Int. J. Intelligent Information and Database Systems, Vol. x, No. x, xxxx

Toward a framework for graph-based keyword
search over relational data

Vittoria Cozza

ENEA,

Casaccia Research Centre,

via Anguillarese, 301-00123 Rome, Italy
Email: vittoria.cozza@enea.it

Abstract: Keyword-based access to structured data has attracted research and
industry as a means for facilitating access to information. In recent years, the
research community and big data technology vendors put a lot of efforts into
developing new proof of concept systems for the task at hand. Two major
limitations have been identified for such prototypes to transition into fully
developed products: 1) systems are not designed to scale up; 2) the absence
of a complete evaluation approach oriented towards effectiveness. This work
presents a framework for supporting the development and the evaluation of
graph-based keyword search systems. Furthermore, the implementation of a
core module of this framework is detailed and shared open-source with the
community.

Keywords: relational data; database search; structured data; graph search;
keyword search; database applications; knowledge management applications.

Reference to this paper should be made as follows: Cozza, V. (xxxx)
‘Toward a framework for graph-based keyword search over relational
data’, Int. J. Intelligent Information and Database Systems, Vol. x, No. X,
PP-XXX—XXX.

Biographical notes: Vittoria Cozza received her MSc in Computer
Engineering from the University of Calabria, Italy in 2006 and PhD in
Computer Science from University of Bari, Italy in 2010. She holds a
Second Level Master in Computer Security and Digital Forensics in 2011
from the University of Modena and Reggio Emilia, Italy. She has worked
on data science research projects with several national research institutions
and companies. She gained experience teaching computer programming and
data management to undergraduate students. Currently, she is a computer
engineering researcher at Italian National Agency for New Technologies,
Energy and Sustainable Economic Development (ENEA), Rome, Italy. Her
research interests include: information retrieval and search engine results
personalisation, natural language processing and data privacy.

Copyright 20XX Inderscience Enterprises Ltd.

2 V. Cozza

1 Introduction

The steady growth of structured data freely available to everybody (Cafarella et al.,
2011) pushes researchers to find new ways for making the data easily accessible and
retrievable (Noy et al., 2019; Chapman et al., 2020). The usage of the Keyword Search
(KS) paradigm enables any user to search over structured data, by specifying a set of
keywords. No knowledge of formal query languages or awareness of the schema is
required.

In the last decades, several keyword search systems (KSS) over relational database
(RDB) have been implemented (Yu et al., 2009; Park and Lee, 2011). According to
Yu et al. (2009), state-of-the-art KSSs, from now always over RDB, are classified
into graph-based and schema-based. The former category exploits a graph built on
a relational database (RDB) instance, the latter the RDB schema. Graph-based KSSs
convert a RDB into a data-graph (DG) where nodes are the RDB tuples and edges
represent the primary/foreign key relations between tuples. The KS is answered by
performing the search of relevant subgraph structures over the DG. Schema-based
approaches imply making use of the RDB schema information to generate a set of SQL
queries that can find all the structures among tuples in an RDB completely, and how to
evaluate the generated set of SQL queries efficiently.

Reproducibility studies (Coffman and Weaver, 2010a, 2014; Badan et al., 2017b)
have analysed the strengths and limitations of existing KSSs. In Coffman and Weaver
(2010a), and the follow up work (Coffman and Weaver, 2014), the authors reproduced
and evaluated Schema- and Graph-based pioneering KSSs, moreover they shared a
benchmark (Coffman and Weaver, 2017) for KSS evaluation. The experimental analysis
from Coffman and Weaver (2014) reveals that existing KSSs are quite complex and
often do not scale for real size RDB. Graph-based KSSs outperform the others for what
concerns complex searches in complex structure RDBs with thousands of tuples, while
they implement search algorithms failing with out-of-memory issues or running out of
time for not trivial searches in larger RDB.

This study has three main limitations. First, search queries proposed in the
benchmark are not general enough to challenge the systems and this can lead to a
shallow evaluation. A KS with one or more keywords that are unique in the RDB is
usually easy to answer. Time and space complexity is limited for algorithms solving
such cases. The problem arises when the search keywords are present in several
attributes of different relations. Hence, search algorithm needs to stress the system
finding all the possible connections between all the RDB elements that matched the
keywords; this may imply the generation, and also the evaluation, of several subgraphs.
Second, Coffman and Weaver (2014), while reproducing main KSSs, refer to their
description in the original papers where several details are often taken for granted and
important discussions are omitted, thus, the produced results are not always replicable
(Bergamaschi et al., 2016). Lastly, the source code of the tested systems is not shared.
Badan et al. (2017b) introduced a first attempt in this direction. Badan et al. (2017b)
reproduced six KSSs as student projects and discussed the main challenges faced.
Moreover, they evaluated the reproduced systems (Badan et al., 2017a) and also share
the source code.

The present work introduces the design of a framework that supports the
reproducibility and new implementation of graph-based KSSs. It also presents the
description and the implementation (Cozza, 2019) of a core module of this framework,

Toward a framework for graph-based keyword search 3

the data-graph modelling component, that transforms a given RDB into a DG
representation (component source code link hidden for double blind review). In order
to favour the reproducibility of the systems, the analytical model of the DG weights
is provided (see Section 4). The reproduced module has been evaluated by using it to
generate DGs from three RDBs available in Coffman and Weaver (2010b). These RDBs
have been also used in the reproducibility work from Coffman and Weaver (2014),
thus, it has been possible to validate the correctness of the proposed implementation,
comparing the obtained graph structures with those of Coffman and Weaver (2014).

The rest of the paper is organised as follows: Section 2 presents the design of
the Graph-based KSS framework, from Sections 3 to 5 the implementation and the
evaluation of the data-graph modelling module are detailed and discussed. Section 6
concludes the work.

2 Graph-based KSS framework

The design of the framework is mainly based on the pioneering graph-based KSSs:
BANKS-I (Bhalotia et al., 2002), BANKS-II (Kacholia et al., 2005) and DPBF (Ding
et al., 2007). Several aspects of these systems have been analysed in order to identify
the parts in common and their interactions. The framework can easily incorporate other
graph-based KSSs, e.g., He et al. (2007) and Kasneci et al. (2009).

A core module of the framework is the data-graph modelling, this builds a DG
representation of the RDB instance (see Section 3): relational tuples are nodes of the
graph, tuples primary/foreign key relations are edges; hence, the module assigns weights
to the graph elements by using graph-based metrics (see Section 4). Figure 1 shows, as
running example, an oversimplified version of an Academy RDB where an employee
can be affiliated to one and only one department. The latter can have many employees.
Each node is identified by an alphanumeric code that is the code reported at the left side
of each tuple in Figure 1. Figure 2 shows the graph obtained through the data-graph
block, having the sample database as input.

Figure 1 A snapshot of the academy RDB schema with its data

! Employee ! Affiliation! ! Department

id| name | surname role e_id|d_name name | street_name |num
E0 | 1 | Alice | White |Researcher| pg| 1 DEI DO| DEI SLIEEILY 100
E1 Road

2| Bob | Brown | Professor | Al| 2 DEI

Figure 2 Academy DG

4 V. Cozza

Analysed systems differ from each-other in relation to the type of graph they handle
(oriented or not, weighted or not); systems working on weighted graph may differ on
how weights are calculated.

Moreover, an inverted index (Zobel and Moffat, 2006) is generated. In order to
build the index, textual information contained in the tuples, attributes and tables name
in the RDB is pre-processed (e.g., tokenisation, stop word removal) and keywords are
extracted; in the index, each keyword is an index key, the corresponding value is the
posting list of graph nodes containing that keyword.

In the running example, node EO derives from one tuple in the employee table. The
textual content associated with this tuple is {Alice, White, researcher} plus its table and
table attribute names: {employee, name, surname, role}. This is implemented having EO
in the posting list of each of the keywords in brackets. Three sample elements of the
inverted index produced are:

e Alice: {EO}
e researcher: {EO}
e employee: {EO, E1}.

Details on how the graph and the index are built, are provided in the next sections.

Figure 3 represents how the framework answers to a KS, firstly the end user interacts
with any KSS by issuing a KS. A KS consists of a set of n terms, named keywords:
KS = {k1,....,k, }. The user does not need to be aware of the schema of the data: she is
supposed to know only the data domain; thus she may issue a KS by using keywords
she expects to be present in any textual attribute in the RDB.

The framework exploits the DG and the KS to produce top-k answer trees. In
particular, it runs four modules in pipeline: query processing, data-graph element
matching, graph search and answer building.

Figure 3 Answering a KS over the data-graph

Ks —> Query |_refined_,| d%}z}%gaﬂﬁn |_keyword | Graph |_answer Answer fop-k
Processing query Malching nodes Search trees Building answer trees

Lf.f dala-graan

The first step is the conversion of a KS into a refined query, i.c., a set of keywords,
thanks to the query processing block. The query processing module analyses and
processes the KS. At least it must pre-process the KS applying tokenisation and
stop word removal, since this pre-processing phase is generally applied to the textual
content of the tuples in the RDB. In real systems, NLP techniques can be used in
order to understand the semantic of the user query and enrich the search (e.g., query
disambiguation and expansion). The qguery processing module returns a refined KS.

In the analysed papers, the query processing phase is not discussed or only
marginally mentioned, because queries are supposed to be well posed. This shows how
far these systems are from being conceived as systems to be used in real life. According

Toward a framework for graph-based keyword search 5

to the running example, given the KS @1 = {Bob, at, DEI}, the refined query is Q1 =
{Bob, DEI}.

The data-graph element matching block takes the refined KS, and the DG as input
along with related indexes. It allows to find all the keywords nodes in the DG, namely
the nodes that contain the keywords in KS at least once; this generally is implemented
as an access to the inverted index.

According to the running example, given the refined query (J1, the module returns
the following lists of nodes: {E1} for the keyword bob and {A0, Al, DO} for DEL
When a given keyword in KS is not in the inverted index, the module returns for such
keyword an empty list of nodes.

The graph search block is used to find connected keyword nodes to form a
connected subgraph. This can be done by exploring the neighbourhoods of identified
elements and finding the smallest tree connecting all the elements. Even a single node
is a subgraph. The module returns the list of valid subgraphs. A subgraph is represented
as a list of nodes and its connecting edges, it is valid answer to the KS when its nodes
are due to tuples that contain all the keywords in the KS at least once. Indeed in the
analysed KSSs, a subgraph answers to a KS when all the keywords in the search are
found in its nodes. This behaviour can be extended, e.g., adding in KS Boolean operators
and supporting both AND (all the keywords present at least once) and OR semantic (at
least one keyword present).

BANKS-I search starts from the keywords nodes and traverses all the edges in
reverse direction, the so-called backward expansion, by using the Dijkstra’s single source
shortest path algorithm. When multiple paths intersect at a common node r in the graph,
the resulting tree with root r is examined to check whether its leaves contain all the
user keywords and it is weighted accordingly. Then, it returns the most relevant trees,
until a predefined number of results has been reached.

BANKS-I could fail, not producing any result in a reasonable amount of time
(Coffman and Weaver, 2014), in case a query keyword matches a very large number of
nodes or if it matches a node with a very large number of incoming edges. BANKS-II
system improves over BANKS-I the way they traverse the graph by allowing forward
search from potential roots towards other keyword nodes. The algorithm uses two
concurrent iterators, called outcoming and incoming: both iterators use the Dijkstra’s
single source shortest path approach but the outcoming iterator expands towards other
matching sets using the forward expansion while the incoming iterator implements
the same backward expansion strategy of BANKS-I. In addition, BANKS-II favourites
expansion of paths with less branching by using a spreading activation mechanism,
which assigns an activation score to every explored node, being able to produce results
in relevance order. The DPBF system exploits dynamic programming algorithm to find
the optimal group Steiner tree. The idea is to find and merge trees with the same root
and different sets of keywords until a tree contains all searched keywords is found.
In the analysed KSSs, all the subgraph search algorithms proposed are sub-optimal
solutions that run in polynomial time aiming to retrieve incrementally relevant results
[top-k strategies (Fagin et al., 2001)]. The graph search module returns answer graphs,
generally trees, so called answer trees, in order of relevance with the user KS. In the
example, there are three valid answer trees to the query ;. The first produced answer
is the tree only made of the nodes Al and El containing the search keywords, and the
directed edge (Al, E1) between them. The BANKS algorithm relies on the creation of
backward edges for each forward edge, so for each tree there exists also a symmetric

6 V. Cozza

tree, due to the edge in the opposite direction (E1, Al). When the algorithm produces
result trees composed of the same nodes, but different edges, only one is returned, based
upon relevance. Thus, one other valid result is tree with nodes Al, DO, E1 and edges
(E1, Al); (DO, Al); Finally one other more complex result tree is a tree with nodes
A0, Al, DO, E1 and edges (Al, El); (Al, DO); (DO, A0). This tree has a longer path
and the analyses systems would assign a higher cost to it too. Intuitively, a longer path
means the keyword nodes are loosely related, indeed this tree has a lower relevance then
the one mentioned above. Figure 4 summarises the example, along with the intuitively
explanation of the results.

Figure 4 Sample answer trees to Q1 = {Bob, DEI}

o0 T Q T o @

Bob Brown Professor is an Bob Brown Professor isan Employee, ~ Bob Brown Professor is an Employee,
Employee, affiliated at DEI. affiliated at DEI, Department in affiliated at DEI, Department in
University Road. University Road, but also others are

affiliated at DEI.

The answer building module takes as input the answer trees and it is responsible for
assigning them a weight and finally to return the results in relevance order to the user.
The relevance of the tree is inversely related to its weight: the higher the relevance
the better the answer tree. The tree weight is inherently linked with the prestige of the
nodes and the edges proximity. Different KSSs slightly differ on how answer trees are
scored, e.g., in BANKS-I and BANKS-II edges and keyword nodes contribute to the
tree weight. In the DPBF the tree weight is based on the contribution of the edges only.

3 Building the data-graph

As introduced in Section 2, the data-graph modelling block is aimed at building a graph
representation of relational data. Figure 5 exemplifies the graph modelling flow: the
RDB information is converted into an oriented weighted DG, and the inverted index
for indexing textual fields is produced. Furthermore, the module produces and exploits
intermediate auxiliary indexes. For instance, an auxiliary structure is a dictionary having
as a key the node identifier to store node information (e.g., the relational table name it
has originated from), such a data is used to compute edge weight.

Figure 5 Data-graph modelling flow

__________________ | — N —

iany : Inverted
nodes/edges building » Auiary Indexes index building : » Index

A data-graph structure ————>»| nodes/edges weighting . > Np data-graph

Bulspow ydelb-elep

Toward a framework for graph-based keyword search 7

3.1 Data-graph generation

Formally speaking, given a RDB, upon a relational schema R with foreign key
references, the RDB is modelled as a weighted graph G(V, E). V is the set of nodes
corresponding to the RDB tuples and E the set of edges induced by foreign key/primary
key relationships. This means that for each tuple » in the RDB it must be represented
a corresponding graph node u,.. Moreover, for each pair of tuples r1, 72 such that there
is a foreign key between them, there is a direct and a backward edge between the
corresponding nodes u,, and u,.

Figure 2 shows the oriented data-graph from the running example. Open arrows
touch forward edges, while closed arrows touch backward edges.

At this point, weights are assigned to the graph edges and eventually to the
graph nodes. Especially BANKS-I and BANKS-II systems model a RDB as a directed
weighted graph, with forward and backward edges having different weights. DPBF
allows to exploit graph oriented and not, weighted and not; in the case of weighted
graph, the weight is on the edges only. Weight assignment will be discussed in the next
section of this work.

In this phase an inverted index is populated too: for each token in the textual fields
of the tuple 7 in the related posting list the identifier of the node u, is added. According
to the running example, in the inverted index to the keyword DEI corresponds a posting
list including the nodes A0, Al, DO. In BANKS-II paper, the authors state that a KS
that matches a relation name should select all tuples belonging to the relation. This
optional feature was implemented as follows. For each tuple r, while creating the graph
node u,, the node will contain keywords made of the textual content in the tuple 7,
but also the table and table attribute names. For the running example, a posting list
including AO corresponds to the keyword Alice in the inverted index. Moreover, while
building the inverted index, the identifiers of all the nodes generated by all the tuples
in a table are assigned to a keyword corresponding to the table name. For the running
example, a posting list including all the nodes due to the table employee, specially EO
and E1, corresponds to the keyword employee in the inverted index. This solution leads
to very long posting list, that can be cumbersome and inflexible for large datasets. In the
running example, a posting list including EO, E1 corresponds to the keyword employee
in the inverted index. In this regard, the authors of BANKS-I mention, as a possible
extension to their model, to incorporate queries that specify an attribute name or a table
name. E.g., given a query like role:Researcher, they expect KSS to retrieve from the
inverted index the list of nodes containing the keyword researcher, if and only if the
nodes are due to a attribute named role into a RDB table. This feature implementation
was left for future work.

3.2 Implementation details

The data-graph modelling block was implemented in Java (Cozza, 2019). It takes
as input a PostgreSQL DB instance and it produces a graph representation of the
data offline along with the inverted index for full text search (see Figure 5). JDBC
interface has been used for managing the connection with a PostgreSQL DB. The
module manages any PostgreSQL DB without any extra programming for different
RDB schema: the RDB schema is learned at runtime querying the PostgreSQL system
catalogues.

8 V. Cozza

The module uses JGraphT library (Michail et al., 2019) for managing graph, also
used in He et al. (2007) and Coffman and Weaver (2014). JGraphT is suitable for
implementing the whole framework since it supports easy development of graph search
code; it provides the implementation of common graph algorithms (e.g., iterators that
implement Dijkstra’s single source shortest path) either the implementation of very
common used functions in KSS search (e.g., in/out-degree of a node).

The data-graph plus the inverted index are produced as Java serialisable object
that can be later loaded in main memory for further elaboration, i.e., for performing
graph-search.

However, in the in-memory representation of the graph, the graph nodes are made by
the node identifiers only and do not contain actual data. The edge structure stores its two
node identifiers and the edge weight. It is well-known that RDBMS implements inverted
indexes for full text search. Certain KSSs exploit the RDB index order to implement
a tuple-based index for the RDB (e.g., Hristidis and Papakonstantinou, 2002), in the
proposed implementation, the inverted index has been made from scratch without relying
on RDB indexes. As a limitation, the analysed systems, and therefore the implemented
module, do not deal with the case of RDB updates: the module must be run once
again when the RDB schema or data are updated. In order to do a search, the graph
and the inverted index are loaded within the main memory. While searching for valid
answer trees, new in-memory data structures are populated, and these can grow in size,
even leading the search to fail with out-of-memory issues. Using dynamic programming,
DPBF reduces the memory waste

4 Weighting the data-graph

After DG structure is generated, nodes and edges weights are assigned, accordingly to
the analysed KSSs. BANKS-I description paper introduced the metrics, then applied
in BANKS-II too. Moreover, the authors in DPBF claim to inherit the same metric
definitions for what concerns the edge weight, but they ignore the weight on the node.
Given that, the main description of the used metrics into these systems is due to the
BANKS-I description paper. However, for the sake of synthesis some of the graph
measurements have been described at a general level only. As a contribution, the metrics
for computing the node and the edge score described by definitions in the original
work, are presented, by providing the corresponding analytical formulas, shedding the
light on the details not specified in the original papers. This is important because it
makes easy the module implementation by directly translating into code the formulas
unambiguously. As for each tuple r in the database, the graph has a corresponding node
Uy, then a tuple and the corresponding node are mentioned interchangeably.

The rest of the section presents how the analysed systems compute the node weight,
then the similarity between relations, finally the edge weight based on the similarity of
the relations in the RDB to which the tuples belong. Moreover, the properties of the
edge weight are discussed.

Toward a framework for graph-based keyword search 9

4.1 Node weight

According to Bhalotia et al. (2002), the weight N score of a node w is due to the number
of its incoming edges:

Nscore(u) = IN(u) @)
A higher value of Nscore corresponds to greater prestige for the node in that graph.
For the running example, Figure 6 represents the oriented weighted DG, inside each

node the related Nscore is reported. Nscore(Al) =2, having Al two inner edges,
similarly all the other nodes are computed.

Figure 6 Oriented weighted academy DG

4.2 Similarity between relations

As proposed in Bhalotia et al. (2002), given two relations instances R; and Ra, where
R, is the referencing relation and Ry is the referenced relation, the similarity is a
measure based on the type of link between them: when they are unrelated at all
similarity is oo; on the contrary, similarity has to be lower when more semantically
relevant is the relation between the connected nodes. Its computation is based on the
number of edges between the tuples of the relation instances: Ne(R;, Rs).

The structure of the graph is based on the RDB instance. The relation type in
the relational schema is not considered, but the links between tables are counted and
instance-based cardinality is computed accordingly; e.g., the relation actual type is one

1,N . .
to many (M) between two given relations R; and Rz when at least one element of
R is related to two or more elements of Rs.
The similarity, based on the actual relation types, is formalised as

Ne(Ry, Ry) when Ry Y R,

S(R].? RQ) = m When Rl ﬂ R2 or R1 % R2 (2)
00 when R; does not refer to Ry

In words, the cases are as follows: for a N — 1 relation, similarity is higher when Ne
is smaller; for a 1 — 1 or a 1 — NN relation, similarity is lower when Ne is larger;
when Ne = 0, the similarity is set to co.

10 V. Cozza

Table 1 Actual type of relation, number of edges and similarity for the academy DG

R R> rel type Ne S
Af filiation Employee 1—>1 2 0.5
Employee Af filiation 1—-1 2 0.5
Af filiation Department N —1 2 2
Department Af filiation 1—- N 2 0.5
Employee Department None 0 %9
Department Employee None 0 %)

Computing the similarity between two tables, following equation (2), requires to
compute the number of edges between such tables and the actual relation type. These
measurements expect to recall in several computations, so these could be calculated
once for all and stored in one auxiliary index. (This optimisation idea is not mentioned
in the original paper.)

For the running example, given the tables Af filiation and Employee
Ne(Af filiation, Employee) = 2, due to the two edges (A0, E0) and (Al, El); the
actual relation type is 1 — 1, because each element of Af filiation is related at most
to one element of Employee.

Hence, according to equation 2) S(Af filiation, Employee) =
Ne(AT filiati}m, Fplogee) — % = 0.5. For the other couples of tables, the actual relation
type, the number of edges Ne, and the similarity S are reported in Table 1.

4.3 Edge score

Given the edge e between the nodes v and v in the graph, being R,, and R, respectively
the relations the nodes w and v belong to, the definition of the weight of e is based
on these relations similarity S(R,,, R,) [see equation (2)] and the number of incoming
edges in u or the outgoing edges from v.

For each direct edge, also a backward edge is created; to assign a weight to the
backward edge (between v and), Bhalotia et al. (2002) suggest it can be used a default
value or any desired value to reflect the importance of the link between the nodes, with
small values corresponding to great proximity. In the proposed implementation, weight
for both the backward and the forward edges are computed, this to better measure the
nodes proximity. This corresponds to considering the incoming edges in u but also the
outgoing edges from v, while in the original formula [equation (1) from Bhalotia et al.
(2002)] there was the contribution of the incoming edges only. The link importance is
based on how much informative content the connection reveals. As an intuitive example,
supposing to have a real size academic RDB, and having two departments named DEJ
and PHI, given the is affiliated to relation, where the number of edges in PHI are less
then number of edges in DEI, the first links contribute with a more relevant information.
Given the opposite direction relation has affiliated, the number of edges out from PHI
are less then number of edges from DEI, the first links contribute with a more relevant
information.

Toward a framework for graph-based keyword search 11

Following the equations from the original paper and the above considerations, the
definition of score of an edge e is formalised as

IN,(u) * S(Ry, Ry) when Ry U R,
(1) (3)

Escore(e) = w1
ouT,(v) * S(Ry,R,) when R, —> R, or R, —= R,

As an example, in order to assign a weight to the edges (E1, Al) and (DO, Al), all the
tables which interested nodes, Al, DO, E1 belong to, must be found. Once the related
tables are found (Af filiation for Al, Department for DO and Employee for E1),
then similarity is computed as discussed in Section 4.2. For the reader convenience, the
actual relation type, Ne and S for each couple of tables are evaluated and reported in
Table 1.

The weight then relies on the compute of the indegree or outdegree of a node
depending on the actual type of relation, according to equation (3).

Escore(E1, Al) = IN 1 (E1) * S(Employee, Af filiation) = 1% 0.5 =0.5
having the number of edges incoming to E1 from table affiliation, equals to 1.

Escore(Al, E1) = INg1 (A1) x S(Af filiation, Employee) = 1% 0.5 = 0.5
having the number of edges incoming to Al from table employee, equals to 1.

Escore(Al, D0) = INpo(Al) * S(Af filiation, Department) =2 %2 = 4
Escore(D0, A1) = IN41(D0) x S(Department, Af filiation) = 2% 0.5 = 1.

Similarly for the other edges. For the reader convenience, the sample graph with edges
and nodes score computed as discussed above is reported in Figure 6.
4.4 Edge score proprieties

As a contribution, in the following, the proprieties verified by the edge score are
analysed. Table 2 clarifies equation (3) and it shows how the score of the edge between
the nodes u and v depends upon the actual type of relation between R, and v and that
between u and R,.

Table 2 Edge score limit values

rel type Escore(e)

N —1 limpye(R,, Ry)—o00 (I Nu(v) ¥ Ne(Ru, Ry)) = 00
N —1 limpye(Ry ,Ry)—1 (I Nu(v) ¥ Ne(Ru, Ry)) =1

1=+ N limOUT(u)—u,Ne(Ru,Ru)—mo(%) =0

1= N UM OUT (u)—s00,Ne(Ru,) 00 (ot gs) = 1

11 UM e(Ry, Ry) oo (iR A) = 0

1 —1 limne(r.,, R1)>—>1(7N§(Ng”,ff}%v>) =1

12 V. Cozza

Given the edge e, the weight so computed will respect some properties:

e 0 < Escore(e) < oo
o FEscore(e)i1 < Escore(e)i—n
e FEscore(e)iony <1

e FEscore(e)y1 > 1.

5 Performance evaluation

In this section the evaluation of the data-graph modelling block (see Figure 5)
implemented from scratch in this study is presented. The objective of the reproduced
block evaluation is two-fold: first, to prove the correctness of the proposed
implementation; second, to highlight the open challenges. The module implementation
has been tested by using it to convert into a data-graph three real-life RDB, provided by
the Coffman and Weaver’s (2017) benchmark and that it is possible download for free
(Coffman and Weaver, 2010b). This data is interesting because of the different size (see
SIZFE of the DB in MB and number of relations in Table 3) and structure. Two datasets
are extracted from popular websites (IMDb and Wikipedia). IMDB is a very large DB
with 1 million tuples, but its structure is quite simple, made by six relations only.
Wikipedia has 200k tuples; it is very interesting because it has, in textual fields, all the
textual content of Wikipedia articles. It allows to challenge the use of inverted indexes.
Finally one dataset is the Mondial dataset (May, 1999), it comprises geographical and
demographic information from the CIA World Factbook, the International Atlas, the
TERRA database, and other web sources. Mondial has a reasonable small number or
tuples (56K) but it is interesting because it counts 28 relations and thus it has a complex
structure.

In Coffman and Weaver (2010a, 2014), the authors evaluated several KSSs, using
these RDBs. They shared statistics on the produced DGs and the present evaluation
refers to part of their study for comparison. The execution time and the memory
consumption of the graphs and auxiliary indexes are measured. Besides, the present
work also reports how much memory it takes to build them, specially to generate the
graph nodes, to create the edges and to update the edge weights.

Table 3 Characteristics of the evaluation datasets and memory consumption

RDB Size Relations |V| |E| |T] Vm Em Em_up G

Mondial 12 28 17,115 53,748 5,696 43.6M 2046 M 2.65M 1026 M
IMDb 476 6 1,673,076 6,074,782 279,516 659.92 M 585.54 M 30.08 M 66.05 M
Wikipedia 333 6 206,318 784,600 762,045 1,034.25 M 245.93 M 18.78 M 509.42 M

5.1 Memory consumption

Table 3 shows the characteristics of the RDBs and output DGs: |V| is the number of
nodes (tuples) and |E| the number of edges (foreign keys) in DG; |T| is the number

Toward a framework for graph-based keyword search 13

of unique terms (thus the number of inverted index keys). Results are in line with
those provided from [Coffman and Weaver, (2014), p.32, Table 3] for what concerns
number of relations, nodes and edges, while SIZE and T differ. In Coffman and
Weaver (2014), the authors do not explicitly mention how these are calculated. In the
proposed experiments, the RDB SIZE has been computed using the pg_D B_size plugin
in PostgreSQL, while |T'|, that represents the number of keys in the inverted index, it
depends upon text pre-processing approach and here refers to the usage of a simple
rule-based approach.

Furthermore, Table 3 also shows the Data-graph generation module memory
consumption while creating the graph, having V'm memory required to generate the
nodes and the Index, Em memory required to generate the edges and Em_up to update
the edge weight, finally G, the size of the produced graph. Please note that G, the
in-memory representation of the RDB, includes only the tuple id identifiers and the
edge represented by mean of these identifier, as discussed in Section 3. The memory
consumption is the same for the three systems while generating the DG. DPBF system
does not consider the node weight, whereas BANKS-I and BANKS-II do but this does
not affect the overall memory consumption during graph weighting. Indeed resources
necessary to compute the node weight are negligible, this because the weight is based
on the in-degree of the node; the in-degree information is pre-computed in the graph
representation used in JGraphT, thus in this work, and it comes without a cost. Em
and V'm are high because edge and nodes generation are the most memory demanding
parts, memory usage could be reduced by improving the implementation, storing some
intermediate data in secondary memory. All the analysed KSSs are supposed to update
the edge weights (Em_up). This is a very time-demanding task, but it does not waste
much memory.

5.2 Execution time

The execution time of the module is biased by the time required for the execution of
the SQL queries by the RDBMS underlying the applications (Bergamaschi et al., 2016).

In the proposed experiments, the execution time required to build the DGs from
the analysed RDBs is as follows: Mondial needed 6.356 s, IMDb 41 m 48.369 s and
Wikipedia 5 m 32.244 s. The reported values refer to an average on three experiments.

Please note that execution time is of around 42 m when the RDB size is of 1 million
tuples, but the IMDb version used in Coffman and Weaver (2014), so in the present
work, is only a small fraction of the original IMDb RDB (having around 12 million
tuples). Since the graph has built offline and loaded in main memory, RDB that requires
frequent data or schema updates cannot be easily managed. These, instead, should rely
on different approaches that work directly with data stored in secondary memory (see
the Schema-based KSSs, as presented in Yu et al. (2009). In this computation, time
needed to update the graph edges weight highly contributes to the running time. The
results here reported refers to a Mac machine running macOS Sierra 10.12.5, with 2,6
GHz Intel Core i7 processor and with 16 GB of RAM.

14 V. Cozza

6 Final remarks

KSSs have drawn attention in the last years due to the increasing availability of data
in structured form and easily accessible even for not technical users. Despite several
prototypes have been designed, state of the art implementations are not scalable and
time it takes to return relevant search results is far to be instantaneous.

This work proposes the design of a graph-based KSSs framework that aims to be
a reference for engineers and technical developers, helping them to develop new KSS,
hence it is open to be extended.

The modules designed in the framework encode the main and minimal functionality
that graph-based KSS over RDB must support. Possible directions are as follows. The
interaction with the user can be improved, e.g., to support searches expressed natural
language (Li and Jagadish, 2014), to integrate well known IR and NLP literature
techniques such as query disambiguation and expansion (Demidova et al., 2010) or
query refinement (Deng et al., 2017; Baid et al., 2010). Applying query understanding
techniques is crucial into a real system that aims to be effective when retrieving all the
most relevant results.

Several graph-based weighting mechanisms (Yang et al., 2009, 2011) can be included
into the framework, beside the examples proposed in the present work. Moreover,
graph-based metrics have been conceived to measure the relatedness of two nodes in
a graph (Milne and Witten, 2008), or metrics founding on social network analysis that
relies on a combination of the relatedness and Katz centrality of a graph node (Hulpus
et al.,, 2015). Most of these metrics can be adapted and applied for the edge score
computation task. The data-graph element matching module can be enriched to support
enhanced query search (e.g., with AND, OR, NOT operator), or to support the matching
of numerical value and thus queries that include aggregation operator (Zeng et al., 2016).

Furthermore, this study presents the implementation of a core module of the
framework. The module can be extended to support other input data formats, not only
RDB. KSSs for the case of other data formats (XML, RDF) were investigated in
related works (Bessai-Mechmache and Alimazighi, 2012; Le and Ling, 2016; Dosso and
Silvello, 2020).

The module implementation uses a high level language and a well developed library;
such decision promotes the clarity and readability of the code, sometimes at the price
of its efficiency. The module can be enhanced to implement memory-efficient solutions
and managing data-graphs in secondary memory (Dalvi et al., 2008).

The implementation of the rest of the framework is a future work.

Acknowledgements

Most of the work was done while the author was at Department of Information
Engineering, University of Padua, Italy.

The research was supported by the Starting Grants Project DAKKAR (DAta
benchmarK for Keyword-based Access and Retrieval) promoted by University of Padua
and Fondazione Cariparo, Padua (2017-2020).

Toward a framework for graph-based keyword search 15
References

Badan, A. et al. (2017a) ‘Keyword-based access to relational data: to reproduce, or to not reproduce?’,
Proc. of the 25th Italian Symposium on Advanced Database Systems, Squillace Lido (Catanzaro),
Italy, 25-29 June, pp.166.

Badan, A. et al. (2017b) ‘Towards open-source shared implementations of keyword-based access
systems to relational data’, Proc. Ist International Workshop on Keyword-Based Access and
Ranking at Scale (KARS 2017) — Proc. of the Workshops of the EDBT/ICDT 2017 Joint
Conference (EDBT/ICDT 2017), Vol. 1810, CEUR Workshop Proceedings (CEUR-WS.org),
ISSN 1613-0073.

Baid, A., Rae, 1., Li, J., Doan, A. and Naughton, J. (2010) ‘Toward scalable keyword search over
relational data’, Proc. VLDB Endow., September, Vol. 3, Nos. 1-2, pp.140-149.

Bergamaschi, S., Ferro, N., Guerra, F. and Silvello, G. (2016) ‘Keyword-based search over databases:
a roadmap for a reference architecture paired with an evaluation framework’, Transactions on
Computational Collective Intelligence XXI, Vol. 9630, pp.1-20, Springer-Verlag New York, Inc.,
New York, NY, USA.

Bessai-Mechmache, F-Z. and Alimazighi, Z. (2012) ‘Possibilistic model for aggregated search in XML
documents’, Int. J. Intell. Inf. Database Syst., September, Vol. 6, No. 4, pp.381-404.

Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S. and Sudarshan, S. (2002) ‘Keyword searching
and browsing in databases using banks’, Proc. 18th Int. Conf. on Data Engineering, pp.431-440.

Cafarella, M.J., Halevy, A. and Madhavan, J. (2011) ‘Structured data on the web’, Commun. ACM,
February, Vol. 54, No. 2, pp.72-79.

Chapman, A., Simperl, E., Koesten, L., Konstantinidis, G., Ibaiiez, L-D., Kacprzak, E. and Groth, P.
(2020) ‘Dataset search: a survey’, The VLDB Journal, Vol. 29, No. 1, pp.932-943.

Coffman, J. and Weaver, A.C. (2010a) ‘A framework for evaluating database keyword search
strategies’, Proc. of the 19th ACM Int. Conf. on Information and Knowledge Management, CIKM
’10, pp.729-738, ACM, New York, NY, USA.

Coffman, J. and Weaver, A.C. (2010b) Relational Keyword Search Benchmark [online]
https://joel-coffman.github.io/resources.html#search (accessed 6 July 2021).

Coffman, J. and Weaver, A.C. (2014) ‘An empirical performance evaluation of relational keyword
search techniques’, IEEE Transactions on Knowledge and Data Engineering, January, Vol. 26,
No. 1, pp.30-42.

Coffman, J. and Weaver, A.C. (2017) Benchmark for Relational Keyword Search [online]
https://doi.org/10.18130/V3/KEVCFS.

Cozza, V. (2019) Db2graph Project [online] https://bitbucket.org/covitti/db2datagraph/ (accessed 6 July
2021).

Dalvi, B.B., Kshirsagar, M. and Sudarshan, S. (2008) ‘Keyword search on external memory data
graphs’, Proc. VLDB Endow., August, Vol. 1, No. 1, pp.1189-1204.

Demidova, E., Fankhauser, P., Zhou, X. and Nejdl, W. (2010) ‘DivQ: diversification for keyword
search over structured databases’, Proc. of the 33rd Int. ACM SIGIR Conf. on Research and
Development in Information Retrieval, SIGIR ’10, pp.331-338, ACM, New York, NY, USA.

Deng, D. et al. (2017) ‘The data civilizer system’, The Biennial Conf. on Innovative Data Systems
Research, CIDR.

Ding, B., Yu, J.X., Wang, S., Qin, L., Zhang, X. and Lin, X. (2007) ‘Finding top-k min-cost connected
trees in databases’, Proc. of the 23rd Int. Conf. on Data Engineering, ICDE 2007, pp.836—845.

Dosso, D. and Silvello, G. (2020) ‘Search text to retrieve graphs: a scalable RDF keyword-based
search system’, IEEE Access, Vol. 8, pp.14089—14111.

16 V. Cozza

Fagin, R., Lotem, A. and Naor, M. (2001) ‘Optimal aggregation algorithms for middleware’, Proc. of
the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 01, pp.102-113, ACM, New York, NY, USA.

He, H., Wang, H., Yang, J. and Yu, P.S. (2007) ‘Blinks: ranked keyword searches on graphs’, Proc. of
the 2007 ACM SIGMOD Int. Conf. on Management of Data, SIGMOD 07, pp.305-316, ACM,
New York, NY, USA.

Hristidis, V. and Papakonstantinou, Y. (2002) ‘Discover: keyword search in relational databases’, Proc.
of VLDB, pp.670-681, VLDB Endow.

Hulpus, 1., Prangnawarat, N. and Hayes, C. (2015) ‘Path-based semantic relatedness on linked data
and its use to word and entity disambiguation’, International Semantic Web Conference.

Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R. and Karambelkar, H. (2005)
‘Bidirectional expansion for keyword search on graph databases’, Proc. VLDB, pp.505-516,
VLDB Endow.

Kasneci, G., Ramanath, M., Sozio, M., Suchanek, F.M. and Weikum, G. (2009) ‘Star: Steiner-tree
approximation in relationship graphs’, 2009 I[EEE 25th International Conference on Data
Engineering, March, pp.868-879.

Le, TN. and Ling, T.W. (2016) ‘Survey on keyword search over XML documents’, SIGMOD Rec.,
Decmeber, Vol. 45, No. 3, pp.17-28.

Li, F. and Jagadish, H.V. (2014) ‘Constructing an interactive natural language interface for relational
databases’, Proc. VLDB Endow., September, Vol. 8, No. 1, pp.73-84.

May, W. (1999) Information Extraction and Integration with FLORID: The MoONDIAL Case
Study, Technical Report 131, Universitat Freiburg, Institut fur Informatik [online]
http://www.dbis.informatik.uni-goettingen.de/Mondial (accessed 6 July 2021).

Michail, D., Kinable, J., Naveh, B. and Sichi, J.V. (2019) Jgrapht — A Java Library for Graph Data
Structures and Algorithms, arXiv preprint arXiv:1904.08355.

Milne, D. and Witten, I.H. (2008) ‘Learning to link with Wikipedia’, Proceedings of the 17th ACM
Conference on Information and Knowledge Management, CIKM 08, pp.509-518, Association
for Computing Machinery, New York, NY, USA.

Noy, N., Burgess, M. and Brickley, D. (2019) ‘Google dataset search: building a search engine for
datasets in an open web ecosystem’, 28th Web Conference (WebConf 2019).

Park, J. and Lee, S-G. (2011) ‘Keyword search in relational databases’, Knowledge and Information
Systems, Vol. 26, No. 2, pp.175-193.

Yang, X., Procopiuc, C.M. and Srivastava, D. (2009) ‘Summarizing relational databases’, Proc. VLDB
Endow., August, Vol. 2, No. 1, pp.634-645.

Yang, X., Procopiuc, C.M. and Srivastava, D. (2011) ‘Summary graphs for relational database
schemas’, PVLDB, Vol. 4, No. 11, pp.899-910.

Yu, J., Qin, L. and Chang, L. (2009) Keyword Search in Databases, Synthesis Lectures on Data
Management, Morgan & Claypool Publishers.

Zeng, Z., Lee, M. and Ling, T.W. (2016) ‘Answering keyword queries involving aggregates and
GROUPBY on relational databases’, Proceedings of the 19th International Conference on
Extending Database Technology, EDBT 2016, 15-16 March, Bordeaux, France, pp.161-172.

Zobel, J. and Moffat, A. (2006) ‘Inverted files for text search engines’, ACM Comput. Surv., July,
Vol. 38, No. 2, pp.6—es.

