marginals, is said
to be l-countermonotonic (l-CTM), if there exist some
index set L ⊆ D with D = {1, . . . , d} and |L| = l, a
family {gl}l∈L of strictly increasing continuous functions
[0,1] �→R and some k ∈R such that

(6)
∑
l∈L

gl(Ul) = k a.s.

Theorem 2 and Proposition 1 in Lee and Ahn (2014)
show that the antithetic vector is the only element of the
2-CTM class and it is minimal in the concordance order.

In addition, conditions for achieving minimality in the
concordance order were linked to l-CTM random vectors.
Lee, Cheung and Ahn (2017) show that the set of d-CTM
vectors is contained in the subset of elements minimal in
concordance order. It follows then that d-CTM proposals
represent valid candidates for variance reduction, in the
monotone case with p = 1.

In this paper, we study some of the existing sampling
methods and propose new constructions for d-CTM vec-
tors of Uniform(0,1) random variables with a.s. constant
sum, that is gl(Ul) = Ul , l ∈ D in equation (6). This sub-
class is known in the literature as strict d-CTM (Lee and
Ahn (2014)). Gaffke and Rüschendorf (1981) recognize
that Hammersley and Morton (1956) is strict 2-CTM and
provide the first strict 3-CTM construction given below.

EXAMPLE 2 (Gaffke and Rüschendorf (1981) strict 3-
CTM).

U1 = U, U ∼ U[0,1],
U2 = U + 1

2
I[0, 1

2 ](U) − 1

2
I[ 1

2 ,1](U),(7)

U3 = −2U + I[0, 1
2 ](U) + 2I[ 1

2 ,1](U).

For the case d > 3, the authors propose to generate a se-
quence of independent random vectors using their repre-
sentation in (7) and the bivariate antithetic vector of Ham-
mersley and Morton (1956).

EXAMPLE 3 (Gaffke and Rüschendorf (1981) strict
d-CTM). Let d̃ = �(d − 2)/2� where �x� denotes the
largest integer smaller than x, and let Vi , i = 1, . . . , d̃ be
a sequence of independent random variables. Define

U2i−1 = Vi, U2i = 1 − Vi, i = 1, . . . , d̃

with

(8) Ud−1 = V
d̃+1, Ud = 1 − V

d̃+1,
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if d even, and

Ud−2 = V
d̃+1,

Ud−1 = V
d̃+1 + 1

2
I[0, 1

2 ](Vd̃+1) − 1

2
I[ 1

2 ,1](Vd̃+1),(9)

Ud = −2U + I[0, 1
2 ](Vd̃+1) + 2I[ 1

2 ,1](Vd̃+1),

if d is odd.

Almost contemporaneously, Arvidsen and Johnsson
(1982) put forward the apparently different proposal given
in the following.

EXAMPLE 4 (Arvidsen and Johnsson (1982) strict d-
CTM).

U1 = U, U ∼ U[0,1],
Ui = (

2i−2U1 + 1/2
)

mod 1, 2 ≤ i ≤ d − 1,(10)

Ud = 1 − (
2d−2U1

)
mod 1.

We will show that for d = 3, the two proposals in Ex-
amples 2 and 4 coincide and are special cases of our gen-
eral stochastic representation. Both constructions yield
vectors with a constant sum, but Gaffke and Rüschendorf
(1981) proposal’s use of independent random variates for
d > 3 made us wonder about its efficiency, especially
since the results in Hammersley and Mauldon (1956) and
Handscomb (1958) suggest that combinations of indepen-
dent vectors could be suboptimal. We compare different
strict d-CTM constructions using the concordance order.
According to Ahn and Fuchs (2020), all strict d-CTM
have minimal multivariate Kendall’s τ , but they can have
different multivariate Spearman’s ρ values. For example,
Gaffke and Rüschendorf (1981), and Arvidsen and Johns-
son (1982) proposals have the same values for multivari-
ate Kendall’s τ , but different ones for Spearman’s ρ.

Other examples of strict d-CTM vectors, partially cov-
ered by our representation, can be found in Knott and
Smith (2006), Lee and Ahn (2014), and after a linear
transformation also the construction in Bubenik and Hol-
brook (2007) and references therein, can be seen as strict
d-CTM vectors.

The range of application of CTM constructions has
been extended to other marginal distributions. For in-
stance, Rüschendorf and Uckelmann (2002), expands
the work in Gaffke and Rüschendorf (1981) to random
variables {Y1, . . . , Yd} with unimodal distributions us-
ing the Lévy–Shepp form of the Khinchine representa-
tion theorem (Lévy (1962), Shepp (1962)), as Yi = XVi

where Vi ∼ U(−1,1) for all 1 ≤ i ≤ d . Hence, a CTM
construction for {V1, . . . , Vd} implies constant sum for
{Y1, . . . , Yd}. Trivially, such a vector will achieve the
smallest variance for the sum of its components. In those
cases, the literature refers to these vectors as complete
or joint mix, differentiating between having identical or

different marginals (see Puccetti and Wang (2015), and
references therein). Our general construction can be ex-
tended to nonuniform marginals following Rüschendorf
and Uckelmann (2002).

In Rubinstein and Samorodnitsky (1987), a different ex-
tension of Handscomb (1958) theorem was proposed by
dropping the bijective condition for the rearrangement.
They prove the existence of antithetic solutions that mini-
mize the variance. According to the authors, optimal anti-
thetic solutions should be a function of only one uniform
random variable, without restriction on the functional de-
pendence. Unfortunately, dropping the bijective condition
results in a tautological statement because, as shown in
Brown (1966), Whitt (1976), Vitale (1990) and recently
reformulated in theorem 1 of Puccetti and Wang (2015),
every random vector can be expressed as a function of
only one uniform random variable.

This difficulty of narrowing down conditions for the
existence of optimal antithetic variables is linked to the
challenge of extending the Birkoff–von Neumann rep-
resentation to the continuous case. It is, in fact, well
known that bijective rearrangements are only a subclass
of the extremal transformations. For example, the d = 2
case is known as Birkhoff’s problem 111 (Isbell (1955)),
and even if there exists a characterization (Lindenstrauss
(1965)), the necessary and sufficient conditions in their
most recognizable form (Moameni (2016)) are of lim-
ited practical relevance. For a discussion and an exam-
ple of an extremal nonbijective class in the multivariate
case, refer to Durante, Fernández Sánchez and Trutschnig
(2014). Since a general characterization is out of reach,
we solve the optimal transport problem for transforma-
tions in the extremal class and produce a stochastic repre-
sentation that depends on a single standard uniform.

Historically, given the impossibility of obtaining opti-
mal and feasible antithetic plans, by mid 1980s the liter-
ature shifted the focus to negative dependence. In partic-
ular, a procedure considered close to antithetic sampling,
but applicable to the general d ≥ 2, p ≥ 1 is the Latin
Hypercube sampling introduced in McKay, Beckman and
Conover (1979).

EXAMPLE 5 (McKay, Beckman and Conover (1979)
Latin Hypercube). Given a standard uniform d-dimen-
sional random vector V and Dσ = (σ (0), . . . , σ (d −1))T ,
a permutation of {0,1, . . . , d − 1} independent of U, set

(11) U = 1

d

(
Dσ + V

)
.

The simplicity of the method, the guarantee of asymp-
totic variance reduction (Stein (1987)) and the availability
of a central limit theorem (Owen (1992)) made it one of
the most common variance reduction strategies. The rela-
tionship with antithetic variates was studied in Craiu and
Meng (2005), where through the introduction of an itera-
tive version of the method, the Iterated Latin Hypercube
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(ILH), it is shown that, in the iteration limit, the result-
ing random vector has an almost-sure constant sum. Our
new representation allows comparing ILH and its combi-
nation with other antithetic proposals. Finally, we extend
the central limit theorem in Owen (1992), showing the
irrelevance of the starting distribution when d goes to in-
finity, and the number of iterations is fixed.

The paper is structured as follows: Section 2 contains
the description of the unified representation and its inter-
pretation. Section 3 discusses distributional properties and
concordance measures. New and old illustrations of the
unified representation and their ranking are presented in
Section 4 followed by the derivation of the general central
limit theorem for Latin Hypercube in Section 5. Numer-
ical illustrations are presented in Section 6 and the paper
ends with a discussion of future directions for research in
Section 7.

2. SAMPLING ON LINE SEGMENTS

We introduce a general method for constructing anti-
thetic vectors whose components have a standard uni-
form, Uniform(0,1), as marginal distribution. Non-
uniform variables can be obtained using various transfor-
mations, see, for example, the inverse CDF method or the
Lévy–Shepp form of the Khinchine representation theo-
rem (Lévy (1962), Shepp (1962)). We study conditions
for achieving d-CTM and show that several known coun-
termonotonic random vectors used in variance reduction
can be obtained as special cases of our general construc-
tion.

2.1 Standard Antithetic Construction

Our method relies on sampling with equal probability
on a collection S of line segments in the d-dimensional
Euclidean space. Since each segment is uniquely charac-
terized by its endpoints or vertexes, the collection S can
be equivalently represented by the set of vertex pairs that
define the segments and their coordinates. This represen-
tation is efficient in large dimensions even when the seg-
ments share some of their vertexes.

More formally, let us define a vertex set V = {1, . . . , n}
as a set of points in the d-dimensional hypercube, the
coordinates of the kth vertex as the column vector xk ≡
(x1k, . . . , xdk)

T ∈ [0,1]d and the coordinate matrix X =
(x1, . . . ,xn) as the collection of vertex coordinates. We
assume there is an edge e = (i, j) between i and j , with
i < j , if there is a segment joining the two vertices i

and j , and define the collection of segments by the edge
set E = {(i, j) ∈ V × V}. Then G = {V,E} is an undi-
rected graph and S = {G,X} is the collection of segments.
The lexicographic order on vertex indexing induces an or-
der on the edge set, such that the kth element ek ∈ E is
uniquely associated to its couple of vertices, defining the
map ϕE : {1, . . . , |E |} �→ E , k → (i(k), j (k)).

Our stochastic construction relies on the graph repre-
sentation G and requires a properly chosen vertex matrix
X and two independent standard uniform random num-
bers:

1. draw V ∼ U[0,1] and W ∼ U[0,1] independently;
2. choose with uniform probability on the edge set

E the edge eK by computing K = �|E |W� + 1; obtain
the random pair of vertices (I, J ) = (i(K), j (K)) with
(i(K), j (K)) = ϕE(K);

3. obtain a random point on the segment joining ver-
tices I and J with uniform probability

U1 = x1IV + (1 − V )x1J ,

...(12)

Ud = xdIV + (1 − V )xdJ .

As in antithetic coupling, it is possible to use only one
standard uniform number W by setting V = {|E |W }.
One can show that P({|E |W } ≤ u|�|E |W� + 1 = k) =
P({|E |W } ≤ u). The following example shows that the
standard antithetic method is a special case of our general
sampling construction.

EXAMPLE 6. Let us consider d = 2 and sampling in
the unit square on the diagonal joining the vertex 1 of co-
ordinates x1 ≡ (x11 = 1, x21 = 0)T and the vertex 2 of
coordinates x2 ≡ (x12 = 0, x22 = 1)T (see Figure 1). Let
V ∼ U[0,1] and compute

U1 = x11V + (1 − V )x12 = V,

U2 = x21V + (1 − V )x22 = 1 − V.

Thus, sampling one uniform antithetic couple V and
1 − V is equivalent to sampling on a segment (see the
left plot in Figure 1), and the support of the samples can
be summarized by the vertex coordinate matrix

(13) X =
(
x11 x12
x21 x22

)

and the couple of vertices e1 = (1,2) of the segment we
are sampling on (right plot).

FIG. 1. Left: support set, that is, the segment joining vertices 1 and
2 of coordinates x1 and x2, for the antithetic sampling. Right: depen-
dence graph G with V = {1,2} and E = {e1}.
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The marginal uniformity of the samples on the segment
follows from the convex combination representation and
the standard uniform assumption for V

(14) Ul ∼ U
[
min(xl1, xl2),max(xl1, xl2)

]
, l = 1,2.

In addition, the standard uniformity of Ul follows from
the assumption max(xl1, xl2) = 1 and min(xl1, xl2) = 0
for all l = 1,2, and the d-CTM property from conditions
on the vertex coordinates: x11 + x21 = x12 + x22 = 1.

Example 6 illustrates the fact, which is easy to prove
in full generality, that our construction generates samples
with uniform probability on S . However, it does not guar-
antee that all the marginal distributions of the components
Ul , for l ∈ D, are Uniform(0,1). In the following, we
study the conditions on G and X, such that the variables
Ul , l ∈ D are conditionally uniform, given the choice of
the segment, and marginally Uniform(0,1).

2.2 Uniformity

We provide conditions on the collection of segments
S in the d-dimensional hypercube to achieve standard
marginal uniformity and d-CTM when using our con-
struction. Before presenting the general result we intro-
duce some notation and discuss the main assumptions.

For the general case, the following condition rules out
atomic and mixed probability measures.

ASSUMPTION 1 (Admissibility). The set S = {G,X}
is admissible if all segments in S are not contained in any
of the (d − 1)-hyperplanes that are parallel to a (d − 1)-
dimensional hyperface of the unit hypercube [0,1]d .

We provide some intuition for Assumption 1 through
the following 2-dimensional example.

EXAMPLE 7. Consider the collection of segments in
the left plot of Figure 2 with coordinate matrix

(15) X =
(
α β γ α

β α β α

)
,

where α < β ≤ γ ∈ R. According to the lexicographic
order map k → (i(k), j (k)) the edge set is E∗ = {e∗

1 =

FIG. 2. Left: support set of the sampling scheme. Right: admissible
(solid) and not-admissible (dashed) edges. Edge labeling follows the
vertex lexicographic order.

(1,2), e∗
2 = (1,3), e∗

3 = (1,4), e∗
4 = (2,3), e∗

5 = (2,4),

e∗
6 = (3,4)} (see right plot). Since the sampling method

can concentrate the probability mass at some points or
along some directions of the hypercube we need to im-
pose some admissibility conditions to have nondegenerate
distributions. The first set of conditions excludes degener-
ate segments, which are segments with equal end-points.
Thus, we rule out self-loops from the graph, that is, edges
from one vertex to itself. The second set of admissibility
conditions excludes edges where the distribution concen-
trates along some coordinates. The edge e∗

2 joining vertex
1 to 3 is not admissible since

U1 = x11V + x13(1 − V ) = γ − (γ − α)V,

U2 = x21V + x23(1 − V ) = β,

and U2 is almost surely constant conditionally on being
on that edge. A similar remark applies to the edges e∗

3 and
e∗

5, whereas e∗
4 (red dashed in Figure 2) is only admissible

if β < γ .

In summary, the admissible edge set is

E =

⎧⎪⎪⎨
⎪⎪⎩

{
e1 = e∗

1 = (1,2), e2 = e∗
4 = (2,3),

e3 = e∗
6 = (3,4)

}
, if β < γ,{

e1 = e∗
1 = (1,2), e2 = e∗

6 = (3,4)
}
, if β = γ.

In our construction, conditional uniformity is a necessary
condition for standard marginal uniformity and the admis-
sibility assumption implies conditional uniformity. To en-
hance the paper’s readability, all proofs are deferred to the
Appendix.

LEMMA 1 (Conditional Uniformity). Let S satisfy
Assumption 1. Conditionally on being on the kth seg-
ment of edge ek = (i(k), j (k)), for each l ∈ D, the ran-
dom variable Ul in (12) is uniform on [αl,k, βl,k] with
αl,k = min(xl,i(k), xl,j (k)) and βl,k = max(xl,i(k), xl,j (k)).

Another requirement for our construction is that sam-
pling points are in the unit hypercube which is guaranteed
by the following range condition.

ASSUMPTION 2 (Range). The range requirement is
satisfied if max{xlk, k = 1, . . . , n} = 1 and min{xlk, k =
1, . . . , n} = 0.

Since Ul is a convex combination of xl,i , i ∈ {1, . . . , n},
Assumption 2 is needed in light of the requirement that
Ul ∈ [0,1] for each l ∈ D.

In order to introduce the third assumption we need
some notation. The set of admissible edges depends on
the partitions induced by the distinct elements, sorted
in ascending order, in the rows of X. For each row
(xl,1, . . . , xl,n), of X with l = 1, . . . , d we define al =
(al,1, al,2, . . . , al,nl−1, al,nl

) the sequence of nl ≤ n sorted
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distinct elements. The unique values define a partition, say
{Al,m}nl

m=2 of the unit interval with elements

(16) Al,m = [al,m−1, al,m), m ∈ {2, . . . , nl}.
For each unique value alk , the position set Ml,k = {i ∈

{1, . . . , n} : xl,i = al,k}, k = 1, . . . , nl denotes the set of
points that provides the unique projected values of X’s
columns into the lth dimension. For each row, Ml,k must
therefore satisfy

Ml,m ∩Ml,m′ = ∅,

nl⋃
m=1

Ml,m = {1, . . . , n},

and one can represent the coordinates of the vertex xk by
using the sets of positions of the unique values

xl,k =
nl∑

m=1

al,mIMl,m
(k), l ∈ D,

which will be used in the following to write the CM con-
straint.

For illustration purposes, let us focus on the first co-
ordinate of Example 7 in the case β < γ . The sequence
of nl = 3 sorted distinct elements of the first row is
a1 = (a1,1 = α,a1,2 = β,a1,3 = γ ) and the sets of posi-
tions of the unique values are M1,1 = {1,4}, M1,2 = {2},
M1,3 = {3} which is a partition of {1,2,3,4}.

We denote with Gl ≡ {Vl ,El} the projection of G on
the l-coordinate induced by the unique values al . Gl is
the graph obtained by assigning a node to each of the
nl components of al and defining the edge set El =
{el,1, . . . , el,|E|} through the map {1, . . . , |E |} �→ El , k ∈
{1, . . . , |E |} → el,k = (m(k),m′(k)) ∈ El where

m(k) = {
m ∈ {1, . . . , nl} : i(k) ∈ Ml,m

}
,

m′(k) = {
m′ ∈ {1, . . . , nl} : j (k) ∈ Ml,m′

}
.

We call nl
(m,m′) the edges multiplicity between the pro-

jected nodes m and m′, by convention if (m,m′) is not in
El then nl

(m,m′) = 0.

REMARK 1. In the proposed notation, Assumption 1
corresponds to m(k) �= m′(k) when el,k = (m(k),m′(k))

for all k = 1, . . . , |E |, l = 1, . . . , d .

In Figure 3, we report the projection of the graph of
Figure 2 onto the lth coordinates given in equation (15)
of Example 7.

Set αl,k = al,mα(k) and βl,k = al,mβ(k), where mα(k) and
mβ(k) are the minimum and the maximum value between
m(k) and m′(k), and define

Kl,m ≡ {
k ∈ {

1, . . . , |E |} : mα(k) + 1 ≤ m ≤ mβ(k)
}
.

We state now the condition on the coordinates of the sam-
pling construction for marginal standard uniformity.

FIG. 3. Graph projection for the graph in Example 7 in the case
β < γ (top) and β = γ (bottom), considering the first (left) or the
second (right) coordinate.

ASSUMPTION 3 (Coordinate). The following set of
nl − 2 equations in the variables al,m, m = 2, . . . , nl − 1
are satisfied:

(17) Fl,m(al) = 1

|E |
∑

k∈Kl,m

1

al,mβ(k) − al,mα(k)

− 1 = 0

m = 2, . . . , nl − 1 with al,1 = 0 and al,nl
= 1.

The following example clarifies the relationship be-
tween Assumptions 2–3 and standard uniformity.

EXAMPLE 8. We discuss separately the two cases:
β = γ and β < γ since they correspond to two different
admissible edge sets. If β = γ the first component of U in
the stochastic construction of equation (12) is

U1 =
{
α + (β − α)V, if K = 1,

β − (β − α)V, if K = 2.

Since we are sampling uniformly on the edge set E it fol-
lows that

P(K = 1) = P(K = 2) = 1

|E | = 1

2

and U1 has the following marginal probability density
function (PDF):

f (u1) = 1

2

1

β − α
I[α,β](u1)

+ 1

2

1

β − α
I[α,β](u1)(18)

= 1

β − α
I[α,β](u1).

We get a standard uniform random variable if α = 0 and
β = 1. By the same argument, U2 is a standard uniform
random variable. In conclusion, by sampling on the two
diagonals of the unit square with a mixture of an antithetic
couple (V ,1 − V ) and a comonotonic couple (V ,V ), the
method can attain marginal standard uniformity (left plot
in Figure 4).



122 CASARIN, CRAIU, FRATTAROLO AND ROBERT

FIG. 4. Sampling on line segments. The support set of the
2-dimensional example with 4 vertexes. Cases: β = γ (left) and β < γ

(right).

If β < γ the PDF of U1 is

f (u1) = 1

3(β − α)
I[α,β](u1)

+ 1

3(γ − β)
I[β,γ ](u1)(19)

+ 1

3(γ − α)
I[α,γ ](u1).

A necessary and sufficient condition for u1 ∈ [0,1] is
α = min{x1k, k = 1, . . . ,4} = 0 and γ = max{x1k, k =
1, . . . ,4} = 1 which implies the PDF is piecewise con-
stant on the partition [0, β) ⊂ [0,1] and [β,1] ⊂ [0,1],
induced by the unique values in the first row of X, and is
null on [0, β) ∩ [β,1]. For β = 1/2 the PDF is constant
over the elements of the partition, that is,⎧⎪⎪⎨

⎪⎪⎩
1

β
+ 1 = 3, if u1 ∈ [0, β),

1

1 − β
+ 1 = 3, if u1 ∈ [β,1]

(20)

which implies U1 ∼ U[0,1] and U2 ∼ U[0,1/2]. Thus,
for β < γ our construction is not standard uniform along
all coordinates of the vector. The right plot of Figure 4
shows that the range of U1 is [0,1] (horizontal axis) and
the range of U2 is [0,1/2] (vertical axis). Similar argu-
ments can be applied to show that imposing standard uni-
formity for U2 requires min{x1k, k = 1, . . . ,4} = α = 0
and max{x1k, k = 1, . . . ,4} = β = 1 which is not satisfied
since β < γ .

We are ready to state the main result of this section
which guarantees the marginal standard uniformity of our
construction. In addition, we provide a method to find al

satisfying the condition in Assumption 3.

THEOREM 1 (Marginal Standard Uniformity). Under
Assumptions 1–3, each coordinate of the random vector
U = (U1, . . . ,Ud) in the stochastic representation (12)
has a Uniform(0,1) marginal distribution.

THEOREM 2. The set of equalities in (17) are satisfied
iff al is a solution of the following convex minimization
problem

(21) min
al∈[0,1]nl


l(al)

with constraints al,1 = 0 and al,nl
= 1, where


l(al) = − 1

2|E |
nl∑

m,m′=1

nl
(m,m′) log |al,m′ − al,m|.

Since the optimization problem is convex, if a solution
exists it is a global minimum. In addition, since 
l(al)

is a sum of lower semicontinuous functions, it is lower
semicontinuous. This, together with the compactness of
the unit hypercube, guarantees the existence of a solution,
by the lower version of the Weierstrass theorem (see, e.g.,
Theorem 2.43 in Aliprantis and Border (2007)).

In the next theorem, we show that our construction
satisfies an optimality criterion involving the Kullback–
Leibler (KL) divergence from the uniform distribution.
We remind the reader that the KL divergence of the prob-
ability measure P with respect to the probability measure
Q is

DKL
(
P||Q) = EP

[
log

(
dP

dQ

)]
.

In our case, P is the joint measure of Ul and K given by
the stochastic representation (12):

dP(ul, k) = 1

|E |f (ul|K = k) dul,

and Q is the joint uniform independent measure in Ul and
K :

(22) dQ(ul, k) = 1

|E |I[0,1](ul) dul.

Let us denote with Pd,n,E the class of measures with
stochastic representation (12) and n nodes in the unit hy-
percube of dimension d connected by the edges in the
set E .

THEOREM 3. The minimization problem in (21) is
equivalent to

(23) min
P∈Pd,n,E

DKL
(
P||Q)

with Q the joint uniform in equation (22).

Finally, we note that Assumptions 1–3 refer only to
properties of the marginal distribution. Consequently, our
marginal uniformity result holds also for the following
generalization of our construction.

Given a d-dimensional V ∼ F with Vl ∼ U[0,1] for
l = 1, . . . , d and the stochastic representation

U1 = x1IV1 + x1J (1 − V1),

...(24)

Ud = xdIVd + xdJ (1 − Vd),

we have the following corollary to Theorem 1.
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COROLLARY 1. Under Assumptions 1–3 the lth com-
ponent of the random vector U = (U1, . . . ,Ud) in the
stochastic representation (24) is a standard uniform ran-
dom variable.

The results in Theorems 1–3 allow us to find the lth row
al , of the coordinates matrix X such that Ul in representa-
tion (12) is standard uniform. Thus, we have d minimiza-
tion problems each with a different number of variables,
nl , where the dependence structure in U is given by the
graph G of the segments in S and marginally encoded by
al and projected graphs Gl .

DEFINITION 2.1. Let S = (G,X) be the segment set
with G = {V,E}. The convex minimization problem

min
{al ,l=1,...,d}∈[0,1]n1+···+nd

d∑
l=1


l(al)

is called standard uniform on S problem.

In the previous optimization problem, as well as in
those introduced later on in this section, the vertex set
V and the edge set E are held fixed. We are optimizing
on the position of the vertexes, that is, in the coordinate
matrix X (or equivalently on the collection of vectors al,
l = 1, . . . , d). In the following sections, we will show how
to rank d-dimensional construction based on a different
number of vertexes n and different E by their amount of
negative dependence, using concordance measures.

2.3 Strict Countermonotonicity on Segments

Limiting the study to strict d-CTM leads to an unique
value for the constant k in (6),

k = E

[
d∑

j=1

Uj

]
=

d∑
j=1

E[Uj ] = d

2
.

The constant sum condition can be written as a linear re-
striction on the coordinates of the vertices xk , that is,

d∑
l=1

Ul =
d∑

l=1

xlJ + V

[
d∑

l=1

xlI −
d∑

l=1

xlJ

]
= d

2
,

and since the previous relationship should be valid for all
V and (I, J ) (i.e., for all W in our setting) we obtain the
condition that all vertices should be in the hyperplane of
constant sum, that is,

d∑
l=1

xlk =
d∑

l=1

nl∑
m=1

al,mIMl,m
(k)

= d

2
k = 1, . . . , n.

(25)

The convexity of the minimization problem in equation
(2.1) is not altered by the inclusion of a linear constraint,
nevertheless the constraint couples the coordinates and
yields the following nonseparable optimization problem
in nd = ∑d

l=1 nl variables.

DEFINITION 2.2. Let S = (G,X) be the segment set
with G = {V,E}. The convex minimization problem

min
{al ,l=1,...,d}∈[0,1]n1+···+nd

d∑
l=1


l(al)

subject to
d∑

l=1

nl∑
m=1

al,mIMl,m
(k) = d

2
, k = 1, . . . , n

will be referred as the strict d-CTM on S problem.

Since all the constraints are affine the problem in the
above definition represents an ordinary convex problem in
the terminology of Rockafellar (1970) and can be solved
using the method of Lagrange multipliers. Local min-
ima are also global if they exist. Finally, the existence
of a solution is guaranteed by lower semicontinuity of∑d

l=1 
l(al) and the fact that the intersection of the unit
hypercube with the hyperplane of constant sum is com-
pact.

3. DISTRIBUTIONAL PROPERTIES

3.1 Distribution

The joint CDF of the stochastic representations of U in
equations (12) and (24) can be written using the distri-
butions of the reflections of V. Let Id denote the identity
matrix and el its lth column. Reflections are defined in the
following.

DEFINITION 3.1 (Reflections). Let U ∈ [0,1]d be a
random vector. The transformation U �→ W = R

l, 1
2
(U)

with R
l, 1

2
(U) = [Id − 2(eleT

l )]U + el , defines a reflec-
tion of U with respect to the hyperplane defined by the
lth coordinate equal to 1/2. Given a index subset L ⊆
D, the sequential reflection transformation RL, 1

2
(U) =

[Id −2(
∑

l∈L eleT
l )]U+∑

l∈L el is the transformation ob-
tained by reflecting U sequentially using R

l, 1
2

for l ∈ L
Then RD, 1

2
(U) = (Id − 2Id)U + 1d = (1 − U1, . . . ,1 −

Ul, . . . ,1−Ud) is the central inversion through the center
of the unit hypercube.

Given a index subset L, we denote the distribution of
the reflection RL, 1

2
(V) with

FV,L(u) = P
(
RL, 1

2
(V) ≤ u

)
.

The marginal distribution of Ul conditionally on living on
an edge ek is U[αl,k, βl,k] with CDF

(26) FUl |K(ul;k) = max{αl,k,min{βl,k, ul}} − αl,k

βl,k − αl,k

,

where αl,k , βl,k are defined in Lemma 1. For each k =
1, . . . , n define the sets

L+
k = {

l ∈ {1, . . . , d} : xli(k) − xlj (k) ≥ 0
}
,

L−
k = {

l ∈ {1, . . . , d} : xli(k) − xlj (k) < 0
}
.
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THEOREM 4. The random vector U = (U1, . . . ,Ud)

in representation (24), conditional on K = k, has cumu-
lative distribution function FU|K(u1, . . . , ud;k) given by

P(U1 ≤ u1, . . . ,Ud ≤ ud |K = k) = FV,L−
k
(vk),

where vk = (v1,k, . . . , vd,k) with vl,k = FUl |K(ul;k).

The following result comes from summing over all pos-
sible values of K .

COROLLARY 2. The random vector (U1, . . . ,Ud)

in representation (24), has distribution FU(u1, . . . , ud)

given by

P(U1 ≤ u1, . . . ,Ud ≤ ud) = 1

|E |
|E|∑
k=1

FV,L−
k
(vk).

For random vectors in representation (12) we are able
to derive a closed-form expression of the conditional dis-
tribution of U.

COROLLARY 3. U = (U1, . . . ,Ud) in representation
(12) when conditioning on K = k has cumulative distri-
bution function

FU|K(u1, . . . , ud;k) = max
(
v+
k + v−

k − 1,0
)
,

where v+
k = min{vl,k, l ∈ L+

k }, v−
k = min{vl,k, l ∈ L−

k }
and vl,k = FUl |K(ul;k). The pairs of variables Ul and Ul′
l �= l′ have cumulative distribution function FUl,Ul′ |K(ul,

ul′ ;k) whose form depends on l, l′ as follows:

min(vl,k, vl′,k), if l, l′ ∈ L+
k ,

min(vl,k, vl′,k), if l, l′ ∈ L−
k ,

max(vl,k + vl′,k − 1,0), if l ∈ L−
k , l′ ∈ L+

k ,

max(vl,k + vl′,k − 1,0), if l ∈ L+
k , l′ ∈ L−

k .

(27)

From Corollary 3 and following the definition of
Fréchet bound (Fréchet, 1951), the elements Ul and Ul′
of the stochastic representation (12) are monotonic in the
same direction if l, l′ ∈ L+

k or l, l′ ∈ L−
k and antithetic if

l ∈ L−
k , l′ ∈ L+

k or l ∈ L+
k , l′ ∈ L−

k , conditionally on living
on the kth segment.

3.2 Multivariate Kendall’s τ and Spearman’s ρ

Multivariate Kendall’s τ and Spearman’s ρ are multi-
variate measures of concordance introduced in Joe (1990)
as a generalization of the well-known bivariate measures.
As in the bivariate case, they are invariant to mono-
tonic transformations and increase with concordance or-
der. They attain the maximal value of 1 in the extreme
positive dependence case of the comonotonic coupling.
They are zero in the independence case and negative in
the case of negative dependence. Contrary to the bivariate
case in which the minimum value of −1 is attained by the
Fréchet lower bound, in the multivariate case, the extreme

negative value generally depends on d and does not reach
the value −1.

In particular, Fuchs, McCord and Schmidt (2018), Ahn
and Fuchs (2020) show that d-CTM vectors have the same
minimal multivariate Kendall’s τ but different Spear-
man’s ρ. Then, Spearman’s ρ can be used to rank d-CTM
vectors in concordance order.

Let U and W be independent random vectors with
the same distribution FU = FW = G. The multivariate
Kendall’s τ is defined as

τ(FU) = 2d

2d−1 − 1

[∫
[0,1]d

FU(u) dFU(u) − 1

2d

]

= 2d

2d−1 − 1

[
E

[
G(W)

] − 1

2d

]

= 2d

2d−1 − 1

[
P(U ≤ W) − 1

2d

]
.

Fuchs, McCord and Schmidt (2018) show that if U and W
are d-CTM then τ(FU) attains its minimal value

(28) τ(FU) = τmin = − 1

2d−1 − 1
.

We provide an analytical expression of the Kendall’s τ

for vectors with the stochastic representation of equation
(24).

PROPOSITION 1. Let S = (G,X) be the segment set
with G = {V,E}. Let U and W be two independent copies
of a random vector with the generalized line segments rep-
resentation (24) on S , then

τ(FU) = 2d

2d−1 − 1

×
[

1

|E |
|E|∑

kU=1

P
(
RV,L−

kU
(V) ≤ YkU

)

− 1

2d

]
,

(29)

with YkU = (FU1|KU(W1;kU), . . . ,FUd |KU(Wd;kU)).

We use the definition of Spearman’s ρ in Joe (1990)2

for distributions with standard uniform marginals. Let
F(U) be the cumulative distribution function of the
random vector U; then the multivariate Spearman’s ρ

is

ρ(FU) = 2d(d + 1)

2d − (d + 1)

(∫
[0,1]d

FU(u) du − 1

2d

)

2The Spearman’s ρ following the definition in Ahn and Fuchs (2020)
is obtained as (ρ(FU ) + ρ(FW ))/2, with W = RD, 1

2
(U).
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TABLE 1
Minimum values of multivariate Spearman’s ρ, using the lower bound in Corollary 4.1 of Wang and Wang (2011)

d 2 3 4 5 10 20 50 100

ρmin −1 −0.56 −0.32 −0.18 −0.01 −1.99 · 10−5 −4.53 · 10−14 −7.97 · 10−29

= 2d(d + 1)

2d − (d + 1)

(∫
[0,1]d

d∏
l=1

uL dFU(u) − 1

2d

)

= 2d(d + 1)

2d − (d + 1)

(
E

[
d∏

l=1

Ul

]
− 1

2d

)
.

The attainable lower bound ρmin can be computed us-
ing the lower bound for E[∏d

l=1 Ul] given in Corollary 4.1
of Wang and Wang (2011). We report the values in Ta-
ble 1.

The following proposition provides the Spearman’s ρ

of the segment construction S and some sufficient condi-
tions for the reduction of the Spearman’s ρ.

PROPOSITION 2. Let the random vector U satisfy the
generalized representation (24). The Spearman’s ρ is

ρ(FU) =
d∑

m=0

∑
Lm⊆D
|Lm|=m

ξLmρ(FV,D\Lm
)

+ 2d(d + 1)

2d − (d + 1)

1

2d

(
ξ∗ − 1

)
with

ξLm = 1

|E |
|E|∑
k=1

( ∏
l∈Lm

xl,i(k)

∏
l∈D\Lm

xl,j (k)

)
,

ξ∗ =
d∑

m=0

∑
Lm⊆D
|Lm|=m

ξLm = 1

|E |
|E|∑
k=1

d∏
l=1

(xl,i(k) + xl,j (k)).

If V is reflection invariant, and ξ∗ ≤ 1 the Spearman’s ρ

satisfies

ρ(FU) = ξ∗ρ(FV)

+ (
1 − ξ∗)(− (d + 1)

2d − (d + 1)

)
,

(30)

ρ(FU) ≤ ρ(FV).(31)

We provide a simplified formula for ρ(FV,D\Lm
) in the

case of two line segment constructions which will be stud-
ied later on in this paper. For the line segment representa-
tion (12), we obtain

ρ(FV,D\Lm
)

= 2d(d + 1)

2d − (d + 1)

(
E

[
V m(1 − V )d−m] − 1

2d

)

= 2d(d + 1)

2d − (d + 1)

(
B(m + 1, d − m + 1) − 1

2d

)
,

where B(x, y) is the Euler’s beta function.
For the representation (24), under the independence as-

sumption Vl , l = 1, . . . , d iid, the Spearman’s ρ is

ρ(FV,D\Lm
) = 2d(d + 1)

2d − (d + 1)

×
( ∏

l∈Lm

E[Vl]
∏

l∈D\Lm

E
[
(1 − Vl)

] − 1

2d

)
(32)

= 2d(d + 1)

2d − (d + 1)

(
1

2d
− 1

2d

)
= 0.

Constructions obtained as a random permutation of a line
segment construction inherit its concordance order rank
since the multivariate Kendall’s τ and Spearman’s ρ are
permutation invariant. In addition, they satisfy the d-CTM
property as stated in the following.

COROLLARY 4. Let W be the exchangeable version
of a strict d-CTM line segment vector U obtained as ran-
dom permutations of its components, then W is strict d-
CTM and exchangeable.

4. SPECIAL CASES

In this section, we discuss several examples starting
from the new constructions proposed in this paper and
then reviewing the constructions proposed in the literature
which are special cases of our stochastic representations
(12) or (24). We use multivariate Spearman’s ρ to rank
the proposals in concordance order.3

4.1 Circulant Variates

Obtaining the coordinate matrix X used in equation
(12) can be costly in high dimensions especially when
numerical procedures are used to solve the optimization
problem stated in Section 2.2. We propose suitable con-
straints on the segment set S = (X,G) to reduce the com-
putational cost of our procedure. The proposed condi-
tions on the coordinate matrix X allows for decoupling
the CTM constraint.

3To keep the paper to a reasonable length, we report here the values
of the multivariate Spearman’s ρ for dimensions d from 2 to 5. We
have evaluated the ordering of the constructions up to dimension d =
20, and no changes were observed.
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First, we assume that the number of vertices n is equal
to the dimension d of the random vector and X = d/2X̃
where X̃ is doubly stochastic, and obtain

d∑
i=1

xi,k =
n∑

k=1

xi,k = d

2
.

This assumption allows us to simplify the optimization
problem and to search for independent solutions for each
row of X.

We assume further constraints on the matrix X and on
the graph G such that the same optimization problem is
solved for all rows of X. We assume the first coordi-
nates of the d vertices are arranged in increasing order
x11 ≤ · · · ≤ x1d and compute the kth coordinates as the
kth circular permutation of the first ones:

xk1 = x1(k−1)(modd)+1,

...

xki = x1(i−1+(k−1))(modd)+1,(33)

...

xkd = x1(d−1+(k−1))(modd)+1.

The resulting coordinate matrix X is a circulant matrix
with ith row sum equal to the ith column sum for all rows.
Imposing x11 ≤ · · · ≤ x1d implies the same set of al is
used for all l ∈ D, with the same multiplicities |Ml,m| =
|M1,m| but with different positions m ∈ Ml,m as effect of
the circular permutation.

Furthermore, we choose the edge set in such a way as to
have the same projected graph for each set of coordinates
and assume a circulant graph that is invariant by circular
shifts of the vertexes.

DEFINITION 4.1 (Circulant Graph). Given a subset
L ⊆ {1, . . . , �d

2 �} then the d-vertex circulant graph Cd(L)

is a graph with vertices 1, . . . , d and edge set Ed,L is such
that (i, j) ∈ Ed,L if either |i − j | ∈ L or (d − |i − j |) ∈ L.

Circulant graphs are provided in Table 2 for d ≤ 5.
The circular symmetry imposed on the vertex coordi-

nates and on the graph simplifies the optimization prob-
lem. Whatever the multiplicities |M1,m|, under Assump-
tions 1 and 2, we obtain the following results:


l(al) = 
1(a1) = �1(x1)

= − 1

|Ed,L|
∑

(i,j)∈Ed,L

log |x1,i − x1,j |,

n1∑
m=1

|M1,k|a1,m =
d∑

i=1

x1,i .

This rewriting of constraint and objective function al-
lows one to minimize on x1 instead of al . Minimiza-
tion automatically excludes vectors that violate Assump-
tion 1 given Ed,L, because for those cases the objec-
tive function is infinite. The following definitions intro-
duce formally our new proposal called Circulant Variates
(CCV).

DEFINITION 4.2 (Circulant Countermonotonic). We
call the circulant matrix X ∈ Rd × Rn whose rows are
obtained by the d circular shifts of the first row, a solution
of the Circulant Countermonotonic on Segments problem,
on the circulant graph Cd(L), if x1,1 = 0, x1,d = 1 and
{x1,2, . . . , x1,d−1} solve the convex minimization problem

min
{xl,m}d−1

m=2∈[0,1]d−2
�1(x1)

with

�1(x1) = − 1

2|Ed,L|
∑

(i,j)∈Ed,L

log |x1,i − x1,j |,

subject to
d∑

i=1

x1,i = d

2
.

DEFINITION 4.3 (Circulant Variates). Let Sd,L =
{X,Cd(L)} a collection of segments such that X is a so-
lution of the Circulant Countermonotonic on Segments
problem on Cd(L). Variates obtained from the compo-
nents of the d-dimensional random vector uniformly dis-
tributed on Sd,L are Circulant Variates (CCV).

The following corollary is an application of Theorem 1
to CCV.

COROLLARY 5. CCV are marginally standard uni-
form and constant in sum.

For Cd({1}) a solution can be derived as follows. The
sum in each of the first d − 1 equations of (12) has only
two terms, and considering the mth equation we have

1

(x1m+1 − x1m)
+ 1

(x1d − x11)
= d.

Substituting the constraints x11 = 0 and x1d = 1, we find
that the x’s are uniformly spaced on the unit interval and
satisfy all the d −2 equations in (17). The case of C3({1})
was already studied in Nelsen and Úbeda-Flores (2012).
In their example, the probability mass has a distribution
uniform on the edges of the triangle with vertices x1 =
(0,1/2,1), x2 = (1/2,1,0), x3 = (1,0,1/2). The other
two vertices are different 3-cycles of the first one. This
implies that the row sum of X = (x1,x2,x3), is equal to
its column sum and both are equal to 3/2. Lee and Ahn
(2014) show that the construction in Nelsen and Úbeda-
Flores (2012) is 3-CTM.

Additionally, the exchangeable version of the Cd({1})
construction is distributionwise equivalent to the degen-
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TABLE 2
Circulant graphs Cd(L) of the Circulant Countermonotonic on Segments up to dimension 5

Graph Label G x1 Spearman’s ρ

C2 ({1}) (0,1) −1

C3 ({1})
(
0, 1

2 ,1
)

−0.5

C4 ({1})
(
0, 1

3 , 2
3 ,1

)
−0.2840

C4 ({1,2})
(

0, 1
2 − 1

2
√

5
, 1

2 + 1
2
√

5
,1

)
−0.2763

C4 ({2}) (0,0,1,1) −0.2121

C5 ({1}) (0,1/4,2/4,3/4,1) −0.1659

C5 ({1,2})
(

0, 1
2 −

√
3

2
√

7
, 1

2 , 1
2 +

√
3

2
√

7
),1

)
−0.1577

C5 ({2})
(
0,0, 1

2 ,1,1
)

−0.1385

erate random balanced sampling introduced in equa-
tion (8) of Gerow and Holbrook (1996). They pro-
pose to generate Z1 as an uniform random variable on
[−1,1] and obtain the remaining variables according
to

Zl = cl − Z1

d − 1
, cl = −1 + 2l − 3

d − 1
,

l ∈D, and then randomly permute the Zl . They show that∑d
l=1 Zl = 0 and that once permuted, the Zl’s are uni-

formly distributed on [−1,1]. If we set Ul = (Zl + 1)/2,
then the permuted version can be written in terms of per-
muted Cd({1}) construction.

PROPOSITION 3. The exchangeable version of Ul =
(Zl + 1)/2 l ∈ D has the same distribution of the
exchangeable version of CCV with dependence graph
Cd({1}).

4.2 Rotation Sampling

Fishman and Huang (1983) rephrase the original Ham-
mersley and Morton (1956) proposal for d > 2 obtain-
ing an equivalent construction with the standard marginal
uniformity that was missing in Hammersley and Morton
(1956). Their construction was named rotation sampling
because the modulo one arithmetic on which it is based is
often associated with circular motion.

PROPOSITION 4. The line segment stochastic repre-
sentation (12) of the rotation sampling in the Example 1
has 2d vertices with coordinate matrix of elements

xl,m =

⎧⎪⎪⎨
⎪⎪⎩

l + m − 1

d
, if m < d + 2 − l,

l + m − 1 − d

d
, if m ≥ d + 2 − l,
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TABLE 3
Values of the multivariate Spearman’s ρ for rotation sampling

d 2 3 4 5

ρmin −0.5 −0.33 −0.2168 −0.1372

xl,d+m =

⎧⎪⎪⎨
⎪⎪⎩

l + m − 2

d
, if m < d + 2 − l,

l + m − 2 − d

d
, if m ≥ d + 2 − l

and edge set

ERS = {
(i, d + i)|i ∈ {1,2, . . . , d}}.

COROLLARY 6. A rotation sampling random vector
has standard uniform marginals and is not d-CTM.

We report in Table 3 the analytic values of the Multi-
variate Spearman’s ρ for rotation sampling vectors up to
dimension d = 5.

For d = 2 this construction does not reduce to the usual
antithetic variates. This is suggested by a value of multi-
variate Spearman’s ρ different from the value of −1 at-
tained by the Fréchet lower bound. Lacking the constant
sum property, the proposal has multivariate Spearman’s ρ

larger than one of the d-CTM proposals considered in this
paper.

4.3 Arvidsen and Johnson: A Fresh Look

In the pioneering paper of Arvidsen and Johnsson
(1982), the objective of variance reduction is obtained by
designing the first standard uniform d-CTM construction
(10). Craiu and Meng (2005) show that this construction is
displacing the binary digits of U1 and give the name per-
muted displacement to its exchangeable version. We show
in the next proposition the relationship between Arvidsen
and Johnson sampling scheme and the scheme from Ex-
ample 3.

PROPOSITION 5. For d = 3, the construction of
Arvidsen and Johnsson (1982) given in Example 4 is
equivalent to the antithetic proposal of Gaffke and Rüs-
chendorf (1981) given in (7).

FIG. 5. G for b-based Arvidsen and Johnson’ construction.

The Ardvisen and Johnson construction (AJ) and the
following family of general constructions admit a line
segment representation, as illustrated in Figure 5. The
generalization is useful to show that Ardvisen and John-
son is the only d-CTM within this family and attains con-
sequently the minimal Spearman’s ρ within this family.

DEFINITION 4.4. Given U1 ∼ U[0,1] and b ∈ N the
base-b Ardvisen and Johnson construction is

Ui = (
bi−2U1 + 1/b

)
mod 1,

i = {2, . . . , d − 1},
Ud = 1 − (

bd−2U1
)

mod 1.

(34)

PROPOSITION 6. The line segment stochastic repre-
sentation (12) of the construction in (34) has 2bd−2 ver-
ticeswith coordinate matrix X = (zT ,yT ) where

y1 =
(

0,
1

bd−2 , . . . ,
bd−2 − 1

bd−2

)T

,

z1 = y1 + 1

bd−2 1bd−1,

yk =
(
bk−2y1 + 1

b

)
mod 1,

zk = yk + 1

bd−k
1bd−1,

yd = 1bd−1, zd = yd − 1bd−1,

y = (y1, . . . ,yd), z = (z1, . . . , zd)

and edge set

EAJ = {(
i, bd−2 + i

)|i ∈ {
1,2, . . . , bd−2}}

.

COROLLARY 7. The base-b Ardvisen and Johnson
random vector has standard uniform marginals. Only the
case b = 2 is d-CTM.

Table 4 shows that the constructions in Definition 4.4
attain the lowest Spearman’s ρ for b = 2.

Table 4 reports also the multivariate proposal of Gaffke
and Rüschendorf (1981) (GR) described in Example 3.
The table shows that GR performs better than the non d-
CTM proposal, but worse than the AJ proposal because it
has independence as one of the main ingredients as dis-
cussed in the introduction. This also shows the effective-
ness of multivariate ρ as a ranking measure for d-CTM
vectors.

4.4 Latin Hypercube Iterations

In this section, we will reconsider the Iterated Latin
Hypercube construction introduced in Craiu and Meng
(2005) and establish a relationship with a d-dimensional
generalization of the superstar introduced in Gerow and
Holbrook (1996), and with our strict countermonotonic
on segments construction.
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TABLE 4
Multivariate Spearman’s ρ for base-b Ardvisen and Johnson random vectors and the multivariate proposal of Gaffke and Rüschendorf (1981) in

Example 3

b

Spearman’s ρ 1 2 3 4 5 GR

d 2 −1 −1 −1 −1 −1 −1
3 −0.3333 −0.5000 −0.3333 −0.2083 −0.1200 −0.5000
4 −0.0909 −0.2822 −0.1662 −0.0869 −0.0367 −0.2525
5 0.0154 −0.1637 −0.0933 −0.0455 −0.0165 −0.1538

The Latin Hypercube sampling, introduced by McKay,
Beckman and Conover (1979), and further developed by
Craiu and Meng (2005) with the goal of obtaining vari-
ance reduction in MCMC sampling, consists of the fol-
lowing steps: for t = 0, . . . , T take an i.i.d. standard uni-
form d-dimensional random vector U0 and let Dσ

t =
(σt (0), . . . , σt (d −1))T be a permutation of {0,1, . . . , d −
1} independent of U0, . . . ,Ut−1 and

(35) Ut = 1

d

(
Dσ

t + Ut−1
)
.

If t = 1 (35) corresponds to the original Latin Hyper-
cube Sampling, and t > 1 to the Iterated Latin Hyper-
cube procedure introduced in Craiu and Meng (2005). It
was shown in Craiu and Meng (2006) that ILH iterations
represent an Iterated Function System with probabilities
(IFSP) ([0,1]d, (wσ ),pσ ) with wσ similitudes with con-
traction ratio d−1 associated to each permutation σ of
{1, . . . , d}
(36) wσ (u) =

(
σ(1) − 1

d
+ u1

d
, . . . ,

σ (d) − 1

d
+ ud

d

)
.

We can show that the 3-dimensional superstar considered
in Gerow and Holbrook (1996) can be obtained by using
the same IFSP.

PROPOSITION 7. The 3-dimensional superstar pro-
posed in Gerow and Holbrook (1996),

(37) Xt = fk(Xt−1) = 1

3
Xt−1 + 2

3
Vk

with Vk a random permutation of {−1,0,1} and an ini-
tial X0 a 3-dimensional vector such that −1 ≤ Xi0 ≤ 1
and

∑3
i=1 Xi0 = 0, up to a change of support, is gener-

ated by the same IFSP of the 3-dimensional version of
the Iterated Latin Hypercube construction introduced in
Craiu and Meng (2005).

PROPOSITION 8. The line segment stochastic repre-
sentation (24) of the construction in (35) has 2d! ver-
tices with coordinates xl,k = (σk(l)+1)d−1 and xl,d!+k =
(σk(l))d

−1, k = 1, . . . , d! and edge set

ELH = {
(i, d! + i)|i ∈ {1,2, . . . , d!}}.

Craiu and Meng (2005) obtained standard marginal
uniformity for the special case of an initial vector with
i.i.d. components. In the superstar case, the original dis-
tribution is concentrated on points but converges to stan-
dard marginal uniforms as shown in Gerow and Holbrook
(1996). In Craiu and Meng (2005), it is also shown that
in the limit t → ∞ the ILH is d-CTM. We show that the
ILH iterations preserve marginal uniformity and constant
sum in the general case.

COROLLARY 8. Let Ut−1 be a dependent random
vector of dimension d , whose coordinates add up to d/2
(a.s.) and each coordinate has a U[0,1] distribution.
Then the random vector Ut in (35) has all its coordinates
marginally U[0,1] distributed and adding up to d/2.

The preservation of strict d-CTM property raises the
possibility of using ILH iterations on Arvidsen and John-
son’s and CCV constructions. In addition, using results
in Section 3.2, we can give a closed-form expression for
the multivariate Kendall’s τ and Spearman’s ρ for ILH
iteration applied to V with i.i.d. components or in rep-
resentation (12) and rank the obtained random vector in
the concordance order. In particular, ILH iterations on the
Arvisen and Johnson construction and CCV have a con-
stant sum and minimal multivariate Kendall’s τ (equation
(28)). Spearman’s ρ for those constructions can be easily
obtained using the deterministic composition and equa-
tion (32). Using the segment representation in Proposi-
tion 8, the ILH(T ) proposal applied to V with i.i.d. com-
ponents, can be expressed as a T -fold deterministic com-
position. Each composition expands the cardinality of ver-
tex and edge sets by d!, resulting in a vertex set of car-
dinality 2(d!)T and an edge set of cardinality (d!)T . To
maintain a feasible notation, we substitute the index k

of the different edges with the multi-index {kt }Tt=1 where
each kt = 1, . . . , d!:

αl,k1,...,kT
=

T∑
r=1

σkr (l)

dT −r+1 ,(38)

βl,k1,...,kT
=

T∑
r=1

σkr (l)

dT −r+1 + 1

dT
.(39)
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The following proposition allows for computing mul-
tivariate Kendall’s τ and Spearman’s ρ for the ILH(T )
case.

PROPOSITION 9. Let U0 be a d-dimensional random
vector with i.i.d. U[0,1] components and let UT be the
vector obtained by applying to it the ILH transformation
in (35). Then the Kendall’s τ is

τ = 1

2d−1 − 1

(
1

(d!)T − 1
)
,

and the Spearmans’ ρ has coefficient ξ∗ in equation (30)
equal to

ξ∗ = ∑
m0+m1+···+mT =d

(
d

m0,m1, . . . ,mT

)
ξ∗
m0,...,mT

,

where

ξ∗
m0,...,mT

=
T∏

t=1

(
d

mt

)−1

d−m0
∑

{i1,...,imt }∈PD,mt

mt∏
l=1

2(il − 1)

dT −t+1

and CD,m2 denotes the set of combinations of the elements
of D with mt elements.

In the one iteration case, that is, T = 1, we obtain the
following expression:

ξ∗ =
d−1∏
l=0

(2l + 1)

d

=
d∏

l=1

(2l − 1)

d

= (2d − 1)!
dd(2d−1(d − 1)!) =

∏2d−1
l=d l

dd2d−1

and using the arithmetic and geometric means inequality
we obtain the bound

ξ∗
1 ≤ ( 1

d

∑2d−1
l=d l)d

dd2d−1 ≤ 2
(

3d − 1

4d

)d

≤ 1.

For the sake of comparison, in Figure 6 we summarize
Kendall’s τ and Spearman’s ρ for all the constructions
discussed in this section. Since Kendall’s τ and Spear-
man’s ρ are permutation invariant, the same ranking ap-
plies to the exchangeable versions of the constructions.

5. A CENTRAL LIMIT THEOREM

In this section, we study the central limit theorem for
our best-performing classes of variates. While the deriva-
tion does not yield a minimality result, it complements
the one in equation (4) because it guarantees asymptotic
variance reduction for all square-integrable functions.

FIG. 6. Ratio of minimum value attainable by multivariate associa-
tion measures and the values attained by different antithetic random
vectors (vertical axis) as a function of dimension d (horizontal axis).
Left: the Spearman’s ρ measure. Right: the Kendall’s τ measure. Note:
in each plot, larger values indicate constructions farther from the min-
imum.

DEFINITION 5.1 (Generalized Latin Hypercube Sam-
ple). Let σi , i = 1, . . . , p be independent random per-
mutations of 0, . . . , d − 1 and Vi = (V i

1 , . . . , V i
d ), i =

1, . . . , p random vectors, independent from the σi and
from each other, identically distributed with probability
measure μ. A p × d matrix U is a Generalized Latin Hy-
percube Sample if it has the stochastic representation

(40) Ui
l = σi(l) + 1

d
V i

l + σi(l)

d

(
1 − V i

l

)
with i = 1, . . . , p and l = 1, . . . , d .

We remark that the constructions with the lowest multi-
variate Spearman’s rho ILH(T), LH-Cd({1}), and LH-AJ
generate Generalized Latin Hypercube Samples.

The following lemma introduces the irrelevance of the
distribution on the Vi , i = 1, . . . , p.

LEMMA 2. Consider a a-LH sample and a b-LH sam-
ple where a and b are two different Radon measures. The
following relationship holds for every function f locally
integrable with respect to both measures:

Ea−LH

[(
1

d

d∑
l=1

f (Ul)

)r]
−Eb−LH

[(
1

d

d∑
l=1

f (Ul)

)r]

= o(1).

Given the previous lemma, we are able to show that the
asymptotic distribution is the same as the ordinary Latin
Hypercube. In particular, Stein (1987) express the vari-
ance of the Latin Hypercube using the ANOVA decom-



LIVING ON THE EDGE 131

position of the function f ,

f (u) = EIID
[
f (U)

] +
p∑

i=1

fi(ui) + r(u),

fi(ui) = EIID
[
f (u) −EIID

[
f (U)

]|Ui = ui

]
,

(41)

where r(u) denotes the residual from the additive decom-
position (Owen (1992)).

THEOREM 5. Let X̄ = 1
d

∑d
l=1 f (Ul) with Ul l ∈

D from a μ-LH sample with μ being Radon and f

being bounded and locally integrable with respect to
μ. Then

√
d(X̄ − EIID(X)) converges in distribution to

N (0,
∫
[0,1]p r(u)2 du), where r(u) is introduced in (41).

REMARK 2. The hypothesis of Uj being independent
of Uk for all j �= k j, k = 1, . . . , p in the definition of
Generalized Latin Hypercube Sample is not restrictive as
it seems. In practice, one can use the inverse Rosenblatt
transform (see, e.g., Rüschendorf (2013), Theorem 1.12)
to obtain samples from a generic distribution. Then, if
the composition of f with the inverse Rosenblatt trans-
form is bounded, we are still under the incidence of The-
orem 5. A multivariate version of the central limit theo-
rem can be obtained as in Corollary 1 of Owen (1992).
Concerning the boundedness assumption on f , it is prob-
ably too restrictive because in Loh (1996) a multivariate
Berry-Essen type bound for the standardized multivariate
version of X̄, in the case of Latin Hypercube, is obtained
under the assumption that the multivariate function f in-
volved is Lebesgue measurable and E‖f‖3 < ∞.

6. NUMERICAL ILLUSTRATIONS

We illustrate the performance of the methods presented
in this paper using several simulation exercises involving
standard Monte Carlo, Markov chain Monte Carlo and Se-
quential Monte Carlo algorithms.4

One of the critical dimensions used to rank our counter-
monotonic vectors is sampling time, as shown in Figure 7.
It is obtained by averaging over 1000 independent repli-
cations. In each experiment, we sampled 5000 antithetic
vectors of dimension 2 ≤ d ≤ 20. Sampling schemes have
been implemented in Matlab on a Windows 10 laptop with
an Intel i7-6500U CPU and 8 GB of RAM.

Permuted Cd({1}) outperforms the other competitors.
We report the times for the segment version that randomly
permutes stochastic representation (12) and the RBS ver-
sion that uses the equivalence with random balanced sam-
pling described in Proposition 3. The latter choice is
faster, and it is also used as the base for the Latin Hy-
percube iteration in LH -Cd({1}).

4Replication codes for the examples in the paper can be found at
https://github.com/Frattalol/Livingontheedge.

FIG. 7. Sampling times (vertical axis) as a function of the sampling
dimension d (horizontal axis) for different methods (different symbols
and colors). All estimates are averages over 1000 experiments. In each
experiment, 5000 antithetic vectors of dimensions d are sampled fol-
lowing a given method.

Consequently, all the experiments in the section use the
exchangeable version of LH-Cd({1}). In fact, LH-Cd({1})
vector reaches the lower value of multivariate Kendall’s τ

and Spearman’s ρ (Figure 6) but is also a faster sampling
scheme.

6.1 Monte Carlo Integration

The first evaluation of our methodology is for the
Monte Carlo integration on the unit hypercube, with in-
tegration points chosen according to the three competing
schemes. In standard Monte Carlo (MC), the sampling
points are i.i.d., and each sampling point corresponds to
a random vector of dimension equal to the number of
variables in the function. In our antithetic method (LH-
Cd({1})) the variables used to populate the same coordi-
nate for different sampling points are from an antithetic
vector. Across coordinates, these antithetic vectors are in-
dependent of one another. For the Quasi-Monte Carlo’s
Sobol scheme (QMC Sobol), a deterministic sequence of
points uniformly covers the hypercube of dimension equal
to the number of variables. In the evaluation of the inte-
gration problem complexity, the effective dimension plays
an important role. We refer to Owen (2003), Wang and
Fang (2003) and Wang and Sloan (2005) for the formal
definition of truncation pt and superposition ps dimen-
sions. Owen (2003) shows that a low ps is necessary for
QMC to surpass the computational efficiency of MC when
the sample sizes are at practical levels. Wang and Fang
(2003) and Wang and Sloan (2005) show that the inte-
grands commonly used in option pricing have pt � p and
ps ≤ 2 and explain, using those results, QMC’s good per-
formance in this domain. According to our Theorem 5 for
integrands with ps = 1, that is, for functions that are well

https://github.com/Frattalol/Livingontheedge
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TABLE 5
Wang and Fang (2003) effective dimensions (truncation and superposition dimensions, pt and ps , respectively) of the integrand function in

equation (42) for dimension p = 100 and different parameter settings (columns)

a 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 10 10 10 10 10
τ 0.1 0.5 0.8 0.9 1 0.1 0.5 0.8 0.9 1 0.1 0.5 0.8 0.9 1
pt 2 4 11 22 100 2 4 11 23 100 2 5 17 39 100
ps 1 1 1 1 2 1 1 2 3 14 1 3 8 15 96

approximated by sums of one-dimensional functions, LH-
Cd({1}) should be efficient in reducing the variance. The-
orem 5 also guarantees that our method cannot perform
worse than MC, asymptotically in the number of points.
To investigate the role of effective dimension in the rela-
tive performance of the three competing methods, we use
the two-parameter function introduced in Wang and Sloan
(2005):

(42) f (x) =
p∏

i=1

(
1 + aτ i(xi − 1/2)

)
.

Varying the parameter a has more effect on pt than on
ps and varying the parameter τ has the opposite effect.
We consider a high-dimensional function (p = 100) and
different specifications of effective dimensions, according
to the parameters reported in Table 5.

Effective dimensions are computed using the methods
for multiplicative functions introduced in Wang and Fang
(2003).

Figure 8 shows the mean square error (MSE) (ver-
tical axis) and the computing time (horizontal axis) of
Monte Carlo (red), QMC (black) and circulant variates
LH-Cd({1}) (blue) sampling, for the different effective di-
mensions pt and ps (different plots) given in Table 5. Our
LH-Cd({1}) method has the best performance when the
superposition dimension is equal to 1. The performance
is decreasing in the truncation dimension. For ps = 2,3,
QMC performs better than the method proposed here
when the number of points used in the integration is high.
QMC advantage increases in the truncation dimension. At
moderate ps QMC dominates. In those cases, our pro-
posal is slower than MC but reaches the same MSE. In
the extreme case of f being almost full dimensional (right
lower corner), Cd({1}) is performing as badly as MC, but
QMC is doing orders of magnitudes worse. These numer-
ical results are in line with the result in Theorem 5 and
indicate that our method should be used when the super-
position dimension is low and when there is no informa-
tion about effective dimensions of the integrand since in
the worst case, it reproduces the precision of standard MC
estimates.

6.2 Markov chain Monte Carlo

6.2.1 Bayesian inference on probit (van Dyk and Meng
(2001)). The data used are taken from van Dyk and

Meng (2001) and represent the clinical characteristics
summarized by two covariates of 55 patients, of which
19 were diagnosed with lupus. The disease indicator
is modelled as independent Bernoulli variables Yi ∼
Ber(�(xT

i β)) where � is the standard normal CDF and
β = (β0, β1, β2)

T is a the vector of parameters. The ob-
jective is to sample from the posterior distribution corre-
sponding to the flat prior for β . We adopt the standard
Gibbs sampler with latent variables ψi ∼ N (xT

i β,1) of
which we consider only the sign. We repeat the follow-
ing alternating two steps to obtain draws from the poste-
rior. First, we sample from β|ψ ∼ N (β̃, (XT X)−1) with
β̃ = (XT X)−1XT ψ with X the data matrix whose ith
rows is xi . Then from ψi |β,Yi ∼ T N (xT

i β,1, Yi) where
T N (μ,σ 2, Y ) is a the normal distribution with mean μ

and variance σ 2, truncated to be positive if Y > 0 or neg-
ative otherwise. Further details of the algorithms can be
found in Craiu and Meng (2005). Figure 9 demonstrates
the improvement brought by antithetic Gibbs sampling.

FIG. 8. Monte Carlo integration of the Wang and Sloan functions
with p = 100 and different effective dimensions. Mean square error
(vertical axis) and computing time in thousands of seconds (horizon-
tal axis). Different plots use different effective dimensions (pt ,ps).
In each plot: Monte Carlo (red), QMC (black), and circulant vari-
ates LH-Cd({1}) (blue) sampling. For each line: different number of
samples from 10 to 1000 (circles). For each setting, all statistics are
averages over 10,000 experiments.
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FIG. 9. Monte Carlo variance of the posterior mean estimator (ver-
tical axis) corresponding to a different number of antithetic variates d

(horizontal axis) for the parameters β0 (left panel), β1 (center panel)
and β2 (right panel). In each plot: the average variance of antithetic
Gibbs (blue dots) and of i.i.d. Gibbs (yellow dots) with their range
(vertical segments). Note: all estimates are based on 100 independent
experiments. In each experiment, the Gibbs sampler runs for 10 sec-
onds.

6.2.2 Metropolis within Gibbs hierarchical Poisson
(Gelfand and Smith (1990)). This second example con-
cerns the counts of failures s = (s1, . . . , sn) for n = 10
pumps in a nuclear power plant. The time t = (t1, . . . , tn)

of operation are known. The model assumes sk ∼
Poi(λktk) and λk ∼ Ga(α,β) with parameters α,β > 0.
The objective of the inference is the posterior distribu-
tion of α and β , to which we assign an exponential prior
with mean 1 and a Gamma prior Ga(0.1,1), respectively.
Using the conjugate priors, it is easy to obtain a Gamma
distribution for λ1 given λ2, . . ., λn and β , and those vari-
ables can be easily sampled using a Gibbs step. Sampling
α is slightly more difficult. In fact, we have

P(α|λ1, . . . , λn,β)

∝ exp

[
α

(
n logβ +

n∑
k=1

logλk − 1

)
− n log�(α)

]
.

We then sample α with a random walk Metropolis-
Hastings (MH) step with a deterministic scan. We show in
Figure 10 results for the case when we antithetically cou-
ple the uniform draws for acceptance rejection choice and
when we are not doing it. The former case is the one for
which Frigessi, Gåsemyr and Rue (2000) reports the worst
performance of the usual two-variates antithetic coupling
of chains, in agreement with our results.

6.2.3 Pseudo marginal Metropolis-Hastings stochas-
tic volatility (Gerber and Chopin (2015)). The last appli-
cation targets a state-ofthe-art methodology, the Pseudo
Marginal MH (PCMH) proposed by Andrieu and Roberts
(2009), which is able to estimate models with intractable

FIG. 10. Monte Carlo variance of the posterior mean estimator (ver-
tical axis) corresponding to a different number of antithetic variates d

(horizontal axis) for the parameters α (left panel) and β (right panel).
In each plot: the average variance for the MH with (blue dots), without
(red dots) antithetic acceptance rule and standard iid MH (yellow dots)
and their ranges (vertical segments). Note: all estimates are based on
100 independent experiments. In each experiment, the Gibbs sampler
runs for 10 seconds.

likelihoods that are approximated using a particle filter. In
particular, following Gerber and Chopin (2015), we con-
sider the bivariate stochastic volatility model introduced
in Chan, Kohn and Kirby (2006):

yt = S
1/2
t εt ,

xt = μ + �(xt−1 − μ) + 
1/2νt ,

St = diag
(
exp(x1t , x2t )

)
,

(εt , νt ) ∼ N (04,C)

with yt = (y1t , y2t )
T and xt = (x1t , x2t )

T observable and
latent log-volatility vectors, � and 
 diagonal matrices
and C a correlation matrix. Following those authors, we
take independent uniform and gamma prior distributions:

φii ∼ U[0,1],(43)

1

ψii

∼ Ga
(
10 exp(−10),10 exp(−3)

)
(44)

and a flat prior for μ, where φii and ψii denote the di-
agonal elements of � and 
 , respectively. In addition,
we assume that C is uniformly distributed on the space
of correlation matrices. To sample from the posterior dis-
tribution of the parameters, we use a Gaussian random-
walk MH algorithm with covariance matrix calibrated by
Gerber and Chopin (2015) so that the acceptance prob-
ability of the algorithm becomes, as N tends to infinity,
close to 25%. We consider the mean-corrected daily re-
turns on the Nasdaq and Standard and Poor’s 500 indices
for the period ranging from January 3rd, 2012, to Octo-
ber 21st, 2013, so that the data set contains 452 observa-
tions. Figure 11 PCMH algorithms using sequential quasi-



134 CASARIN, CRAIU, FRATTAROLO AND ROBERT

FIG. 11. Acceptance rate (top) and effective sample size (bottom) of
the PCMH using Sequential Monte Carlo (SMC), Sequential Quasi–
Monte Carlo (SQMC), and Sequential Antithetic Monte Carlo (SAMC)
(different colors). Acceptance rate of the Metropolis step (vertical axis)
versus the number of particles (horizontal axis, Panel A) and comput-
ing time (horizontal axis, Panel B). Maximum and minimum effective
sample size (vertical axis) versus number of particles (horizontal axis,
Panel C) and computing time (horizontal axis, Panel D).

Monte Carlo and antithetic Monte Carlo are equivalent in
acceptance rate and effective sample size (Panels A and
C) when a low number of particles (up to 20) is used.
Nevertheless, antithetic Monte Carlo achieves larger ac-
ceptance rates (AR) and effective sample size (ESS) with
a lower computing time (Panels B and D). When a larger
number of particles is used (above 20), the performances
are equivalent in terms of ESS, whereas SQMC is better
in terms of AR.

7. DISCUSSION

The development of antithetic constructions has gen-
erated a rich class of methods to accompany the evolu-
tion of Monte Carlo sampling algorithms. We enrich this
class with a new antithetic method, the circulant variates
(CCV), that satisfies the countermonotonicity, exchange-
ability, and marginal uniformity conditions. In particu-
lar, the marginal uniformity condition is linked to the
Kullback–Leibler optimality.

The principle behind the proposal, relying on sampling
on segments, leads to a unification of several classical an-

tithetic constructions: rotation sampling, Latin hypercube,
permuted displacement, and random balanced sampling.

Within this common framework, we provide a conve-
nient representation of the antithetic vectors in terms of
graphs, that is, vertices, and edges, and evaluate theoret-
ically their distributions and concordance measures. The
latter allows us to rank the methods within the class of
sampling on segments. The constructions based on cir-
culant graphs (CCV) with the smallest number of edges
rank best. Also, the best CCV outperforms the existing
constructions reviewed in the paper. We also demonstrate
a central limit theorem in the case of asymptotically in-
creasing vector size.

Leveraging on Iterated Latin Hypercube (ILH) prop-
erties, we combine the two methods by using the CCV
construction to initialize the ILH construction and reduce
the number of iterations. This reduces the simulation cost
and improves the concordance lower bound. The numer-
ical experiments include MCMC, Sequential MC, Quasi-
MC, and classical MC integration. The proposed methods
outperform standard implementations and are competitive
with Quasi-Monte Carlo methods in scenarios with low
effective dimensions. The asymptotic variance reduction
with respect to standard MC, implied by Theorem 5, is
confirmed by our numerical experiments. The results hold
for all square-integrable functions. Moreover, the variance
reduction is larger for functions that are well approxi-
mated by sums of one-dimensional functions.

Future work includes possible extensions of the theory
for KL optimality beyond the marginal univariate case.
An investigation of the relationship between the line seg-
ment representation and orthogonal array-based Latin Hy-
percubes (Tang (1993)) could lead to an improvement of
the performance for superposition dimensions bigger than
1. We notice that different methods that satisfy counter-
monotonicity, exchangeability, and marginal uniformity
yield different variance reductions in practice. The results
for the CCV suggest a nontrivial relationship between
graph topology, concordance order, and variance reduc-
tion. A more general and ambitious goal is to propose a
mathematical framework directed at identifying the addi-
tional features that produce these differences.

Our sampling method has been successfully applied
within the Bayesian estimation framework of the Euro-
pean Commission’s multicountry model (Albonico et al.
(2019)). We expect that the proposed simulation tech-
nique will find direct application in other fields of com-
putational mathematics and statistics.
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