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Abstract 

More sophisticated representations of compounds attempt to incorporate not only information on the structure 
and physicochemical properties of molecules, but also knowledge about their biological traits, leading to the so-
called bioactivity profile. The bioactive profiling of air pollutants is challenging and crucial, as their biological 
activity and toxicological effects have not been deeply investigated yet, and further exploration could shed light 
on the impact of air pollution on complex disorders. Therefore, a biological signature that simultaneously captures 
the chemistry and the biology of small molecules may be beneficial in predicting the behaviour of such ligands 
towards a protein target. Moreover, the interactivity between biological entities can be represented through com-
bined feature vectors that can be given as input to a machine learning (ML) model to capture the underlying interac-
tion. To this end, we propose a chemogenomic approach, called Air Pollutant Bioactivity (APBIO), which integrates 
compound bioactivity signatures and target sequence descriptors to train ML classifiers subsequently used to predict 
potential compound-target interactions (CTIs). We report the performances of the proposed methodology and, 
via external validation sets, demonstrate its outperformance compared to existing molecular representations in terms 
of model generalizability. We have also developed a publicly available Streamlit application for APBIO at ap-bio.
streamlit.app, allowing users to predict associations between investigated compounds and protein targets.

Scientific contribution
We derived ex novo bioactivity signatures for air pollutant molecules to capture their biological behaviour and asso-
ciations with protein targets. The proposed chemogenomic methodology enables the prediction of novel CTIs 
for known or similar compounds and targets through well-established and efficient ML models, deepening our 
insight into the molecular interactions and mechanisms that may have a deleterious impact on human biological 
systems.
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Introduction
Several studies have already linked exposure to envi-
ronmental air pollution to carcinogenesis [1, 2], inflam-
mation and oxidative stress [3, 4], and other chronic or 
complex disorders [5, 6]. However, exploring the bioac-
tivity of air-polluting compounds by discovering novel 
biological targets and binding activities may reveal still 
uninvestigated harmful and toxicological effects of such 
molecules on human health. Following this direction, we 
recently developed a Database of Air Pollutants (APDB) 
[7], that chemically characterizes molecules derived from 
air pollution sources and reports computed molecular 
descriptors and their similarities.

Computational or in silico prediction of new com-
pound-target interactions (CTIs) can help overcome the 
limitations of experimental in vivo and in vitro method-
ologies, mainly related to time and resource cost [8]. In 
particular, chemogenomic or proteochemometric (PCM) 
approaches attempt to represent CTIs by a molecular fea-
ture vector able to capture the interaction between mul-
tiple ligands and proteins simultaneously [9, 10], without 
requiring an exhaustive list of active ligands for similar-
ity search, as in the case of ligand-based approaches, or 
a solved three-dimensional (3D) structure, as in the case 
of molecular docking in virtual screening (VS) [11, 12]. 
A widely known ligand-based method is the Similarity 
Ensemble Approach (SEA) [13], which employs chemi-
cal similarity to identify targets for small molecules by 
comparing them to known ligands. However, predictions 
are challenging for targets with few active ligands and 
are particularly focused on well-characterized proteins. 
Proteochemometric (PCM) strategies, instead, integrate 
protein descriptors to provide additional knowledge for 
target prediction and combine them with chemical fea-
tures to detect patterns of interactivity by machine learn-
ing models. This enables handling data imbalance and 
sparsity, facilitating the prediction of novel ligand-target 
pairs.

Various molecular features have been proposed 
and calculated from chemical structures and protein 
sequences to describe the interaction between small 
compounds and their biological targets [14]. At the same 
time, different methodologies have been developed to 
leverage these properties, such as kernel- and network-
based approaches, and machine learning-based methods, 
which mainly exploit the chemical and genomic similar-
ity or integrate molecule and target feature vectors to 
predict potential ligand-target interactions [15–18]. 
These approaches use common molecule representa-
tions, such as Morgan fingerprints or MACCS keys [19], 
without or partially including all the bioactivity knowl-
edge that could be inferred for small compounds [20]. 
Moreover, they are mainly applied to drug-like molecules 

in the context of drug repurposing and discovery and 
do not consider environmental pollutants, such as vola-
tile organic compounds (VOCs) or polycyclic aromatic 
hydrocarbons (PAHs), and their molecular interactions 
with human proteins in the view of better understanding 
their mechanisms of action, toxic and side effects.

In the endeavour to characterize molecules from a 
biological perspective, the Chemical Checker (CC) [21] 
resource supplies essential bioactivity data on a massive 
collection of small compounds. In particular, the CC is 
divided into five datasets (A-E) representing different 
contexts in which a small molecule can be studied, start-
ing with its chemistry, moving on to its associated biolog-
ical targets, pathways and networks, and ending with its 
effect on cells and diseases. Each dataset is in turn sub-
divided into five spaces (1–5) containing specific data for 
each category (such as two-dimensional (2D) fingerprints 
for chemistry or binding data for targets). Based on the 
information stored in the 25 CC spaces, a Signaturizer 
module has been implemented to predict a signature of 
biological activity for any molecule of interest [22].

Although the CC is a comprehensive repository which 
offers knowledge on about one million small molecules 
by describing their biological similarities to assist the 
drug discovery procedure, we observed that out of 1,830 
air pollutant molecules in APDB only ~ 920 were com-
mon with the CC. Moreover, concerning the chemical 
feature space, APDB considers fingerprints, structural 
keys, and physicochemical properties common to the 
CC, but also complementary information by computing 
further molecular descriptors and quantum–mechanical 
properties. In addition, both resources provide different 
information on experimental bioassays and targets asso-
ciated with the collected molecules.

Regarding targets, a vast number of open-source soft-
ware are readily accessible to calculate sequence descrip-
tors, such as the web servers PROFEAT [23, 24] and 
PseAAC [25], the R package and web application protr/
ProtrWeb [26], and the iFeature Python-based pack-
age [27]. All these tools extract some of the most used 
and efficient features for characterizing biological target 
sequences, i.e., the amino acid composition, the dipep-
tide composition, the autocorrelation, the composition, 
transition and distribution, and the quasi-sequence-order 
descriptors [28].

Associations between molecules and targets can be 
extrapolated from several publicly available databases 
[15], including ChEMBL [29], which provides data on 
bioactivities, BindingDB [30], describing molecular bind-
ing affinity, DrugBank [31], which contains information 
mainly related to drugs, the Comparative Toxicogenom-
ics Database (CTD) [32], storing manually curated 
toxicogenomics data, and PubChem BioAssay [33], a 
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repository among the most comprehensive ones of small 
compound-associated biological experiments.

Bringing together all the information related to mol-
ecules, targets, and their interactions, the final CTI rep-
resentation can be obtained by integrating compound 
and target features, such that the combined feature vec-
tor can be employed to fulfil a binary classification task 
via machine learning (ML) models as described above. 
Specifically, supervised machine learning classification 
methods require defining a set of positive and negative 
instances to perform prediction [15]. At this point, the 
identification of negative samples represents a funda-
mental step, since data is usually highly unbalanced due 
to the small number of validated interactions and nega-
tives could also represent untested positive pairs [17, 
18]. Many methods have been proposed for construct-
ing a set of representative negative samples from a data-
set of experimentally validated positive pairs to improve 
the prediction performances of the ML models. These 
approaches are mainly based on similarity/dissimilarity 
measures between molecule and target properties and/or 
the One-Class Support Vector Machine (OCSVM) clas-
sifier [34, 35]. In particular, the OCSVM model has been 
widely used in the field of anomaly and novelty detection 
to generate a decision boundary, starting from a set of 
positive training instances, capable of detecting outlier 
samples [36, 37]. A sample with a high negative distance 
from the boundary or hyperplane has less resemblance to 
positive data, therefore, based on this assumption, nega-
tive instances can be sampled according to the distances 
defined by the OCSVM.

In this paper, we propose a feature-based chemog-
enomic method which finds a proper representation of 
the molecular and biological properties of air pollutant 
molecules and their associated targets to capture and 
predict potential interactions.

Specifically, the first objective was to incorporate addi-
tional compounds and chemical properties into the CC 
tool to extend the original chemical knowledge, and, in 
turn, leverage all available biological information (chem-
istry, targets, networks, cells, clinics) to describe air pol-
lutants according to their bioactivity. Furthermore, this 
integration was intended to place air pollutants within 
the broader context of known bioactive compounds. The 
consequent purpose was to provide a qualitative view 
of how specific categories of molecules, in particular 
air pollutants, interact at the molecular level with tar-
get proteins. Even though this does not directly address 
dose–response relationships or exposure levels, it could 
be the basis for further toxicological and chemical risk 
assessments.

Figure  1 shows the overall procedure of the proposed 
APBIO pipeline for CTI prediction. In particular, we 

derived new Signaturizer models from the raw data in 
APDB by leveraging the information stored in the CC to 
expand knowledge of air pollutants beyond their struc-
tural and physicochemical features and gain a more accu-
rate understanding of their bioactivities and mechanisms 
of action in pathways and diseases.

We combined target sequence descriptors extracted via 
the iFeature package [27] with molecule bioactivity sig-
natures inferred by the Signaturizer models according to 
the activity observed in the experimental bioassays from 
PubChem. We trained a One-Class SVM estimator with 
positive molecule-target interactions and calculated the 
distances to the hyperplane for the unlabelled interac-
tions. This allowed the identification of a reliable set of 
negative instances. We constructed the final CTI dataset 
by merging the positive pairs with the selected negative 
pairs.

As a comparison, we applied the same procedure to 
build CTI datasets derived from the Morgan fingerprints 
and the Signaturizer models of the CC chemical spaces.

We used the generated datasets to evaluate the ability 
of four ML estimators in classifying compound-target 
interactions. We demonstrated model generalizability 
on unseen data consisting of active pairs from PubChem 
BioAssay not present in the training dataset, additional 
binding data provided by the CC, and specific protein 
targets from the CTD.

We first showed that negative samples selected by 
the OCSVM substantially increase the accuracy of the 
predictive models compared to random sampling. We 
then obtained model performances for all the datasets 
by applying a nested cross-validation (CV) procedure, 
observing comparable and outstanding results. Whereas, 
addressing generalization capabilities, we found that 
molecular features from APDB provided more stable 
results in terms of recall score compared to the other 
datasets in any type of tested scenario.

Finally, we supply an application, called APBIO, which, 
given as input a molecule structure and a target identi-
fier, generates molecule signatures and target descriptors 
to predict potential interactions between the biological 
entities being investigated.

Methods
The following sections describe the collection of mole-
cule and target data, the pipeline for the inference of bio-
activity signatures and the extraction of target sequence 
descriptors. They also report the methodology for the 
prediction of CTIs for which we provide a Streamlit web 
application located at ap-bio.streamlit.app that enables 
the input of compound structures (SMILES) and target 
identifiers (UniProtKB) to obtain feature vectors used for 
estimating possible interactions.
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Data collection
We collected 1830 molecules from APDB [7], derived 
from the SPECIES_PROPERTIES table of the SPECIATE 
5.1 database [38] provided by the Environmental Protec-
tion Agency (EPA) and from the EPA’s Hazardous List of 
Air Pollutants [39].

We downloaded the molecule data stored in APDB 
related to four chemical spaces, specifically, the finger-
print bits (FPB), fingerprint counts (FPC), molecular 
descriptors (MD), and quantum properties (QP) tables 
later used to derive new molecular representations 
(Fig. 1a).

Fig. 1  APBIO pipeline. The a figure illustrates the procedure to derive bioactivity signatures (128 dimensional vectors) for the 1,830 molecules 
in the Database of Air Pollutants (APDB) collected from the Environmental Protection Agency (EPA). For each chemical space in APDB, namely, 
fingerprint bits (FPB), fingerprint counts (FPC), molecular descriptors (MD), and quantum properties (QP), the corresponding Signaturizer models, 
called F1, F2, M1, and Q1, respectively, are built by leveraging the information stored in the 25 Chemical Checker (CC) spaces. The b plot reports 
the steps to compute sequence descriptors of 223 protein targets. From the UniProtKB identifier, the FASTA file of the protein sequence is fetched 
and used to calculate descriptors by the iFeature module. The resulting feature vector of dimension 1623 is scaled and reduced by Principal 
Component Analysis (PCA) to a dimension of 128. In c are depicted the compound-target interaction (CTI) datasets built from the active pairs 
identified in 3,534 bioassays from PubChem by concatenating molecule and target feature vectors. F1F2 and APchem are the datasets derived 
from APDB, A1A2 and CCchem are the datasets derived from the CC, MFP is the dataset of Morgan fingerprints (1024 bits, radius 2). The d 
figure shows the CTI prediction workflow applied to each dataset independently. The first step involves the sampling of negative instances 
by the One-Class Support Vector Machine (OCSVM) classifier. Secondly, the sampled dataset is used as input for nested cross-validation (CV) of four 
machine learning (ML) models, i.e., Logistic Regression (LR), K-Nearest Neighbors (KNN), Random Forest (RF), and Multi-layer Perceptron (MLP). 
For each training set of the outer stratified tenfold CV, an inner stratified fivefold CV is performed to tune model hyperparameters (C, K, n_est, 
and layers, respectively), while evaluation metrics are computed on each remaining validation fold. The final model is selected by averaging 
CV scores, tuning parameters, and fitting it on the entire dataset. Lastly, external validation is conducted on unknown CTIs from PubChem, 
the Chemical Checker, and the Comparative Toxicogenomics Database (CTD)
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We retrieved bioassays from APDB and updated them 
with the version currently available in PubChem [33] 
collecting data via the PUG-REST service [40, 41] que-
rying by PubChem’s CID. We kept only active assays 
that were tagged as “Confirmatory” or “Summary” and 
had a specified activity value to minimize the number 
of false positives that could be found in primary screens 
[42], discarding those changed to “Unspecified”. In cases 
of contradictory results for the same assay identifier 
(AID), we retained experiments reporting a majority or 
an equal number of active results over inactive ones. In 
the presence of concurrent inactive assays, the active 
assays were kept as considered more reliable. The targets 
associated with the queried bioassays were annotated by 
the reviewed UniProtKB-Swiss-Prot identifier, protein 
names, gene names, organism and sequence length using 
the UniProt ID Mapping REST service [43] (https://​
www.​unipr​ot.​org/​help/​id_​mappi​ng). Only human pro-
teins were selected, corresponding to a total of 223 genes 
(Fig.  1b). The final number of selected assays is 3534 
(Fig.  1c) corresponding to 2609 CTIs (499 compounds 
and 223 targets). The count of targets and the number of 
interactions with active ligands for each identified pro-
tein family are reported in Supplementary Figure S1.

Bioactivity signatures derivation
Bioactive profiling of small compounds goes beyond 
chemistry itself, as it seeks to explore the available bio-
activity information of the molecules under study [21]. 
This is highly valuable since the bioactivity profile can 
be exploited to unravel hidden mechanisms and adverse 
effects of air pollution on human health.

Molecular representations in APDB are generated from 
structural, physico- and quantum-chemical properties 
by initially applying dimensionality reduction to the raw 
data, followed by node embedding on networks con-
structed from significant pairwise molecular similarities 
within each identified chemical space. Further details on 
their calculation can be found in the corresponding man-
uscript [7].

Although these embeddings capture a wide range of 
chemical characteristics, they do not integrate any bio-
activity data; we therefore derived novel molecule signa-
tures by incorporating additional information present in 
the CC, such as binding modes, cell effects, and clinical 
outcomes of bioactive molecules. The main advantage of 
this process is that bioactivity signatures can be efficiently 
predicted for any compound, providing a useful descrip-
tor for downstream analyses, such as similarity search, 
clustering, interaction or activity prediction, replacing 
traditional molecular representations.

The pipeline for the creation of a new CC space and the 
inference of bioactivity signatures consists of four main 

steps and is described in detail at https://​gitla​bsbnb.​irbba​
rcelo​na.​org/​packa​ges/​proto​cols.

Starting from the APDB raw data, which can be dis-
crete, as in the case of fingerprint bits or counts, or 
continuous, as in the case of molecular descriptors and 
quantum properties, a cleaning and pre-processing step 
is applied, leading to signature 0. The output signatures 
are then compressed by using Latent Semantic Indexing 
(LSI) or Principal Component Analysis (PCA) reduc-
tion techniques, typically preserving 90% of the vari-
ance. The low-dimensional data, called signature 1, are 
used to derive similarity networks encoding statistically 
significant similarities between pairs of molecules. An 
embedding algorithm is applied to these networks to 
obtain fixed-length embedding vectors denoted as signa-
ture 2. The signatures 2 for all CC and APDB compounds 
are fed into a Siamese Neural Network (SNN) to derive 
a data representation, named signature 3, explaining the 
initial similarity observed in the signature 1 of each CC 
space and the newly created space. Finally, a Deep Neu-
ral Network (DNN) model is trained to predict the com-
prehensive signature 3 from the Morgan fingerprints of 
molecules. The ultimate model is called Signaturizer and 
the resulting signature 4 is the so-called bioactivity sig-
nature, i.e., a feature vector of dimension 128 [22]. We 
applied the entire pipeline to derive signatures from 0 to 
4 for the four APDB chemical spaces. The final Signatur-
izer models are called F1 for fingerprint bits, F2 for fin-
gerprint counts, M1 for molecular descriptors and Q1 for 
quantum properties (see Fig. 1a).

The pipeline also provides a diagnostic plot for each 
space to observe and evaluate the quality of the signa-
tures produced. In Fig. 2 we report the diagnostic plot for 
the F1 space.

In Fig.  2a, the heatmap represents data values of 128 
features (i.e., the signature dimension) for 100 selected 
molecules (or keys). The range of values for signature 4 
goes from – 0.2 to 0.2 (Fig. 2b, c) as the final result of the 
whole procedure. Instead, for example, if we had exam-
ined the raw data for the fingerprint bits space, we would 
have found 0 and 1 as the unique values.

The 2D t-distributed stochastic neighbor embed-
ding (t-SNE) projection of signatures (Fig.  2d) exhibits 
higher-density areas at the boundaries and the Euclidean 
(Fig. 2e) and Cosine (Fig. 2f ) distance distributions reflect 
a fair degree of similarity of the molecule features consid-
ered in this space.

The remaining plots show the behaviour of F1 signature 
4 compared to the CC spaces for each dataset by taking 
as reference signature 0 and signature 1. Each space in the 
CC is named with the dataset (A: chemistry (red), B: tar-
gets (purple), C: networks (blue), D: cells (green), E: clin-
ics (yellow)) and a number from 1 to 5, such as A1.

https://www.uniprot.org/help/id_mapping
https://www.uniprot.org/help/id_mapping
https://gitlabsbnb.irbbarcelona.org/packages/protocols
https://gitlabsbnb.irbbarcelona.org/packages/protocols
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The bioactivity signature of F1 presents a slighter 
degree of similarity when looking at shared mecha-
nisms of action (MoA), for which the area under the 
curve (AUC) is 0.686 (Fig. 2g). A closer resemblance is 
found when considering anatomical therapeutic chemi-
cal (ATC) classes, for which the AUC is 0.754 (Fig. 2h). 
Figure 2i illustrates the dimension of the signature 4 of 
F1 (white dot) and of the signature 1 of each CC space 
in terms of number of keys and features. Additionally, 
we can see that signature 1 keys of each CC dataset 
cover all signature 4 keys (Fig.  2j), but not vice versa 
(Fig. 2k), e.g., only ~ 60% of signature 4 keys are present 
in B4 (binding data). The best recapitulation, defined as 
the capability to recover the KNNs identified in signa-
ture 0 of the dataset under consideration, is obtained 

for the 2D fingerprints (A1) and the structural keys 
(A4), as expected (Fig. 2l).

Target feature extraction
We first retrieved the FASTA sequence for the 223 tar-
get proteins via UniProt RESTful APIs (https://​www.​
unipr​ot.​org/​help/​api_​queri​es) querying by UniProtKB-
Swiss-Prot identifier. Secondly, through the iFeature 
package [27], we computed the following sequence 
properties to define the target’s biological space: the 
Amino Acid Composition (AAC), the Dipeptide Com-
position (DPC), the Pseudo-Amino Acid Composi-
tion (PAAC), the Moran, Geary, and Normalized 
Moreau-Broto autocorrelation descriptors (Moran, 
Geary, NMBroto), the Composition, Transition, and 

Fig. 2  A diagnostic plot to evaluate the quality of signature 4 of the APDB F1 space and its comparison with the CC datasets. The a plot 
represents the distribution of feature values from minimum (blue) to maximum (red) per key (100 compounds are randomly selected by default). 
Similarly, the b and c plots depict the distribution of values present in the dataset per each feature and each key, respectively. The d figure 
is the two-dimensional t-distributed stochastic neighbor embedding (2D t-SNE) projection of the molecule signatures. The e and f density 
plots represent the pairwise Euclidean and Cosine distance distribution, respectively. The g and h are the receiver operating characteristic curve 
(ROC) and the corresponding area under the curve (AUC) value reflecting whether neighboring molecules for that signature tend to have 
similar mechanisms of action (MoA) or therapeutic code (ATC) (signature 0 as reference). The i plot shows the log10 value of the number 
of keys and features of signature 1 of each CC space and the signature 4 of the created space (white dot). The j and k lollipop plots illustrate 
the proportion of signature 4 keys covered by signature 1 keys for each CC dataset and, conversely, the proportion of signature 1 keys for each CC 
dataset covered by signature 4 keys. The l figure displays the area under the receiver operating characteristic curve (ROC-AUC) values indicating 
whether neighboring molecules for that signature share similar characteristics in each CC space (signature 0 as reference)

https://www.uniprot.org/help/api_queries
https://www.uniprot.org/help/api_queries
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Distribution features (CTDC, CTDT, CTDD), the 
Sequence-Order-Coupling Number (SOCNumber) 
and the Quasi-Sequence-Order (QSOrder) descriptors. 
In particular, from the software package provided in 
https://​github.​com/​Super​zchen/​iFeat​ure/, we used the 
iFeature.py program and the required files in the codes 
and data folders to obtain a.csv file for each descriptor. 
We then merged the calculated descriptors into a single 
dataset of 1623 features and applied feature scaling and 
principal component analysis (PCA) (StandardScaler 
and PCA implemented in the scikit-learn package [44]) 
to reduce the dimensionality to 128 features, explain-
ing more than 90% of the variance (Fig. 1b). The fitted 
scaler and pca model can be used to derive feature vec-
tors for novel targets to be predicted.

Compound‑target interaction prediction
Datasets generation
Starting from the 1830 APDB molecules and the 223 
associated targets, we generated five different CTI data-
sets by the concatenation of bioactivity signatures and 
target sequence descriptors (Fig.  1c). Compound sig-
natures are derived from Signaturizer models by giv-
ing chemical structures as input in the form of SMILES 
strings, while target features are calculated from the 
biological sequence represented in FASTA format. Spe-
cifically, F1F2 is the dataset derived from the APDB 
fingerprint bits (F1) and fingerprint counts (F2) Signatur-
izers and APchem is the dataset derived from the APDB 
fingerprint bits (F1), fingerprint counts (F2), molecular 
descriptors (M1), and quantum properties (Q1) Signa-
turizers. Given that both molecule signatures and tar-
get descriptors have 128 features, the final datasets have 
dimensions 384 and 640, respectively. Concerning sam-
ples, we used all 1830 molecules and 223 targets to cre-
ate CTI datasets, assigning the label 1 to the 2609 active 
pairs and the label 0 to the 405,481 remaining ones, for a 
total of 408,090 pairs.

For evaluation purposes, we created CTI datasets from 
the CC using the signaturizer Python module provided 
in [22]. In particular, A1A2 is the dataset derived from 
the 2D fingerprints (A1) and 3D fingerprints (A2) Sig-
naturizers and CCchem is the dataset derived from the 
2D fingerprints (A1), 3D fingerprints (A2), scaffolds (A3), 
structural keys (A4), and physicochemical parameters 
(A5) Signaturizers. Moreover, for further comparison, 
we employed the rdkit Python library (http://​www.​rdkit.​
org/) to generate a CTI dataset of Morgan fingerprints 
(1024 bits, radius 2) called MFP. Given that both mole-
cule signatures and target descriptors have 128 features, 
the final datasets have dimensions 384, 768, and 1152, 
respectively.

Negative instances selection
For each generated CTI dataset, we performed a selec-
tion of negative samples (Fig.  1d). This is a crucial step 
to determine the performance of the final prediction 
model. Following the approaches in [35, 45], we trained 
a One-Class SVM (OCSVM) model using the 2,609 posi-
tive samples identified. In particular, we selected a lin-
ear kernel and tuned the nu parameter by taking [0.01, 
0.03, 0.05, 0.1] as the range of values and maximizing the 
recall (> 0.9) to have a high proportion of correctly clas-
sified positives. We performed two fivefold cross-valida-
tion repetitions to select the best model and computed 
the distances to the estimated hyperplane for both posi-
tive and negative pairs. We ranked the negative signed 
distances in increasing order and picked the desired 
number of samples from the head of the list (Fig. 3a–e). 
Specifically, we set a positive-to-negative ratio of 0.1 to 
reproduce a realistic scenario in which non-active pairs 
are far more than active ones, resulting in a final number 
of 28,699 positive and negative samples. The number of 
selected APDB molecules and targets for each class and 
each dataset is reported in Supplementary Table S1.

To compare performances across different propor-
tions of positives and negatives, we selected non-inter-
acting pairs using a ratio of 0.2 and 0.01, resulting in a 
total number of 54,789 and 263,509 samples, respectively. 
Similarly to [34], we also generated corresponding data-
sets with randomly selected negative instances to evalu-
ate the efficiency of the sampling strategy.

Model evaluation and prediction setting
Feature vectors of each sampled CTI dataset with a pos-
itive-to-negative ratio of 0.1 (obtained above) were fed 
to four different machine learning classifiers, namely, 
Logistic Regression (LR), K-Nearest Neighbors (KNN), 
Random Forest (RF), and Multi-layer Perceptron (MLP) 
[44]. To evaluate model performances, we applied nested 
cross-validation, in which the inner loop is executed to 
tune the hyperparameters of the models by optimiz-
ing for balanced accuracy while the outer loop serves 
for metrics computation, specifically, the area under the 
ROC curve, average precision, recall, precision, f1, and 
balanced accuracy. Since only the training set of the outer 
loop is passed to the inner one, it allows better gener-
alization by avoiding overfitting; at the same time, the 
remaining test set is used to estimate performance [46]. 
We performed repeated (n_repeats = 2) stratified cross-
validation by setting 5 folds and 10 folds, respectively. 
We defined a grid of parameters for each classifier, in 
particular, the C range for LR was [0.01, 0.1, 1, 10], the 
n_neighbors (K) range for KNN was [5, 15, 25, 35], the n_
estimators (n_est) range for RF was [100, 200, 300, 400], 
and the hidden_layer_sizes (layers) range for MLP was 

https://github.com/Superzchen/iFeature/
http://www.rdkit.org/
http://www.rdkit.org/
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[64, 128, 256, 512]. To select the final model, we com-
puted the average of all test scores and kept the estimator 
with the maximum value. Finally, we re-executed hyper-
parameter tuning via grid search fivefold cross-validation 
by maximizing for balanced accuracy (BA) and trained 
the best model on the entire dataset (Fig. 1d). We com-
puted the final performances on a train-test split with a 
test set size of 0.3 reporting the precision-recall curve 
and the corresponding average precision value. We also 
calculated the same metrics on the different ratios of neg-
atives and the randomly generated datasets for compari-
son purposes.

External validation dataset construction
To gain a more comprehensive understanding of pollut-
ant molecule bioactivity and focus on specific protein 
families to evaluate the model’s capabilities on exter-
nal datasets, we conducted an enrichment analysis by 
exploiting biological annotations stored in the Chemical 
Checker (CC) [21].

Enrichment analysis is widely applied in the omics field 
to identify biological terms or pathways that are particu-
larly enriched (or over-represented) in gene sets of inter-
est [47–50].

In this framework, a common test used to determine 
statistical significance is the one-sided Fisher’s exact test, 
which calculates an exact p-value based on a hypergeo-
metric distribution. Following the formulation in [51, 52], 

for each term in a CC space, we constructed a contin-
gency table by taking as background the CC molecules 
that had at least one annotation in the considered space 
and as a set of interest the APDB molecules found anno-
tated with that particular term. For robustness, we con-
sidered sets of at least 5 molecules.

On this table, we executed the Fisher’s test to find the 
terms whose associated molecules were significantly 
over-represented in the list of APDB molecules, com-
pared to all the ones in the reference set [53]. To adjust 
apparently significant p-values due to multiple testing, 
we applied the Bonferroni correction, which controls the 
ratio of false positives by re-computing the significance 
threshold as α = 0.05/n, where n is the number of tests 
executed [54]. We filtered out terms that were not sta-
tistically significant (adjusted p-value > 0.05) and we also 
inspected the strength of the observed association (or 
enrichment) by calculating the odds ratio value.

For the enrichment, we considered two CC data-
sets, namely, metabolic genes (B2 with dimension 1644 
rows × 214 columns) and binding data (B4 with dimen-
sion 631,027 rows × 4635 columns) containing informa-
tion on molecule targets derived from ChEMBL [29], 
BindingDB [30], and DrugBank [31]. Compounds were 
annotated through the CC Molset class implemented in 
the molkit.py module [21], which provides a dataset of 
annotation terms for each biological space of interest. In 
total, we have annotated 1,009,292 compounds from the 

Fig. 3  Distribution of OCSVM signed distances of the compound-target pairs in (a) F1F2 dataset, (b) A1A2 dataset, (c) MFP dataset, (d) APchem 
dataset, and (e) CCchem dataset. Highlighted in green is the distribution of distances of the selected negative instances with a positive-to-negative 
ratio of 0.1
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CC and 1830 from APDB, of which 921 are common to 
both datasets. APDB molecules with annotation are 44 in 
B2 and 146 in B4. The count of APDB molecules anno-
tated in each CC space is shown in Supplementary Figure 
S2.

From the analysis, we found enriched terms in B2 
related to the solute carrier (SLC) family of transport-
ers. This protein family is known to be responsible for 
the transport of metabolites and nutrients that guar-
antee the correct functioning of vital organs, such as 
brain and heart [55, 56]. Moreover, recent studies have 
demonstrated that the expression of these transporters 
may be dysregulated by exposure to air pollution par-
ticles, potentially contributing to the onset of neuro-
degenerative diseases [57]. Concerning the B4 dataset, 
cytochrome P450 (CYP) enzymes, carbonic anhydrases 
(CA), and their related transcription factors emerged 
among the targets significantly associated with air pol-
lutants. The first class of proteins is fundamental for the 
metabolism of xenobiotics (such as environmental pol-
lutants and industrial chemicals) and it has been shown 
that the presence of different types of particulate matter 
(PM), like polycyclic aromatic hydrocarbons (PAHs), can 
lead to oxidative stress and subsequent inflammation by 
binding the aryl hydrocarbon receptor (AHR), an impor-
tant transcription factor that modulates the expression 
of the cytochrome P450 CYP1A1 and CYP1A2 enzymes 
[58]. Relative to carbonic anhydrases, it has been found 
that they could be extremely useful in environmental 
biomonitoring due to their susceptibility to heavy metals 
and other contaminants [59].

Gathering all the information derived from the enrich-
ment analysis described above, we constructed four vali-
dation datasets used to demonstrate the generalization 
capability of our classifier. Specifically, we selected 23 
CTIs (13 compounds and 8 targets) considering the sol-
ute carrier (SLC) family of proteins, found to be enriched 
for APDB molecules in the B2 space, and additional bind-
ing data from the CC; 1059 CTIs (712 compounds and 38 
targets) with the cytochrome P450 (CYP) enzymes and 
152 CTIs (72 compounds and 11 targets) with the car-
bonic anhydrase (CA) proteins found in the Comparative 
Toxicogenomics Database, in particular, we downloaded 
the processed and organized CTD gene-chemical inter-
actions from Harmonizome [60]. We also considered 
a validation set of CTIs from PubChem not present in 
APDB containing 34 new active pairs (21 compounds and 
25 targets). The number of APDB and non-APDB mole-
cules and targets for each external dataset is summarized 
in Supplementary Table S2.

We annotated targets with their reviewed UniProtKB-
Swiss-Prot identifier, protein names, gene names, organ-
ism and sequence length and kept only human ones. 

Concerning CTD data, we converted each external sub-
stance ID to the corresponding PubChem Compound ID 
(note that some chemicals got lost during the conversion) 
and retrieved its SMILES and InChIkey (a 27-character 
string used as an identifier for molecules) through the 
PUG-REST web service.

For each validation dataset, we used the Signaturizer 
models to derive molecule signatures (see subsection 
Datasets generation), and we applied the same procedure 
described in the section Target feature extraction to com-
pute target descriptors.

Applicability domain study
The introduction of an applicability domain (AD) for a 
machine-learning classification model enables focusing 
on the most reliable predictions determined by the dis-
tribution of training data [61, 62]. Therefore, we defined 
an AD for each dataset using a distance-based method to 
represent the location in the chemical space and biologi-
cal space of molecule signatures and target descriptors, 
respectively. In particular, we computed a distance cutoff 
to identify molecules and targets outside the applicability 
domain of our estimator to ensure robust predictions.

Following one strategy proposed in [63], we first cal-
culated the average K-nearest neighbors (KNN) distance 
of each molecule in the training set by setting “cosine” as 
distance metric and K = 5 by default (NearestNeighbors 
from scikit-learn [44]). We then used the computed dis-
tances to define an outlier threshold by considering the 
95th percentile of the distribution. We applied the same 
procedure to targets. We also assigned a flag to molecules 
for each dataset, naming “positive” or “negative” those 
present only in the positive or negative pairs, respec-
tively, “in” or “new” those present or not in the training 
set, respectively, and “out” the new molecules that do not 
fall within the applicability domain. We did the same for 
targets, excluding the “negative” flag. The number of mol-
ecules and targets for each flag category and each exter-
nal dataset is reported in Supplementary Tables S3–S7.

First, we identify the intersection with the training set 
by using molecule InChIkey and target UniProtKB as 
identifiers; then, to establish whether a molecule or tar-
get is outside the AD, we inspect whether the average dis-
tance to its 5NN is higher than the defined cutoff. As a 
result, by defining the chemical and biological region in 
which the model performs effectively, the applicability 
domain enables determining the prediction confidence 
and reliability for an unknown compound-target interac-
tion. An example of unseen molecules lying outside and 
inside the model’s AD is illustrated in Supplementary 
Figure S3.
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Results and discussion
APDB embeddings and CC signatures in comparison
Similarly to CC signatures, APDB provides embeddings 
for each chemical space, e.g., to calculate similari-
ties between molecules, drawn from different types of 
molecular descriptors and properties. For this reason, 
we first investigated whether the information stored 
in the APDB and the CC is somehow analogous or 
complementary. The comparison between the APDB 
embeddings and the CC signatures is made in terms of 
recapitulation and follows the procedure reported in 
[21], specifically, we reimplemented the compute_dis-
tance_pvalues() function of the signature_data.py mod-
ule and the cross_roc() function of the diagnostics.py 
module.

The recapitulation is given by the ability of the CC sig-
natures to retrieve the nearest neighbors (NN) calculated 
from the APDB embeddings at different significance 
levels.

Thus, for each APDB space, namely, fingerprint bits 
(FPB), fingerprint counts (FPC), molecular descriptors 
(MD), and quantum properties (QP), we computed the 
pairwise cosine distances using the embedding vectors 
associated with each pollutant molecule and retrieved the 
NN at different p-value thresholds, namely 5 × 10–2, 10–2, 
10–3. We then predicted molecule signatures considering 
CC datasets representing different aspects of small-mole-
cules, i.e., structural characteristics described by Morgan 
fingerprints (A1), target interactions from binding (B4) 
data, and association with diseases and toxicology (E4). 
We used the corresponding Signaturizer model [22] and 
calculated the pairwise cosine distances over signature 
vectors for positive and randomly chosen negative NN 
pairs from APDB data. Finally, we evaluated the results 
by displaying the receiver operating characteristic curve 
(ROC) and the precision-recall (PR) curve, of which we 
report the area under the curve (AUC) and the average 
precision (AP) values, respectively. As expected, for the 
A1 dataset representing the 2D or Morgan fingerprints of 
molecules (Fig. 4a–c), the best recapitulation is observed 
in the FPC embeddings at almost all p-value thresholds, 
given that the information encoded by these descriptors 
is similar (Fig. 4a). For binding data, represented by the 
B4 dataset (Fig.  4d–f), the AUC and AP values of FPC 
and MD are nearly comparable (Fig. 4d, e), reflecting the 
fact that the binding behaviour accounts for both struc-
tural and physicochemical characteristics. The E4 dataset 
(Fig. 4g-i), reporting the associations found between mol-
ecules and diseases, shows a worse recapitulation in gen-
eral, due to the difficulty of capturing such relationships 
just from chemical information. Finally, we can observe 
that QP represents some complementary information 
concerning the signatures found in the CC; therefore, in 

this case, the recapitulation in terms of neighbors appears 
distinct (Fig. 4c, f, i).

In summary, we demonstrated that the knowledge 
captured by the CC and the APDB is fairly similar when 
looking at the structural and physicochemical character-
istics of molecules, but not identical. Furthermore, the 
quantum properties from APDB provide supplementary 
chemistry-related information. This motivated the deri-
vation of specific bioactivity signatures for pollutant mol-
ecules from APDB data.

APDB and CC signatures in comparison
We likewise compared the created APDB signatures 
and the CC signatures of 2D fingerprints (A1) and phys-
icochemical parameters (A5), being the chemical spaces 
most similar to those found in APDB. The highest area 
under the curve (AUC) values are observed for the F1 
and F2 spaces, indicating that the final signature 4 reca-
pitulates well the characteristics of the initial dataset 
represented by signature 0 of fingerprint bits and counts 
(Fig. 5a, b). Even if for the M1 and Q1 spaces some infor-
mation on physicochemical and quantum properties got 
lost during the signaturization procedure, the perfor-
mances are still acceptable (Fig. 5c, d), and the bioactiv-
ity signature is capable of capturing both the original raw 
data and the knowledge derived from the CC. Instead, we 
can observe that the A1 and A5 CC Signaturizer models 
recapitulate less information found in the original APDB 
datasets (Fig.  5e–h) compared to the generated APDB 
Signaturizers (Fig.  5a–d). Therefore, the methodology 
described in the section Bioactivity signatures derivation 
allowed the incorporation of air-polluting molecules not 
present in the CC resource and the derivation of a bioac-
tivity signature well reflecting their original similarities. 
This confirms that the developed Signaturizer models 
can be used to generate ad hoc representations for inves-
tigated pollutants, explore similar behaviours, and pre-
dict interactions with biological targets.

Model performances and novel CTIs prediction
We first analysed the performances of the different clas-
sifiers, namely, LR, KNN, RF, and MLP, to select the best 
model for each dataset. From the nested cross-validation, 
we averaged the average scores on the validation set for 
each metric (Fig. 6) and selected the estimator with the 
maximum value. Logistic regression was found to be the 
model with the most successful or comparable perfor-
mance for all the datasets. We then re-execute hyperpa-
rameter tuning for the LR model and re-fit it on the whole 
dataset. We also fit the final classifier on the datasets 
with a positive-to-negative ratio of 0.2 and 0.01 selected 
by both strategies, OCSVM and randomly. Results are 
evaluated in terms of precision-recall curve and show 
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that average precision scores are high in all datasets when 
considering a sampling ratio of 0.1 and 0.2, while are sub-
stantially decreasing when the number of negatives is 100 
times more than the number of positives, particularly 
for the A1A2 and CCchem datasets (Fig. 7a–e). Further-
more, we can conclude that by adopting an appropriate 
sampling strategy to select negative instances, the model 
performances are significantly improved compared to a 
random approach, as evidenced by the decrease in aver-
age precision values when considering randomly sampled 
negatives (AP1 versus AP2 values in Fig. 7a–e).

As for external validation, we report the prediction 
results for all tested scenarios (see subsection Exter-
nal validation dataset construction), i.e., the novel pairs 
present in current PubChem bioassays, the interactions 
with the targets found enriched in the CC B2 (meta-
bolic genes) space and the unseen targets in the CC B4 
(binding data) space, and the CTIs with the CYP and 

the CA enzymes from the CTD. Performances are given 
in terms of recognition rate, or recall, since we are seek-
ing a model primarily capable of recognizing positive 
instances. Concerning PubChem pairs, predictions are 
outstanding for both MFP and APchem datasets (Fig. 8a, 
c, d), which allow retrieval of almost all positive pairs, 
while CC signatures provide smaller recall values (Fig. 8b, 
e). For B2 and B4 targets, the maximum recall score is 
observed when using CC features (Fig. 8b, e) and compa-
rable values are obtained with APchem features (Fig. 8a, 
d), whereas the MFP dataset leaks a large portion of hits 
(Fig. 8c). For CYP enzymes, the APchem dataset gives the 
best performances (Fig. 8d), followed by the F1F2 dataset 
(Fig. 8a) and the MFP dataset (Fig. 8c), while CC signa-
tures show again a lower true positive rate (Fig. 8b, e); the 
same applies to CA targets, for which MFP and APchem 
scores are almost comparable (Fig. 8c, d), whereas the CC 
datasets report less successful hits (Fig. 8b, e). However, 

Fig. 4  The receiver operating characteristic (ROC) and precision-recall (PR) curves and the corresponding area under the curve (AUC) and average 
precision (AP) values comparing APDB embeddings of a, d, g fingerprint counts (FPC), b, d, e molecular descriptors (MD), and c, f, i quantum 
properties (QP) spaces with CC bioactivity signatures of a–c 2D fingerprints (A1), d–f binding (B4), and g–i diseases and toxicology (E4) datasets
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considering the applicability domain of the model, the 
scores improve considerably for the A1A2 and CCchem 
datasets, especially for interactions with CA targets, 
while remaining consistent for the other datasets.

Overall, we can deduce that the APchem dataset dem-
onstrates a more stable behaviour compared to the others 
in finding positive associations. Therefore, new CTIs can 
be robustly predicted by our pre-trained estimators.

Conclusions
In this work, we proposed an in silico methodological 
pipeline to identify novel compound-target interactions 
by computing and integrating the bioactivity signature 
of air-polluting molecules with target sequence descrip-
tors into a single vector representation. Indeed, repre-
senting their properties in the form of numerical vectors 
allowed us to apply established machine learning models 
to identify unknown pairs of interacting molecules with 
similar bioactivity behaviour. The outlined methodology, 
through the inclusion and inference of biological infor-
mation related to small compounds, demonstrated its 
generalization capabilities on external data focused on 
specific targets for air pollution, providing support for 
future predictions. Moreover, the bioactivity signatures 

derived specifically for air pollutants demonstrated an 
improved consistency in reporting positive associations 
compared to other datasets’ features.

As a future step, we will evaluate different negative 
selection strategies, e.g. sampling around the mean [45], 
which we demonstrated to be valuable compared to a 
random approach.

We also supply a web application at ap-bio.streamlit.
app to compute molecule and target feature vectors, visu-
alize the 2D t-SNE representation of molecule signatures 
focusing on the query molecule and its nearest neigh-
bors, and predict compound-target interactions from 
molecule SMILES and target UniProt.

In this way, unknown ligands can be prioritized for 
a given target (or vice versa) and can subsequently be 
tested through molecular docking simulations or vali-
dated via in vitro experiments for further studies on gene 
expression, chemical toxicity, and hazard evaluation.

A final aspect to be emphasised is the field of applica-
tion of this methodology. Air pollutants are today one 
of the most important threats for human health [64–66] 
and there are still few free resources for the study of the 
mechanisms of action behind their toxicological effect. In 
this scenario, APBIO stands as a noteworthy free tool for 

Fig. 5  The recapitulation of signature 0 (original data in APDB) starting from signature 4 (bioactivity signature) in terms of neighboring molecules 
in the a fingerprint bits (F1), b fingerprint counts (F2), c molecular descriptors (M1), and d quantum properties (Q1) spaces, respectively. The 
recapitulation of signature 0 of e, f fingerprint bits (F1) and counts (F2) starting from signature 4 of 2D fingerprints (A1). The recapitulation 
of signature 0 of g, h molecular descriptors (M1) and quantum properties (Q1) starting from signature 4 of physicochemical parameters (A5)
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Fig. 6  Nested cross-validation performances of Logistic Regression (LR), K-Nearest Neighbors (KNN), Random Forest (RF), and Multilayer Perceptron 
(MLP) models in terms of area under the receiver operating characteristic curve (ROC-AUC) (1), average precision (AP) (2), recall (3), precision (4), f1 
(5), and balanced accuracy (6) for the F1F2, A1A2, MFP, APchem, and CCchem datasets

Fig. 7  Performances of OCSVM and random negative selection strategies in terms of precision-recall curve and average precision value of the final 
classifier (AP1 and AP2, respectively) on the train-test split with test size 0.3 for each (a–e) dataset with positive-to-negative ratio of 0.1, 0.2, and 0.01
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the prediction of air pollutants targets, allowing scientists 
to deepen possible biological processes in pollutants toxi-
cology. For this reason, our group is working to deepen 
the application of chemoinformatics and bioinformatics 
to unveil the role of pollutants from different matrices in 
different diseases.
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