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Abstract—A multi-assembly problem asks to reconstruct multiple genomic sequences from mixed reads sequenced from all of

them. Standard formulations of such problems model a solution as a path cover in a directed acyclic graph, namely a set of paths

that together cover all vertices of the graph. Since multi-assembly problems admit multiple solutions in practice, we consider an

approach commonly used in standard genome assembly: output only partial solutions (contigs, or safe paths), that appear in all

path cover solutions. We study constrained path covers, a restriction on the path cover solution that incorporate practical

constraints arising in multi-assembly problems. We give efficient algorithms finding all maximal safe paths for constrained path

covers. We compute the safe paths of splicing graphs constructed from transcript annotations of different species. Our algorithms

run in less than 15 seconds per species and report RNA contigs that are over 99% precise and are up to 8 times longer than

unitigs. Moreover, RNA contigs cover over 70% of the transcripts and their coding sequences in most cases. With their increased

length to unitigs, high precision, and fast construction time, maximal safe paths can provide a better base set of sequences for

transcript assembly programs.

Index Terms—Graph algorithms, network problems, analysis of algorithms and problem complexity, biology and genetics

Ç

1 INTRODUCTION

MANY real-world problems require to reconstruct an
unknown object from partial data observed from it.

Genome assembly is a typical instance of such problem in Bioin-
formatics: given a set of high-throughput sequencing reads
obtained from some genomic sequence, we need to reconstruct
the sequence from which the reads originate. A major issue in
such problems is that multiple solutions (reconstructions) can
explain the observed data, making it difficult to distinguish the
correct solution. As such, reporting one arbitrary solution may

easily lead to an incorrect answer to the problem. An estab-
lishedway of copingwith this issue is to report only partial sol-
utions about which we are “confident” that they are correct.
For example, state-of-the-art genome assemblers do not output
entire chromosomes, but only contigs, namely genomic frag-
ments that are promised to occur in the original genome.

An algorithmic way of formalizing such “reliable” partial
solutions is through the notion of safety, introduced in [1] to
model contig assembly. Given a problemP, we say that a par-
tial solution to P is safe if it is common to all solutions to P.
Assuming that the real solution is among the solutions to our
computational problem P, then safe partial solutions are
common also to the real solution, and therefore correct. We
would like to report all such safe partial solutions, and in fact,
it suffices to focus on all maximal safe partial solutions,
namely those such that any other safe partial solution is con-
tained in a maximal one. Safety has precursors in Bioinfor-
matics (reliable regions in sequence alignments [2]), but also in
combinatorial optimization (persistency in bipartite match-
ings [3]). Safety has also been applied to other genome assem-
bly sub-problems such as gap filling [4].

The algorithmic toolkit for safety in genome assembly is
quite developed by now. Indeed, a typical computational
solution to a genome assembly problem is some type of walk
in an assembly graph. For example, if we are sequencing a
single bacteria and building an edge-centric de Bruijn graph
from the reads, then the solution is a circular edge-covering
walk [1]. A safe partial solution (i.e., contig) is thus a walk
appearing as a subwalk of all such circular edge-covering
walks. This graph-theoretic problem has been shown to
admit efficient algorithms computing all their maximal safe
walks [5], [6]. These run in time OðjV jjEjÞ, where V and E
are sets of vertices and edges, respectively, of the assembly
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graph. Recently, these results were generalized for a plethora
of different genome assembly models in a common frame-
work known as the hydrostructure [7].

Over the last decade, sequencing technologies have been
applied to mixed settings, where a sample contains multiple
distinct genomic sequences, that may differ in varying
degrees. Genome assembly has thus been extended to multi-
assembly problems [8] asking to reconstruct all such individ-
ual genomic sequences frommixed reads sequenced from all
of them. Popular instances of such multi-assembly problems
ask to reconstruct e.g., the RNA transcripts present in a cell
population [8], or the quasi-species of a virus present in
infected cells [9]. Although the of concept safety is implicitly
used in currentmulti-assemblers, there exists a lack of formal
treatment of this notion, despite its relevance and wide-
spread adoption in the standard genome assembly problem.

1.1 Path Covers and Multi-Assembly

Given a directed acyclic graphG (orDAG, for short), we con-
sider a solution to the multi-assembly problem to be a set of
paths inG such that every vertex ofG appears in at least one
path. Sucha setofpaths is calledapath coverofG, and it ispres-
ent at thecoreofpractical tools forbothRNAtranscript assem-
blyandviral quasi-species assembly, aswe reviewnext.

A common graph used in themulti-assembly of RNA tran-
scripts is a splicing graph, obtained by first identifying exons
from the RNA read alignments to the reference. Every exon is
then added as a vertex, and every read overlapping two exons
indicates a possible splicing junction and is added as an edge
between the two exons. The edges are directed “from left to
right” (in the reference genome),making the graph aDAG.

An RNA transcript naturally corresponds to a path in
such a DAG, thus the set of all RNA transcripts (solution to
the RNA transcript assembly) corresponds to a path cover of
the DAG. Various criteria have been proposed to define
what path covers are actually a solution, e.g., those optimal
with respect to some combinatorial optimization problem, or
some statistical model. While state-of-the-art methods also
include many practical steps and heuristics, they have one of
two main approaches at their core. The first approach, used
up to some variations and constraints by [10], [11], [12], [13],
[14], define a solution as a path cover with a minimum num-
ber of paths (minimum path cover, orMPC), or with a number
of paths smaller than an upper bound. The second approach,
used up to some variations by [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], is based on finding a flow in the
splicing graph best explaining the observed read coverage,
and then on decomposing the flow into a small number of
paths. Such paths also form a path cover, which is now opti-
mal with respect to some flow criteria, not just cardinality.

Path cover models are also used in the assembly of
reads sequenced from all viral quasi-species in a sample.
Minimum path cover-like methods include [27], [28], and
methods based on path covers optimal to some flow criteria
include [29], [30].

1.2 Our Contributions

Wegive the first algorithms outputting all maximal safe paths
for a natural notion of path cover, which we call constrained
path cover. A constrained path cover can have atmost a given

number ‘ � k ¼ widthðGÞ1 of paths, and its paths are now
required to start and end in given vertex sets, S and T , respec-
tively. This notion generalizes that of an MPC,2 which is a
classical combinatorial object, dating back to Dilworth’s and
Fulkerson’s results in the 1950s [31], [32], and appearing in
standard textbooks such as [33]. More formally, given a DAG
G, sets S;T � V , and an integer ‘ � k, we say that a path P is
safe for G;S; T; ‘, if for every constrained path cover P ofG, P
is a subpath of some path of P. When G;S; T and ‘ are clear
from the context, we just say that P is safe. Fig. 1 illustrates
these concepts.

Our safe algorithms are obtained using a general “avoid-
and-test” approach. Intuitively, given a structure to be
checked for safety, we transform the graph so that no solution
can use the structure fully, while not changing the other
properties of the graph. If a solution still exists, then it must
avoid the structure, proving it is unsafe. This general app-
roach dates back to finding edges present in all maximum
matchings of a bipartite graph [3]. However, safe paths can
contain more than one edge, which requires a more complex
approach to “avoid-and-test”.

We start with an arbitrary minimum-sized constrained
path cover P, and we test the safety of every subpath P of a
path in P. By definition, all safe paths are subpaths of some
path of P. We introduce the reduction of G with respect to
P , GP , and we show that P is a safe path if and only if
widthðGP Þ > ‘ and the subpath formed by excluding the last
vertex of P is safe. A naive implementation of these ideas
leads to a running time of OðkjV j2mpcðGÞÞ for computing
maximal safe paths, where mpcðGÞ denotes the running time

Fig. 1. An DAG G, safe paths (highlighted) and an example path cover
(long arrows) for G, S ¼ fsg, T ¼ ftg, ‘ ¼ 3 (top) and ‘ ¼ 4 (bottom).
The path cover P on the top is the unique constrained path cover for ‘ ¼
3, therefore safe paths are exactly the paths of P. The path cover on the
bottom does not have the path P ¼ s; u; v; t, therefore P is not safe for
‘ ¼ 4.

1. Given a DAG G, its width, denoted widthðGÞ, equals the minimum
size of a path cover of G.

2. An MPC is a constrained path cover with ‘ ¼ k and S ¼ T ¼ V .
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of computing anMPC ofG. However, we improve these run-
ning times by using two additional ingredients. First, since
we need to output only maximal safe paths, it suffices to do a
two-finger scan over each path of P. The scan advances the
right finger if the path P between them is safe, or the left fin-
ger otherwise. Second, to avoid recomputing an MPC of GP

for each different P , we build a flow data structure on top of
G, which allows determining whether widthðGP Þ > ‘ in time
Oðmaxð1; kþ m� ‘ÞjEjÞ, where m is the number of paths of P
containing the last edge of P . Our data structure is based on
the concept of “shrinking”, previously used to obtain effi-
cient parameterized solutions for the problem of computing
an MPC [34], [35]. The application of these two ideas
improves the running time of our solution toOðk2jV jjEjÞ.

To test our solution and provide a proof-of-concept study
highlighting the potential usefulness of safe paths in RNA
transcript assembly, we consider splicing graphs constr-
ucted from transcript annotation of different species, inclu-
ding human. As such, the splicing graphs used in our
experiments correspond to work in perfect conditions,
removing the biases introduced by errors prior to the splic-
ing graph construction [36]. We denote the maximal safe
paths in this application as RNA contigs. As a comparison
baseline, we also consider a basic notion of safe paths,
namely those maximal paths whose internal vertices have
in-degree and out-degree equal to one. These are called uni-
tigs and are commonly used in genome assembly [37], [38],
[39]. On these datasets, RNA contigs for constrained path
covers are up to 8 times longer than unitigs, while being
over 99% precise, and take less than 15 seconds to be found.
Moreover, if we define the maximum relative coverage of a
transcript as the length of the longest RNA contig segment
inside it, divided by the length of the transcript, then tran-
scripts have maximum relative coverage up to 80%. More-
over, RNA contigs cover over 70% of the coding sequences
of transcripts in most cases.

We hope that our findings introduce a new toolkit and
perspective on the notoriously hard transcript assembly
problem. We envision that, after enhancements dealing
with real data issues, safe paths could be applied into RNA
assembly (or multi-assembly) pipelines as follows:

� By outputting only RNA contigs, in the same way as
state-of-the-art genome assemblers output contigs.
Our initial results support this, since RNA contigs,
albeit not being full transcripts, still have significant
length, and at the same time are correct (partial) tran-
script assembly results.

� As a preprocessing step to methods that extend given
strings into full transcripts. For example, [12], [18]
first conservatively assemble the RNA-Seq reads into
some longer sequences, and use these to guide the
(more heuristic) assembly of full RNA transcripts.

� By taking the RNA transcripts output by any existing
RNA transcript assembler, and marking the maximal
transcript substrings that match a safe path. In this
way, our method could indicate some parts of an
RNA assembly solution that are likely to be correct.

The rest of this paper is structured as follows. In Section 2
we develop the theory behind our algorithms reporting safe
paths for constrained path covers. In Section 3 we discuss

the RNA transcript assembly problem in more detail. We
also present the experimental setup and results for RNA
contigs, as an application of safe paths. We conclude the
paper in Section 4.

2 SAFE PATHS FOR CONSTRAINED PATH COVERS

As previously discussed, a solution to a multi-assembly
problem can be seen as a path cover of a DAG G. Therefore,
safe paths are paths in G that are common to all path covers
of G. However, this definition of safety is too permissive in
formal terms, since it allows forP ¼ fðvÞ : v 2 V g (one path
for each vertex v, consisting only of vertex v) to be a solution
(path cover), thus yielding maximal safe paths to be isolated
vertices.3

To overcome this problem, we restrict the solution space
by including further practical information. We formalize
this in the concept of a constrained path cover.

Definition 1 (Constrained path cover). Let G ¼ ðV;EÞ be
a DAG, S; T � V be two sets of vertices such that
sourcesðGÞ � S; sinksðGÞ � T ,4 and let ‘ � widthðGÞ. We say
that a path cover P of G is a constrained path cover (for
G;S; T; ‘) if:

(a) Every path P 2 P starts at some vertex in S and ends
at some vertex in T .

(b) The number of paths of P is at most ‘, jPj � ‘.

Constraint (a) restricts the paths of P to start and end
with some of the vertices of given sets of vertices S and T ,
respectively. We say that the paths of P go from S to T . This
restriction incorporates the fact that in some contexts, such
as RNA transcript assembly, some candidates of the starting
/ ending vertices may be identified, e.g., as those vertices
whose read coverage present an initial upward / final do-
wnward slope [21], [22]. On the other hand, constraint (b)
restricts the solution to contain at most ‘ paths, which is
used to relax the minimality condition present in minimum
path cover-like multi-assemblers as previously reviewed.

Note that, if S ¼ T ¼ V and ‘ ¼ 1, then we remove both
restrictions and recover the classical definition of path
cover. Besides, if instead ‘ ¼ k, then the constrained path
covers correspond to the MPCs of G.

The conditions sourcesðGÞ � S; sinksðGÞ � T are neces-
sary to ensure that at least one constrained path cover exists
(otherwise there exists a vertex that is not reached from S or
does not reaches T , which cannot be covered). On the other
hand, the condition ‘ � widthðGÞ is also necessary, since a
constrained path cover is, in particular, a (classical) path
cover of G, thus of size at least widthðGÞ.

Moreover, these three conditions (on S; T and ‘) com-
bined suffice to ensure that at least one constrained path
cover exists, which follows from the following clemma.

Lemma 1. Let G be a DAG, S; T � V be two sets of vertices such
that sourcesðGÞ � S; sinksðGÞ � T . Then, the minimum number
of paths of a path cover with paths from S to T iswidthðGÞ.

3. In particular, maximal safe path must be subpaths of P ¼ V , thus
isolated vertices.

4. sourcesðGÞ=sinksðGÞ are the vertices of in/out-degree zero.
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The proof of Lemma 1 (see Supplemental material 1,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TCBB.2021.3131203, for the proofs of our lemmas and theo-
rems) also give us a way to compute our initial solution: we
first compute an MPC of G and then extend their paths to S
and T .

Next, we observe that it is sufficient to consider jSj ¼
jT j ¼ 1 by using the following reduction.We build the graph
G0 ¼ ðV 0; E0Þ, such that, V 0 ¼ V [ fs; tg (with fs; tg \ V ¼ ;),
and E0 ¼ E [ fðs; uÞ; u 2 Sg [ fðv; tÞ; v 2 Tg. That is, we add
a new unique source vertex pointing to every vertex of S,
and a new unique sink vertex pointed from every vertex of
T . Note that, there is a one-to-one correspondence between
constrained path covers for G;S; T; ‘ and constrained path
covers forG0; fsg; ftg; ‘ (or justG0; s; t; ‘), since we can obtain
one from the other by adding/removing s and t to/from the
paths. As such, we can reduce the computation of safe paths
for constrained path covers forG;S; T; ‘ (or just safe paths for
G;S; T; ‘) by computing safe paths for G; s; t; ‘ (we abuse of
the notation and useG instead ofG0 for simplicity).

To decide whether a path P is safe (for G; s; t; ‘) we intro-
duce the construction GP , which we call the reduction of G
with respect to P .

Definition 2. Given a DAG G ¼ ðV;EÞ and a path P ¼
x1; . . . ; xp of G, we define GP ¼ ðV;EP Þ, where

EP ¼ ðE n fðxp�1; xpÞgÞ [
[p

i¼2

ðu; xpÞ j u 2 N�ðxiÞ n fxi�1g
� �

:

Fig. 2 illustrates GP . The main idea behind this construc-
tion is that no path of GP can contain P entirely, since
ðxp�1; xpÞ is removed. However, the usage of every proper
suffix of P , except if this is used as the beginning of a path,
is emulated by the transitive edges drawn from the in-neigh-
bors of the vertices of the paths (except from the previous
vertex on the path, and not for the first vertex) to xp. Proper
suffixes of P (except xp) used as the beginning of a path are
not emulated in GP , and adding transitive edges from arbi-
trary vertices of P to represent these suffixes will ultimately
emulate P . To solve this issue we incorporate to our hypoth-
esis the safety of subpaths of P . Specifically, we obtain the
following theorem.

Theorem 2. Let G ¼ ðV;EÞ be a DAG, s 2 V the unique source
of G, t 2 V the unique sink of G, and let P ¼ x1; . . . ; xp be a
proper path of G, such that x1; . . . ; xp�1 is a safe path for
G; s; t; ‘. Then we have one of two cases:

1) xp�1 2 sinksðGP Þ _ xp 2 sourcesðGP Þ, in which case
P is a safe path for G; s; t; ‘.

2) otherwise, P is a safe path for G; s; t; ‘ if and only if
widthðGP Þ > ‘.

Our first algorithm for computing maximal safe paths
(for G; s; t; ‘) uses Theorem 2 to test the safety of each of the
OðkjV j2Þ subpaths of the paths of an initial minimum-sized
constrained path cover P of G (OðjV j2Þ subpaths for each of
the k (by Lemma 1) paths of length OðjV jÞ each). We process
these subpaths in increasing order of their lengths. When
processing a subpath P ¼ x1; . . . ; xp we inductively know
whether x1; . . . ; xp�1 is safe, and we can proceed accord-
ingly. If x1; . . . ; xp�1 is not safe then P is not safe either (by
definition of safety). Otherwise, if x1; . . . ; xp�1 is safe we use
Theorem 2 to test whether P is safe. We build GP , if xp�1 2
sinksðGP Þ _ xp 2 sourcesðGP Þ we report P as safe, other-
wise, we compute an MPC P0 of GP and report P as safe if
and only if jP0j ¼ widthðGP Þ > ‘. If P is safe we add it to a set
of maximal safe paths and remove x1; . . . ; xp�1 and x2; . . . ; xp

from this set since P invalidates their maximality. Note that
with this rule every maximal safe path is captured and every
non-maximal safe path is removed at some point.We call this
approach unoptimized, and it runs in time OðkjV j2mpcðGÞÞ,
where mpcðGÞ denotes the running time of computing an
MPC.

By running a two-finger algorithm on every path P of P,
we can compute the maximal safe paths inside P in time
OðjP jÞ ¼ OðjV jÞ. We maintain pointers x and y on vertices
of P , and the invariant that the subpath of P between x and
y is a safe path. First, we try to extend this subpath by mov-
ing y to the next vertex of P . Since we know that our current
subpath is safe we use Theorem 2 (as previously explained)
to test if the extension is safe. If it is not, we move x (and
also y, if x ¼ y) to the next vertex of P and try again. Maxi-
mal safe paths reported by this approach are only guaran-
teed to be maximal within P (the path from which they
were reported), but not necessarily maximal in the whole G.
To efficiently report all maximal safe paths of G, we collect
the maximal safe paths inside each P 2 P, and then filter
those that are subpaths of already reported paths. For this
we apply the generalized suffix tree approach used in Step
3 of [40]. This lets us filter the paths contained in another
path in total time OðNÞwhere N is the sum of the lengths of
all paths. Here, N ¼ OðkjV j2Þ, since the two-finger algo-
rithm reports OðjV jÞ safe paths each of length OðjV jÞ, for
each path the k paths of P. As such, this approach runs in
time OðkjV j2 þ kjV jmpcðGÞÞ ¼ OðkjV jmpcðGÞÞ.

Our last optimization consists in speeding up the second
case of the safety test of Theorem 2. Each such test involves
computing an MPC of GP , taking mpcðGÞ time. Instead, we
use our initial solution P to compute a flow data structure at
the beginning of the algorithm. This data structure takes
additional OðkjV j þ jEjÞ time to construct, but allows us to
test whether widthðGP Þ > ‘ in time Oðmaxð1; kþ m� ‘ÞjEjÞ,

Fig. 2. The construction GP from Definition 2, for P ¼ x1; . . . ; xp: the edge ðxp�1; xpÞ is removed, and (transitive) edges are added from the in-neigh-
bors (except from the path predecessor) of the path vertices (except x1) to xp, shown as dashed.
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where m is the number of paths of P containing the last edge
of P . In broad terms, the data structure corresponds to a
reduction of path cover to a flow network, which has been
used before for finding an MPC [34], [35], [41], [42], [43],
and the answer to the queries “widthðGP Þ > ‘?” are based
on the concept of shrinking of a flow in this flow reduc-
tion [34], [35].

Lemma 3. Let G ¼ ðV;EÞ be a DAG of width k, and P an MPC
of G. We can build a data structure in time OðkjV j þ jEjÞ,
answering whether widthðGP Þ > ‘ in time Oðmaxð1; kþ m�
‘ÞjEjÞ, for every ‘ � k; P ¼ x1; . . . ; xp proper path of G, with
m ¼ jfP 2 P j ðxp�1; xpÞ 2 Pgj.

The proof of Lemma 3 (see Supplemental material 1,
available online) shows us that if we are in the second case
of Theorem 2, then widthðGP Þ � kþ m � 2k. As such, if ‘ �
2k, then widthðGP Þ > ‘will always be false.

Observation 4. If ‘ � 2k, safe paths for G; s; t; ‘ are the
same as safe paths for G; s; t;1.

Using the two-finger algorithm and the flow data struc-
ture, we obtain the main theoretical result of this paper.

Theorem 5 (Safe paths for constrained path covers). The
maximal safe paths for constrained path covers (for an input
G ¼ ðV;EÞ, s, t, ‘), can be computed in time Oðmaxð1; 2k�
‘ÞkjV jjEjÞ, where k ¼ widthðGÞ.

3 APPLICATION TO RNA TRANSCRIPT ASSEMBLY

The functioning of the cell is based on the transcription of
genes into transcripts, followed by the translation of the tran-
scripts into proteins. This makes the set of transcripts present
in a cell (the transcriptome) an important link between DNA
and phenotype, and can give information of the current and
future state of a cell. High-throughput sequencing of tran-
scripts (RNA-seq) started in 2008 [44], [45], and later proved
essential in characterizing gene regulation and function,
development and diseases, including cancer [46], [47], [48],
[49]. In complex organisms, one gene can produce different
transcripts, each in a different number of copies. For example,
about 95% of multi-exon genes in humans produce multiple
transcripts through alternative splicing [50]. Alternative
splicing alters the set of exons transcribed by the gene, but
different transcripts can still share exons.

The transcript assembly problem aims to reconstruct the
set of transcripts present in a set of RNA-seq reads. While
long reads hold the potential to sequence through the full
transcripts, thus resolving the full transcript structure, there
are inherent biases in the protocols which makes them
unable to sequence longer transcripts [51], [52]. In addition,
long-read alignment software have been shown to produce
inaccurate alignments [53], [54] onwhich the assemblymeth-
ods rely on. Moreover, current state-of-the-art long-read
transcript assembly methods are still in active development,
with precision below 50% on biological data [55]. Due to
these limitations, short-read RNA-seq assembly remains a
viable option.

While the transcript assembly problem has attracted
great interest from the community, with a proliferation of
methods proposed [10], [11], [15], [16], [17], [18], [19], [20],

[23], [56], [57], [58], [59], [60], [61], assembling RNA-seq
reads remains a challenge, with RNA assembly methods
having a precision under 50%-60% on human data [18], [62].
In addition, current algorithms that aim to produce full-
length transcripts employ various heuristics and thresholds
to increase contiguity of the transcript under assembly,which
makes results vary significantly in quality with different
parameter settings [63].

The importance of having reliable transcript assembly
results is further underlined by two recent relatedworks [64],
[65]. However, they tackle the reliability issue with a signifi-
cantly different approach, as they provide methods to calcu-
late a “confidence” range for the abundance in the sample of
a given candidate transcript. In Fig. 3 we show an example of
our safety approach applied to an RNA splicing graph of the
human transcriptome built from genome annotation.We call
RNA contigs themaximal safe path in this context.

3.1 Implementation and Experiments

Weaim tomotivate the use of safe paths as an alternative con-
struct to unitigs for transcript assembly. Therefore, the main
purpose of our experiments is to evaluate the construction
time, correctness, and length of sequences produced bymaxi-
mal safe paths compared to the sequences produced by
unitigs. We compare the two approaches for RNA of real
organisms, but avoid external artifacts introduced by align-
ing the RNA-seq reads, unsequenced regions, inferring exons
from alignments, and constructing the splicing graph, which
introduces many biases [36]. We instead build the splicing
graph directly from gene annotation As such, the splicing
graph used in our experiments corresponds to work in perfect
conditions. Removing the biases introduced by errors prior
to the splicing graph construction provides us a preliminary
evaluation of RNA contigs in the transcript assembly prob-
lem. It is also worth noting that our datasets (annotated tran-
scripts) as well as our algorithm are read coverage agnostics.
Since themain objective of safe paths is to output information
about the transcripts but not about their abundances, we do
not consider this characteristic in our evaluation.

Datasets and Input. We started from gene annotation, by
considering all transcript annotation from the Ensembl
database [66] for different species as detailed in Table 1.

In case two exons E ¼ E1E2 and E0 ¼ E2E3 from differ-
ent transcripts have a suffix-prefix overlap E2, we replace
each occurrence of E in a transcript with E1; E2, and simi-
larly for E0. This is common in splicing graph construction
(see e.g., [17], [67]); the resulting exons are usually called
pseudo-exons, but for simplicity we refer to them as exons.
Graph vertices correspond to annotated (pseudo-)exons,
and edges correspond to exons consecutive in some anno-
tated transcript. Each weakly connected component of this
graph is a splicing graph. For each dataset we considered
all transcripts on the forward strand and build the corre-
sponding splicing graphs. We also store the coding sequen-
ces on each transcript annotated by the corresponding
Ensembl dataset. We say that a splicing graph is a trivial
instance if it is formed by less than 3 exons or less than 2
transcripts. We filter out trivial graph instances from the
dataset for our experiments.

To correlate the results with the complexity of the data,
we partitioned all the annotated transcripts based on their
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length, into small (1-2000 bases), medium (2001-5000 bases)
and large (> 5000 bases).We also partitioned coding sequen-
ces (1-1000, 1001-2500, > 2500 bases) and splicing graphs (3-
15, 16-50, > 50 vertices) in these three categories.5

Implementations. For each splicing graph, we fixed the sets
S and T as the set of exons appearing as first, or as last, respec-
tively, in some annotated transcript. We assume that such S
and T can be detected at the splicing graph construction
phase.6 In practice, this could be done as stated in Section 2.
The algorithm from Theorem 5 (optimized) was implemented
in C++, and uses an implementation of the Edmons-Karp
algorithm [68], [69] from the LEMON graph library [70] for
theoretical guarantees. To implement the unoptimized ver-
sion (not two-fingers, nor the flow data structure) we used the

LEMON’s implementation of the Network simplex algori-
thm [71], [72] (for better performance). The input data manip-
ulation and evaluation code was written in Python, including
the computation of the ST -unitigs discussed later. Our entire
code and input datasets are publicly available at https://
github.com/algbio/SafePathsRNAPC. Our C++ code was
compiledwith optimization flag -O9 using compiler gcc ver-
sion 8.3.0. The experiments ran on a single thread in a Linux
machine (Debian GNU/Linux 10, kernel 4.19.0-10-

amd64), with processor Intel (R) Core (TM) i7-8750H @ 2.2
GHz and 16 GB of RAM.

Choice of Parameter ‘ and its Effect on Correctness. For a
splicing graph, let us denote by t the number of true tran-
scripts. By construction and definition, the RNA transcripts
of a splicing graph correspond to a constrained path cover
with at most ‘ ¼ t paths. Thus, safe paths for such con-
strained path covers are also correct, in the sense that they
appear in the true RNA transcripts (because they appear in
any constrained path cover with at most ‘ ¼ t paths). How-
ever, safe paths for constrained path covers with ‘ < t may

TABLE 1
Datasets/Species Considered in Our Experiments: Two Mammals (Including Human), Two Plants, One Insect, and One Fungus

Dataset Assembly Transcripts Coding sequences Splicing graphs

Homo sapiens (Human) GRCh38.p13 104552 52711 11337
Mus musculus (Mouse) GRCm39 55281 31593 10346
Triticum aestivum (Wheat) IWGSC 21225 21141 8468
Hordeum vulgare (Barley) IBSC v2 111695 106219 12835
Drosophila melanogaster (Fruit fly) BDGP6.32 12815 11585 3608
Magnaporthe oryzae (Rice blast) MG8 407 365 196

The table also shows the number of transcripts, coding sequences and splicing graphs after filtering trivial graph instances of the problem (see Section 3.1).

Fig. 3. Top: A splicing graph built from four annotated transcripts from human chr 18; vertex labels denote exon lengths. The transcripts form a con-
strained path cover with ‘ ¼ 4.Middle: The ST -unitigs of the graph, and the maximal safe paths (i.e., RNA contigs) w.r.t. constrained path covers of it,
for ‘ ¼ 4, and S and T being the set of start exons (as circle vertices) and end exons (as diamond vertices), respectively, of the transcripts. For unitig
U2, contained in RNA contig C4 we have a relative improvement of 3.2� exons, and of 7.2� bases. Bottom: Transcript T4 and all the longest RNA con-
tig segments inside it. For its unitig segments, the maximum coverage is 10 exons, and 1841 bases. For its RNA contig segments, the maximum cov-
erage is larger by 6 exons, and by 361 bases. See Section 3.1 for definitions of these metrics.

5. The grouping was made so that approximately matches the 60%
smallest part of the data (small) the next 30% (medium) and the remain-
ing 10% largest part of the data.

6. This assumption is also part of the perfect conditions in which we
ran our experiments.
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not be correct (i.e., may not appear in some true RNA tran-
script). As such, for each splicing graph, we first compute
the smallest size (i.e., number of paths) of a constrained
path cover, for the fixed S and T , and we denote this size by
k. Since t is unknown in practice, we perform experiments
for ‘ 2 fk; kþ 1; . . . ; 2kg, to evaluate which is a good choice
for the parameter ‘. Note that maximal safe paths for ‘ ¼ 2k
are common to all path covers (of any size) as stated in
Observation 4, thus if t > 2kwe can interpret the results for
‘ ¼ t using the results for ‘ ¼ 2k (even when we did not run
the algorithm for ‘ ¼ t).

Baseline Comparison With ST -Unitigs. We also imple-
mented a standard strategy used by genome assemblers to
compute contigs. This involves reporting those paths whose
internal vertices have in-degree and out-degree equal to 1
(and with at least one internal vertex), also called unitigs [37].
If no vertex of S or of T appears in a unitig, then the unitig is
safe for constrained path covers, for any ‘. Intuitively, to
cover an internal vertex v of a unitig P (which exists by defi-
nition), one must arrive from some vertex of S, then entirely
traverse the prefix of P until v, and then arrive to some ver-
tex in T , thus entirely traverse the suffix P from v. However,
if e.g., some vertex of T appears in P after v, the path in the
constrained path cover covering v may stop before reaching
the end of P . As such, we say that an ST -unitig is a unitig
containing no vertex of S and T as internal. It holds that
ST -unitigs are safe and correct for constrained path covers,
for any ‘.

Evaluation Metrics. To evaluate the performance of RNA
contig we report several metrics computed in vertex length,
that is, number of exons, and in base length, that is, the total
number of bases in all the exons considered.

Our first two metrics show the improvement of RNA
contigs with respect to ST -unitigs. Since ST -unitigs must be
covered by one path, they are subpaths of some maximal
safe path. As such, for every ST -unitig we compute its
improvement as the longest RNA contig containing it, and
report the difference and ratio of their lengths.

From this point onward, by contigwe denote both an RNA
contig, and an ST -unitig. Our second set of metrics measure
the sensitivity of both approaches from different perspec-
tives. First, for every transcript (and every approach) we
compute the longest contig segment inside the transcript, that
is, the longest path that is a common subpath of the transcript
and of some contig. We say that the length of this subpath is
the maximum coverage of the transcript. To specifically mea-
sure the coverage of coding sequences,we also compute their
maximum coverage, and we call it maximum coding coverage.
Besides, for every transcript we compute a standard metric
used in genome assembly, namely, the e-size [73] of the tran-
script. In this case, the e-size is the average length of all con-
tigs inside the transcript overlapping a random location of it.
More precisely, for every position in a transcript T , we take
the average length over all contig segments inside T overlap-
ping that position. The e-size of the transcript is obtained as
the average of such averages, over all positions of the tran-
script. Finally, to normalize our results, we report our sensi-
tivity metrics divided by the length of the corresponding
transcript.

Our finalmetric computes the precision of contigs per splic-
ing graph.We classify a contig as correct if it is a subpath of at

least one annotated transcript. The precision over a splicing
graph is the total length of the correct contigs, divided by the
total contig length. Concrete examples of some of these met-
rics can be found in Fig. 3.

Safe Paths of a Variation Graph. To demonstrate the time
scalability of our algorithms, we computed safe paths of a
variation graph common to all path covers (‘ ¼ 1). Note
that this is not related to multi-assembly, the main applica-
tion envisioned by this paper. However, safe paths in this
context can be interpreted as genomic regions common to all
individuals represented by the variation graph. We used a
variation graph built from the Leukocyte Receptor Complex
(LRC) [74], which constitutes one of the most diverse variant
spots. We extracted subgraphs of different sizes of the LRC
variation graph and run the optimized and unoptimized ver-
sions of our algorithm. Sugraphs were taken as subgraphs
induced by a consecutive segment of vertices in a topological
order, which guarantees the width of the resulting subgraph
to be at most the width of the original graph [75].

3.2 Results

In this section we show a summary of the results of the met-
rics described in Section 3.1 across the different datasets. A
detailed breakdown of the metrics and running times for
each dataset can be found in the Supplemental material 2,
available online. For the metrics maximum coverage, e-size
and precision, we only show them in base length. We obs-
erved that average precision for ‘ ¼ k is over 75% for every
dataset except barley (over 60%) and rice blast (over 44%).
On the other hand, the average precision for ‘ ¼ kþ 1 is
over 99% for all species and 100% for ‘ ¼ t and ‘ ¼ 2k as
expected. Moreover, in general, all metrics are very close
(less than 1% of difference at most) for ‘ ¼ kþ 1, ‘ ¼ t and
‘ ¼ 2k, suggesting that safe paths derived with prior knowl-
edge of the number of transcripts (‘ ¼ t) can be reasonably
approximated as safe paths for ‘ ¼ kþ 1 or safe paths com-
mon to all path covers (‘ ¼ 2k), with a small tradeoff of preci-
sion versus coverage. In the next results we fix ‘ ¼ kþ 1 for
RNA contigs.

Table 2 shows the improvement of RNA contigs with res-
pect to ST -unitigs. Large graphs have longer RNA contigs,
suggesting that maximal safe paths manage to connect
paths in different sectors that ST -unitigs are not able to cap-
ture with their simple rule. Overall, RNA contigs are from
1.4 (small graphs, human) to 8.1 (large graphs, wheat) times
longer in terms of bases, and from 1.17 to 5.6 times longer in
terms of vertices (i.e., exons). The most improvement with
respect to ST -unitigs occurs in wheat and fruit fly, whereas
the least improvement in human, mouse and rice blast, the
latter with just a few graphs (see Table 1) with no more than
15 vertices each.

In Table 3 we show e-size and maximum coverage (nor-
malized by transcript length) at transcript level, and in
Table 4 we show them at splicing graph level. In terms of
precision (Table 4), as discussed before, RNA contigs reach
over 99% on average for ‘ ¼ kþ 1 for all datasets and size of
splicing graphs, while ST -unitigs are 100% precise as
expected (as well as RNA contigs for ‘ ¼ 2k, see Supplemen-
tal material 2, available online). At transcript level (Table 3)
e-size of RNA contigs is over 40% for human, meaning that
at a random position on the transcript, the average length of
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TABLE 2
Absolute (First Line) and Relative (Second Line) Improvement of RNA Contigs (‘ ¼ kþ 1)

Over ST -Unitigs, in Terms of Base and Vertex Lengths

Values are averages over all ST -unitigs in the respective dataset and group.

TABLE 3
Metrics e-Size and Maximum Coverage, Divided by Transcript Length, for RNA Contigs (‘ ¼ kþ 1, First Row)

and ST -Unitigs (Second Row), in Base Length

Values are averages over all annotated transcripts in the respective dataset and group.

TABLE 4
Precision (prec) and, e-Size and Maximum Coverage, Divided by Transcript Length, for RNA Contigs

(‘ ¼ kþ 1, First Row) and ST -Unitigs (Second Row), Per Splicing Graph, in Base Length

Values are averages over all splicing graphs in the respective dataset and group.
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all the safe “stretches” inside that transcript, and overlap-
ping that location, is about 40% of the length of the tran-
script length, whereas for wheat and rice blast the e-size is
over 60% and 70% respectively and only 22% for barley. At
graph level, on small graphs, the longest RNA contig of a
transcript is on average over 80% of the transcript length in
all species. Table 5 shows maximum coding coverage (nor-
malized by coding sequence length) at coding sequence
level. RNA contigs cover over 70% of the coding sequences
of transcripts in most cases. and over 48% in general. In
terms of these global metrics, RNA contigs are typically
between 10-20 percentage points over ST -unitigs. These
results suggest that RNA contigs can provide significantly

long and correct information about the RNA transcripts of a
splicing graph, without any heuristic or complex assembly
model.

Finding ST -unitigs takes less than 2 seconds, whereas
RNA contigs are reported in 32 seconds for the unoptimized
variant, and less than 12 seconds for the optimized in the
slowest dataset (human, see Table 6). As such, the unopti-
mized algorithm, being the simplest, is a good initial candi-
date to be adapted and extended by future practical RNA
contig assemblers. The difference of running times between
both algorithms becomes clear when working in the sub-
graph of the variation graph LRC (see Table 7). When con-
sidering a subgraph of 10000 vertices the optimized version
takes less than two minutes while the unoptimized more
than 20 minutes. Finally, for the subgraph of 50000 vertices
the optimized version takes less than 1 hour whereas the
unoptimized runs in more than 17 hours.

4 CONCLUSION

The results of this paper are two-fold. On the theory side, we
considered a natural generalization of the classical problem
ofminimumpath cover, includingmore practical constraints,
whichwe called constrained path covers.We devised the first
algorithms finding allmaximal safe paths for them, through a
general “avoid-and-test” framework, that could have appli-
cations in other safety problems. We showed how the direct
versions of these algorithms can be improved by reusing
computation, with the help of a flow data structure and a
two-finger computation ofmaximal safe paths.

On the practical side, we implemented our algorithms and
offer these implementations in publicly available repositories
for practitioners and further development of our ideas. As an
application of our algorithmic ideas, we proposed safe paths
for constrained paths covers as a contig model in RNA tran-
script assembly.

We evaluated the benefits of RNA contigs on transcript
annotation (perfect conditions) of various species and observed
for the first time that RNA contigs contain significantly long
parts of the transcripts. This fact was not obvious from the out-
set, because in practice the problems may admit many differ-
ent path covers, which have very little subpaths in common,

TABLE 6
Running Times for Our Two Implementations Finding
all RNA Contigs in All Splicing Graphs, for constrained

Path Covers With ‘ ¼ kþ 1

Dataset Unoptimized (secs) Optimized (secs)

Human 32.55 11.29
Mouse 12.34 4.78
Wheat 2.88 0.82
Barley 29.13 10.95
Fruit fly 0.52 0.30
Rice blast 0.01 0.01

The Unoptimized column corresponds to the algorithm not using the two-fin-
ger approach nor the flow data structure. The Optimized column corresponds
to our algorithm using these optimizations.

TABLE 7
Running Times for Our Two Implementations of Maximal Safe

Paths (‘ ¼ 1) on Subgraphs of a Variation Graph Built
From the Leukocyte Receptor Complex (LRC)

Graph Unoptimized (hh:mm:ss) Optimized (hh:mm:ss)

LRC 10000 00:22:27 00:01:52
LRC 20000 02:25:33 00:10:38
LRC 30000 03:59:03 00:20:18
LRC 40000 10:57:50 00:35:10
LRC 50000 17:45:48 00:57:05

The number in the graph name indicates the number of vertices in the subgraph.

TABLE 5
Metric Maximum Coding Coverage, Divided by Transcript Length, for RNA Contigs (‘ ¼ kþ 1, First Row)

and ST -Unitigs (Second Row), in Base Length

Values are averages over all coding sequences in the respective dataset and group.
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and thus very short safe paths overall. However, our results
show that RNA contig assembly is indeed a valid approach
in transcriptome assembly. We also provided several key
computational techniques that can lay at the core of future
practical tools. As such, once RNA contigs are possibly
enhanced with heuristics (for example from [12], [16], [18],
[20], [57]), RNA contig assembly could enjoy the same success
as contig assembly does in genome assembly.

Finally, our results are not limited to RNA transcript
assembly but to any multi-assembly problem whose solu-
tion can be modeled with a path cover. For example, in the
assembly of reads sequenced from all viral quasi-species in a
sample there exist minimum path cover-like methods [27],
[28], and methods based on path covers optimal to some
flow criteria [29], [30].
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