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A B S T R A C T

Spinal cord (SC) atrophy obtained from structural magnetic resonance imaging has gained relevance as an in-
dicator of neurodegeneration in various neurological disorders. The common method to assess SC atrophy is by
comparing numerical differences of the cross-sectional spinal cord area (CSA) between time points. However, this
indirect approach leads to considerable variability in the obtained results. Studies showed that this limitation can
be overcome by using a registration-based technique.
The present study introduces the Structural Image Evaluation using Normalization of Atrophy on the Spinal

Cord (SIENA-SC), which is an adapted version of the original SIENA method, designed to directly calculate the
percentage of SC volume change over time from clinical brain MRI acquired with an extended field of view to
cover the superior part of the cervical SC.
In this work, we compared SIENA-SC with the Generalized Boundary Shift Integral (GBSI) and the CSA change.

On a scan-rescan dataset, SIENA-SC was shown to have the lowest measurement error than the other two
methods. When comparing a group of 190 Healthy Controls with a group of 65 Multiple Sclerosis patients,
SIENA-SC provided significantly higher yearly rates of atrophy in patients than in controls and a lower sample
size when measured for treatment effect sizes of 50%, 30% and 10%.
Our findings indicate that SIENA-SC is a robust, reproducible, and sensitive approach for assessing longitu-

dinal changes in spinal cord volume, providing neuroscientists with an accessible and automated tool able to
reduce the need for manual intervention and minimize variability in measurements.

1. Introduction

Volumetric analysis of magnetic resonance images (MRI) of the
spinal cord (SC) allows both the mapping of physiological evolution and
the assessment of pathological deviations in atrophy rates due to disease
progression (Antonescu et al., 2018; Bonacchi et al., 2020; Ciccarelli

et al., 2019; Kearney et al., 2015; Lersy et al., 2021; Lorenzi et al., 2020;
Mariano et al., 2021; Ziegler et al., 2018). However, measurements of SC
atrophy are not as robust and reliable as brain atrophy measurements
and, although new assessment methods have been suggested, there re-
mains a significant disparity between brain and SC volumetric evalua-
tions (Rovira and de Stefano, 2016). The challenges arise mainly from
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the small size and mobility of the SC, causing MR signal inhomogeneity
and impacting SC tissue segmentation (Rovira and de Stefano, 2016).

Currently, two approaches are employed to evaluate longitudinal
volumetric changes over time. The first method involves comparing the
cross-sectional area (CSA) or SC volume using segmentation maps
independently obtained at each timepoint (Amann et al., 2016; De
Leener et al., 2014; Losseff et al., 1996; Lukas et al., 2021; Stroman et al.,
2014; Wheeler-Kingshott et al., 2014). This approach indirectly esti-
mates atrophy rates but is limited by inaccuracies in segmentation maps
due to partial volume effects. Additionally, this segmentation-based
method often requires manual refinement of masks, introducing vari-
ability based on the operator’s experience, workload, and fatigue. The
second approach relies on SC-segmented masks that are registered on a
common reference space (Prados et al., 2020; Valsasina et al., 2022).
Previous studies have demonstrated that registration algorithms offer
higher accuracy compared to segmentationmethods, making this type of
analysis more robust and reliable (Agosta et al., 2007; Cohen et al.,
2012; Cohen-Adad et al., 2011; Moccia et al., 2019; Smith et al., 2007).
In the case of SC, achieving precise visualization of the vertebrae is
essential for accurately registering two SC MRI scans. Additionally,
dedicated MRI analysis libraries have developed strategies for automatic
cord segmentation (Gros et al., 2019; Prados et al., 2016; Yiannakas
et al., 2016), tools for correcting intensity inhomogeneity (Tustison
et al., 2010), and procedures for longitudinally evaluating volumetric
differences through the study of co-registered image intensities (Prados
et al., 2020; Smith et al., 2002; Valsasina et al., 2022).

Here we introduce SIENA-SC, an innovative and fully automated
method designed for quantifying upper cervical spinal cord (SC) atrophy
using a pair of sagittal and coronal brain MRI scans. SIENA-SC is built
upon the foundational principles of SIENA (Smith et al., 2002), a tool
within the FMRIB software library (FSL) (https://fsl.fmrib.ox.ac.uk/fs
l/fslwiki), which is employed to evaluate edge displacement for each
voxel at the interface of the spinal cord and cerebrospinal fluid in
co-registered images. The approach involves the calculation of local shift
of borders by assessing the distance of the zeros of the derivatives in
1-dimensional profiles related to each voxel of the border and these
zeros are invariant for global multiplication factors. By employing this
approach, SIENA-SC may mitigate the impact of MRI intensity in-
homogeneity, independently of the intensity values, resulting in
decreased variability in measurements and improved accuracy and
reliability in assessments.

The study was structured into two main parts. Firstly, the method-
ology section provides a comprehensive elucidation of the SIENA-SC
pipeline. The second part includes a comparative analysis of SIENA-SC
with a registration-based method (i.e., the generalized boundary shift
integral - GBSI - Prados et al., 2020), and a segmentation-based method
(i.e., CSA as evaluated by Spinal Cord Toolbox, SCT -De Leener et al.,
2017). This comparison is conducted with the aim of assessing differ-
ences in several critical aspects:i) examining robustness using
scan-rescan MRI data of Healthy Controls (HCs); ii) assessing reliability
by evaluating the degree of concordance among the methods on the HCs
cohort; iii) evaluating sensitivity in detecting pathological differences of
Multiple Sclerosis (MS) patients compared with HCs. The final part of
the study explores the potential benefits of incorporating SIENA-SC into
clinical research. Specifically, it explores how SIENA-SC may impact
sample size requirements in comparison to currently available tools,
offering valuable insights into its practical utility.

2. Methods

2.1. The SIENA-SC workflow

This work presents a new fully automatic pipeline for longitudinal SC
atrophy computation that can be split into three parts: SC segmentation
at each timepoint, SC image registration to a subject common space, and
finally computation of the tissue differences on the edge of the SC canal

using the SIENA technique. These three steps are common with previous
registration-based methods (Prados et al., 2020; Valsasina et al., 2022),
but they have been readapted and optimized for the SIENA-SC pipeline.
The presented pipeline can compute longitudinal SC atrophy from
T1-weighted brain MRI scans (See Fig. 1). The computation of the at-
rophy is performed on all the visible upper cervical cord which is
covered both by the field-of-view (FOV) of the baseline scan as well as
the FOV of the follow-up scan. The SC masks obtained from the
SIENA-SC pipeline have been used as input also for the estimation of the
atrophy using GBSI and the CSA change.

2.1.1. Step 1–spinal cord segmentation
The first crucial step to obtain a total automated pipeline is the

identification of the SC. For the purpose of this study and to avoid any
manual intervention we used the fully automatic deep learning algo-
rithm provided by SCT library v.5.5 (sct_deepseg_sc) (Gros et al., 2019).

Before running sct_deepseg_sc, both MRI images were standardized
to 1mm isotropic voxel size, and the FOV of the input images was limited
to the spinal cord area.

To do this, the brainstem from the Harvard-Oxford subcortical
structural atlases (HarvardOxford-sub-maxprob-thr50-1mm.nii.gz)
available in FSL was chosen as the neurological reference for defining
the bounding box to crop the FOV of the images.

The brainstem mask was resampled from the atlas in MNI152 space
to the native T1-weighted images and eroded 5 times. The lower slice of
the brainstem mask, approximately where the medulla oblongata joins
the SC, was taken as a reference point to remove all the regions above
the lower part of the brainstem. This step was performed to isolate the
SC section and to improve the performance of the segmentation and
subsequent registration step of the SC. Subsequently, sct_deepseg_sc was
applied to the modified images.

The obtained SC masks were used as input to perform intensities
correction in step 2.

2.1.2. Step 2–spinal cord image registration
In this second step, a series of image processing techniques, as

described in the studies by Prados et al. (2020), Valsasina et al. (2022),
are applied. These are used to minimize image noise, homogenize gray
scales, straighten the SCs and align them in a half-way space. Prior to the
registration on the half-way space, an additional step was introduced.
This step involved re-segmenting the spinal cord to enhance accuracy
andmitigate bias arising from intense intensity variations caused byMRI
artifacts between scans. The segmentation was repeated on the input
images, which had undergone denoising and inhomogeneity correction,
using a propagation segmentation algorithm (De Leener et al., 2014).
This algorithm used as input the centerline derived from the previously
computed masks. Subsequently, the straightened images were aligned to
the common halfway-space using an affine transformation through an
inverse-consistent and symmetric algorithm (Modat et al., 2014), and
masks corresponding to each time-point were resampled to the same
space using nearest neighbor interpolation.

At this stage, two further refinements were made to the masks.
Firstly, to address the potential loss of accuracy caused by resampling a
mask into a different image space, we applied a smoothing technique to
the mask borders. This smoothing was achieved using a diamond-
connectivity of the voxels, ensuring a more precise and refined repre-
sentation of the mask boundaries. Secondly, the resampled segmenta-
tion masks on the halfway space were merged and the upper and lower
portions of the SC mask that were not captured by both scans were
removed. This step ensured that the masks had consistent coverage
length between the two timepoints. Such adjustments were necessary
due to potential variations in the SC section caused by differences in the
number of slices between timepoints (i.e. different orientation and/or
positioning of the subject in the scanner).

Finally, the segmentation masks obtained at this point were used as
input for the computation of the atrophy with the three methods: SIENA-
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SC, GBSI and CSA change.

2.1.3. Step 3–atrophy computation using SIENA
As final step, the percentage Spinal Cord Volume Change (pSCVC)

was estimated between the two aligned cord images using the SIENA
algorithm principles. This involved estimating the mean perpendicular
surface motion based on the masks’ generated edge points, with the
exclusion of flow in the z-direction (to have a 2D evaluation of atrophy
along the SC). This was then converted into a pSCVC measurement.

To make the pSCVC estimation robust, the SIENA method internally
corrects for possible small differences in image resolution and/or
misalignment by calculating a calibration factor. Briefly, two pSCVCs
are calculated between the original images and a couple of artificially
generated images obtained by varying the voxel dimensions (one
increasing and one decreasing from the same scale factor). These two
pSCVC are then averaged. Given that the “nominal” pSCVC is known,
once fixed the scale factor, a calibration factor can be obtained by
dividing the “nominal” changes by the averaged pSCVC. Considering
that the calculated pSCVC depends on the number of edge points and
that this number is roughly 100 smaller for the SC than for the brain
image (determined heuristically on a separated dataset not included in
the analysis), we adjusted the scale factor accordingly by dividing for
one hundred. Details of the analysis is shown in Supplementary Mate-
rial, Section A.

To increase robustness, the “forward” and “backward” pSCVC were
calculated for each pair of images swapping baseline and follow-up
images. The average value of the “forward” and “backward” atrophy
results was the final pSCVC.

2.2. MRI data

The gathered population has been categorized into three distinct sets
of MRI data, each comprising different groups: a scan rescan dataset
with 13 HC subjects, 190 HC subjects, and 65 MS subjects. The char-
acteristics of the population are shown in Table 1.

All subjects had two brain 3D-T1 weighted images acquired in
sagittal orientation using a 3T MRI scanner. Details of the MRI acqui-
sition are in Table 2.

Notably, data related to the HC group utilized in this study were
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (adni.loni.usc.edu). The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cogni-
tive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-
date information, see www.adni-info.org.

2.2.1. Scan rescan dataset
Thirteen healthy subjects (mean age: 39 ± 9.4 years; female

sex=46.15%) underwent a scan-rescan brain MRI acquisition using a 3 T
Philips at the Meyer Hospital in Florence, Italy. Each subject had two
MRI acquisitions on the same day with repositioning between the two
scans. 3D T1-weighted brain images were acquired in sagittal orienta-
tion with a 1mm isotropic voxel. The purpose for using this dataset was
to assess the scan-rescan repeatability, providing insights into the
robustness of the automated software’s measurements. In this context,
the pSCVC values should approach zero as subjects should not show any
atrophy within a very short time (about 1 h).

Fig. 1. SIENA-SC image processing pathway showing baseline (first line) and follow-up images (second line).

Table 1
Population demographics. Center 1: Florence. Center 2: Verona. *Scan-rescan
MRIs were performed within the same day.

Scan rescan
dataset

Healthy
Control

Multiple Sclerosis

Number (Female) 13 (6) 190 (99) Center 1: 10 (7)
Center 2: 55 (45)

Age (years): Mean
[Median] ± SD
[min-max]

39 [39.13] ±
9.4 [24.9-
56.45]

74 [73.7] ±
5.7 [57-94]

Center 1: 39.5
[38.5] ± 12.9 [19-
61]
Center 2: 38.9
[37] ± 11.3 [16-
65]

Follow-up (years):
Mean ± SD

0* 1.2 ± 0.2 Center 1: 1.2± 0.4
Center 2: 1.4± 0.7

EDSS NA NA Center 1: 1.3± 0.3
Center 2: 1.7± 1.5

Disease Duration NA NA Center 1: 8.9± 1.7
Center 2: 2.4± 4.6
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2.2.2. Longitudinal dataset
HCs data: 190 subjects (mean age: 74 ± 5.7 years; female

sex=52.1%) with an average follow-up of 1.2 ± 0.2 years.
MS data: 65 subjects acquired at two Italian sites: 10 subjects from

the Meyer Hospital in Florence, Italy, (mean age: 40 ± 12.9 years;
follow-up: 1.2 ± 0.4; female sex=70%) and 55 subjects from the Uni-
versity Hospital of Verona, Italy (mean age: 39 ± 11.3 years; follow-up:
1.4 ± 0.7; female sex=81.81%).

2.3. Ethics statement

Consent forms were approved by each relevant institutional review
boards of Verona and Firenze and all patients gave written informed
consent. The study was approved by the University of Siena ethics
committee and received the reference number ECS00000017-THE.

2.4. Statistical Analysis

The present study compared the pSCVC measurements as assessed
with SIENA-SC, GBSI and CSA methods.

The statistical analysis was performed using MATLAB Release
R2020a. Significance level was set to P < 0.05. The results are shown in
mean, standard deviation, and standard error. The yearly rate of atrophy
was evaluated before performing statistics, except for the scan-rescan
dataset.

Paired t-student was employed to compare pSCVC in the scan-rescan
dataset (Battaglini et al., 2018; Nakamura et al., 2018).

Pearson’s correlation has been used to evaluate the degree of
concordance between the different measurements obtained by the
different methods. The Bland Altman plot was used to test for the
presence of systematic bias.

After testing with the MATLAB function lillietest the normal distri-
bution of the residuals, a linear regression model has been used to
measure the sensibility of the methods in discriminating HC subjects
from MS patients. SIENA-SC, GBSI and CSA change were the dependent
variables, and subject group (i.e., HC or MS), age, and sex were the
covariates. Results are shown as the coefficient of pSCVC change in MS
patients, 95% confidence interval, and p-values. Because of the explor-
atory nature of these analyses, we did not perform the correction for
multiple comparisons.

To evaluate the precision of each method, we computed the sample
size for a hypothetical trial with 80% power at the 5% significance level
and looked for 50%, 30% and 10% treatment effects.

The pSCVC obtained from CSA measurements was determined by
calculating the CSA difference between two consecutive time-points.
The difference was then divided by the CSA of the first time-point and
the result was multiplied by one hundred.

3. Results

3.1. Comparison between methods using healthy controls

3.1.1. Robustness: scan-rescan dataset
The pSCVC of SIENA-SC showed lower measurement error (mean:

-0.06%; SD: ±0.18; SE: 0.03) compared to GBSI (mean: -0.12%; SD: ±
0.73; SE: 0.13; p<0.005) and CSA change (mean: 0.58%; SD: ± 2.2; SE:

0.32; p<10E-10). GBSI pSCVC showed lower measurement error
compared with CSA (p<0.01). See Fig. 2.

3.1.2. Reliability: longitudinal dataset
On the HCs dataset, the annualized pSCVC showed no or minimal

changes using all three methods (SIENA-SC: -0.05% ± 0.45; GBSI:
-0.08%± 1.6; CSA: 0.005%± 3.1). Statistical comparisons did not show
any difference in the measurements obtained with the three methods
(SIENA-SC vs GBSI: p=0.85; SIENA-SC vs CSA change: p=0.78; GBSI vs
CSA change: p=0.73). Example of quality of the images and atrophy
rendering using the three methods are provided in Fig. 3.

3.1.3. SIENA-SC vs GBSI
Correlation of pSCVC between measurements obtained with SIENA-

SC and GBSI was r=0.48, (p<0.05), mean absolute difference= -0.02%.
The least-squares fit between SIENA-SC and GBSI is estimated at
y=1.42x (R2=0.16) (Smith et al., 2007). See Fig. 4 for a SIENA-SC vs
GBSI Bland Altman. The strong asymmetry is driven by the differences in
standard deviation between the two methods.

3.1.4. SIENA-SC vs CSA change
Correlation of pSCVC between SIENA-SC and CSA change measure-

ments was r=0.29 (p<0.05), mean absolute difference=0.06%. The
least-squares fit between SIENA-SC and CSA change is estimated at
y=2.02x + 0.12 (R2=0.09) (Smith et al., 2007). See Fig. 4 for a
SIENA-SC vs. CSA Bland Altman. The strong asymmetry is driven by the
differences in standard deviation between the two methods.

3.1.5. GBSI vs CSA change
Correlation of pSCVC between GBSI and CSA change was r=0.33

(p<0.05), mean absolute difference= 0.09%. The least-squares fit be-
tween GBSI and CSA change is estimated at y=0.63x-0.06 (R2=0.11)
(Smith et al., 2007). See Fig. 4 for a GBSI vs. CSA change Bland Altman.

3.2. Comparison between HC and MS

3.2.1. Linear regression model
The linear regression model adjusted by group (HC and MS), age and

sex, showed a different rate of atrophy in MS patients compared to the
HC using the three methods: SIENA-SC (Coeff: -0.54, 95%CI=[-0.87,
-0.21], p<0.001); GBSI (Coeff: -0.84; 95%CI=[ -1.81, 0.12], p=0.08);
CSA change (Coeff: -1.92; 95%CI=[ -3.82, -0.016], p=0.048). Raw
values of the results are illustrated in Table 3 and Fig. 5.

3.2.2. Sensitivity: sample size
Considering the sample size estimation per arm for a clinical trial

where SC atrophy could be an outcome to measure the response to
treatment, SIENA-SC showed the lowest number of MS patients needed
to observe a treatment effect (Table 4).

4. Discussion

Our study demonstrates the potentials of SIENA-SC, a fully auto-
mated, easy-to-use tool for calculating pSCVC using brain MRI acquisi-
tions. This innovative approach extends the capabilities of the original
SIENA method, designed for assessing brain structures, to quantify

Table 2
Scanner acquisition details for ADNI datasets, Florence and Verona Sites.

Site Field
Strength

Manufacturer Echo Time (ms) Repetition Time (ms) Flip Angle Pixel
Bandwidth

Slice Thickness (mm) Spacing Between slices
(mm)

ADNI 3T Siemens 3 2300 9 238 1.2 1.2
ADNI 3T Philips 3.2 6.8 9 241 1.2 1.2
Florence 3T Philips 4 10 8 175 1 1
Verona 3T Philips 4 8 8 191 1 1
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upper cervical SC atrophy. By enabling the evaluation of SC atrophy
from brain scans, our method has the ability to considerably reduce MRI
scan times and associated costs, ultimately easing the burden on pa-
tients. Additionally, SIENA-SC offers the advantage of calculating

pSCVC without requiring extensive computer engineering expertise and
reducing inter-operator variability. To achieve this, we developed and
tested a novel and optimized pre-processing procedure, which integrates
and improves upon existing routines. As a result, SIENA-SC may

Fig. 2. Boxplot showing the comparison of the measurements using SIENA-SC, GBSI and CSA change on 13 HC subjects. The line inside the boxes indicates the
median value. Results are shown in absolute values.

Fig. 3. Example of Spinal Cord atrophy assessment across the three methods on a HC (left) and MS (right) subject.

Fig. 4. Bland Altman plot showing the difference between SIENA-SC and GBSI (on the left); SIENA-SC and CSA change (in the middle); GBSI and CSA change (on
the left).
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represent a valuable tool for both researchers and clinicians, stream-
lining the evaluation of SC atrophy and ensuring efficiency and reli-
ability in the process.

SIENA-SC starts with a pre-processing step based on an artificial
intelligence freely available tool (Gros et al., 2019). This initial stage
eliminates the need for operator intervention necessary for the identi-
fication of the initial mask of the spine. Notably, this approach can stand
on its own, making both GBSI and CSA fully automated. Indeed, the
same generated cord masks have been used for the atrophy assessment
in all three methods. To replicate the SIENA methodology for the anal-
ysis of SC atrophy, we optimized a registration procedure between two
longitudinally acquired images using the niftyreg software package
(https://github.com/KCL-BMEIS/niftyreg). For each timepoint, this
procedure was implemented jointly using images and masks encom-
passing the dilated cord up to the vertebra. This provided the registra-
tion tool with a stationary reference, enhancing its accuracy. Further,
the “straighten” step, which reduces the morphological and geometrical
complexity of SC of both time points, improves the mutual registration
of images when the halfway space is created.

Finally, SIENA-SC calculates the percentage change in atrophy by
indirectly approximating local edge displacement. This is achieved by
comparing the derivatives of intensities between the two images and
applying a calibration factor that depends on the SC’s size. The cali-
bration factor serves to mitigate variability stemming from inherent
differences between the two images. The optimization of this calibration
factor was the final step implemented in our pipeline (See Supplemen-
tary Material, Section A).

In the present study, SIENA-SC demonstrated superior reliability in
scan-rescan assessments of pSCVC compared to the other two methods,
while no differences were observed when comparing SIENA-SC with the
other two methods in the longitudinal dataset of HC. This is not sur-
prising, due to the small biological variation of spinal cord volume in HC
subjects (Moccia et al., 2019; Prados et al., 2020). Nevertheless,
SIENA-SC demonstrated a smaller data dispersion, as indicated by the
lower standard error. Furthermore, SIENA-SC showed significantly
increased sensitivity in distinguishing between physiological and

pathological conditions, along with the ability to reduce the necessary
sample size for evaluating treatment effects in a cohort of MS subjects.
Overall, these findings emphasize SIENA-SC’s robustness, sensitivity,
precision, and accuracy, establishing it as a valuable tool for assessing
SC volume changes in neurological diseases.

The superior robustness of SIENA-SC and GBSI compared to CSA in
the scan-rescan dataset can be attributed to the advanced capability of
registration-based methods to account for partial volume effects, as
demonstrated by previous studies (Prados et al., 2015; Smith et al.,
2007). Such effects can introduce segmentation errors and increase
variability when calculating cross-sectional areas. Traditional
segmentation-based methods rely on numerical differences between
areas obtained from hard segmentation at each time-point, often
resulting in indirect estimates of atrophy and greater variability. This
issue becomes more significant when dealing with scans featuring
different intensity scales, varying voxel sizes, or other confounding
factors such as subject repositioning, SC curvature, or noise. The simi-
larities in approach between SIENA-SC and GBSI explain the moderate
correlation (R=0.48) observed between these two methods in HC sub-
jects. Conversely, this correlation becomes weaker when compared to
CSA (SIENA-SC: R=0.29, GBSI: R=0.33). Thus, our analysis supports the
well-established understanding of the greater reliability of
registration-based methods compared with the segmentation-based ones
(Moccia et al., 2019). For completeness, we repeated the correlation
analysis also in MS patients obtaining similar results to the ones ob-
tained in HC subjects (See Supplementary Material, Section B).

The superior performance exhibited by SIENA-SC in comparison to
GBSI, despite sharing some pre-processing steps, may be attributed to
the different approaches used to derive changes in atrophy from local
intensities variations. SIENA-SC mitigates the impact of local random
fluctuations in voxel intensities by comparing the profiles of the in-
tensity derivatives, rather than directly assessing differences in voxel
intensities. In contrast, GBSI reduces the global differences in two SC

Table 3
Table showing the raw mean values, standard deviation, and standard error of
pSCVC obtained with the three methods. SE: Standard Error.

HC MS p-value

Annualized SIENA-SC [SE] -0.05 ± 0.45
[0.03]

-0.6 ± 0.77 [0.09] <0.001

Annualized GBSI [SE] -0.08 ± 1.6 [0.12] -1.14 ± 1.56
[0.19]

0.08

Annualized CSA change
[SE]

0.005 ± 3.1
[0.22]

-1.52 ± 3.44
[0.42]

0.048

Fig. 5. Boxplot illustrates the comparison of the annualized percentage cord area changes obtained using SIENA-SC, GBSI and CSA change between healthy control
and Multiple Sclerosis subjects.

Table 4
Estimated sample size per arm with all the three methods (Power=80%, 5%
Significance level).

Software Treatment Effect size % Sample Size [CI] (MS Subjects)

SIENA-SC 50 54 [39 to 95]
30 146 [107 to 217]
10 1290 [933 to 1986]

GBSI 50 62 [36 to 135]
30 167 [86 to 478]
10 1483 [714 to 4287]

CSA 50 171 [59 to 5628]
30 472 [157 to 2700]
10 4224 [1859 to 8991]
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images through prior intensity normalization and then directly com-
pares voxel intensities. This approach could potentially be influenced by
local fluctuations in voxel intensities, which are not fully recovered even
after global intensity normalization. This suggests that SIENA-SC may be
less biased by sources of variability in MRI signal, making it a very
robust and reliable method for assessing SC atrophy.

The enhanced sensitivity was evaluated using a dataset of MS pa-
tients. Cervical SC atrophy has been a well-known feature in MS since
the early stages and monitoring it holds clinical significance due to its
correlation with increased disability (Lukas et al., 2015; Moccia et al.,
2020; Valsasina et al., 2018). We demonstrated here a superior perfor-
mance of SIENA-SC in differentiating between HCs and MS (p<0.001),
in comparison to CSA (p=0.048) and GBSI (p=0.08). It is worth noting
that this discrepancy might be in part related to the relatively small
sample size dataset on which these tools were tested. Given the disparity
in the number of MS patients between Center 1 and Center 2 (10 Vs 55),
we did not incorporate center correction in the linear regression model,
because of the strong overlapping between center 2 and the group of MS.
As a confidence analysis, we performed a linear regression model
adjusted for center, age, and sex within the MS group, revealing no
significant differences between centers (p=0.19).

One of the main issues in using cervical SC atrophy as an outcome
measure in clinical trial and observational studies is the large sample
size required when using the CSA change (Moccia et al., 2017; Prados
and Barkhof, 2018; Tur et al., 2018). Both SIENA-SC and GBSI demon-
strated a notable advantage by yielding smaller sample size estimates
when assessing treatment effects of 50-30-10% compared to CSA.
SIENA-SC showed also a marginal reduction in sample size compared to
GBSI, probably driven by the smaller error of the method, indirectly
reducing the variance of yearly SC atrophy rates. Overall, the sample
size estimates for SC atrophy measurements with SIENA-SC align in
magnitude with those for brain atrophy obtained using
registration-based methods (Storelli et al., 2023). Thus, these findings
highlight the feasibility of using cervical SC atrophy as evaluated by
SIENA-SC, as a suitable and promising endpoint for both clinical trials
and observational studies. However, this study is just a proof of concept
of the use of SIENA-SC and it is not without limitations. The first one
concerns the retrospective design of the experiments involving MS pa-
tients. This led to two different issues: the MRI of MS patients did not
have sequences in which SC lesions could be delineated, so it was not
possible to obtain some useful information related to the impact of SC
lesions in the evaluation of atrophy, and the HC and MS groups were
strongly unbalanced by age. Despite these limitations, the absence of
atrophy in HCs assessed by all methods and the significantly higher at-
rophy found in MS patients reassures for the consistency of SIENA-SC
results. The second concerns the limited sample size of the groups
analyzed, and for this reason SIENA-SC should be tested on larger
datasets, both synthetic (Bautin and Cohen-Adad, 2021) and real, to test
the default options in larger samples and to check the generalizability of
the method. Further works should thoroughly investigate the use of
SIENA-SC in assessing pathological deviations of atrophy in patients in
specifically designed experiments. Furthermore, future improvements
might entail tailoring SIENA-SC for dedicated spine MRI scans and
integrating a feature to extract atrophy values from individual cervical
sections.

In conclusion, this study introduces SIENA-SC, a novel method for
the assessment of cervical cord atrophy. The software is fully automated,
easy to use, and works with routinely acquired brainMRI sequences. The
enhanced features of SIENA-SC could enable its utilization in evaluating
physiological changes in extensive datasets (Battaglini et al., 2019), and
explore its potential clinical applications for early disease detection and
monitoring. Finally, the implementation of SIENA-SC can enhance the
existing MRI biomarker portfolio by incorporating the measurement of
cervical spinal cord atrophy, thus providing valuable insights into the
evaluation of neurological diseases and enriching our understanding of
these conditions (Cortese and Ciccarelli, 2018; Giovannoni et al., 2017;

Uher et al., 2017).

Data and code availability statements

Data

Healthy Control data used in preparation of this article were ob-
tained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). As such, the investigators within the ADNI
contributed to the design and implementation of ADNI and/or provided
data but did not participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found at: http://adni.loni.
usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement
_List.pdf

The rest of the data came from Meyer Hospital of Florence and the
University Hospital of Verona and can be obtained upon submitting
reasonable requests to the source institutions.

Code

SIENA-SC uses a miscellanea of software inside its pipeline.

• SCT has been used for spinal cord segmentation (sct_deepseg_sc and
sct_propseg), straightening (sct_straighten_spinalcord) and can be
found at https://spinalcordtoolbox.com/;

• N4BiasFieldCorrection is used for the inhomogeneity correction, and
it is freely available as part of ANTs package at https://stnava.github
.io/ANTs/. The following parameters have been used: full width at
half maximum (FWHM) = 0.05, convergence threshold = 0.0001
and a maximum number of iterations = 1000;

• Denoising (niftkDenoise) is freely available as part of NifTK package
at https://github.com/NifTK/NifTK;

• Registration between images has been performed using NiftyReg
software package (reg_aladin) at https://github.com/KCL-BMEIS/
niftyreg. The following parameter have been used: -pv 60 -pi 60
-maxit 15 -ln 8 -lp 8;

• fslroi has been used to crop the original T1 image with these pa-
rameters: fslroi T1.nii.gz OUTPUT_CROPPED.nii.gz xmin xlength
ymin ylength zmin zlength 0 1. Siena_cal algorithm has been used to
evaluate the calibration factor and Siena_diff algorithm has been
used for the final atrophy computation. All the three the algorithms
are part of the FSL package at https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
and they have been implemented in this paper using the above
software packages, however, other software packages performing the
same action could be used in each step of our pipeline.
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