
University of Verona

Department of Computer Science

Doctoral Program in Computer Science

design and evaluation of
competitive programming platforms

for computer science education

Dario Ostuni

Advisor

Prof. Romeo Rizzi

Coordinator

Prof. Ferdinando Cicalese

Cycle XXXVI — S.S.D. INF/01

Mobile User

Contents

1 Introduction .. 1
1.1 Thesis structure ... 3

2 Competitive programming .. 5
2.1 Problems .. 5

2.1.1 Kinds of problems ... 5
2.1.2 Structure of a problem ... 7
2.1.3 A couple of examples ... 8
2.1.4 Anatomy of a solution ... 12

2.2 Problem solving techniques and topics ... 14
2.2.1 Computational complexity .. 14
2.2.2 Dynamic programming .. 16
2.2.3 Greedy algorithms .. 21
2.2.4 Divide and conquer ... 23
2.2.5 Strings .. 25
2.2.6 Graphs .. 27
2.2.7 Computational geometry .. 29
2.2.8 Number theory .. 31

2.3 Programming languages ... 33
2.3.1 C .. 33
2.3.2 C++ ... 34
2.3.3 Pascal .. 35
2.3.4 Python .. 35
2.3.5 Java ... 36

3 Competitions .. 39
3.1 International Olympiad in Informatics .. 40

3.1.1 Italian Olympiad in Informatics ... 41
3.1.2 CMSocial ... 50

3.2 International Collegiate Programming Contest .. 59
3.2.1 SouthWestern Europe Regional Contest .. 63

4 Turing Arena light ... 67
4.1 Architecture and design .. 68

4.1.1 Problem manager .. 68
4.1.2 Server ... 68
4.1.3 Client .. 70

i

4.1.4 User interface ... 70
4.2 Implementation details .. 71

4.2.1 Problem manager libraries .. 74
4.3 Graphical user interface .. 76
4.4 Experience in the classroom ... 78

4.4.2 Exams ... 83
4.4.3 Survey .. 87

4.5 Future directions ... 88

5 Code Colosseum ... 91
5.1 Design, Motivations and Goals .. 92

5.1.1 Visualization ... 94
5.1.2 Tournaments .. 94
5.1.3 Simplicity .. 94

5.2 Implementation details .. 95
5.3 Pilot Experience .. 97

5.3.1 Royal Game of Ur .. 97
5.3.2 Double-elimination Tournament ... 97
5.3.3 Experience and Feedback .. 98

5.4 Findings and further directions ... 99
5.5 Replay functionality ... 99
5.6 Graphical user interface .. 100
5.7 Additional games .. 101

5.7.1 Checkers .. 101
5.7.2 Chess .. 101

5.8 Future directions ... 102

6 Conclusions ... 105
6.1 Future works .. 107

7 Other works .. 109
7.1 AI playing Touhou only from pixels ... 111

7.1.1 Introduction .. 111
7.1.2 Dataset Generation ... 112
7.1.3 Semantic Segmentation Networks .. 114
7.1.4 Experiments and Results ... 117
7.1.5 Conclusions and Future Works .. 120

7.2 SMT, MILP and SAT models for DTP ... 123
7.2.1 Introduction .. 123
7.2.2 The Disjunctive Temporal Problem .. 124
7.2.3 Existence of integer schedules ... 127
7.2.4 Encoding DTP into SMT .. 128

ii

7.2.5 Encoding DTP into MILP .. 130
7.2.6 Encoding DTP into SAT ... 133
7.2.7 Experimental Evaluation ... 138
7.2.8 Conclusions and future work ... 142

Bibliography ... 145

iii

iv

1 Introduction

Competitive programming is a mind sport where participants solve well-known al-
gorithmic problems in a limited amount of time. It has found popularity among high-
school and university students whose field of study is related to computer science.
Some of the most popular competitions draw more than 50000 participants from all
over the world [1]. Solving problems in competitive programming requires a lot of
skills: knowledge of algorithms and data structures, ability to write code quickly and
without bugs, and the ability to come up with a solution to a problem in a limited
amount of time. The participants that want to be successful in competitive program-
ming need to acquire all of these skills through learning and practice.

These elements make competitive programming a great tool to aid the teaching of
computer science. The skills that are specific to competitive programming are also
useful in the realm of computer science. Moreover, competitive programming is a fun
activity that can motivate students to learn more about computer science by solving
algorithmic problems and learning new solving techniques. Competitive program-
mers create communities where they share their knowledge and help each other im-
prove. This creates a great environment for students to learn and practice their skills.
Furthermore, competitive programming also has a competitive aspect to it, that en-
ables students to test their skills against other like-minded people.

Competitions are an important part of competitive programming. They are the pri-
mary engine that drives the creation of communities. There exist many competitions
worldwide, with the two most popular ones being the International Olympiad in In-
formatics (IOI) for high-school students and the International Collegiate Programming
Contest (ICPC) for university students. Participating in these competitions is a great
way to test one’s skills and to meet other competitive programmers. However, it is
also a challenge to organize them. There are many aspects of organizing a contest,
like creating the problems, curate the technical aspects of the contest, and deal with
the logistics of the contest.

One of the main technical aspects of a contest is the contest management system
used. A contest management system is a software that is used to manage the contest.
Its purpose is to automate the process of evaluating the solutions submitted by the
participants. To do so, it provides an environment for the problemsetter to create
and test the problems, and it enables the participants to submit their solutions and
receive feedback. Moreover, it usually provides a scoreboard that shows the current
standings of the contest, keeping track of the score of each participant. While many
contest management systems exist, they are usually made to run contests in compet-

1

itive programming competitions, and they are not necessarily suited to be used as a
teaching tool in a classroom environment.

In this thesis we present two novel contest management systems that are designed
with an educational purpose in mind. The first one is Turing Arena light, a lightweight
contest management system that is geared towards interactivity and ease of use. The
second one is Code Colosseum, a contest management system that is designed to host
challenges between programs written by the participants. Both of these systems have
been created to provide a tool that can create engagement and interactivity in a class-
room environment.

To evaluate the effectiveness of these systems, we have tested them both in a real-
world application. For Turing Arena light, we have used it as a companion for a course
on competitive programming at the University of Verona, both for exercises and ex-
ams. For Code Colosseum, we have used it in a contest for high-school and university
students, where the participants had to write programs that played a game against
each other. We evaluated the effectiveness of these systems by collecting feedback
from the participants.

Furthermore, we present in this thesis some of the work done on the organization
side of two competitions. The first one is the Italian Olympiad in Informatics (OII),
the national competition that selects the Italian team for the International Olympiad
in Informatics (IOI). We present a report of the technical challenges we faced in or-
ganizing the 2020 edition of the OII during the COVID-19 pandemic. We also pre-
sent some analytics on the learning progress of the participants of the OII and their
teachers on a platform called CMSocial. This platform has been developed by the OII
team to provide an online platform for participants to practice and engage with the
community. The second one is the SouthWestern European Regional Contest (SWERC),
the European regional contest for the International Collegiate Programming Contest
(ICPC). We present some statistics on the editions of the contest we organized in 2022
and 2023.

Finally, we draw some conclusions on the work done in this thesis based on the
feedback collected from the participants of the experiences organized with the con-
test management systems presented in this thesis. After the conclusions, we present
some research works that we have done that are unrelated to the main topic of this
thesis. These are a work on the creation of AIs that are able to play the game of
Touhou only by looking at the screen, and a work on the encoding of instances of the
Disjunctive Temporal Problem (DTP) into Satisfiability Modulo Theories (SMT), Mixed
Integer Linear Programming (MILP), and Satisfiability (SAT) models.

2

1.1 Thesis structure
This thesis is organized into the following chapters:

1. Introduction: we introduce the topics that will be discussed in this thesis, and
we present the structure of the thesis.

2. Competitive programming: we introduce the field of competitive program-
ming, how the problems are structured, what solving techniques are used to
solve them, and the strengths and weaknesses of the programming languages
used in competitive programming.

3. Competitions: we present the competitions that are most relevant to competi-
tive programming, and we present the contributions that we have done to the
organization of two of these competitions.

4. Turing Arena light: we present Turing Arena light, a contest management
system that we have developed that is designed to be used as a teaching tool,
specifically geared towards interactivity and ease of use. We also present the
results of its usage in a course on competitive programming at the University
of Verona.

5. Code Colosseum: we present Code Colosseum, a contest management system
that we have developed that is designed to host challenges between programs
written by the participants, providing a way to visually see what the programs
are doing. We also present the results of its usage in a contest for high-school
and university students.

6. Conclusions: we draw some conclusions on the contributions given in this the-
sis, based on the analytics and feedback collected from the participants of the
works presented in this thesis.

7. Other works: we present two research works that we have done that are unre-
lated to the main topic of this thesis. These are a work on an AI playing Touhou
from pixels and a work on SMT, MILP and SAT models for DTP.

3

4

2 Competitive programming

Competitive programming is the art of solving well-known computer science prob-
lems faster than your peers [2]. It is a sport, a hobby, a way to learn algorithms and
data structures, and problem solving [3, 4, 5].

2.1 Problems
In competitive programming the main focus is solving the problem. The problem is a
well-defined computational task that can be solved either completely or with a good
approximation in a reasonable amount of time by a computer. The problem is usually
given in the form of a short text that describes the problem with a metaphor, a set of
constraints, and a set of examples. The problem is usually given in a natural language,
such as English, and the solution is usually written in a programming language.

There are many kinds of problems, and each problem requires its own set of prob-
lem solving skills, solving techniques, algorithms and data structures. The job of the
person trying to solve the problem, usually called a contestant, is to read the state-
ment, understand the problem, elaborate an algorithmic solution and implement it in
a programming language. This can require a vast array of skills and knowledge in the
field of computer science, that go beyond the mere ability to code [6].

The problem maker instead is tasked with creating a problem that has a well-
known solution that can be found and implemented in a reasonable amount of time,
but that is not trivial to find and implement. Aside from coming up with the problem,
the problem maker also has to create a set of test cases that will be used to validate
the solutions of the contestants. The test cases are usually generated by a program
that is called the generator, and the correctness of the solutions is usually validated
by another program that is called the validator. Generally, a solution is considered
correct if it passes all the test cases, and incorrect if it fails at least one test case.

2.1.1 Kinds of problems

One way to categorize problems is according to the way the solution interacts with
the problem.

Batch problems: these are the most common, and simple, kind of problems. A batch
problem gives an input and expects from the solution an output that will be validated
by a validator against that input. The output of the validator can either be a correct
or incorrect verdict, or a score that gives a measure of how good the solution is. Batch
problems can be seen as one-shot problems, since there is only one interaction be-
tween the solution and the problem.

5

Interactive problems: these are problems that require the solution to interact with
another program, usually called the manager. The interaction is usually done through
the standard input and output of the solution program. The interaction can be done
in various ways, such as a question-answer game, or a request-response protocol. At
the end of the interaction, like for the batch problems, the manager will give a verdict,
that can either be correct, incorrect, or a score. These problems are called interactive
because the solution and the manager interact multiple times, and both parties can
adapt their behaviour based on the previous interactions.

Output-only problems: these are problems that give a fixed input for the whole
problem instead of generating them on-the-fly or keeping them secret. With this kind
of problem the solution can usually use as much time and resources as it needs. The
solution will produce an output that will be validated by a validator. As with the pre-
vious kinds, the validator will give a verdict, that can either be correct, incorrect, or
a score.

Black-box problems: these are the interactive equivalent of the output-only prob-
lems. In black-box problems the solution will interact with a black-box and has to find
some information about it. In black-box problems the interactions are usually limit-
less, and the black box, or black boxes, are fixed for the problem, and not secretly held
or generated on-the-fly. After having interacted with the black box, the solution will
produce an output that will be validated by a validator. As with the previous kinds,
the validator will give a verdict, that can either be correct, incorrect, or a score.

Two-steps problems: these are problems that require two solutions that interact
with each other. Usually the input of the problem is given to the first solution, that
will produce an output that will be given as the input of the second solution. The out-
put of the second solution will be validated by a validator. The output generated by
the first solution will also be given to the validator to make it generate its correctness
verdict (usually it uses the length of the output of the first solution, but it can check
for other parameters as well). As with the previous kinds, the validator will give a
verdict, that can either be correct, incorrect, or a score.

Optimization problems: while all the other kinds of problems usually have a well-
defined optimal solution to reach, optimization problems are specifically designed to
have an optimal solution that is out of reach for the solution to find in a reasonable
amount of time. The solution will usually have to find a good approximation of the
optimal solution, and the validator will give a score that will be higher the better
the approximation is. In this case the validator can still give an incorrect verdict if
the solution is not valid, but it will never give a correct verdict. Usually optimization
problems are in the form of output-only problems, but they can also be in the form of
batch problems.

6

2.1.2 Structure of a problem

When presented with a competitive programming problem, the contestant usually
sees a fairly common structure for the problem. The various parts are listed and de-
scribed in the following paragraphs.

A short¹ text that describes the problem with a metaphor². This text is called the
statement of the problem. In international competitions the statement is usually given
in English, but in local competitions it can be given in the local language.

¹Sometimes short can mean several pages long.
²Although sometimes it can be cut and dry.

If the interaction with the problem is not trivial, such as in the case of interactive
problems or problems that interact with custom functions, there is an implementation
details section that describes how the solution should interact with the problem. The
contents of this section can vary a lot, but usually it is a description of the protocol
that the solution should use to interact with the problem. For instance, in IOI-like
problems where the solution does not read from the standard input and does not have
to implement a main function, the implementation details section will describe which
function the solution should implement, and which other functions are available to
interact with the problem.

A set of constraints that describe the limits of the problem. These constraints can be
on the input, on the output, on the resources, or on the time. For instance, the con-
straints can be that the input will be at most 100 numbers long and that the solution
will have at most 1 second to produce the output.

Some problems may have subtasks, that are groupings of test cases that satisfy
stricter constraints than the general ones. Solving this subtasks will give a partial
score, and solving all the subtasks will give the full score. For instance, a problem
may have a subtask that requires the solution to run in quadratic time, and another
subtask that requires the solution to run in linear time. Solving the first subtask will
give a partial score, and solving both subtasks will give the full score. Usually the
subtasks are ordered by difficulty, so that the first subtask is the easiest, and the last
subtask is the hardest.

A description of how the input is formatted and how the solution should read it.
For instance, the input can be a number 𝑛, a newline, and then 𝑛 space-separated
numbers. The input is usually given in a form such that it can be easily read by the
solution, even if it is written in a programming language that does not have support
for fancy input parsing. In some cases where the input might be very big, the input
might be given in a more compact form, such as a binary file.

A description of how the output should be formatted and how the solution should
write it. For instance, the output can be a single number. The output is usually much
smaller than the input, and can employ techniques such as printing numbers modulo

7

a big prime number to limit the size of the output. Usually, the output requested by
the problem is some kind of number that gives the answer to the problem without
necessarily asking the solution. For instance, in a problem where the minimum path
in a graph is requested, the output asked will probably be the length of the path, and
not the path itself.

If the problem is an optimization problem or it wants to give some kind of partial
scoring, there will be a description of how the validator will score the solution. In
this case, the output will be a full proper solution to the problem, and not just the
numerical answer, so that the validator can check the correctness of the solution and
give it a score based on how good the solution is. For instance, in a problem where
the solution has to find the maximum path in a graph, the output will be the path
itself, and the validator will check that the path is valid and will give a score based
on the length of the path.

2.1.3 A couple of examples

As an example, here is the statement of the problem Ordinamento a paletta from the
2016 edition of the Italian Olympiad in Informatics [7].

Ordinamento a paletta (paletta)

Romeo attended a special barbecue party where the cook handled a large number
of hamburgers in an amazing way. When the hamburgers needed to be flipped, the
cook was able to do that on three consecutive burgers with a single spatula (paletta),
quickly and in a single shot! This inspired Romeo for a new sorting problem called
paletta-sort.

Given an array 𝑉 storing all the integers from 0 to 𝑁 − 1 (where array positions
are from 0 to 𝑁 − 1), the only feasible operation in the paletta-sort is called ribalta:
it replaces the integers 𝐴, 𝐵, 𝐶 in three consecutive positions of 𝑉 with their flipped
values 𝐶 , 𝐵, 𝐴 in this order. You are required to help Romeo to understand if paletta-
sort can sort 𝑉 : if it is so, say how many ribalta operations are needed.

Implementation

You shall submit one file having extension .c, .cpp or .pas.

You need to implement the following function:

• C/C++: long long paletta_sort(int N, int V[]);

• Pascal: function paletta_sort(N: longint; V: array of longint) : int64;

• 𝑁 is an integer representing the number of elements to sort.

• 𝑉 is an array, indexed from 0 to 𝑁 − 1, containing the elements to sort.

8

• The function has to return the number of ribalta operations to sort 𝑉 , or −1 if
the latter cannot be sorted in this way.

The grader will call the function paletta_sort and will print the returned value to
the output file.

Grader

In the directory for this problem there is a simplified version of the grader used dur-
ing evaluation, which you can use to test your solutions locally. The sample grader
reads data from stdin, calls the function that you should implement and writes to
stdout in the following format.

The input file is made of 2 lines, containing:

• Line 1: integer 𝑁 .
• Lines 2: values 𝑉 [𝑖] for 𝑖 = 0, …, 𝑁 − 1.

The output file is made of a single line, containing:

• Line 1: the value returned by the function paletta_sort.

Constraints

• 1 ≤ 𝑁 ≤ 1500000.
• 0 ≤ 𝑉 [𝑖] ≤ 𝑁 − 1 for 𝑖 = 0, …, 𝑁 − 1.

Scoring

Your program will be tested against several test cases grouped in subtasks. For each
test case you will get the following factor.

• 1: If you compute the minimal number of ribalta operations.
• 0.2: If array 𝑉 can be sorted and you compute any non-negative number (that

is, you can distinguish if 𝑉 can be sorted or not).
• 0: All the remaining cases.

For each subtask, its score is given by the product of the points below times the above
factor for the worst test case in the subtask.

• Subtask 1 [0 points]: Examples.
• Subtask 2 [20 points]: 𝑁 ≤ 100.
• Subtask 3 [30 points]: 𝑁 ≤ 5000.
• Subtask 4 [20 points]: 𝑅 ≤ 100 (or 𝑉 cannot be sorted).
• Subtask 5 [25 points]: 𝑁 ≤ 100000.
• Subtask 6 [5 points]: No limitations.

Example 1

Input

9

5
2 0 4 3 1

Output
-1

Example 2

Input
6
2 3 0 5 4 1

Output
3

Explanation

In the first example it is not possible to sort 𝑉 .

This problem, Ordinamento a paletta, is a typical batch problem in the style of the
International Olympiad in Informatics (IOI) [8]. The problem is given in English, and
the solution can be written in C, C++, or Pascal. The problem uses both subtasks and
partial scoring.

As another example, here is the statement of the problem Incognita from an exam
of the Sfide di Programmazione course in the University of Verona.

Incognita

Giorgio Giovanni is an explorer of ancient ruins. During one of his expeditions, he
discovered an ancient temple, which he is now in the process of exploring. However,
at the entrance to the temple there is a contraption that requires the input of 𝑛 inte-
gers to be activated.

A mysterious old man approaches Giorgio, and tells him that he knows the num-
bers to be entered, but cannot tell him directly. However, he is willing to give him
some information, for the right price. The old man introduces himself as Diego B.

Diego is willing to answer the following kind of questions: Giorgio will have to
indicate a symbol between +, - and 0 for each number, and Diego will tell him the
sum of the numbers assigned the symbol +, minus the sum of the numbers assigned
the symbol -. We denote by 𝑘 the number of + and - in Giorgio’s question. To answer
this question, Diego will ask for a payment of ⌈𝑛

𝑘⌉ coins.

10

Giorgio has brought only 𝑏 coins with him, and he cannot go back for more. Help
Giorgio formulate the questions to ask Diego, so that he can find out all the numbers
without using more than 𝑏 coins.

Constraints

In this problem 𝑛 is always equal to 100. The numbers to be guessed are between
−106 and 106.

The parameter size indicates the number of testcases required, the default is 100.
It can be any integer between 1 and 100.

For testcase 𝑡 (between 1 and 100), the value of 𝑏 is:

min(max(⌈19000 ∗ 1.06−𝑡⌉, 100), 10000)

Interaction

The first line contains 𝑇 , the number of testcases to be solved. This is followed by 𝑇
instances of the problem.

In each instance, initially the server sends 𝑛, the number of numbers to be guessed,
and 𝑏, the number of coins available to Giorgio.

The client can send requests to the server, which can be of two types:

• ? <s1> <s2> ... <sn>: the client asks the server to calculate the sum of the num-
bers assigned the symbol +, minus the sum of the numbers assigned the symbol
-, where 𝑠𝑖 is the symbol assigned to the 𝑖-th number. The server responds with
an integer, which is the answer to the query. The client must pay ⌈𝑛

𝑘⌉ coins for
this query, where 𝑘 is the number of + and - in the query. If the client does not
have enough coins, the testcase verdict will be RE. Only +, - and 0 can be used
as symbols;

• ! <v1> <v2> ... <vn>: the client tells the server that the numbers to be guessed
are 𝑣1, 𝑣2, 𝑙…, 𝑣𝑛. If the numbers are correct, the testcase verdict will be AC, oth-
erwise it will be WA. After this query, the server will move on to the next testcase.

Technical details

While this problem has no time limit, sending thousands of queries and receiving as
many responses can take a not inconsiderable amount of time.

However, it is possible to send the queries in batches: if you do not need to know
the result of the current query to send the next one, you can send all the queries, and
only after sending them do an explicit flush of the standard output.

In this way, all queries will be sent as a single packet, and all responses will be
received as a single packet, greatly reducing communication time.

11

Example

Lines beginning with < are those sent by the server, those that begin with > are those
sent by the client.

< 1
< 2 4
> ? + 0
< -6
> ? 0 -
< -9
> ! -6 9

This problem, Incognita, is an interactive problem in the style of Turing Arena light [9].
The problem was originally given in Italian, but it has been translated to English for
this thesis. In this problem there are no subtasks, but the single test cases are worth
one point each and get gradually harder.

2.1.4 Anatomy of a solution

We have seen that a solution is a computer program that solves a problem. But what
does it mean to solve a problem? There are usually three requirements that a solution
must satisfy to be considered correct, thus solving the problem.

Correctness

For every possible input of the problem, the solution should produce the correct out-
put. Ideally, this would be what we are going to test, however determining if a solu-
tion is correct for every possible input is a known undecidable problem [10]. Instead,
we can test the solution against a set of inputs that are considered representative of
the whole set of possible inputs. These inputs are called the testcases. They are gen-
erated either as a fixed set for the problem, or on-the-fly for each attempted solution.
The program that generates the testcases is called the generator.

Given this set of inputs, the solution is considered correct if it produces the correct
output for every input. If it fails to produce the correct output for at least one input,
it is considered incorrect. Thus, the first requirement for a solution is to be correct, in
the sense that it produces the correct output for every input in the set of testcases.

Time limit

The solution should be fast. Fast can mean different things: it can either refer to how
machine-optimized the solution is, or how fast it is in terms of algorithmic time com-
plexity. In competitive programming we look at the latter meaning of fast. This is
because we want to test the solution of the problem on increasingly bigger inputs.
If we have a solution 𝐴 that is very machine-optimized, but has a less-than-optimal
time complexity, and a solution 𝐵 that is not as machine-optimized, but has a better
time complexity, then 𝐵 will always become faster than 𝐴 if the input is big enough.

12

Figure 1: Plot of common time complexity functions.

We can clearly see from Figure 1 that different time complexities have drastically
different growth rates. Even the most machine-optimized solution that has a time
complexity of 𝑂(𝑛2) will never be able to solve a problem with 𝑛 = 1000 even if it
runs on a supercomputer for a million years³.

³21000 ≈ 10300, the number of seconds in a million years is around 3 ⋅ 1013, so a supercomputer
would need to do over 10286 operations per second, which is 268 orders of magnitude more than the
current fastest supercomputer, which clocks in at around 1018 operations per second.

In an ideal world⁴ we would be able to have a way to compute the time complexity
of a solution. Alas, this is not possible, since the only general way to do it would be

⁴More like an ideal math world.

to test it on every possible input. Thus, the only metric we can accurately measure is
the time it takes for the solution to run on a single input. The strategy used is to fix
a certain amount of time, called the time limit, for the solution to run on any single
test case. This time limit can vary from hundreds of milliseconds to several seconds,
depending on the problem. By generating test cases that become bigger and bigger,
we can see how the solution behaves as the input grows. If the solution has a good
time complexity, it will be able to solve the bigger test cases within the time limit,
otherwise, even if it is very machine-optimized, it will inevitably fail to solve the big-
ger ones at some point.

Thus, the second requirement for a solution is to be fast enough, in the sense that
it can solve all the test cases of the problem within the time limit. However, what we
are really trying to measure is its time complexity, and the time limit is just a proxy
for it.

13

Memory limit

The solution should be memory efficient. Like for the time limit, the efficiency of
the memory usage of a solution can have two meanings: a practical one, and a com-
plexity one. And, applying the same arguments we did for the time limit, we would
like to measure the memory complexity of a solution, but in real world we are limited
to measuring the actual memory usage of the solution for a specific input.

In the same setting of solutions 𝐴 and 𝐵 as before (the former machine-optimized
but with a bad memory complexity, the latter not as machine-optimized but with a
good memory complexity), we can see that the memory usage of 𝐴 will grow much
faster than the memory usage of 𝐵 as the input grows, even if the constant factor of
memory usage of 𝐴 is smaller. As in the previous example, if we take a solution with
memory complexity 𝑂(𝑛2), it will never be able to solve a problem with 𝑛 = 1000,
because the available information storage in the observable universe is about 6 ⋅ 1080

bits [11], which is about 220 orders of magnitude less than the required amount of
memory⁵.

⁵21000 ≈ 10300

Thus, the third requirement for a solution is to be memory efficient, in the sense
that it can solve all the test cases of the problem within the memory limit. However,
what we are really trying to measure is its memory complexity, and the memory limit
is just a proxy for it, like the time limit.

2.2 Problem solving techniques and topics
Solving a problem requires a lot of knowledge and skills in the field of computer sci-
ence. In this section we will see some of the most common techniques and topics that
occur in competitive programming problems. A competitor that wishes to do well in
competitive programming should be familiar with all of these techniques and topics.

2.2.1 Computational complexity

In competitive programming the foundation for judging the efficiency of a solution
resides in the analysis of its computational complexity. Computational complexity is
the study of the resources needed to solve a problem. In this context the resources
are the time and the memory needed to solve the problem, as function of the size of
the input.

Before running a solution for a certain problem, it is important to have an estimate
of how much time and memory it will need to run to completion. For this reason, we
care about how much time and memory a solution will need in the worst possible
case for a given input size, so that we can know in advance if it is reasonable to run
such a solution on a given input. This is called the worst-case analysis of the solution.

14

Notation Definition

𝑓(𝑛) ∈ 𝑂(𝑔(𝑛)) lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

< ∞

𝑓(𝑛) ∈ 𝑜(𝑔(𝑛)) lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

= 0

𝑓(𝑛) ∈ Ω(𝑔(𝑛)) lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

> 0

𝑓(𝑛) ∈ 𝜔(𝑔(𝑛)) lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

= ∞

𝑓(𝑛) ∈ Θ(𝑔(𝑛)) 0 < lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

< ∞

𝑓(𝑛) ∼ 𝑔(𝑛) lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

= 1

Table 1: Landau’s symbols definition for 𝑓 : ℕ → ℕ+ and 𝑔 : ℕ → ℕ+.

While it is important to have an estimate, it is not needed to have an exact mea-
sure of the time and memory needed by the solution. This is because, especially for
the time, the exact measure can vary a lot depending on the machine that runs the
solution, and other variables such as the compiler used, how loaded the machine is in
that moment, and so on. Thus, we usually only care about the asymptotic behaviour,
up to a constant, of the resources needed. This means that we only care about how
the resources needed grow as the input grows.

To express the asymptotic behaviour of a function we use the Bachmann-Landau’s
symbols [12, 13], which are defined in Table 1. The two most common symbols are
𝑂 (big 𝑂) and Θ (Theta). Big 𝑂 is an estimate that says that a function can grow at
most as fast as another function, up to a constant. Theta is an estimate that says that
a function grows as fast as another function, up to a constant. For instance, if we
have the function 𝑓(𝑛) = 2𝑛2 + 3𝑛 + 1, then 𝑓(𝑛) ∈ 𝑂(𝑛2), 𝑓(𝑛) ∈ 𝑂(𝑛3), 𝑓(𝑛) ∈
Θ(𝑛2), but 𝑓(𝑛) ∉ 𝑂(𝑛) and 𝑓(𝑛) ∉ Θ(𝑛3). Note that if we have a function 𝑓 : ℕ →
ℕ+ such that 𝑓(𝑛) ∈ Θ(𝑛), then 𝑓(𝑛) ∈ 𝑂(𝑛).

We use this symbols to express the asymptotic behaviour of the time and memory
functions of a solution. For instance, if we have a solution that does a linear scan of
an array of length 𝑛 from the input, then its time complexity is Θ(𝑛), although in the
competitive programming world it is more common to use a less powerful estimate
even if we know the lower bound to be tight. Namely, we would say that the solution

15

runs in 𝑂(𝑛) time. We can do this estimate because regardless of what programming
language we are using, or what machine we are running the solution on, the time
needed to do a basic operation such as a constant read, a sum of two numbers, or a
comparison of two numbers, is some constant time Θ(1).

With this building blocks we can now express how good (or bad) is a solution for
a certain problem. This gives the competitor the ability to do some crude guesses on
the ability of a solution to solve a problem within the resource limits imposed by the
problem. For instance, it is common practice to estimate that the number of opera-
tions that a computer can do in one second is around 107 ∼ 108. Thus, if we have a
solution that has a time complexity of 𝑂(𝑛2), the maximum input size that we can
solve in one second is around 104. If we see that the problem requires us to solve an
input of size 105, and we have a quadratic solution, then we can already guess that it
will not be fast enough to solve the problem.

2.2.2 Dynamic programming

Dynamic programming [14] is a problem solving technique that tries to solve a prob-
lem by breaking it down into smaller pieces, solving those pieces, and then combining
the solutions to solve the original problem. Dynamic programming bases itself on the
ideas of recursion.

Recursion

Recursion⁶ is a way to model solutions to problems that have the following proper-
ties:

⁶To understand recursion you first need to understand recursion.

• If the input is small enough⁷, then the solution can be computed trivially. This is
call the base case.

• For all other inputs, we can break down the input into smaller pieces (usually
called subproblems), and we can compute the solution for the original input by
combining the solutions of the smaller pieces. This is called the general case.

⁷It also might be the case that the input is big, but has some special properties that makes it trivial
to solve

If a problem has this properties, then we can solve it by designing a recursive function
that on the base cases just returns the solution directly, since it is trivial to compute,
and on the general case breaks down the input into smaller pieces, calls itself recur-
sively on those pieces, and then uses the solutions of the smaller pieces to compute
the solution of the original input.

Example

You have a bathroom that is composed of 𝑛 × 1 empty cells. You want to cover it with
tiles, such that each cell is covered by some tile and no two tiles overlap. You have an

16

unlimited amount of tiles of size 1 × 1 and 2 × 1. How many ways are there to cover
the bathroom with tiles?

Let’s first try to enumerate all the possible ways to cover the bathroom with tiles
for small values of 𝑛.

With 𝑛 = 0 there is only 1 way to cover the bathroom, which is doing nothing.

With 𝑛 = 1 there is also only 1 way to cover the bathroom, which is using a single
1 × 1 tile:

•

With 𝑛 = 2 there are 2 ways to cover the bathroom, which are using two 1 × 1 tiles,
or using a single 2 × 1 tile:

•

•

With 𝑛 = 3 there are 3 ways to cover the bathroom:

•

•

•

With 𝑛 = 4 there are 5 ways to cover the bathroom:

•

•

•

•

•

With some patience we can enumerate all the possible ways to cover the bathroom
with tiles for small values of 𝑛. However, as 𝑛 gets bigger it becomes harder and
harder to enumerate them because the number of possibilities grows, and it turns out
that it grows exponentially. So by working by hand and guessing all the possibilities
there is a high probability, as 𝑛 grows, that we will miss some of them.

To solve this problem methodically we can try to model it as a recursive function.
Let’s call this function 𝑓(𝑛). We first need to find the base cases of the function. We
already computed by hand the values of 𝑓(𝑛) for 𝑛 up to 4, so, if needed, we can use
them as base cases.

For figuring out how to define the general case, we need a key observation: if we
need to cover an 𝑛 × 1 bathroom with tiles, the last tile we put will either be a 1 × 1

17

tile, or a 2 × 1 tile. If it is a 1 × 1 tile, then we need to cover the remaining 𝑛 − 1 cells,
and if it is a 2 × 1 tile, then we need to cover the remaining 𝑛 − 2 cells. However, the
problem of covering 𝑛 − 1 or 𝑛 − 2 cells is the same problem we are trying to solve,
but smaller, so we can just delegate its computation to the function 𝑓 itself.

For this observation to be true, the bathroom must at least have 2 cells, otherwise
we can’t put a 2 × 1 tile in it. Thus, the only base cases we need are 𝑓(0) = 1 and
𝑓(1) = 1. For the general case we know that if we put a 1 × 1 tile as the last one the
number of ways to cover the bathroom is 𝑓(𝑛 − 1), and if we put a 2 × 1 tile as the
last one the number of ways to cover the bathroom is 𝑓(𝑛 − 2). Thus, the general
case is 𝑓(𝑛) = 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2).

We can now write a recursive function that computes the number of ways to cover
a bathroom of size 𝑛:

𝑓(𝑛) = {
1 if 𝑛 ≤ 1
𝑓(𝑛 − 1) + 𝑓(𝑛 − 2) otherwise

By using this function we now have a methodical way to compute the answer. How-
ever, if we try to use this definition alone, we will run into a performance problem:
note that the only number that we can start adding up from is 1. This means that if
the answer is 𝑘, we will need to at least evaluate the function 𝑓 for 𝑘 times.

Now that we have the function 𝑓 , let us see the values of 𝑓(𝑛) for 𝑛 up to 20:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946

Some may have noticed that the answers to this problem are actually the numbers in
the Fibonacci sequence [15]. This is because the function 𝑓 we defined is actually the
recursive definition for the Fibonacci sequence. This sequence grows exponentially,
which means that the number of operations that we need to compute the answer will
grow exponentially as well. However we can speed up the computation by using the
aforementioned dynamic programming technique.

Memoization

Let’s look at the pseudocode for the computation of the 𝑓 function in Figure 2. The
basic issue with this recursive approach is that we are computing the same values
over and over again. For instance, if we want to compute 𝑓(5), we will need to com-
pute 𝑓(4) and 𝑓(3), and to compute 𝑓(4) we will need to compute 𝑓(3) and 𝑓(2), and
so on. This means that we will compute 𝑓(3) twice, and 𝑓(2) three times. One key
observation is that we can store the values of 𝑓 that we already computed, and reuse
them when we need them again. This technique is called memoization.

By memorizing the values of 𝑓 , if we now compute 𝑓(5) we will first call 𝑓(4) and
𝑓(3), 𝑓(4) will call 𝑓(3) and 𝑓(2), and so on. When the computation of 𝑓(3) will have

18

𝑓(𝑛):
if 𝑛 ≤ 1:

return 1
else:

return 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2)

Figure 2: The pseudocode for the recursive function 𝑓 .

finished, we will store the value of 𝑓(3) for future use, since it does not matter how
or how many times we compute 𝑓(3), the result will not change. Once 𝑓(4) will have
returned, we will still need to use the value of 𝑓(3), but this time we will not need
to compute it again, since we already have it stored. This means that we will only
compute 𝑓(3) once, and we will reuse it every time we need it.

One has now to wonder: how much time are we saving by using memoization?
And how much memory are we using to store the values of 𝑓? To figure out the first
answer we need to know two things:

• how many different states do we have to visit in our computation?
• how much time does it take to compute each state?

For this example, both of these questions are fairly easy to answer. When computing
𝑓(𝑛), for the definition of 𝑓 , it will compute 𝑓(𝑛), 𝑓(𝑛 − 1), 𝑓(𝑛 − 2), 𝑓(𝑛 − 3), …,
all the way down to 𝑓(1) and 𝑓(0). It cannot go up or go further down than that,
since the definition of 𝑓 does not allow it. Thus, the number of states that we need to
visit is 𝑛 + 1, which is Θ(𝑛). For the second question, both cases in the definition of
our function 𝑓 only require a constant amount of time to compute: in the base case
we only need to return a constant value, and in the general case we only need to add
two numbers that we can look up in our memoization table. Thus, the time it takes to
compute each state is Θ(1).

Since the number of states that we can visit while computing our answer is Θ(𝑛),
and the time it takes to compute each state is Θ(1), the total time it takes to compute
the answer is Θ(𝑛) ⋅ Θ(1) = Θ(𝑛). This is a huge improvement over the exponential
time it took before. The formula to compute the time complexity of a dynamic pro-
gramming solution in general is number of states × time to compute each state.

What about the memory usage? How much memory do we need to store the val-
ues of 𝑓? The answer is similar to the previous one: we need to store 𝑛 + 1 values,
this Θ(𝑛), and each value takes a constant amount of memory, thus Θ(1). It follows

19

that to store the values of 𝑓 we need Θ(𝑛) ⋅ Θ(1) = Θ(𝑛) memory. Like for the time
complexity, this formula holds in general: the amount of memory needed to store
the values of a dynamic programming solution in the memoization table is number of
states × memory needed to store each state.

Top-down vs bottom-up

𝑓(𝑛):
let 𝑎 = 1
let 𝑏 = 1
for 𝑖 = 1 to 𝑛:

let 𝑐 = 𝑎 + 𝑏
𝑎 ≔ 𝑏
𝑏 ≔ 𝑐

return 𝑎

Figure 3: The pseudocode for the bottom-up version of 𝑓 .

This approach that we have taken to solve the problem using dynamic programming
is called top-down. To refresh our memories let’s look at the pseudocode for the re-
cursive function 𝑓 in Figure 2⁸. This approach is called top-down because we start

⁸Note that it lacks the memorization of the results.

from the top of the recursion tree, go through the general cases, and we go down until
we reach the base cases. However, this is not the only way to do it.

Another way to do it is to start from the base cases, go up through the general
cases, until we reach the top of the recursion tree. This approach is called bottom-up.
The key to bottom-up dynamic programming is to start from the base cases, and then
compute the general cases in order, until we reach the result we need. This is done for
the bathroom tiling problem in as shown in Figure 3.

We start with 𝑎 and 𝑏 set to 1, since those are the values of 𝑓(0) and 𝑓(1). Then,
we compute 𝑓(2) by adding 𝑎 and 𝑏 together, and storing the result in 𝑐. Then, we
update 𝑎 and 𝑏 to be 𝑏 and 𝑐 respectively, and we repeat the process until we reach
𝑓(𝑛). At this point, 𝑎 will contain the value of 𝑓(𝑛), and we can return it.

The bottom-up approach has some benefits over the top-down one. The first one is
that it avoids the use of recursion, which, when executed on a real-world machine,
has an overhead in its execution. The second one is that it can avoid the storage of

20

all the values of 𝑓 in the memoization table, since it only needs to store the ones that
are needed for the computation of the next value. This may improve drastically the
memory utilization for some problem. For instance, as can be seen with the bottom-up
approach for the bathroom tiling problem in Figure 3, we only need to store the last
two values of 𝑓 to compute the next one, so we only need Θ(1) memory to compute
𝑓(𝑛). However, note that this is not true in general, and the bottom-up approach can
still need all the previously computed values to compute the next one.

However, the bottom-up approach has some drawbacks as well. The main one is
that it is generally harder to find the correct formulation, since we need to think
backwards about the problem and come up with which pieces we need to compute
first, and how to combine them to compute the next ones. Another one is that the
function 𝑓 may not have be a trivial ordering of the states, and it may be hard to
figure out which states we need to compute before we can move to the next ones. This
is not true with the top-down approach, since the ordering of the states is implicit in
the recursion definition.

2.2.3 Greedy algorithms

𝑓(𝑖, 𝑑, 𝑣, 𝑛):
let ans = 1
for 𝑗 = 𝑖 + 1 to 𝑛 − 1

if 𝑑 is up and 𝑣[𝑗] > 𝑣[𝑖]
ans := max(ans, 𝑓(𝑗, 𝑑𝑜𝑤𝑛, 𝑣, 𝑛) + 1)

if 𝑑 is down and 𝑣[𝑗] < 𝑣[𝑖]
ans := max(ans, 𝑓(𝑗, 𝑢𝑝, 𝑣, 𝑛) + 1)

return ans

Figure 4: The pseudocode for the dynamic programming version of 𝑓 .

When modeling a solution to a problem with a recursive function, and then using
dynamic programming to speed it up, the general case does the following: when pre-
sented with a choice of what to do next, it tries all the possible choices, and then it
either combines them in some way, or it picks the best one. We have to try all the
possible choices because we don’t know a priori which one is the best one.

Let us take as an example the following problem. You have a list of 𝑛 numbers,
and you want to pick a subset of them such that the resulting sequence is alternating.
That is, if you start from the first number, then the second number must be smaller
than the first one, the third number must be bigger than the second one, the fourth

21

number must be smaller than the third one, and so on. Or vice versa, if you start from
the first number, then the second number must be bigger than the first one, the third
number must be smaller than the second one, the fourth number must be bigger than
the third one, and so on. How many numbers can you pick at most?

We can model this problem with a recursive function 𝑓 that takes as input the
index of the number we are currently considering, and the direction we are going
in (either up or down). What we want to do is try to attach the next number to the
current sequence in the direction we are going in, and to that we have potentially up
to 𝑛 choices, because each time we can try attach all the higher numbers, if going
up, or all the lower numbers, if going down, after the current one. After having tried
them all, we can pick the choice that gives us the best result, and return it. The code
for this strategy is shown in Figure 4. To solve the problem with this function 𝑓 we
just need to try all the possible starting points, and for each of them we need to try
both directions, and then pick the best result among all of them. Note that we can
apply memoization to 𝑓 .

How fast is this solution? Since this is a dynamic programming solution, the time
complexity is number of states × time to compute each state. The number of states is
2 ⋅ 𝑛, since we have 𝑛 possible starting points, and for each of them we have two pos-
sible directions. The time to compute each state is 𝑂(𝑛), since we need to try all the
possible choices, and they can be up to 𝑛. Thus, the total time complexity is 𝑂(𝑛2).
Can we do better?

Local optimality

Indeed, we can. In the previous approach when we were confronted with a choice of
what to do next, i.e. which next number to attach to the current sequence, we tried
all the possible choices and picked the best one, because in general when we have to
choose between multiple ones we don’t know which one will lead to the best global
result. That is, in general choosing the best local result does not lead to the best global
result. However, in this problem, this isn’t the case. If we are going up, we know
that at some point we will have to go down, so if we have a sequence of increasing
numbers, the best choice is always to attach only the last one of the increasing sub-
sequence. The same is true if we are going down. Knowing this, we don’t have to scan
all the possible choices, but we can just pick the best local one, in this case the last
number of the current upwards or downwards streak. This approach is called greedy,
because when presented with immediate opportunities, it always picks the best one
without thinking about the future.

It is important to say that the greedy approach is not valid in general. If the prob-
lem does not have the property that the best local choice leads to the best global
choice, then the greedy approach will found a suboptimal solution. However, in the
cases where it works, like with this one, it is usually much faster than the dynamic
programming approach. The code for the greedy approach is shown in Figure 5. The

22

𝑓(𝑣, 𝑛):
if 𝑛 ≤ 1:

return 𝑛
let ans = 1
if 𝑣[0] < 𝑣[1]

let 𝑑 = up
else:

let 𝑑 = down
for 𝑖 = 1 to 𝑛 − 1

if 𝑑 is up
if 𝑣[𝑖] < 𝑣[𝑖 − 1]

d := down
ans := ans + 1

else:
if 𝑣[𝑖] > 𝑣[𝑖 − 1]

d := up
ans := ans + 1

return ans

Figure 5: The pseudocode for the greedy version of 𝑓 .

time complexity of this approach is 𝑂(𝑛), since we only need to scan the input once,
which is a big improvement from the 𝑂(𝑛2) of the dynamic programming approach.

2.2.4 Divide and conquer

Divide and conquer, or divide et impera in Latin, is yet another problem solving tech-
nique that bases itself on the ideas of recursion. The idea of divide et impera is to
break down a problem into smaller pieces, solve those pieces, and then combine the
solutions to solve the original problem. This is similar to dynamic programming, but
the difference is that in dynamic programming the pieces are usually overlapping,
while in divide et impera they are a partition, with possibly some missing pieces that
are discarded, of the original problem.

To illustrate this technique, let us tackle the problem of sorting a list of numbers.
You have a list of 𝑛 numbers, and you want to sort them in increasing order. How can
we do this? There are many algorithms that can solve this problem, from the more
naive ones, like bubblesort [16], to more advances ones, like Shellsort [17], Timsort

23

quicksort(𝑣):
if len(𝑣) ≤ 1

return 𝑣
let 𝑝 = 𝑣[0]
let 𝑙 = []
let 𝑟 = []
for 𝑖 = 1 to len(𝑣) − 1

if 𝑣[𝑖] < 𝑝
𝑙 := 𝑙 + [𝑣[𝑖]]

else:
𝑟 := 𝑟 + [𝑣[𝑖]]

return quicksort(𝑙) + [𝑝] + quicksort(𝑟)

Figure 6: The pseudocode for the quicksort algorithm.

[18], introsort [19] and quicksort [20]. The last one mentioned, quicksort, will be our
focus since it uses a divide et impera approach to sort the numbers.

The idea behind quicksort is a recursive one. If the array we are trying to sort is
empty or has only one element, then it is already sorted, and we don’t need to do
anything on it. Otherwise, we can pick an element from the array, called the pivot,
and then we can partition the array (minus the pivot) into two parts: the first part
contains all the elements that are smaller than the pivot, and the second part contains
all the elements that are not smaller than the pivot. Having done this partition, we
know that all the elements in the first part will have to go before the pivot when
sorted, and all the elements in the second part will have to go after the pivot when
sorted. Thus, the only thing left to do is to sort the first part and the second part. To do
that we can just call the same procedure recursively on the first part and the second
part, and let the recursion do its job. Once the recursion has finished, we will have
two sorted arrays, one containing all the elements that are smaller than the pivot,
and one containing all the elements that are not smaller than the pivot. To get the
final sorted array we just need to concatenate the two sorted arrays with the pivot in
the middle. This is illustrated in Figure 6.

But how fast is this algorithm? The time complexity of quicksort depends on the
choice of the pivot. If we were to always pick the element that turns out to be the
median of the array, then the time complexity would be 𝑂(𝑛 log 𝑛). This is because
for each depth of the recursion we need to scan the whole array once, and this costs

24

𝑂(𝑛), and the depth of the recursion is 𝑂(log 𝑛), since each time we partition the
array we divide it in two parts, and we stop when we reach an array of size 1. How-
ever, if we were to always pick the first element of the array as the pivot, then the
time complexity would be 𝑂(𝑛2). This is because if we pick the first element as the
pivot, and the array is already sorted, then we will always partition the array into an
empty array and an array of size 𝑛 − 1, and we will do this 𝑛 times, so the resulting
time complexity will be 𝑂(𝑛2).

To mitigate the issue of picking a bad pivot, we have two options. The first one is to
pick a random element as the pivot. This way, the probability of picking a bad pivot
is low, and the expected time complexity is 𝑂(𝑛 log 𝑛). The second one is to pick an
element which is close to the median of the array. This way, we can guarantee that
the two partitions are always balanced up to some factor. To select such a pivot we
can use the median of medians algorithm [21], which can find an element in a region
near the median of an array in 𝑂(𝑛) time. This way, the time complexity of quicksort
can be guaranteed to be 𝑂(𝑛 log 𝑛).

Thus, as illustrated by quicksort, divide et impera bases itself on the idea of break-
ing down a problem into smaller independent pieces, solving those pieces, and then
combining the solutions to solve the original problem. Other examples of divide et
impera algorithms are binary search, branch and bound [22] and fast Fourier transform
[23].

2.2.5 Strings

Strings are a fairly common appearance in competitive programming. Strings are
used to represent text, and they are usually represented as an array of characters.
In competitive programming the most common alphabet from which the characters
are taken are the lowercase letters of the English alphabet, i.e. 𝑎, 𝑏, 𝑐, …, 𝑧. In any
case it is very rare to see strings that have characters outside of the ASCII range in a
competitive programming problem.

Since strings are nothing more than an array of characters, we can use all the tech-
niques that we use on arrays on strings as well. For instance, it is possible that the
solution to a problem involves sorting a string, or doing dynamic programming on a
string. However, there are some problems and techniques that are specific to strings⁹.

⁹Technically, any integer array can be represented as a string with a sufficiently large alphabet,
so we could use string algorithms on plain integer arrays.

String matching

String matching is the most basic problem about strings in competitive program-
ming. You have a string 𝑡, usually called the needle, and a string 𝑠, usually called the
haystack. You want to find out if the needle appears in the haystack, in other words, if
𝑡 appears as a substring of 𝑠. For instance, if 𝑠 = banananasso and 𝑡 = ananas, then

25

matches(𝑠, 𝑡):
let 𝑛 = len(𝑠)
let 𝑚 = len(𝑡)
for 𝑖 = 0 to 𝑛 − 𝑚 − 1

let 𝑗 = 0
while 𝑗 < 𝑚 and 𝑠[𝑖 + 𝑗] = 𝑡[𝑗]

𝑗 ≔ 𝑗 + 1
if 𝑗 = 𝑚

return true
return false

Figure 7: The pseudocode for naive string matching.

𝑡 appears in 𝑠 starting from the fourth character. If 𝑡 = pear, then 𝑡 does not appear
in 𝑠.

Variations of this problem include counting the number of times the needle appears
in the haystack, or finding all the positions where the needle appears in the haystack.
To solve the basic problem of whether the needle appears or not in the haystack, we
can use the naive algorithm shown in Figure 7. The idea behind this algorithm is to
scan the haystack from left to right, and for each position check if the needle appears
starting from that position. While this algorithm works, how fast is it? If we call, as
it is usually done when talking about this problem, 𝑛 the length of the haystack, and
𝑚 the length of the needle, then the outer loop will run up to 𝑛 − 𝑚 times, which
is 𝑂(𝑛). The inner loop will run up to 𝑚 times, which is 𝑂(𝑚). Thus, the total time
complexity of this algorithm is 𝑂(𝑛𝑚).

In everyday practice, it is rare that this algorithm reaches its worst case scenario of
𝑂(𝑛𝑚), since it is usually only necessary to check a few characters of the needle be-
fore the inner loop rejects the current match. However, in competitive programming
it is very common to see test cases that are designed to make the algorithms run in
their worst case scenario. For instance, we could have a test case where 𝑠 = 𝑎1000000

and 𝑡 = 𝑎1000𝑏. In this case, the inner loop will not reject the current match until it
has scanned all the 𝑎’s of the needle, and thus it will do Θ(𝑛𝑚) operations.

Can we do better? Yes, there exist algorithms that can solve this problem in 𝑂(𝑛 +
𝑚) time, such as the Knuth-Morris-Pratt algorithm [24], the Aho-Corasick algorithm
[25], the Rabin-Karp algorithm [26] and the Z-algorithm [27, 28]. Variations of these
algorithms can also lead to solving different problems specific to strings, like finding

26

the longest palindrome in a string, which can be done with a variation of the Z-algo-
rithm called Manacher’s algorithm [29].

2.2.6 Graphs

Figure 8: An example of a graph.

dfs(𝑣, 𝐺, 𝑝):
𝑝[𝑣] := true
for 𝑢 in 𝐺[𝑣]

if not 𝑝[𝑢]
dfs(𝑢, 𝐺, 𝑝)

Figure 9: The pseudocode for a depth-first search.

Graphs are a very common topic in competitive programming. A graph is a collection
of nodes (or vertices) that are connected by edges. Usually, the formal way to describe
a graph in a mathematical way is to say that a graph is a 𝐺 = (𝑉 , 𝐸), where 𝑉 is the
set of nodes, and 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges. An example of a graph is shown in
Figure 8.

Graphs come in many varieties, some of which are:

• directed and undirected: in a directed graph the edges have a direction, while in
an undirected graph the edges don’t have a direction.

• weighted and unweighted: in a weighted graph the edges have a weight, while in
an unweighted graph the edges don’t have a weight.

• simple and non-simple: in a simple graph there are no self-loops and no multiple
edges, while in a non-simple graph there can be self-loops and multiple edges.

27

bfs(𝑣, 𝐺):
let 𝑛 = len(𝐺)
let 𝑝 = [𝐟𝐚𝐥𝐬𝐞]𝑛

let 𝑞 = [𝑣]
while not empty(𝑞)

let 𝑣 = pop(𝑞)
if not 𝑝[𝑣]

𝑝[𝑣] := true
for 𝑢 in 𝐺[𝑣]

if not 𝑝[𝑢]
push(𝑞, 𝑢)

Figure 10: The pseudocode for a breadth-first search.

Some combinations of these properties have special names. For instance, a graph that
is directed and does not contain cycles is called a directed acyclic graph (DAG), while
a graph that is undirected and does not contain cycles is called a tree.

Graphs can be represented in many ways. The most basic one is called an adjacency
matrix. An adjacency matrix is a matrix 𝐴 of size 𝑛 × 𝑛, where 𝑛 is the number of
nodes in the graph, such that 𝐴𝑖,𝑗 = 1 if there is an edge from node 𝑖 to node 𝑗,
and 𝐴𝑖,𝑗 = 0 otherwise. This representation has the advantage that is very easy to
check if there is an edge between two nodes, since we just need to check the value of
the corresponding cell in the matrix. However, it has the disadvantage that it takes
Θ(𝑛2) memory, which can be a big value if the graph has many nodes, and a waste
of memory if the graph is sparse, i.e. it has few edges. Also, knowing which nodes
are connected to a given node requires a linear scan of a whole row of the matrix.

A more compact, and almost universally used in competitive programming, repre-
sentation of graphs is called the adjacency list. An adjacency list is an array of dynamic
arrays of integers. The array has size 𝑛, where 𝑛 is the number of nodes in the graph,
and each element of the array is a dynamic array of integers. The 𝑖-th element of the
array contains the list of nodes that are connected to node 𝑖. This representation has
the advantage that it takes Θ(𝑛 + 𝑚) memory, where 𝑛 is the number of nodes and
𝑚 is the number of edges, which is a big improvement over the adjacency matrix
representation if the graph is sparse. Also, to know which nodes are connected to
a given node we just need to look at the corresponding dynamic array in the array.
This comes at the cost of having to scan a whole dynamic array if we want to know

28

if there is an edge between two nodes, but this operation usually is not needed, and
if we need it we can just use a hash table of the edges.

There are many problems that can be modeled as graphs. For instance, the problem
of finding the shortest path between two intersections in a city can be modeled as a
graph, where the nodes are the intersections, and the edges are the roads. There also
exists many algorithms that work on graphs. For instance, the problem of finding the
shortest path between two nodes in a graph can be solved with Dijkstra’s algorithm
[30].

Although there are many algorithms on graphs, there are two that are the building
blocks for many others. The first one is the depth-first search (DFS). The idea behind
DFS is to visit all the nodes in a graph, and to do that we start from a node, and then
we visit all the nodes that are reachable from that node, and then we visit all the
nodes that are reachable from those nodes, and so on. This is done by using recursion,
as shown in Figure 9.

The second one is the breadth-first search (BFS). The idea behind BFS is to visit
all the nodes in a graph, and to do that we start from a node, and then we visit all
the nodes that are reachable from that node, and then we visit all the nodes that are
reachable from those nodes, and so on. This might sound familiar, and that’s because
it is the same idea behind DFS. However, while DFS uses recursion, BFS uses a queue,
as shown in Figure 10.

While both DFS and BFS achieve the task of visiting programmaticaly all the nodes
in a graph, they do it in different ways. DFS visits the nodes in a depth-first order,
going deep in the graph until it reaches a dead end, and then backtracking and going
deep again. BFS visits the nodes in a breadth-first order, visiting all the nodes that are
at the same distance from the starting node, and then visiting all the nodes that are
at the next distance from the starting node, and so on. These two algorithms form the
base for many other algorithms on graphs, and they are used in many problems.

2.2.7 Computational geometry

Computational geometry is a topic that sometimes appears in competitive program-
ming problems. Computational geometry problems involve geometric objects such
as points, lines, polygons, circles, and so on. In competitive programming computa-
tional geometry is almost exclusively confined to two dimensions.

Computational geometry problems usually require a lot of basic knowledge of al-
gebraic operations on geometric objects, like addition, subtraction of vectors, doing
the dot and cross products on vectors, computing the norm of a vector, and so on.
These operations are usually not hard to implement, but they are very error prone,
and it is very easy to make a mistake or remember a formula with a slight mistake in
it, like forgetting a minus sign.

29

Figure 11: An example of a polygon.

area(𝑃):
let 𝑛 = len(𝑃)
let 𝑎 = 0
for 𝑖 = 0 to 𝑛 − 1

let 𝑗 = (𝑖 + 1) 𝐦𝐨𝐝 𝑛
𝑎 ≔ 𝑎 + 𝑃[𝑖]𝑥 ⋅ 𝑃 [𝑗]𝑦 − 𝑃[𝑖]𝑦 ⋅ 𝑃 [𝑗]𝑥

return 𝑎2

Figure 12: The pseudocode for calculating the area of a polygon.

Other than the basic operations, that are some properties that are important to
know in order to exploit them to solve problems. The main one is convexity: a poly-
gon is convex if for any two points inside the polygon, the line segment that con-
nects them is also inside the polygon. A non-convex polygon is shown in Figure 11.
Another important aspect is the fact that when dealing with computation geometry
problems, we are also dealing with floating point numbers, and thus we have to be
careful when doing comparisons between them, since two numbers that should be
equal might end up being slightly different due to the imprecision of floating point
numbers.

Aside from these basic operations and theory, and the problems that arise from
them, the two most common problems, and thus algorithms for solving them, in com-
putational geometry are the convex hull problem and the polygon area problem. Some
of the algorithms to compute the convex hull of a set of points are Gift wrapping [31],
Graham scan [32], Quickhull [33], Monotone chain [34] and Kirkpatrick-Seidel [35].

30

The polygon area problem is the problem of computing the area of a polygon. The
polygon might not be convex, but it shouldn’t be self-intersecting. The common al-
gorithm to solve this problem is shoelace formula [36, 37]. The idea behind this algo-
rithm is to compute the area of the polygon as the sum of the areas of the triangles
that are formed by the edges of the polygon and a fixed point. The fixed point can be
any point, but it is usually chosen to be the origin, since it simplifies the computation
of the area of the triangles. The pseudocode for this algorithm is shown in Figure 12.

Aside from having to know a lot of theory to approach computational geometry
problems, these problems tend to require creative solutions, not unlike the ones for
the other categories, but at the additional cost of the knowledge burden. This makes
computational geometry problems more suitable for more experienced competitive
programmers.

2.2.8 Number theory

Figure 13: An illustration of a clock.

gcd(𝑎, 𝑏):
if 𝑏 = 0

return 𝑎
else

return gcd(𝑏, 𝑎 𝐦𝐨𝐝 𝑏)

Figure 14: The pseudocode for the greatest common divisor.

Number theory is a topic that appears in competitive programming problems either
as in the form of the problem itself, or as a tool needed to solve some aspect of prob-

31

modexp(𝑏, 𝑒, 𝑚):
if 𝑒 = 0

return 1
let 𝑟 = 𝑚𝑜𝑑𝑒𝑥𝑝(𝑏, 𝑒/2, 𝑚)
𝑟 ≔ (𝑟 ⋅ 𝑟) 𝐦𝐨𝐝 𝑚
if 𝑒 𝐦𝐨𝐝 2 = 0

return 𝑟
else:

return (𝑟 ⋅ 𝑏) 𝐦𝐨𝐝 𝑚

Figure 15: The pseudocode for the fast modulo exponentiation algorithm.

lems on other topics. Number theory is the study of the integers and their properties.
Most of the number theory used in competitive programming is modulo arithmetic,
which is the study of the integers modulo a given number 𝑚.

In modulo arithmetic, also called clock arithmetic, the integers are represented as
a circle of size 𝑚, and the operations are defined as if the integers were on a clock.
For instance, if 𝑚 = 12, then 1 + 1 = 2, 3 + 7 = 10, but 11 + 3 = 2, since 11 + 3 =
14, and 14 is equivalent to 2 modulo 12. This is the same as saying that 11 + 3 = 2
if we were to use a clock to represent the integers, since 3 hours after 11 o’clock is 2
o’clock. An illustration of this is shown in Figure 13.

We can also define the other basic operations on integers in modulo arithmetic. For
instance, if we want to compute 𝑎 − 𝑏 mod 𝑚, we can do so as 𝑎 + (𝑚 − 𝑏) mod 𝑚.
This is because adding 𝑚 to a number does not change its value modulo 𝑚, but it
ensures that we are dealing with a positive number. Multiplication is fairly straight-
forward, since we can just multiply the two numbers and then take the result modulo
𝑚. Division is a bit more complicated. In competitive programming, when modulo
division is involved, the modulo 𝑚 is always a prime number, because it makes divi-
sion much easier. In fact, division is performed by finding the multiplicative inverse
of the divisor modulo 𝑚, and then multiplying the dividend by the multiplicative in-
verse. The multiplicative inverse of a number 𝑎 mod 𝑚, if 𝑚 is prime, is 𝑎𝑚−2 mod 𝑚,
due to Fermat’s little theorem.

On the algorithms side, one of the common number theory algorithms, that is also
useful for computing the multiplicative inverse quickly, is the fast modulo exponenti-
ation algorithm. The pseudocode for it is shown in Figure 15. The key idea behind it is
the observation that if we want to compute 𝑏𝑒 mod 𝑚 and 𝑒 is even, we can compute

32

𝑏𝑒
2 mod 𝑚 and then square it. This avoids having to compute 𝑏𝑒 mod 𝑚 directly, which

otherwise would take 𝑂(𝑒) time. With this observation, we can compute 𝑏𝑒 mod 𝑚
in 𝑂(log 𝑒) time by using that observation in the even cases, and just multiplying by
𝑏 in the odd cases.

Another common number theory algorithm is the greatest common divisor (GCD)
algorithm. The greatest common divisor of two numbers 𝑎 and 𝑏 is the largest number
that divides both 𝑎 and 𝑏. There are actually many algorithms to compute the GCD,
such as Lehmer’s algorithm [38] and the binary GCD algorithm [39]. However, the
most common one is the Euclidean algorithm, which is shown in Figure 14. The GDC
can be used in a standalone way in competitive programming, where the problem is
to compute the GCD of some numbers in some fashion, or it can be used as a building
block for other algorithms.

2.3 Programming languages
When doing competitive programming, it is important to choose and know well a
programming language. There are programming languages that are more suitable for
competitive programming than others, and there are programming languages that
are more suitable for some problems than others.

In this section we will discuss some of the most common programming languages
used in competitive programming, and we will discuss their points of strength and
weakness. Note, however, that the overwhelming majority of competitive program-
mers use C++ as their main programming language [40].

2.3.1 C

#include <stdlib.h>
#include <stdio.h>

int main() {
 printf("Hello world!\n");
 return EXIT_SUCCESS;
}

Listing 1: Hello world in C.

The C programming language was created in 1972 [41], and it is one of the most used
programming languages in the world, particularly in the field of systems program-
ming. It is considered a low-level programming language, since it is very close to the
hardware, and it is very fast. It is also a quite simple¹⁰ programming language. An
example of a program written in C is shown in Listing 1.

¹⁰C is simple in the sense that does not provide too many abstractions from the hardware.

33

In competitive programming C has been a staple language for a long time, however
it has been superseded by C++ over the years. C has the advantage of being very
fast, and thus it is a good choice for competitive programming, where you want your
programs to be as fast as possible. However, it has the disadvantage of not providing
many abstractions that are useful for competitive programming, even the most basic
ones like dynamically sized arrays.

Having C++ that is a superset¹¹ of C, with C++ having the same speed as C and
providing a very rich set of abstractions in its standard library, most competitors have
migrated to, or directly started with, C++.

¹¹Technically C++ is not a strict superset of C for the lack of a couple of features exclusive to C,
like the restricted attribute.

2.3.2 C++

#include <cstdlib>
#include <iostream>

using namespace std;

int main() {
 cout << "Hello world!" << endl;
 return EXIT_SUCCESS;
}

Listing 2: Hello world in C++.

The C++ programming language was created in 1985 [42], and is by far the most
used programming language in competitive programming. Sometimes considered a
high-level programming language, sometimes considered a low-level one, C++ is a
programming language with a very rich set of features, and a very large standard
library. An example of a program written in C++ is shown in Listing 2.

As speed goes, C++ is as fast as C, so it is a good choice for competitive program-
mers in this regard. C++ provides a huge standard library that contains many use-
ful abstractions when solving competitive programming problems. For instance, it
provides dynamic arrays, hash tables, sets, priority queues, stacks, and so on. It also
provides many useful algorithms, like binary search, sorting, string matching, and so
on. This gives competitive programmers using C++ a big advantage over competitive
programmers using other languages with less rich standard libraries.

One slight disadvantage of C++ is that it is a very vast programming language,
and thus it takes a long time to learn it well. Although this is usually not a problem
for competitive programmers, since they usually only use a very small subset of the
language. Another problem is that compilation error messages can be very cryptic,

34

especially when related to the standard library and templates. C++ also suffers from
the dreaded segmentation fault, which is a runtime error that happens when a pro-
gram tries to access memory that it shouldn’t access. This is the number one reason of
crashes in competitive programming C++ solutions, and it can be very hard to debug.
However, there are now powerful tools that can help with this, like valgrind [43] and
the address sanitizer [44].

2.3.3 Pascal

program helloworld;
begin
 writeln('Hello world!');
end.

Listing 3: Hello world in Pascal.

Pascal is a programming language that was created in 1970 [45], and it was one of the
first programming languages to be designed with the goal of being easy to learn and
use. It gained a lot of traction in the beginning of competitive programming compe-
titions, however it has lost traction over the years, mainly due to the rise of C and
C-like languages in competitive programming. An example of a program written in
Pascal is shown in Listing 3.

Pascal got a good traction in the beginning of competitive programming competi-
tions because it was the language of choice to be taught in many schools and univer-
sities. This meant that many competitors were already familiar with it, and thus they
used it in competitions. However, as time went on, C and C-like languages became
more and more popular, and thus Pascal lost traction. Nowadays, Pascal is rarely used
in competitive programming competitions.

On the technical side, Pascal has similar advantages and disadvantages as C. It is a
very fast programming language, and it is quite simple. However, it does not provide
many abstractions, and thus it is not very suitable for competitive programming in
the current landscape.

2.3.4 Python

if __name__ == "__main__":
 print("Hello world!")

Listing 4: Hello world in Python.

35

The Python programming language was created in 1991 [46], and it is one of the most
on-the-rise programming languages in the world. It is considered a high-level pro-
gramming language, and it is easy to learn and to use. Its use has become pervasive
in machine learning and data analysis applications [47, 48, 49]. An example of a pro-
gram written in Python is shown in Listing 4.

Python is becoming a popular programming language among competitive pro-
grammers, and on some platforms, like Codeforces, it is the second most used pro-
gramming language after C++ [40]. This is due to its strengths, which are its simplic-
ity of writing code using it, and its batteries included approach, which means that it
provides a very rich standard library. This makes it a very good choice for competitive
programming, since it allows to write code very quickly, as it provides many useful
abstractions, allowing to write very concise code.

However, Python has a very big disadvantage, which is its speed. Python is a very
slow programming language, and thus it is not a good choice for competitive pro-
gramming in this regard, since it is very important for competitive programming
solutions to be fast. Some mitigations to this problem include having different time
limits if submitting a solution in Python, which is sometimes seen as an unfair ad-
vantage, and using the PyPy [50] implementation of Python, which is a just-in-time
compiler for Python that can make Python programs run much faster.

2.3.5 Java

public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello world!");
 }
}

Listing 5: Hello world in Java.

The Java programming language first appeared in 1995 [51, 52], and it is a very used
programming language in the corporate and business world. It is considered a high-
level programming language, and it is relatively simple. An example of a program
written in Java is shown in Listing 5.

The popularity of Java in competitive programming is similar to the one of Python,
although while Python’s popularity is on the rise, Java’s popularity is on the decline.
This is because Java provides strengths and weaknesses that are similar to the ones
of Python, but in a more muted way. Java is not as slow as Python, but it is not as
fast as C either. Also, Java is very verbose, and thus it is not as quick to write code in
it as it is in Python. Still, Java, on some platforms, like Codeforces, is the third most
used programming language after C++ and Python [40].

36

Historically Java has seen little use at the top of the competitive programming
scene, with most of the top competitors using C++. It was seen as a valid choice for
solving a problem only if the problem required some abstraction that was not avail-
able in C++, but was available in Java, like integers with arbitrary precision.

37

38

3 Competitions

In the previous chapter we talked about how solving problems is the core of compet-
itive programming. In this chapter we will expand on that and talk about problems
and people are brought together to create competitive programming competitions.

While solving problems is already by itself an interesting activity, making a com-
petition out of it adds a lot of value. Competitions are a great way to motivate people
to solve problems, and to bring people together to solve problems. Competitions are
also a great way to learn from others, and to share your knowledge with others.

There exist many different competitions that are held regularly all over the world,
both offline and online. In this chapter we will focus on the two most important and
prestigious ones: the International Olympiad in Informatics (IOI) and the International
Collegiate Programming Contest (ICPC). But before we dive into these competitions,
let us first briefly talk about the other competitions:

• The Google Code Jam [53] was a yearly online competition organized by Google.
It was held from 2008 to 2022. It was the largest competition held by a private
company. Its format was a multi-round contest where the top contestants from
each round would advance to the next round. The final round would be held on-
site at the Google offices. The contest format was a testcase-based format, where
contestants would ask the system to generate a set of testcases, then download
the testcases, compute the answers locally and upload the answers to the system.
This was the case for all editions except for the last two, where the solutions
would be evaluated on their servers. The scope of the competition was to assist
Google in finding talented programmers to hire.

• The Meta Hacker Cup [54] is a yearly online competition organized by Meta. It
has been held since 2011. Its concept and format are identical to the Google Code
Jam of the first years. The scope is also the same, to assist Meta in finding talented
programmers to hire. Unlike the Google Code Jam, the Meta Hacker Cup is still
being held, and it is now the largest competition held by a private company.

• Codeforces [55] is a website that hosts online competitions. It was launched in
2009 by Mike Mirzayanov and other competitive programmers. It is the largest
online competitive programming platform. It hosts competitions regularly and
has a huge library of problems. It also has a large community of competitive
programmers that share their knowledge on the platform using blog posts and
comments.

• AtCoder [56] is another website that hosts online competitions. It is the second
biggest online competitive programming platform after Codeforces and it is

39

based in Japan. While not as big as Codeforces, AtCoder has a reputation for
having high quality problems.

Aside from the major competitions, there are also many smaller competitions, from
the minor international ones, to the local ones organized by universities and schools.
These competitions are usually organized by competitive programmers themselves,
and they are a great way to get started with competitive programming and to start
learning more about it, while also having fun.

3.1 International Olympiad in Informatics
The International Olympiad in Informatics (IOI) [57] is the most prestigious compe-
tition for competitive programmers. It is an individual annual competition for high
school students that was founded in 1989. Every year, each nation can send a team
of up to four contestants to the competition. The competition is held in a different
country every year. The competition lasts two days, and each day the contestants
are given three problems to solve. The contestants are given five hours to solve the
problems for each day.

The IOI is considered to be the most important competition for competitive pro-
grammers. To be able to participate in the IOI, your country must select you to be
part of the team that it will send to the competition. Each country has its own selec-
tion process.

As far as the format of the competition goes, the IOI is a two day competition
where each day the contestants are given three problems to solve. Each contest lasts
five hours. Each problem can award up to 100 points, and each problem is divided
into subtasks, each of which awards a certain amount of points. A subtask is a group-
ing of testcases that respect certain constraints that are easier to solve than the full
problem. If all the test cases in a subtask are solved, then the points for that subtask
are awarded.

The achievements of the contestants are measured by the number of points that
they have scored. The contestants are ranked by the number of points that they have
scored, and the contestants with the highest scores are awarded medals. The number
of medals awarded is determined by the number of contestants that participate in
the competition. The top 50% of the contestants are awarded medals, with the top 1

12
being awarded gold medals, the next 1

6 being awarded silver medals, and the next 1
4

being awarded bronze medals.

The IOI competition usually uses CMS [58] as its contest management system. CMS
is a contest management system that was developed by the Italian competitive pro-
gramming community for the IOI that was held in Italy in 2012. CMS enables the
contestants to submit their solutions to the problems, and it automatically evaluates
the solutions on designated server machines called the workers.

40

The IOI organization is divided into three main bodies: the International Committee
(IC), which has administrative responsibilities, the International Scientific Committee
(ISC), which has to select and prepare the problems for the competition, and the In-
ternational Technical Committee (ITC), which has to prepare and oversee the contest
management system and the infrastructure for the competition. All three bodies are
elected by the General Assembly, which is composed of the representatives of the
participating countries.

Aside from the competition, IOI also hosts an annual scientific conference called
the IOI Conference, where researchers and practitioners in the field of competitive
programming meet to discuss the latest developments in the field.

3.1.1 Italian Olympiad in Informatics

In Italy, the national expression of the IOI is the Italian Olympiad in Informatics
(Olimpiadi Italiane di Informatica, OII). The OII is a yearly competition for high school
students that started in 2000 in order to select the Italian team for the IOI. It is orga-
nized by the Italian Ministry of Education.

The OII is organized as a series of competitions:

• First, there is the school competition, which is held in each school. The school
competition is a written test that contains mathematical, programming and al-
gorithmic problems. The test is the same for all schools. The best students from
each school are selected to participate in the next competition.

• The second level is the territorial competition, which is held in key schools of
each region. The territorial competition is a programming contest that is held on
Terry [59]. The best students nationwide are selected to participate in the next
competition.

• The third level is the national competition, which is held in a different city every
year. The national competition is a programming contest that is held on CMS
[58]. The top 20 ∼ 30 students are selected to participate in the next stages.

• The final level of selection is the training camp, colloquially known as Volterra,
due to the city where it is usually held. In these training camps, the students are
trained by the coaches of the Italian team for the IOI. In each training camp, the
students are given a series of programming contests that are held on CMS. The
best students from the training camp are selected to go to the next training camp,
until the final team is selected. The number of training camps varies from year
to year, but it is usually around three or four.

We¹² worked on the OII for many years, and in 2021 we¹³ published a paper [60]
that described the technical adjustments that had to be made to the OII during the

¹²The author of this thesis, Dario Ostuni (University of Verona)
¹³Giorgio Audrito (University of Turin), William Di Luigi (AICA), Luigi Laura (Uninettuno Uni-

versity), Edoardo Morassutto (AICA) and Dario Ostuni (University of Verona)

41

COVID-19 pandemic. In this paper we also describe how the OII is organized and
how it works. What follows is a reworked version of the paper.

The COVID-19 pandemic is having a pervasive effect worldwide, including local, na-
tional, and international Olympiads in Informatics. Most national Olympiads had to
be moved online, posing many serious challenges. Help across countries is of utmost
importance in this context, enabling a successful continuation of the IOI during global
hard times. We share the experience gained and tools produced during a year of on-
line Olympiads in Italy, hoping other countries can take advantage of these (freely
available) tools and suggestions for their own Olympiads.

Introduction

The Olimpiadi Italiane di Informatica (OII), or Italian Olympiads in Informatics [61],
are laid out in phases spanning a two-year length: the Phase-1 of the 𝑁 -th edition
takes place in November-December of the year 𝑁 − 1, the Phase-2 takes place in
April of the year 𝑁 , and finally the Phase-3 takes place in September of the year
𝑁 . The highest-ranked students in this phase are then selected for participation in
training camps during the whole scholastic year (Phase-4), ultimately leading to the
selection of the Italian team at the IOI for the year 𝑁 + 1. The selection process starts
with a scholastic pen-and-paper test involving between 10k and 15k participants in
Phase 1, which are then reduced to about 1k-2k participants for a regional program-
ming competition in Phase 2. About one hundred students are selected for the na-
tional programming contest in Phase 3, and 20-30 are allowed to enter the training
camps in Phase 4.

As a result of the COVID-19 pandemic, all four phases of the OII were affected
and thus had to be moved to a fully online setting. Phase 1 of the OII 2020 (which
happened at the end of November 2019) was the last onsite competition. After that,
Phase-4 of the 2019 edition, Phase-2, Phase-3, and Phase-4 of the 2020 edition, and
Phase-1 and Phase-2 of the 2021 edition had all to be moved online after being post-
poned by a few months in the hope that schools would reopen later in the year. This
forced shifting required developing new tools and solutions, which ensured an overall
successful year of Olympiads in Italy. We share these (freely available) tools and so-
lutions to benefit other countries that may need them for their upcoming Olympiads.
The following three sections present our experience with the first three phases of the
OII in order. Phase 4 has not been included since it did not require the development
of innovative solutions for the limited number of participants.

Phase-1 (scholastic)

In this phase, students have to answer a “quiz-based” exam with multiple-choice
questions and (numeric) open questions of a logical or algorithmic nature. This con-
test is usually held in about 500 high schools, each of them with a designated “contact

42

person” in charge of distributing the paper-based exam to the students, proctoring
them during the exam, collecting the completed exams when the time is up, and fi-
nally computing the score of each student.

The large number of participants and the “standardized test” style of the contest
made this phase a significant challenge in moving it to an online setting.

Going online

We evaluated several possible solutions to hold this phase online. We initially wanted
to restrict as much as possible any possibility of cheating, so we considered using
some online platform that would present the questions in random order and with a
fixed time to answer each question (e.g., five minutes) while preventing “go back”
to discourage students from sharing answers since they would have limited time to
answer them.

In the end, implementing this idea would be a significant challenge considering the
available time and workforce and the high requirements for the overall load on the
system. We also decided that we did not want to disrupt the experience so much for
the students by forcing them to answer questions quickly and making them unable
to change their answers.

The strategy we finally went with was to stick as much as possible to the “paper-
like” feel of the exam by providing them with a simple PDF file so the students could
immediately see every question and choose in which order to solve it. However, we
randomized the order of the questions in the file and put randomized data in the ac-
tual exercises. The idea behind this was to trick cheating students into suggesting
each other wrong answers (since the questions would look almost the same but would
have slightly different data) or at least spend a significant amount of time decoding
which “version” of a question they had.

Finally, to ensure that we did not have downtime caused by a load of tens of thou-
sands of users making requests to our servers simultaneously, we offloaded every-
thing we could to external services, like Twitter and Google Forms.

Randomization of the questions

In order to prepare questions with fully or partially randomized data, we developed
a small program called randomTeX [62]. This program uses Jinja2 as the template
engine (with a few configuration tweaks necessary to resolve some language ambi-
guities because LaTeX and Jinja2 have some common syntax, like the opening and
closing curly brackets). To feed the data to the template, randomTeX uses an approach
similar to the YAML front-matter in Markdown documents.¹⁴

¹⁴For further details, see https://jekyllrb.com/docs/front-matter.

43

https://jekyllrb.com/docs/front-matter

We prepared a separate LaTeX file for each of the 20 exercises in the exam, and the
data in the YAML front matter of the file itself defined the variations of each exercise.
This approach was very flexible since we could easily add new versions of the same
exercise by changing only the exercise file slightly and without touching the LaTeX
code.

After some tests, we settled on generating four variations of each exercise. Al-
though we could easily have more than four, we deemed this number enough for our
needs, and it ultimately made it possible for us to verify that every variation made
sense manually. We also avoided multiple-choice questions in favor of numeric open
questions to simplify the correction process and minimize the information available
to cheating students.

This, combined with a simple randomization in the presentation order of the ques-
tions, made it possible to generate a different PDF for every student. On the first page
of the PDF file, we provided information such as the “exam ID” and the First and Last
name of the student to make it clear that the exams were different.

Distribution of the exams

In order to facilitate distribution of the exams (while avoiding a high load on our
servers), we decided to start distributing the PDF files well ahead of time: we provided
a download link 6 hours in advance. Each PDF file, although with different content,
was protected by the same password. To disclose the password to every student at
the exact starting time of the contest, we used the “scheduled tweet” functionality on
Twitter.

Specifically, each student downloaded their custom PDF file ahead of time. As the
start of the exam approached, he or she visited the OII Twitter account and started
monitoring the page for updates. As soon as the contest started, the account auto-
matically tweeted the password that unlocked all the different PDFs.

Collection of answers

We offloaded the problem of collecting answers to an external service: Google Forms.
We created a purposefully straightforward form: a field for the “exam ID” and 20
questions numbered from 1 to 20 without any question detail (as the order was dif-
ferent across students) and with an open numeric field to specify the answer. The idea
was to collect the answers most reliably and then perform the actual validation once
the contest ended. One detail worth mentioning is that we generated the “exam ID”
to make it easy to reconstruct in case the student mistypes it: we concatenated five
random words.

To reduce the possibility of last-minute connection issues that students might have
had, we specified in the instructions on the first page of the PDFs that it was rec-

44

ommended to submit frequently: this was possible because we enabled “Edit after
submit” in the form’s settings.

The plan worked well for most of the contest. Unfortunately, several students did
not read or did not follow our advice and submitted right at the end of the contest:
this probably triggered some malicious activity alert (the form started to ask students
to solve a CAPTCHA before submitting), and this caused some students not to be
able to submit their answers in time. To address this, we had to reopen the submis-
sion window (we duplicated the Google Form and linked it from the previous form)
specifically for “late submissions”, and we informed students to use the new link if
they were not able to submit their answers in time, while also reminding them that
we reserved the right to accept or discard those late submissions.

Evaluating the submissions was straightforward: When we generated the PDF files,
we stored the list of correct answers for each file. After the contest, we downloaded
the spreadsheet with the answers and, using the “exam ID,” we compared each stu-
dent’s answers with the correct ones. For each exercise, we graded only the last sub-
mission that included that exercise (since there were no penalties for wrong answers).

Possible improvements

In case we will have to go online again next year, there are a few things that we could
improve:

• Instead of using a single Google Form for all the participants, it might be better
to use multiple Google Form instances (e.g., ten different forms). We can easily
modify the PDF template of the exam so that each student will see in his/her
exam PDF a different link to the submission form. This might reduce the likeli-
hood of triggering the CAPTCHA requests.

• Upon performing a statistical analysis of correct vs wrong answers for each ex-
ercise, we noticed that in one of the four variations of one specific exercise, there
was a significantly higher rate of correct answers. This was caused by the fact
that when we slightly changed the numbers, we introduced an “easier optimal
strategy” for the exercise resolution, which was suboptimal in the other varia-
tions. Although this did not significantly affect the results, we were very con-
cerned. We are considering introducing some automated validation step in the
randomTeX program (e.g., by writing a validation script for each exercise that
takes the YAML front-matter as input and outputs a boolean value), which could
help us verify that some conditions are valid for all variants of an exercise (e.g.,
the optimal solution being unique, and so on).

Phase-2 (regional)

In this phase, students have to complete a programming contest, grouped in territorial
zones based on the geographical position of their school. Italy is divided into 20 re-
gions with very different populations and many schools. Since this contest was onsite,

45

this heterogeneity used to be an issue: participants from the same region ranged from
hundreds to below a dozen (e.g., from 7 to 210 participants in the last onsite contest).
In order to mitigate this problem, regions had to be split into venues of roughly the
same size (from 7 to 51 in the last onsite contest), according to the capacity of the
school hosting the contest.

Unlike Phase-1, which mainly evaluates logical and code-reading skills to reach as
many students as possible, Phase-2 focuses on selecting students who can write code
to solve actual programming tasks theoretically and practically by writing a program
that, given an input file, produces the correct output. Time and space complexity are
not explicit focuses of this phase, as opposed to IOI-like competitions, so every prob-
lem is output-only, and no explicit time limits are given.

In order to evaluate these skills effectively, Phase 2 does not use the same judge sys-
tem used in the IOI, but rather one that we specifically designed for this back in 2017,
called Terry [59]. After accessing the Terry interface, the participants can choose a
task and download an input file (which is unique for each student and changes every
time a submission is attempted), run their program locally with the downloaded file
as input, and finally upload the produced output file along with the source code of
the program producing it (for plagiarism avoidance) and immediately receive a score.
This approach was heavily inspired by the early format of the Google Code Jam com-
petition and allows us to grade submissions of a considerable number of students
with relatively few resources (as we do not need to run the students’ code, except in
selected cases) and allows the students to use a broad set of supported languages.

After the contest ends, we perform plagiarism checks. We used to do them using
JPlag [63], which only supports a subset of the allowed languages. For this reason, we
recently developed Starplag [64], which computes the similarity between two source
files regardless of their programming language by implementing a variation of the
Levenshtein distance where text substitutions (i.e., variable renaming) are considered.

Going online

This was the first phase to be moved online since it was scheduled to take place in
April 2020, right after the March COVID-19 restrictions took place in Italy. Terry was
not meant to work as an online judge but was designed to be deployed “offline” in
each onsite venue. Since every venue had a designated reference person, we could
easily communicate with the students through this person. If a student had a question
on the tasks, the reference person (e.g., a teacher in the venue’s school) would for-
ward it to us, and we would then provide an answer, which would be finally relayed
to the student.

Since this process does not work for an online contest, we had to write a new
component for Terry to handle questions, answers, and announcements. This new
component worked well enough, although leaving margins for future improvements.

46

In particular, it showed all the questions in a “stream” as they arrived at us, making it
difficult to reconstruct the context of a question. We underestimated the importance
of a “conversation” with a student: a question from a user would often implicitly ref-
erence a previous question that the user sent us. Sometimes, a question could not
simply be replied to with an answer, and we had to “answer” the question with an-
other. For the next year, we plan to develop a conversation-like interface addressing
this issue.

Proctoring more than a thousand students from home with available resources in
real-time was unfeasible, so we adopted the standard approach of online contests,
where only after-contest checks are performed. After the contest was over and before
extracting the ranking, we examined the submitted source files, looking for evidence
of plagiarism or irregularities.

Technical aspects

The contest server was designed to run inside a virtual machine sent to the venue
hosts to require minimal technical knowledge from them. The virtual machine only
had to serve that venue (around 50 students) and be as light as possible since we had
no control over the quality of those servers. For this reason, Terry uses SQLite as
DBMS: it is light and fast enough for our needs.

Scaling a system designed to handle a few dozen users to support a few thousand
users can be risky. To limit this risk, we decided to keep each Italian region in a
separate shard of the system, with its independent instance of Terry. This way, each
instance only had to process a fixed fraction of the users, also allowing us to migrate
each region independently in case of failure of some instance.

We used Docker containers for shipping the replicas and docker-compose for or-
chestrating them. Ideally, each instance should have used its host for complete sepa-
ration of the load; however, we ended up renting 8 VMs on Google Cloud Platform,¹⁵

¹⁵https://cloud.google.com

assigning each of the 20 regions to a specific VM in a way designed to distribute the
load uniformly.

Besides the 8 VMs, we also set up a coordinator VM to host the communication
component and some utility scripts. Among these extra tools, we also had an instance
of Grafana¹⁶ displaying many metrics collected by Prometheus:¹⁷ at [65] and [66] you
can find a snapshot of our dashboards.

¹⁶https://grafana.com
¹⁷https://prometheus.io

You can see the machines we had (named with Greek letters) from those dash-
boards, where phi is the coordinator. The communication platform handled an aver-
age of 60 requests per second, while the other VMs had a utilization close to zero for
most of the contest duration. Unfortunately, due to a misconfiguration of nginx (a

47

https://cloud.google.com
https://grafana.com
https://prometheus.io

wrong request rate limit), the expected spike at the beginning of the contest caused
nginx to terminate connections, not allowing them to reach Terry’s backend (see the
“503” tab in the dashboard [65]). This was fixed in about half an hour; in the future, it
will be necessary to stress test the system with reasonable loads, not only with denial
of service rate of requests.

Since the users were partitioned into different servers, we had to ensure each user
connected and logged in to the correct container. This was accomplished through
a DNS pointing each user to the correct VM and then to the correct instance of
Terry within that VM. More precisely, we had separate URLs for each region (e.g.,
lom.territoriali.olinfo.it for Lombardy), adding a CNAME record to this domain
pointing to one of the VMs, for example, alpha.territoriali.olinfo.it, that in
turn is an A record pointing to the VM’s public IP.

This extra step allowed us to quickly move one container into a different VM by
simply spawning it and changing the content of the CNAME record (a low TTL was
set to support this). Fortunately, this measure was unnecessary as the system ran
smoothly after the rough start.

Phase-3 (national)

Since 2011, the Italian national phase has used the Contest Management System
(CMS) [58] as its platform to host the contest; CMS is also the core of the training
platform available for students [67] and has also been used in team olympiads [68].
The contest is IOI-like: 5 hours and (usually) 3 problems to solve. The only significant
differences lie in the difficulty level of the problems, which are usually easier than
IOI ones [69], and the set of allowed programming languages: in the Italian national
phase, only C and C++ are allowed.

Before the pandemic, this phase was a 3-days onsite event hosted by a different
high school or educational institution each year. About 100 students admitted to this
phase will travel to the contest site with their regional contact person.

After the contest, the top 20-ish students would continue their journey to the train-
ing camps held in the Italian city of Volterra, in Tuscany, during which the Italian
team for the IOI would be selected.

Going online

As the contest moved entirely online, we had to deal with several problems, the ma-
jor one being proctoring. While during the previous phases, the problem of potential
cheating was relatively irrelevant and could be dealt with offline tools, with only
about 100 contestants, the potential problem of cheating had to be dealt with appro-
priately. Thus, much of the organization of the online contest revolved around this
point.

48

The competition itself was still hosted with CMS, as its use onsite or online is sim-
ilar. We let the students use their machines to compete in the contest and set up a
3-layered proctoring system:

1. All contestants were assigned to one of 14 different Zoom¹⁸ meetings where
they would have to be in for the whole duration of the contest, with the camera
on and the microphone unmuted. A human proctor from the staff was assigned
to each of them, having to look over approximately eight contestants while also
helping as a communication facilitator.

2. All contestants were required to compete from inside a virtual machine pro-
vided by the organization, having it full-screen for the whole duration of the
contest. Aside from blocking internet access, the virtual machine also recorded
the contestant’s screen and sent the resulting stream to the server.

3. All contestants were required to run a custom-made proctoring program on the
host machine, called oii-proctor [70], which would check for misbehaviors (such
as opening a browser or leaving the virtual machine) and report them.

¹⁸https://zoom.us

Furthermore, to mitigate possible unexpected cheating behaviors, the difficulty and
novelty of the problems were increased relative to previous years, and the number of
people selected for the training camps was also increased to 29. This was also made
possible by the simpler logistics and lower budget required by an online training
camp, which used to be limiting factors for this number.

The handling of the contest was overall successful, with only some secondary is-
sues:

• contestants with bad internet connections or very slow PCs had, inevitably, a
disadvantage;

• the increased difficulty of the problems almost halved the average score: in 2018
it was 79, in 2019 it was 82.34 and in 2020 only 49.7; this also caused the cut for
bronze medals to still be 0 points as late as at 2 hours and 30 minutes into the
contest [71];

• there was a greater incidence of contestants forfeiting the contest: eight contes-
tants forfeited the contest this year, while in onsite contests, this number is usu-
ally zero or one.

To our knowledge, there were no cheating attempts during the contest.

Technical aspects

The server fleet was composed of a central server and a variable number of worker
machines, which were used to host CMS’s cmsWorker service. All machines were VMs
hosted on Google Cloud. The central server hosted CMS, the service for collecting
the screen streams from the contestants’ VMs, and the service for collecting reports

49

https://zoom.us

from oii-proctor. In total, we spent around 100 euros for the whole cloud infrastruc-
ture. We also set up Grafana and Prometheus to monitor the system: you can find the
dashboards at [72] and [73].

The operating system chosen for the contestants’ VMs was Ubuntu MATE due to
its commonality and relatively low resource requirements. When started, it would
prompt a login screen, which sent the inserted credential to the central server, which
would send back a Wireguard [74] configuration file: Wireguard was used to set a
secure connection between the VM and the server, and the login served to keep track
of which user was on which machine. Then, during the contest, a service on the VM
would take a screenshot every 30 seconds and send it to the central server. This al-
lowed us to monitor the contestants further. Also, on all VMs, an SSH daemon was
installed to allow us to enter the machine via the Wireguard tunnel.

oii-proctor is a program written in Rust [75] and distributed as a static binary for all
three major operating systems that served as an added measure to ensure some proc-
toring for the host machine. After asking for a login to identify the user, oii-proctor
collects information about the running processes to check if any browser is open and
if the VirtualBox process is still alive and sends this information to the central server
every 15 seconds. While doing these background jobs, it also puts up a small amount
of a security theater [76]: to keep contestants under the impression that oii-proctor is
constantly active doing some work, thus making a would-be-cheater contestant more
aware of being monitored, oii-proctor constantly prints meaningless information at
irregular intervals of time, masking when the actual checks are done.

Conclusions

We described how we moved all the phases of the Italian Olympiads in Informatics
online. We hope that our experience, as well as the tools developed and the other ones
mentioned, can be helpful to other national or local programming contest organizers.

3.1.2 CMSocial

As a companion tool for the Italian Olympiad in Informatics, an online platform called
CMSocial was developed. CMSocial is the training portal for the Italian students that
participate in the OII. It has a large library of problems, both from national and in-
ternational competitions. CMSocial is a fork of CMS [58], the contest management
system that is used for the IOI.

Aside from providing training for the students, CMSocial is also used to hold train-
ing courses to Italian high school teachers. In 2018 we¹⁹ published a paper [69] that

¹⁹William Di Luigi (AICA), Paolo Fantozzi (CTL), Luigi Laura (University of Rome “La Sapienza”),
Gemma Martini (AICA), Edoardo Morassutto (AICA), Dario Ostuni (University of Verona), Giorgio
Piccardo (CTL), and Luca Versari (University of Pisa)

investigated the effectiveness of the platform through its analytics. It also provides a

50

comparison between the students crowd and the teachers crowd. What follows is a
reworked version of the paper.

We discuss using Analytics in CMSocial, an online programming contest training
system. We first provide an overview of the challenges in training for programming
contests. Then we discuss the data collected in these years using CMSocial, a platform
devoted to the training of students for the Italian Olympiads in Informatics (Olimpiadi
Italiane di Informatica - OII), and analyze them by comparing two distinct groups of
users in two distinct platforms built on CMSocial, one devoted to students and one
to their teachers. Most notably, the two groups are more similar than expected when
dealing with programming contest training.

Introduction

Programming contests, competitions in which participants face a set of tasks that re-
quire writing computer programs, usually using efficient algorithms, are significant
and influential in the process of learning computer programming and, more gener-
ally, computer science [77, 78, 79, 80, 81, 82].

We use the data provided by two platforms based on the same training system, CM-
Social [67], to compare the two distinct groups that use the platform: on one side sec-
ondary school students training for the Italian Olympiads in Informatics (Olimpiadi
Italiane di Informatica - OII), and on the other side their teachers, i.e. secondary school
teachers, that enroll in a self-paced online course of computer programming aimed
at helping them to prepare students for OII; the teachers have a small programming
contest at the end of each course, and if they solve at least three out of seven tasks
they are granted a certification for the course. Most notably, the two platforms are
almost identical, but there is no link between them, so they are the perfect experi-
mental testbed for comparing the two groups.

We collected data for more than four years, involving approximately one thousand
teachers and more than three thousand students, faced with a set of 153 and 401 tasks
available on the platforms.

Programming Contests, skills, and platforms

Programming Contests

A programming contest is a competition in which the contestants face a set of pro-
gramming tasks, also called problems, to be solved in a limited amount of time and
under some time and space constraints. For example, we report the task Taglialegna
statement, which was used in the final 2014 edition of OII.

Abbatti S.p.A. (which is the Italian brand of tearDown INC) is a big enterprise that
works in the field of tree felling. In particular, it is been a few years since it started

51

improving in tearing down barky trees, a peculiar kind of trees which is very tall and
thick. This particular species grow in a very tidy way: the woods made of these trees
are actually a long horizontal line of trunks, placed at one decameter (32, 8 feet) one
another. Each one of the trees has a particular height, which is expressed by a positive
number (decameters).

Tearing down one of these trees is a very hard thing to do and, although tearDown
INC employees the most advanced technologies on the market, it is a very time con-
suming activity, since barky trees’ bark is incredibly thick. The workers have the op-
portunity to choose in which direction (left or right) the tree should fall after the cut.

Each time a barky tree falls down it hits the trees that haven’t been torn down
which are placed on its falling trajectory; in other words, it tears down each tree
which is closer than its height in the direction of the fall. Since the number of barky
trees in this woods is huge, this dynamic of the fall creates a domino effect.

In order to be the best enterprise in barky tree felling tearDown INC developed a
system which is able to scan the whole wood, choosing which trees should be cut by
workers and in which directions they should fall with the aim of cutting all the trees.
It is important to recall that it is in the best interest of the enterprise to minimize
the number of trees that need to be torn down by workers directly. Your role in this
situation is to implement the system for tearDown INC.

Below, we can see an example of a solution to the instance shown in the picture
above: It is enough to cut two trees:

52

A single task can be broken into subtasks of increasing complexity: basic techniques
are enough to solve some subtasks within the given time and space limits, while the
most difficult ones require particular algorithmic techniques and data structures.

Among the programming contests, we mention:

• The International Olympiads in Informatics (IOI) are an annual programming
competition for secondary school students patronized by UNESCO. http://www.
ioinformatics.org/

• The ACM International Collegiate Programming Contest (ICPC) is a multitier,
team-based programming competition operating under the auspices of ACM.
https://icpc.baylor.edu/

• The recent International Informatics Olympiads in Team (IIOT), which started in
2017, is a team competition like ACM ICPC, different from IOI (individual com-
petition). Currently, only four nations are involved: Italy, Romania, Russia, and
Sweden. https://iio.team/

• Google Code Jam is based on multiple online rounds concluding in the World
Finals. https://code.google.com/codejam/.

• The Facebook Hacker Cup is an annual worldwide programming competition
where hackers compete against each other for fame, fortune, glory, and a shot at
the coveted Hacker Cup. https://www.facebook.com/hackercup/

Students participating in programming contests generally have several programming
contest platforms at their disposal, including Codeforces, USACO, COCI, TopCoder,
Codechef, and HackerEarth, that run contests with different periodicities.

The programming languages allowed in the competitions vary considerably: for
example, IOI and IIOT accept only C, C++, and Pascal; ICPC also adds Python (both
2 and 3), Java, and Kotlin to the list.

Algorithmic skills and techniques

The programming contests mentioned in the previous section focus on a large set of
algorithmic skills that includes

• Basic Data Structures
• Complete Search, Divide and conquer, Greedy techniques
• Dynamic Programming (basic ideas)
• Dynamic Programming (advanced topics)
• Basic Graph algorithms (e.g., connected components, distance between two

nodes)
• Advanced Graph algorithms (e.g., network flows, matching)
• Mathematical problems
• Computational Geometry
• String Processing

53

http://www.ioinformatics.org/
http://www.ioinformatics.org/
https://icpc.baylor.edu/
https://iio.team/
https://code.google.com/codejam/
https://www.facebook.com/hackercup/

• Advanced topics

Some programming contests, such as IOI, have a syllabus²⁰, while others refer to gen-
eral algorithmic skills. There are some books, such as the ones of Skiena [83], Halim

²⁰The IOI syllabus is available at the URL http://people.ksp.sk/~misof/ioi-syllabus/

[84], and the recent one of Laaksonen [85], that provide essential material about al-
gorithms, data structures, and heuristics needed in programming contests.

Online training platforms

Besides the already mentioned platforms that provide online programming contests
and usually have the archive of the previous years’ tasks, there are several online
training platforms; we mention the well-known UVa Online Judge²¹, Sphere Online
Judge²² (SPOJ) and Open Kattis²³.

²¹https://uva.onlinejudge.org/
²²http://www.spoj.com/
²³https://open.kattis.com/

All these platforms are, roughly speaking, vast repositories of tasks, and it is pos-
sible to submit solutions and be part of a global ranking based on the overall number
of tasks solved.

The online training system: CMSocial

In this section, we provide basic information about our online training platform, CM-
Social, which is based on the Contest Management System (CMS) [58, 86], the grading
system used in several programming competitions, including IOI. CMS was designed
and coded almost exclusively by three developers involved in the Italian Olympiads
in Informatics: Italy hosted IOI 2012, and therefore, since 2010, it started the devel-
opment of CMS, which was used/tested in the OII finals 2011 and a few months later,
was the grading system of IOI 2012. CMS version 1.0 was released in March 2013, and
since then, it has been used in both IOI 2013 and 2014, together with several other
programming competitions in the world [86].

Details about CMSocial can be found in [67], and the source code is freely avail-
able²⁴ we implemented three distinct platforms using CMSocial:

²⁴https://github.com/algorithm-ninja/cmsocial

1. OII-training is the platform devoted to students interested in OII. We can see a
screenshot of the home page in Figure 16. This platform has approximately 180
problems spanning several techniques and difficulties, ranging from regional
contests to the IOI level. Furthermore, the tests from the first selection of OII
(schools selection) are available as interactive online forms. So far, we have yet
to advertise this platform in the schools since we are considering it in the beta
testing phase.

54

http://people.ksp.sk/~misof/ioi-syllabus/
https://uva.onlinejudge.org/
http://www.spoj.com/
https://open.kattis.com/
https://github.com/algorithm-ninja/cmsocial

2. DIGIT is the platform dedicated to teachers: We realized this platform in a pro-
ject sponsored by the MIUR, aiming to build a self-paced online computer pro-
gramming course focused on the olympiads in informatics. The idea was to train
the teachers so they could be able to train their students. Thus, this platform is
currently the richest of the three regarding contents and functionalities. We can
see a screenshot of the home page in Figure 17. There are video courses in C/
C++ and Pascal programming, Algorithms and Data structures, and some basic
video tutorials, including how to use the platform to submit a solution. There
are also some lecture notes, and all the material can be distributed to students;
the video lectures are also available on the OII channel on YouTube.

3. IOI-candidates is the last platform, and the only one not publicly available,
since it is devoted to the winners of the Italian national contest preparing for IOI.
This platform has been the original motivation to develop the whole CMSocial
system. This platform has all the problems available to the other two platforms
and a reserved set of problems that we use in the contests to rank the students.
The students are asked to refrain from discussing this problem in public forums
or social networks since we usually reuse them after a few years.

In the following section, we report our findings from the comparison of the data from
the first two platforms, OII-training and DIGIT; the third one, IOI-candidates, has
a minimal number of participants with a high focus on the IOI so it is outside the
scope of this work.

Experimental findings

Our datasets

As mentioned before, our datasets collect all the information available in two plat-
forms based on the same training system, CMSocial: the data collected from the first
platform - OII-training, devoted to students preparing for the Italian Olympiads in
Informatics, and the data collected from the second platform - DIGIT, devoted to
teachers participating in a self-paced online course.

The data of both platforms span slightly more than four years, from December 2013
to April 2018. It is summarized in Table 2: as we can see, as expected, OII-training
has more participants and more problems since it belongs to an active community,
while DIGIT has more or less a standard set of problems that increases slightly in
each edition with the addition of the problems of the previous edition final contest.
In Table 3, we can see the details of the editions of the teachers’ course built on the
DIGIT platform. In particular, besides the start and end dates, we can see the num-
ber of enrolled participants, i.e., the ones who applied for the course, and the (much
smaller) number of certificates granted to participants who completed the small pro-
gramming contest at the end of the course.

55

Figure 16: The home pages of two of the platforms based on CMSocial: the one
for the teachers

Data Analysis

Let us begin by plotting the distribution of the sum of the scores in Figure 18: the
two plots have a similar shape, as we can see in Figure 19 where we plot the density
distribution to reduce the size difference between students and teachers; as we can
see, the students’ tail is much longer, and this is due to the availability of a more
extensive set of problems, as seen in Table 2.

In Figure 20 (students) and Figure 21 (teachers) we can see, for each problem avail-
able in the platform, the number of participants that solved it, in decreasing order.
As we can expect, both the plots have a similar shape, with a bias in the teachers’
plot due to the problems in each final contest: for example, the fact Table 3) that in
the sixth edition, 232 teachers completed the contest means that they solved at least
three problems from the proposed set of seven.

So far, the only difference between students and teachers is due to the different
contests of the two platforms. Let us dig more and try to understand the approach of
single users when faced with the difficulty of the problems. Since there is no difficulty
grade for each problem, we will estimate it with the percentage of people that solved

56

Figure 17: The home pages of two of the platforms based on CMSocial: the one
for the students

Platform # Participants # Problems
OII-training (Students) 3543 401

DIGIT (Teachers) 1006 153

Table 2: Number of participants and available problems in the platforms.

it for our study; thus, a problem solved by many will be considered easier than one
solved by a few. In particular, the difficulty D of a problem will be

𝐷 = 1 − 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑝𝑒𝑜𝑝𝑙𝑒 𝑡ℎ𝑎𝑡 𝑠𝑜𝑙𝑣𝑒𝑑 𝑖𝑡

In this way, a problem solved by 100% will have difficulty 𝐷 = 0, and a problem
solved by no one will have difficulty 𝐷 = 1. In Figure 22, we can see the correlation
between the sum of the weighted rank of the problems and the number of problems
solved. The correlation is very high in both cases (students and teachers), and the two

57

Edition Start End # Enrolled # Certificates
1 12/2013 03/2014 315 54
2 03/2014 10/2014 506 93
3 11/2014 03/2015 691 87
4 10/2015 02/2016 211 139
5 04/2016 09/2016 1032 74
6 06/2017 10/2017 1387 232
7 12/2017 05/2018 1345 NA

Table 3: Number of enrolled participants and available problems in the plat-
forms.

Figure 18: Distribution (histogram) of the sum of the scores.

cases are very similar, as we can see in Figure 23, where we zoom in on the left part
of Figure 22.

Summing up, the behavior of both groups on the two platforms is very similar. We
observe in all the plots a tendency for teachers towards easier problems, which is
very likely due to the easy problems in the final contest of each course edition.

Findings

We addressed using Analytics in CMSocial, an online programming contest training
system. In particular, we analyze the behavior of two distinct groups of users in two
distinct platforms built on CMSocial, one devoted to students and one to their teach-
ers. As observed, the two groups are more similar than one would expect when deal-
ing with programming contest training.

58

Figure 19: Sum of scores density distribution.

Figure 20: For each problem, number of students that solved it (decreasing
order per problem

We are currently working on a more refined estimate of the difficulty and on im-
proving the platform with a framework that can allow recommendations, under the
form of suggestions, to the learner about the following programming problem to
undertake, and that can foster motivation in students through a lightweight, badge-
based, gamified approach [87].

3.2 International Collegiate Programming Contest
The International Collegiate Programming Contest (ICPC) [1] is the most prestigious
competition for competitive programmers at the university level. It is an annual team

59

Figure 21: For each problem, number of teachers that solved it (decreasing
order per problem

Figure 22: Correlation between the number of problems solved and the sum
of the difficulties of the problems.

competition for university students that was founded in 1970. As such, it is the oldest
competition for competitive programmers that is still running today.

The standard format of an ICPC contest is a five hours contest where the contes-
tants compete in teams of three. Each team must be composed by students from the
same university. The contestants are given a set of problems to solve, and they must
submit solutions to the problems. The scoring on a problem is binary: either the so-
lution is correct, or it is not. The contestants are ranked by the number of problems
that they have solved, and the time that it took them to solve them.

60

Figure 23: Correlation between the number of problems solved and the sum
of the difficulties of the problems. (detail view from Figure 22).

Figure 24: An example schedule for the ICPC.

The team that has solved the most problems is ranked first, and the team that has
solved the least problems is ranked last. If two teams have solved the same number
of problems, then the team that has solved them in the least amount of time is ranked
first, and the team that has solved them in the most amount of time is ranked last. The
time that it took a team to solve a problem is the time that has passed since the start
of the contest until the submission of the first correct solution to the problem, plus
a penalty of 20 minutes for each incorrect submission to the problem. The team that
has the least amount of time is ranked first, and the team that has the most amount
of time is ranked last.

61

Figure 25: Number of teams over the years in SWERC.

There are two contest management systems that are used for the ICPC: PC2 [88]
and DOMjudge [89]. The competition is organized in stages:

• First, there are the university selections, which are held in each university. The
university selects independently their best teams to participate in the next stage.
The format of the selection contest is up to the university.

• The second stage is the regional contest, which groups together universities from
a certain set of countries. There is only a single contest during the event. The best
teams from each regional contest are selected to participate in the next stage.

• The third stage is the superregional, or continental, contest. There is such a con-
test for each continent of the world. It is also a single day contest. The best teams
from each superregional contest are selected to participate in the next stage.

• The final stage are the World Finals, which is the final stage of the competition.
It is a single day contest that is held in a different university every year. The
contest awards four gold medals, four silver medals and four bronze medals. The
top team is awarded the title of World Champion.

Some regions still have to implement the full stage pipeline and skip the superre-
gional stage. Such an example for the European region is illustrated in Figure 24.

The ICPC is organized by the ICPC Foundation, which is a non-profit organization
that is based in the Baylor University in Waco, Texas. The ICPC Foundation is re-
sponsible for the organization of the World Finals, and it supervises the organization
of the other stages.

62

3.2.1 SouthWestern Europe Regional Contest

Figure 26: Number of universities over the years in SWERC.

The SouthWestern Europe Regional Contest (SWERC) [90] is the regional contest for
the SouthWestern Europe region. It is a regional contest that groups together uni-
versities from Spain, Portugal, France, Italy, Switzerland and Israel. Like the other
regional contests, it is a single day contest that is held in a different university every
year²⁵. The contest awards two gold medals, four silver medals and eight bronze
medals.

²⁵A university can host the contest multiple times.

The organization of the contest is handled by a local committee that is lead by the
Regional Contest Director (RCD). The RCD is responsible for the organization of the
contest, for the raising of funds, and for the selection of the problemset. Usually the
RCD is a professor from the university that is hosting the contest. The RCD usually
delegates the scientific duties to a Chief Judge, who is responsible for the selection
of the problemset, and to a Technical Director, who is responsible for the technical
aspects of the contest.

We²⁶ organized the 2021-2022 and 2022-2023 editions of SWERC. The contest was
hosted at the Politecnico di Milano in Milan, Italy. The second of these two editions

²⁶The author of this thesis, Dario Ostuni (University of Verona), was RCD for SWERC from 2021
to 2023.

was the biggest SWERC ever done, with 120 teams from 53 universities. The number
of teams and universities over the years is shown in Figure 25 and Figure 26. The
number of teams per university over the years is shown in Figure 27.

63

Figure 27: Number of teams per university over the years in SWERC.

To organize the contests we created a team of volunteers that helped us with the
organization. The organization of the contest was split into five teams:

• The organization team: this team was responsible for all the logistics, financing,
accounting and communications for the contest.

• The technical team: this team was responsible for the technical aspects of the
contest, such as the contest management system, the network, the servers and
the contestants’ machines.

• The judges: this team was responsible for the creation and preparation of the
problemset, and for overseeing the contest.

• The media and artistic team: this team was responsible for the creation of the me-
dia content for the contest, such as the graphics, the photos and the live singing
performances during the opening ceremony.

• The volunteers: this team was responsible was composed of local volunteers that
helped us with various tasks during the contest, such as the registration of the
teams, the distribution of the material, and proctoring during the contest.

In these two editions we tried to innovate the contest by introducing new ideas and
new organization concepts. For both years the judge team²⁷ was composed by peo-

²⁷The judge team is the team of people that is responsible for the creation and preparation of the
problemset.

ple coming from all the countries of the SWERC region. This was done in order to
have a problemset that is more representative of all the countries of the region. We

64

worked to improve the opening ceremony, by removing as much as possible the long
speeches and by introducing songs performed live during the ceremony. This was
done in order to retain as much as possible the attention of the contestants during
the ceremony.

65

66

4 Turing Arena light

In this chapter we introduce Turing Arena light, the spiritual successor of Turing Arena
[91]. Turing Arena light is a contest management system that is designed to be more
geared towards the needs of classroom teaching, rather than competitive program-
ming contests. It strives to be as simple²⁸ as possible, while being very flexible and
extensible.

²⁸Simple might mean very different things, in this context it is conceptual simplicity.

While we will discuss each point in more detail later, as an overview the design of
Turing Arena light focuses on the following aspects:

• Simplicity: the design of Turing Arena light tries to keep things as simple as
possible, while achieving the desired functionalities. While a meaningful objec-
tive metric for simplicity is hard to define, the current implementation of Turing
Arena light consists of only 2197 lines of code [9].

• Interactivity: in Turing Arena light all problems are interactive by default. This
means the contestant’s solution for a problem always interacts in real-time with
the problem. In particular, a problem in Turing Arena light is defined by the prob-
lem manager, which is a program that interacts with the contestant’s solution
and gives a verdict at the end of the interaction. By being interactive by default,
Turing Arena light allows a wider range of problems to be implemented with less
effort, while not causing much overhead for non-interactive problems.

• Flexibility: Turing Arena light is designed to be able to run on all major operating
systems, and allow solutions and problem managers to be written in any pro-
gramming language, while still being able to guarantee a certain level of security.
To achieve this, Turing Arena light only consists of a small core written in Rust
[75], whose main purpose is to spawn the process of the problem manager on
the server, to spawn the process of the contestant’s solution on its own machine,
and to connect the standard input and output of the two processes. Thus, the
contestants’ code is never run on the server, and the problem manager can run
without a sandbox, being trusted code written by the problem setter.

• Extensibility: as stated in the previous point, Turing Arena light only consists of
a small core that has the fundamental role of spawning to processes and con-
necting their standard input and output. All the other functionalities are imple-
mented by the problem manager itself, possibly using a common library of utili-
ties. This allows the problem setter to implement any kind of problem, while still
being able to use the same contest management system.

67

4.1 Architecture and design
The fundamental idea behind Turing Arena light is to have two programs that talk to
each other through the standard input and output channels. One of the two programs
is the problem manager, which is a program that interacts with a solution to give it
the input and evaluate its output, and eventually give a verdict. The other program
is the solution, which is the program written by the contestant that is meant to solve
the problem.

While this is not too far off from what other contest management systems do, the
two main differences are that in Turing Arena light these two programs run on differ-
ent machines, and the interaction between them is done in real-time. This is unlike
mainstream contest management systems, where the two programs run on the same
machine (like in DOMjudge [92], CMS [58] and Codeforces [55]), or where the inter-
action is not done in real-time (like in the old Google Code Jam [53] and Meta Hacker
Cup [54]).

In the following subsections we will discuss the components of Turing Arena light
and how they interact with each other. We will start from the problem manager, go-
ing through the server and the client, and finally discussing the user interface.

4.1.1 Problem manager

A problem in Turing Arena light is defined as a set of services and a set of attachments.
A service is a program that can be spawned with a set of well-defined parameters,
and that will ultimately interact with the solution. An attachment is a generic file
that can be attached to the problem and downloaded by the contestant, such as the
statement of the problem, or a library that the contestant can use in their solution.

A service defines which parameters it accepts, and the accepted values for each pa-
rameter. Parameters can be either strings or files. Each string parameter has a regular
expression that defines the set of accepted values and a default value. Furthermore, a
service defines which program will be invoked with the given parameters: the prob-
lem manager (also called the evaluator). The attachments are just regular files in a
folder on the file system.

The description of a problem is contained in a file called meta.yaml, which is a
YAML [93] file. The file contains the description of all the services, and their parame-
ters, and the directory of the attachments. An example of a meta.yaml file is shown in
Listing 6. Thus, a problem in Turing Arena light is represented by a folder containing
a meta.yaml file, and all the files and subdirectories needed for services and attach-
ments.

4.1.2 Server

After the problem manager, there is the server. The server is the beating heart of Tur-
ing Arena light: its role is to accept incoming connections from the clients, spawn the

68

%YAML 1.2

public_folder: public
services:
 free_sum:
 evaluator: [python, free_sum_manager.py]
 args:
 numbers:
 regex: ^(onedigit|twodigits|big)$
 default: twodigits
 obj:
 regex: ^(any|max_product)$
 default: any
 num_questions:
 regex: ^([1-9]|[1-2][0-9]|30)$
 default: 10
 lang:
 regex: ^(hardcoded|hardcoded_ext|en|it)$
 default: it
 help:
 evaluator: [python, help.py]
 args:
 page:
 regex: ^(free_sum|help)$
 default: help
 lang:
 regex: ^(en|it)$
 default: it

Listing 6: Description file for a problem in Turing Arena light

problem manager corresponding to the client requested problem and service, passing
to it the parameters specified by the client, and finally connect the standard input
and output of the problem manager to the client.

Note that up to this point, Turing Arena light is merely a specification of how the
problem is defined and how the interaction between the problem manager and the
solution should happen. This opens up the possibility of having multiple implemen-
tations of the Turing Arena light framework, since the specification is very simple and
does not require any particular technology, such as sandboxing.

Currently, there is only one implementation of the Turing Arena light framework,
which is rtal (Rust Turing Arena light). It is written in Rust [75], and it is the refer-
ence implementation of Turing Arena light. The server component, rtald, is a small
program that, given a folder containing problems, listens for incoming connections
from the clients, and spawns the correct problem manager, and relays the standard

69

input and output of the problem manager to the client via a protocol based on Web-
Sockets [94].

4.1.3 Client

On the other side of the network²⁹ there is the client. The client is the program that
the contestant runs on their machine to connect to the server and interact with the

²⁹Which might even be on the same machine, if both the server and the client are running on the
same machine.

problem manager. Its role is to connect to the server, send the request for a problem
and a service, send the string and file parameters for the service, and finally spawn
and attach itself to the standard input and output of the solution running on the local
machine of the contestant.

Once everything is up and running, the client will send the standard output of the
solution to the server, which will relay it to the problem manager, and forward on
the standard input of the solution all the incoming data from the server. Basically,
the client is a proxy that connects the standard input and output of the solution to
the server.

Like the server, there is also a rtal component for the client, also called rtal. This
client component is a command line program that takes as parameters the address
of the server, the problem and the service, and the parameters for the service. It also
takes the command to run the solution. The client will then connect to the server,
send the request for the problem and service, and spawn the solution with the given
command, proxying the data between the solution and the server.

4.1.4 User interface

As far as the contestant is concerned, what they must do is to write a solution to the
problem in their favourite programming language. The only requirement is that it
reads from the standard input and writes to the standard output. To read the problem
statement, the contestant can download the attachments of the problem using the
client. The client will download the attachments and save them on the local machine
of the contestant.

Once the solution is ready, the contestant can run the client passing the right para-
meters, including the command to run their solution. The client will then connect to
the server, send the request for the problem and service, and spawn the solution with
the given command. Note that the solution is spawned and run on the local machine
of the contestant, which means that the contestant has full freedom on which files it
can read and write, which resources it can use, and so on. This is unlike other contest
management systems that support real-time interaction, where the solution is run on
a sandboxed environment on the server.

70

The ability to run the solution on the local machine opens to many possibilities.
For example, the contestant can precompute some large set of data, save it on their
machine, and then use it during the interaction with the problem manager to speed
up the computation. Another example is the potential to use external libraries, mul-
tithreading, or even GPU computation. All of this is possible because the solution is
run on the local machine of the contestant, where they have full control, and not on
the server.

4.2 Implementation details

Figure 28: Architecture of Turing Arena light

As mentioned in the previous section, Turing Arena light currently has only one full
implementation, which is Rust Turing Arena light (rtal). Like the name suggests, it
is written in Rust [75]. The choice of language was motivated by the fact that Rust
is a systems programming language, and thus it is well suited for writing low-level
programs that need to interact with the operating system and other programs. Fur-
thermore, one key factor is portability: Rust is a compiled language whose compiled
binaries require only minimal external dependencies to run, which makes it ideal to
produce distributable binaries. This is important because Turing Arena light is meant
to be used by students, which might not have the technical knowledge to install and
configure a complex system. Having a single binary that can be downloaded and run
without any configuration is a big advantage.

71

pub const META: &str = "meta.yaml";

#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct Problem {
 pub name: String,
 pub root: PathBuf,
 pub meta: Meta,
}

#[derive(Debug, Default, Serialize, Deserialize, Clone)]
pub struct Meta {
 pub public_folder: PathBuf,
 pub services: HashMap<String, Service>,
}

#[derive(Debug, Default, Serialize, Deserialize, Clone)]
pub struct Service {
 pub evaluator: Vec<String>,
 pub args: Option<HashMap<String, Arg>>,
 pub files: Option<Vec<String>>,
}

#[derive(Debug, Serialize, Deserialize, Clone)]
pub struct Arg {
 #[serde(with = "serde_regex")]
 pub regex: Regex,
 pub default: Option<String>,
}

Listing 7: Problem description definition in Rust Turing Arena light

The implementation of Turing Arena light is split into three components: the server
(rtald), the client (rtal), and the checker (rtalc). All three components share some
common parts. The main one is the problem description definition, also known as
the meta.yaml file. The definition can be found in Listing 7. The definition is written
using Rust structures which are then serialized to and deserialized from YAML using
serde [95], a serialization framework for Rust. rtalc is a small independent command-
line program that takes as input a directory containing the problem description, and
checks that the description is valid and matches the content of the directory. This
is useful to check that the problem description is correct before uploading it to the
server.

The two main jobs of the client and the server are process spawning and network-
ing. For both of these tasks, rtal and rtald use the tokio [96] library, which is a
framework for writing asynchronous programs in Rust. For the process spawning
part, there is nothing particularly interesting: the server spawns the problem man-
ager, and the client spawns the solution. They then, through tokio, manage the chan-
nels of the standard input and output of the spawned processes. All the internal com-

72

pub const MAGIC: &str = "rtal";
pub const VERSION: u64 = 4;

#[derive(Serialize, Deserialize, Debug)]
pub enum Request {
 Handshake {
 magic: String,
 version: u64,
 },
 MetaList {},
 Attachment {
 problem: String,
 },
 ConnectBegin {
 problem: String,
 service: String,
 args: HashMap<String, String>,
 tty: bool,
 token: Option<String>,
 files: Vec<String>,
 },
 ConnectStop {},
}

#[derive(Serialize, Deserialize, Debug)]
pub enum Reply {
 Handshake { magic: String, version: u64 },
 MetaList { meta: HashMap<String, Meta> },
 Attachment { status: Result<(), String> },
 ConnectBegin { status: Result<Vec<String>, String> },
 ConnectStart { status: Result<(), String> },
 ConnectStop { status: Result<Vec<String>, String> },
}

Listing 8: Network protocol definition in Rust Turing Arena light

munication within the server and the client is done using the actor threading model
[97, 98].

For the networking part, the communication protocol between the server and the
client is based on WebSockets [94]. The protocol definition is shown in Listing 8. The
protocol is based on JSON [99] messages, which are serialized and deserialized using
serde. These messages are then exchanged between the server and the client using
WebSockets. The interaction between the server and the client is shown in Figure 28.
Using WebSockets enables a client of Turing Arena light to be implemented as a web
application.

Both rtal and rtald run their spawned processes in an unsandboxed environment.
This is done to avoid the complexity of sandboxing, but we argue that it does not

73

pose a major security risk. The reason is that, for the client, the program being run is
the contestant’s own written solution, which is run on their local machine. Thus, the
contestant has full control over the program, and can do whatever they want with it.
For the server, the program being run is the problem manager, which is written by
the problem setter. Thus, as long as the problem setter is trusted, there is no need to
sandbox the problem manager. This is usually the case, as the problem setter is the
one who also is responsible for the server where the rtald program is running. If this
is not the case, then rtald can be run in a virtualized environment, such as a Docker
container [100], to mitigate the risk of a bug in the problem manager that could cause
unauthorized access to the server.

4.2.1 Problem manager libraries

So far we have discussed the architecture, the design and the implementation of Tur-
ing Arena light. However, we have not yet discussed how the problem manager is
implemented. As mentioned in the previous sections, the problem manager is a pro-
gram that interacts with the solution, and gives a verdict at the end of the interaction.
The problem manager, just like the solution, has to communicate with its counter-
part, which is the solution, using the standard input and output channels. Thus, the
problem manager has full freedom on how to interact with the solution, as long as it
does so using the aforementioned channels.

While this grants the problem maker a great deal of freedom, it also means that
the problem maker has to potentially write a lot of boilerplate code each time they
want to implement a new problem. To mitigate this problem, a problem maker can
create a library of utilities that can be used to implement the problem manager. This
library can be based on a particular style of problems, so that the problem maker can
offer a consistent experience to the contestants.

In our case, we wrote a library called tc.py. A snippet of the library is shown in
Listing 9. This library allows to write a old-Google-Code-Jam like problem by only
writing the code essential to the problem, and leaving all the boilerplate code to the
library. What the manager has to implement is a function that generates a test case,
and a function that evaluates the solution given by the contestant on a test case. The
library will then take care of the rest, including enforcing the time limit, generating
the right number of test cases, and assigning and storing the score for the solution.
Note that with the Turing Arena light there is no way to enforce the memory limit, as
the solution is run on the local machine of the contestant. However, the time limit can
be enforced by measuring how much time passes between the sending of the input
and the receiving of the output. While this is not a very precise measurement, it is
good enough for distinguishing between solutions that have very different computa-
tional complexities.

As the name suggests, the tc.py library is written in Python [46], and it is meant
to be used with problem managers written in Python. This works great for problems

74

class TC:
 def __init__(self, data, time_limit=1):
 self.data = data
 self.tl = time_limit

 def run(self, gen_tc, check_tc):
 output = open(join(environ["TAL_META_OUTPUT_FILES"],
"result.txt"), "w")
 total_tc = sum(map(lambda x: x[0], self.data))
 print(total_tc, flush=True)
 tc_ok = 0
 tcn = 1
 for subtask in range(len(self.data)):
 for tc in range(self.data[subtask][0]):
 tc_data = gen_tc(*self.data[subtask][1])
 stdout.flush()
 start = time()
 try:
 ret = check_tc(*tc_data)
 msg = None
 if isinstance(ret, tuple):
 result = ret[0]
 msg = ret[1]
 else:
 result = ret
 if time() - start > self.tl:
 print(f"Case #{tcn:03}: TLE", file=output)
 elif result:
 print(f"Case #{tcn:03}: AC", file=output)
 tc_ok += 1
 else:
 print(f"Case #{tcn:03}: WA", file=output)
 if msg is not None:
 print(file=output)
 print(msg, file=output)
 print(file=output)
 except Exception as e:
 print(f"Case #{tcn:03}: RE", file=output)
 print(file=stderr)
 print("".join(traceback.format_tb(e.__traceback__)),
e, file=stderr)
 tcn += 1
 print(file=output)
 print(f"Score: {tc_ok}/{total_tc}", file=output)
 output.close()

Listing 9: Snippet of the python version of the competitive-programming like
problem manager library for Turing Arena light

where the optimal solution plays well with Python, however in problems where the

75

performance of the solution is critical, having the problem manager written in Python
may make the evaluation of the contestant’s output too slow. To mitigate this prob-
lem, we ported the tc.py library to Rust, thus creating the tc.rs library [101]. By
using Rust as the programming language for the problem manager, the whole exe-
cution of the problem manager is much faster. The functionality of the two libraries
is the same, and they are interoperable with each other. This means that in a single
contest, the problem maker can use both Python and Rust problem managers.

CREATE TABLE users (
 id TEXT PRIMARY KEY,
 name TEXT NOT NULL,
 other TEXT
);

CREATE TABLE problems (
 name TEXT PRIMARY KEY
);

CREATE TABLE submissions (
 id INTEGER PRIMARY KEY,
 user_id TEXT NOT NULL,
 problem TEXT NOT NULL,
 score INTEGER NOT NULL,
 source BLOB NOT NULL,
 address TEXT,
 FOREIGN KEY (user_id) REFERENCES users(id),
 FOREIGN KEY (problem) REFERENCES problems(name)
);

Listing 10: SQLite schema for database used by tc.py and tc.rs

Turing Arena light has no built-in support for saving the results of the contest, as
this job is left to the problem manager. This is done to allow the problem maker to
have full control over how the results are saved. In tc.py and tc.rs we implemented
a simple database that saves the results of the contest in a SQLite [102] database.
The schema of the database is shown in Listing 10. The database provides a way to
save the results of the contest, and it enables contestants to see their position in the
ranking during the contest, using a service defined in Turing Arena light.

4.3 Graphical user interface
The Rust implementation of Turing Arena light only comes with a command line in-
terface for the client. While this is enough to run the contest, it is not very user
friendly. Contestants have to remember the right parameters to pass to the client, and
the less experienced ones might have trouble working with a terminal. To mitigate
this problem, a graphical user interface for the client was developed.

76

Figure 29: Graphical user interface of Turing Arena light

A web application was developed as a new client for Turing Arena light [103]. A
screenshot of the application is shown in Figure 29. It was developed using the An-
gular framework [104], and it is written in TypeScript [105]. The peculiar thing about
this application is that aside from offering all the functionalities of the command line
client, it also offers a way to write the solution directly in the browser. Not only that,
but the solution is run directly in the browser, without the need to install any addi-
tional software. This functionality is currently only available for Python solutions,
but it could be extended to other languages as well. To do this, the Python interpreter
has been compiled to JavaScript, using Pyodide [106]. This allows to run Python code
directly in the browser. Thus, the contestant can do everything from an integrated
environment in its browser.

Aside from running the solution in the browser, the web application also imple-
ments an emulated file system within the browser. This allows the contestant to send
file parameters and receive file attachments and file outputs, all from the browser.
Another useful feature that derives from having a file system is the ability to save
and restore the working environment. This is useful for example when the contestant
is working on a problem, and they want to save their progress and continue work-
ing on it later. Another scenario is when a template is provided to the contestant,
and they can start working directly on it. The file system can be exported as a tar
archive, or can be stored in the cloud using either GitHub [107], Google Drive [108],
or OneDrive [109]. They can be later imported back from a tar archive or from the
cloud, specifically from GitHub.

77

Figure 30: Results of the 6th of February 2023 exam

4.4 Experience in the classroom
Turing Arena light has seen a good amount of use in some of the courses of the Com-
puter Science department at the University of Verona. In particular, it has been used
in the courses of Algorithms and Data Structures, Operations Research and Competitive
Programming. In this section we will discuss the experience of using Turing Arena
light in the course of Competitive Programming.

The course of Competitive Programming is a course that is offered to the students of
the department of Computer Science at the University of Verona. The course is meant
to teach the students how to solve algorithmic problems, by teaching them the most
common algorithmic techniques and data structures, and how to use them to solve
problems. The course is structured in two parts: the first part is a series of lectures
where the theory is explained, and the second part is a series of practical lessons
where the students are given problems to solve, and they have to write a solution to
the problem.

The practical lessons are done in a computer lab, where the students have access
to a computer with the Turing Arena light client (rtal) installed. We prepared a body
of problems that the students can solve, and we give them a problem to solve during
each lesson. The problems are themed around the topic of the lecture, so that the
students can practice the theory they learned during the lecture. The students have
access to the problems both during the lesson, and at home, so that they can practice

78

Figure 31: Results of the 21st of February 2023 exam

on their own. To achieve this, we have a server running rtald that is accessible from
the Internet, and the students can connect to it from the client. The whole implemen-
tation of Rust Turing Arena light is released under the MPL-2.0 license, which allows
the students to download and use the client and the server for free.

Particular emphasis has been put on interactive problems. Since Turing Arena light
allows to implement interactive problems with little effort, and they are kind of scarce
in other contest management systems, we decided to focus on them. In particular,
focusing on interactive problems allows us to give the students problems that do not
focus on the time to compute the solution, but rather on the ability to interact with the
problem manager or how many queries they can make. The kind of problems that are
best suited for this are problems that involve some kind of game, where the contes-
tant has to play against the problem manager. Another format is where the contestant
has to guess some hidden information, and the problem manager gives hints to the
contestant. In both cases the problem gives the contestant a sense of playing a game,
rather than solving a problem, which is a good way to keep the students engaged.

Retaining the students’ attention is more difficult in a classroom setting rather than
in a competitive programming contest. In a contest, the contestants are motivated
by the fact that they are competing against other contestants, and they want to win.
Thus, they challenge themselves, they can be motivated to solve problems and learn
on their own. In a classroom setting, the students are usually only motivated by the

79

Figure 32: Results of the 27th of March 2023 exam

fact that they have to pass the exam, and they are not motivated to learn anything
more than what is needed for that. Thus, it is important to keep the students engaged
and make them interested about the topic, in order for them to then be motivated to
learn more on their own. Interactive problems are a way to move towards this goal,
as they can be more engaging than other kinds of problems.

As an example of such a problem, following this paragraph there is a problem that
was given in the first laboratory lesson of the course.

Anna and Barbara’s game

Anna and Barbara discovered a new game: it is played on a 𝑉 vector of 𝑛 natural
numbers. The first player picks a number from one end and takes it, then the sec-
ond player does the same, and the game continues like this until the vector becomes
empty. The player whose sum of the numbers taken is greater.

Anna always likes to play as the first player, while Barbara always wants to always
go second. You want to play a game, but you have already seen the vector that will
be used. Use this information to choose who to play against in so that you are sure
not to lose and win the game!

80

Figure 33: Results of the 22nd of June 2023 exam

Assumptions

The following size are present, where the default is big:

• small: 𝑛 ≤ 8, max(𝑉) ≤ 20.
• big: 𝑛 ≤ 50, max(𝑉) ≤ 106

The sum of the values of 𝑉 is always odd.

The time limit for testcase is 5 seconds.

Interaction

The first line contains 𝑇 , the number of games that will be played. In each game you
are given on the first line 𝑛, and on the second line the vector 𝑉 of natural separated
by space. At this point it is your turn, write 0 if you want to play first, or 1 if you
want to play second. The game starts with the first player and alternates players until
all numbers have been taken. The player whose turn it is must write L or R followed
by a carriage return depending on whether he or she wants to choose the number
furthest left or the one furthest to the right.

To get AC you must win the game. It is always possible to win the game by some
choice of which player to be and the moves to make, regardless of what the opponent
will do.

81

Figure 34: Results of the 6th of July 2023 exam

Example

Lines beginning with < are those sent by the server, those that begin with > are those
sent by the client.

< 2
< 4
< 0 8 5 4
> 0
> R
< R
> R
< L
< 4
< 7 4 5 3
> 1
< R
> L
< R
> L

82

Figure 35: Answers of question 1 of the post-exams survey: How much did you
like the problems available in Turing Arena light (rtal)?

4.4.2 Exams

Aside from the laboratory lessons, Turing Arena light has also been used for the ex-
ams of the course. The exam is structured in a fashion similar to a competitive pro-
gramming contest: the students are given three problems to solve, each worth 100
points, and they have four hours to solve them. The exam is taken in a computer
lab, where the students have access to a computer with the Turing Arena light client
(rtal) installed, other than the usual tools for programming, like an editor, a C++
compiler and a Python interpreter. The students are allowed to use any programming
language they want, and they can use any piece of documentation they want, as long
as they do not communicate with other students. However, they do not have internet
access, so they cannot look up solutions online, or use other fancy tools, like GitHub
Copilot [110].

In the one academic year the course was offered, we administered five exam ses-
sions. At the end of each session, the results were published, having a randomly gen-
erated identifier for each student³⁰. The results of the exams are shown in Figure 30,

³⁰If a student took the exam multiple times, they would have a different identifier each time.

Figure 31, Figure 32, Figure 33 and Figure 34. As shown in the figures, the total num-
ber of students that took the exam across all sessions is 31. The participation to the
exam started low, with only 4 students taking the first exam, but it increased over

83

Figure 36: Answers of question 2 of the post-exams survey: How difficult did
you find the problems proposed with Turing Arena light (rtal)?

time, with 12 students taking the last exam. Students were allowed to take the exam
multiple times, and some of them did, since they could improve their score by taking
the exam again, and keeping the best score. The results of the exams become better
over time, as the students got more opportunities to practice and become accustomed
with the kind of problems that were given.

As an example of the problems given in the exam, following this paragraph there
is a problem that was given in the exam session of the 22nd of June 2023.

Plumbing

Luigi has begun his new adventure as a plumber, and now he is faced with his first
job. In an old building there is a piping system that connects by joints the various
apartments. Specifically, in this system there are 𝑛 joints connected by pipes, and
each pipe is connected to two joints. Between each pair of joints there is a piping
path connecting them, and the number of pipes is 𝑛 − 1. Each pipe has some length
𝐿𝑖.

Luigi was called to calculate the total length of the piping system. However, Luigi
does not have a diagram of the system, but he can measure the total length between
two joints by running water between the two joints and measuring the time it takes
to travel the path, thus measuring its length.

84

Figure 37: Answers of question 3 of the post-exams survey: Did you find the
interactive problems more interesting than the regular ones?

Luigi wants to finish the job as soon as possible so that he can move on to the next
one, so he wants to calculate the total length of the piping system with as few mea-
surements as possible. Help him take the minimum number of measurements needed
to calculate the total length of the piping system.

Assumptions

The following size are present, where the default is big:

• tiny [30 points]: 𝑛 ≤ 45, each joint is connected to at most 2 pipes
• small [30 points]: 𝑛 ≤ 45
• big [40 points]: 𝑛 ≤ 50

The maximum number of measurements that Luigi can make is 1000.

For each pipe 𝑖, 𝐿𝑖 is an integer between 1 and 10000.

Interaction

The first line contains 𝑇 , the number of testcases to be solved. This is followed by 𝑇
instances of the problem.

In each instance, initially the server sends 𝑛, the number of joints. Next, the client
can make two kinds of requests:

85

Figure 38: Answers of question 4 of the post-exams survey: How hard was to
use Turing Arena light (rtal)?

• ? u v: the client asks for the path length between joints 𝑢 and 𝑣.
• ! l: the client communicates the total length of the pipeline system, which is 𝑙.

Whenever the client makes a request of type ? u v, the server responds with an
integer, which is the length of the path between joints 𝑢 and 𝑣.

The client can make at most 1000 requests of type ? u v, after which it must make
a request of type ! l to terminate the interaction of the current instance.

Technical details

While this problem has no time limit, sending 1000 queries and receiving as many
responses can take a non-negligible amount of time.

However, it is possible to send queries in batches: if you do not need to know the
result of the current query to send the next one, you can send all queries, and only
after sending them do an explicit flush of the standard output.

In this way, all queries will be sent as a single packet, and all responses will be
received as a single packet, greatly reducing communication time.

Example

Lines beginning with < are those sent by the server, those that begin with > are those
sent by the client.

86

Figure 39: Answers of question 5 of the post-exams survey: How strongly
would you like for Turing Arena light to have a graphical user interface?

< 1
< 3
> ? 0 1
< 4
> ? 0 2
< 2
> ? 1 2
< 6
> ! 6

4.4.3 Survey

After all the exams were administered, we asked the students to fill in a survey about
their experience with Turing Arena light. The survey was anonymous, and it was done
using Google Forms [111]. The survey consisted of five questions:

1. How much did you like the problems available in Turing Arena light (rtal)?
2. How difficult did you find the problems proposed with Turing Arena light (rtal)?
3. Did you find the interactive problems more interesting than the regular ones?
4. How hard was to use Turing Arena light (rtal)?
5. How strongly would you like for Turing Arena light to have a graphical user

interface?

87

These questions were chosen to get a general idea of how the students felt about Tur-
ing Arena light, and to check if initial goals of Turing Arena light were being met. Note
that this survey was conducted before the graphical user interface was available, so
the last question was meant to check if the work being done on the graphical user
interface was worth it.

1. The responses for the first question are shown in Figure 35. As can be seen from
the results, the students liked the problems available in Turing Arena light. The
average score is 4.07, which means that the problems were liked by the students.

2. The responses for the second question are shown in Figure 36. As can be seen
from the results, the students found the problems proposed with Turing Arena
light to be of slightly-above-medium difficulty. The average score is 3.67, which
means that the problems were not too difficult, but they were not too easy ei-
ther, although they were slightly on the hard side.

3. The responses for the third question are shown in Figure 37. As can be seen from
the results, the students found the interactive problems to be more interesting
than the regular ones. The average score is 3.80, which reinforces the idea that
interactive problems are more engaging than regular ones.

4. The responses for the fourth question are shown in Figure 38. As can be seen
from the results, the students found Turing Arena light to be easy to use. The
average score is 2.20, which means that for the sample of students that took the
survey, Turing Arena light did not pose any particular difficulty.

5. The responses for the fifth and final question are shown in Figure 39. As can
be seen from the results, the students are kind of split whether they would
like Turing Arena light to have a graphical user interface. The average score is
2.93, which means that the students are indifferent on average about wanting a
graphical user interface, although there are some students that would strongly
like it.

4.5 Future directions
Turing Arena light has been developed enough to be used in a real-world classroom
setting, and it has been used in the course of Competitive Programming at the Uni-
versity of Verona. It has been used for both the laboratory lessons and the exams,
and it has been well received by the students, as shown by the results of the survey.
However, there is still a debate to be had in which direction Turing Arena light should
move forward.

While the extreme flexibility of Turing Arena light made it possible to experiment a
lot with different kinds of problems, it also made it difficult to find a common ground
on which to standardize some common features, without having all of the problem
manager libraries reimplement them. One such feature is the ability to save the re-
sults of the contest. While Turing Arena light does not have any built-in support for
saving the results of the contest, it is possible to implement it in the problem man-

88

ager. However, this means that each problem manager has to reimplement the same
functionality, which is not ideal.

Moreover, some feature are implementable only by standardizing them at the core
of Turing Arena light. One such feature is the ability of accurately measuring the time
consumed by the solution. Right now, the time used by the solution is measured by
measuring the time between the sending of the input and the receiving of the output.
However, this is not a very accurate measurement, as it does not take into account the
time spent sending and receiving the packets over the network. This is not a problem
when the server and the client are on the same local network, as it happened in the
course of Competitive Programming, but it becomes a problem when the server and
the client are on different networks, such as when the server is on the Internet.

There is a solution to mitigate this problem, which is to encrypt the data, send it,
then start the clock and send the decryption key. Doing it this way, one can eliminate
the time spent sending the data, which can be a significant amount of time when the
input is big. However, to implement such a solution, it would require to have some
mechanism to make the problem manager and the core communicate on a meta-level
to require this functionality from the core. However, such mechanism could cause a
narrowing of the flexibility of Turing Arena light.

While the command-line interface has worked great for the course of Competitive
Programming, it is not very probable that it would be fine for other courses with less
hardcore students. Thus, the development of the graphical user interface continues,
and it is planned to be tested in the next iteration of the course of Competitive Pro-
gramming, and possibly in other courses with more general students.

89

90

5 Code Colosseum

In this chapter we will introduce Code Colosseum, a platform to create and play
real-time multiplayer games meant to be played by programs. We will present Code
Colosseum as a complementary educational tool, akin to competitive programming
but based on games instead of problems, to foster Computer Science education to a
broader audience.

In 2021, we³¹ wrote a paper called Make your programs compete and watch them
play in the Code Colosseum [112] which lays down the main ideas behind Code Colos-

³¹Dario Ostuni (University of Verona), Edoardo Morassutto (Politecnico di Milano) and Romeo
Rizzi (University of Verona)

seum, how it works and how it has been tested. What follows is a reworked version
of that paper. After that, we will discuss the current state of the project, with all ad-
ditions and improvements that have been made since then.

Games have a role in many aspects of science, technology, and society. Also, games
attract human interest and offer unique learning opportunities. Indeed, the role of
games in education has a long tradition.

We introduce Code Colosseum, a platform that takes competitive programming to-
ward games instead of problems. By taking this direction, we aim to create a more
engaging environment for students to compete in. The platform allows programs
written by the contestants to compete in a real-time multiplayer game. The platform
also allows us to spectate the matches between the programs. The design and imple-
mentation of Code Colosseum have been kept as simple as possible to facilitate par-
ticipation, maintenance, and setup.

To assess the approach’s effectiveness, we organized a tournament with 16 high
school and university students as a pilot experience for Code Colosseum. In this tour-
nament, they created programs to play the Royal Game of Ur, a board racing game.
The feedback from the students about the experience was positive, and the sugges-
tions received will be implemented for future experiences.

With the rise of STEM³² education, Computer Science has become one of the central
subjects to be incorporated inside the curricula of secondary and primary education
systems worldwide.

³²Science Technology Engineering Mathematics

While the secondary education systems transit towards a more scientific-focused
teaching of Computer Science, one way to give students an insight into it is through

91

extracurricular activities [113]. One such example is competitive programming,
which has a long history of being used as an educational tool [114]. Many competi-
tions in this field have an interest in fostering Computer Science education, such as
the International Olympiad in Informatics [57], which is more competition-oriented
and for high-school students only, the Kangourou of Informatics [115], which is more
didactic-oriented and also open to middle school students, and, recently, Codeforces
[116], the leading web platform for programming contests.

The role of competitive programming in computer science education has multi-
ple facets: students become interested in various computer science topics and group
up at the school level, national level, or even international level. The social aspect
value is confirmed by the attention it receives in web platforms such as the Amer-
ican TopCoder [117], the Indian CodeChef [118], the Japanese AtCoder [56] and the
Italian CMSocial [119]. Such communities strengthen students’ interest in competi-
tive programming and Computer Science. They also offer a place where knowledge
and competence are emphasized and where students who might not find it at their
schools can seek it.

While competitive programming fills an ever-expanding niche, many students may
feel discouraged, seeing it merely as a competition for the best of the best. Further-
more, competitive programming might be less engaging for outsiders because the
knowledge requirement to appreciate it is high.

We present Code Colosseum, a platform to expand competitive programming using
games as its primary feature. Using games to increase engagement and motivation
has proved effective in Computer Science education [120].

Other platforms that offer similar features already exist. For instance, CodingGame
[121] and CodeCombat [122] are web platforms that let students learn programming
with games; here, their programs can be developed in the platform web environment
and are run on the platform server. One of the leading technical differences with
Code Colosseum is that the students’ programs are developed and run solely on their
machines.

5.1 Design, Motivations and Goals
Creating a program (bot) that plays a game and let it compete against other bots
within a shared and observable arena creates an engaging environment. For games
where optimal play is out of reach or where there is a well-balanced component of
luck, the matches can be exciting and instructive to observe, and the competition
offers opportunities for social interactions. When the outcomes are somewhat pre-
dictable in advance, people can discuss the strengths and weaknesses of the bots and
their strategies. This is even more so if the design and making of the bots is a team
activity. Also, a match is engaging not only for insiders, who have direct interaction
with their peers and share with them the same language and mental space, but also

92

for outsiders, who can be interested in just watching the matches, making enough
sense of what is happening even without any prior Computer Science knowledge.
This is very close to the idea behind RoboCup [123], which is a very successful com-
petition where teams of high-school students assemble and program some robots to
make them compete in a physical soccer-like game against those of other teams.

We propose Code Colosseum, a framework for creating and deploying real-time
multiplayer games meant to be played by bots. The game could be a classic one, like
checkers or any known card game; it could be a variant of a classic or an entirely new
game. Both collaborative and competitive games are possible.

Code Colosseum is implemented as a client-server architecture, where the server
manages the ongoing matches, and the clients connect the players’ bots to the server,
communicating over the net. Some of the main traits of Code Colosseum are:

• the server acts as the central and trusted hub for each match and always has
complete information on the state of the game. To play a match, the clients need
to connect only to the server;

• the server offers a lobby where you can create or join a match. When creating a
match, one sets the number of players and how many of them should be covered
by server-provided bots;

• the server can only manage a particular set of games. This set can be extended
by implementing the rules and communication protocol for a new game;

• the player’s bot can be any program. As such, it can offer an environment from
which a human might directly play or assist an AI playing it;

• all matches can be publicly spectated.

The fact that the player’s bot runs on their machine has several profound implica-
tions, among these:

• each participant can use their preferred programming languages, libraries, and
tools without bearing on what is available on the server;

• during the matches, bots can make use of precomputed information and can
leverage available hardware like GPUs;

• since each bot runs on the player’s machine, standard debugging tools and tech-
niques can be used to debug its logic and protocol implementation;

• bots do not add to the load of the server in terms of computing resources;
• it lifts the sandboxing requirement that would otherwise be needed for security

reasons. This also helps in keeping a low complexity of design and implemen-
tation;

• since the client-server communication happens over the net, each participant
needs a stable internet connection;

• the computational resources available to different players might wildly differ.
The server cannot limit nor know such resources;

93

• in team games, the server has no control over the intra-team communication.
For instance, in 2v2 card games without intra-team communication, the bots can
privately communicate through other channels. Note, however, that Code Colos-
seum is still suitable for managing team games where the same team players can
fully share their knowledge.

The following features of Code Colosseum are essential and must be further explored
and developed.

5.1.1 Visualization

Spectating the game might be a way to get involved and prove interest or participa-
tion in the competition. Even a team coach without technical preparation might offer
suggestions, opinions, or encouragement based on the matches they have seen. This
sharing adds recognition and meaning while helping to promote a positive environ-
ment of interest and participation. Also, for peers and classmates, spectating the game
might be the first step to getting involved. For these reasons, supporting the visual-
ization of ongoing matches in an accessible way is an important feature that deserves
further development. Unlike with usual competitive programming competitions, with
games and tournaments, there is an unparalleled opportunity to obtain meaningful
and immediately accessible visualizations that should certainly contribute to engag-
ing and motivating all participants and spectators.

5.1.2 Tournaments

If the goal is to foster STEM education further, we must first comprehend the proper
forms that make a proposal truly inclusive for a broader range of students. In partic-
ular, the social dimensions must be addressed since they relate to profound motiva-
tions. Tournaments fill that space and offer a powerful opportunity to catalyze the
interest of both contestants and the broader community that might gather around
them in a high school or university setting.

Also, tournaments bring a focus and a shared interest in matches and players. This
is particularly true for elimination tournaments, where more spectators naturally
follow the last matches. Indeed, players are naturally curious to see how the best
players perform and learn from their strategies. Also, players can group up to watch
and comment on the live matches. This offers further opportunities to socialize and
exchange ideas and enthusiasm.

5.1.3 Simplicity

In the design and first implementation of the Code Colosseum platform, we adopted a
minimal approach striving for simplicity. The importance of this point must be con-
sidered. We aim to get a system that can be used with ease to play matches and de-
velop a new game. In the long term, communities around this platform might form in

94

high school or university settings. These communities will first be attracted by play-
ing available games but might later try to produce their games.

5.2 Implementation details

Figure 40: Code Colosseum architecture: each contestant writes a bot that runs
on their local machine along with an instance of coco. The bot and coco com-
municate through the stdin and stdout channels. The coco clients connect via
WebSockets to cocod, which runs on the central server. Inside cocod, an instance

of the game manager is running.

Code Colosseum is a framework to build and play multiplayer games over a network.
It has a client-server structure. It is designed for simplicity of setup and use. The
server (cocod) and the client (coco) are written in Rust [75]. Code Colosseum is free
software released under the Mozilla Public License 2.0 and can be found on GitHub
[124]. Figure 40 shows a graphical overview of the architecture.

Both cocod and coco are written using the Tokio [96] asynchronous runtime. This
allows the cocod server to handle many concurrent connections efficiently, making it
suitable for hosting hundreds of matches simultaneously.

Code Colosseum provides no user authentication by design to keep its codebase and
setup as simple as possible. The cocod server keeps a lobby of waiting-to-start and
running matches. Anyone can create a new match for one of the supported games
and join a waiting-to-start match. However, some limitations can be imposed, for
instance, by providing a password at the time of creation to restrict participation ac-
cess. Once the number of players needed to start the match is reached, the match
automatically begins, and the players start playing. To create, list, and join matches,

95

the contestants use the coco client. All matches can also be spectated, even when they
are already running or password-protected.

It is possible to add a new game to cocod by expanding it. In order to do so, a game
manager has to be written. This is a program that, given 𝑛 bidirectional pipes (for the
players) and an output-only pipe (for the spectators), must implement the game logic
and receive/send information from/to the players and the spectators accordingly. This
minimal interface tries to lower the requirements to write a new game manager. Note,
however, that this is not a trivial task: particular attention is needed when handling
multiple data streams simultaneously, as some multi-threading or polling is needed,
which, if managed incorrectly, can lead to problems such as deadlocks or synchro-
nization errors. Moreover, even though real-time and turn-based games are possible,
the former are more challenging to implement since they need to account for network
latency.

The communication between the coco client and the cocod server is done using
WebSockets [94] and a custom JSON-serialized protocol. Using WebSockets as the com-
munication channel has several advantages over plain TCP channels:

• they can pass through HTTP proxies, which are common in schools and various
institutions when the traffic is monitored and filtered;

• they are message-based rather than stream-based, which simplifies the handling
of our message-based protocol;

• they can be put behind a standard HTTP reverse proxy to enable connection
security (using HTTPS) and traffic shaping;

• a WebSocket client can be instantiated inside a web browser, allowing a web ap-
plication to communicate directly with a cocod server.

When a contestant joins a match using the coco client with its bot, coco connects to
the specified cocod server and waits until the match starts. When that happens, the
coco client captures the stdin and stdout³³ channels of the bot, and virtually connects

³³standard input and standard output.

them to a bidirectional pipe of the game manager for that match. This is done using
the previously established WebSocket communication channel with the cocod server.

Spectators can join a match using the coco client anytime. The cocod server will
send real-time game updates as generated by the game manager. If the spectator joins
an already running match, then the cocod server will first send all game data from
the beginning of the match. The coco client does not provide a native visualizer for
games. Hence, a custom program that reads the game data and prints a human-read-
able representation is needed. It has to be specified to coco, which will send the game
data to its stdin stream.

96

Both coco and cocod are CLI³⁴ programs. While for cocod, this is not much of a
problem, having a graphical client could be beneficial for tasks such as spectating a

³⁴Command-Line Interface

match. Note that coco allows the attachment of an arbitrary program for both playing
and spectating games, opening the possibility of a GUI³⁵. Since the communication

³⁵Graphical User Interface

channel is a WebSocket and most of the implementation burden lies on the server, a
web client could be written to provide most of the functionalities of the coco client in
a graphical and cross-platform way. Also, by providing additional layers, one could
collect statistical information on the platform usage, like in CMSocial [69].

5.3 Pilot Experience
We conducted a pilot experience that involved 16 students with a Computer Science
background in a double-elimination tournament playing the Royal Game of Ur. The
students were also familiar with the Competitive Programming field.

5.3.1 Royal Game of Ur

The Royal Game of Ur [125] is a strategy game where two players play against each
other in a racing competition, moving their tokens on a board according to the result
of four 2-faced dice. This game is of historical importance since it is one of the oldest
known games (played in ancient Mesopotamia in the third millennium BCE). How-
ever, it is relatively unknown to most people.

We selected it as the pilot game for many reasons:

• the game rules are straightforward to understand and relatively straightforward
to implement in code;

• the strategy component is nicely compensated by some luck, making it enjoyable
to watch and partially bridging the gap between seasoned and novice competi-
tors;

• other than the optimal strategy, there are many more accessible but well-per-
forming strategies.

5.3.2 Double-elimination Tournament

In a double-elimination tournament, there are two brackets: the winner bracket and
the loser bracket. Initially, all the players are in the winner bracket. They are moved
to the loser bracket when they lose their first match instead of being eliminated at
their first defeat. This mechanism offers every player a second chance to be the winner
of the tournament. With a second chance players can learn from their mistakes, fix
their programs, and improve their strategies.

This type of elimination tournament has a number of matches that is a function
linear in the number of players, keeping the total number of matches to a reason-

97

able amount, especially when there are many players. Note that Code Colosseum only
manages single matches. Therefore, the tournament structure is independent of it.
We used Challonge [126] to track the tournament’s progress.

5.3.3 Experience and Feedback

Figure 41: Histograms of the feedback collected after the tournament from 13
participants. Answers were from 1 (least) to 5 (most). (a) How fun was it to
participate? (b) How much did you like the Royal Game of Ur as the game cho-
sen for the tournament? (c) Should the tournament have lasted longer? (d) How
difficult was it to use a terminal interface with respect to a graphical one? (e) In

your opinion, would it have been interesting to be a spectator?

The participants and the organizers met in a Discord [127] server, and 14 out of the 16
registered players were present. The game was announced at the start of the tourna-
ment. Participants were provided with the game rules and communication protocol at
that point. Players started implementing their bots using their favorite programming
language and development environment. Following the game communication proto-
col, the bots would exchange text messages with coco. Players could prepare for the
matches by either playing among themselves in friendly matches or against a server-
provided bot. After 90 minutes, the first matches started, and up to two matches of
the same round were held in parallel. Between rounds, the participants were given
some time to tweak and fix their programs (from 15 to 45 minutes, depending on
the round).

Using an anonymous survey, at the end of the tournament, some feedback was col-
lected from the participants, and 13 participants answered. The questions were open,
yes/no, and rated from 1 (least) to 5 (most).

Results [128] showed that none of the participants knew the game before the tour-
nament, and all of them enjoyed participating’’, rating it at least 3, with more than
half rating it 5 (see Figure 41). All of them expressed the intent to participate in a
second edition.

The game was well accepted. Ten participants graded it as the chosen game, at
least 4. On the contrary, nearly half of them would have liked more time for coding
and debugging their programs; a couple preferred less time between the rounds for a

98

more excellent spectating experience. Due to their background, the students gener-
ally found using the coco CLI client easy.

Many participants asked for a web-based visualizer with a database of the played
matches. This would have been very useful for inspecting opponent’s strategies with
the added benefit of being more user-friendly and platform-independent.

5.4 Findings and further directions
We presented Code Colosseum, a platform to create and play real-time multiplayer
games meant to be played by programs. We proposed Code Colosseum as a comple-
mentary educational tool, akin to competitive programming but based on games in-
stead of problems, to foster Computer Science education to a broader audience. We
provided an implementation of the Code Colosseum concept with the cocod server
and coco client and discussed their implementation details. We then described the
pilot experience we organized, a Royal Game of Ur double-elimination tournament
between 16 students. We then described and discussed the feedback received from
the students about this experience.

From the students’ feedback, we can assess that the pilot experience was substan-
tially positive: most students enjoyed participating, and all would participate again.
The game made them explore concepts from game theory and statistics. The tourna-
ment has enthralled the participants in the game, so much so that some of them kept
refining their bots for some weeks after the tournament.

In the future, we plan to host a second tournament. We commit to improving the
experience by implementing the feedback we received from the participants. In par-
ticular, the following well-defined directions are indeed likely to have a positive im-
pact:

• add a web interface for spectating the matches;
• add a replay functionality to re-watch past matches;
• rebalance the durations of the various phases of the tournament. In particular,

by increasing the time before the first match.

5.5 Replay functionality
As mentioned in the previous section, one of the most requested features was the
ability to replay past matches. This would allow the participants to inspect the strate-
gies of their opponents and learn from them. It would also allow the spectators to
watch past matches and learn from them.

The replay functionality was implemented [129] by adding a database backend to
cocod and a new coco command to query the database and replay a match. The data-
base backend is agnostic to the game being played and which database management

99

system is used. The current implementation uses the filesystem as the database man-
agement system and stores the matches in JSON format. The database is updated
every time a match ends.

On the frontend, a new coco command was added to query the database and replay
a match. The command takes as input the match ID. It then queries the database for
the match and sends the game data to the specified program. The program can then
visualize the match as it sees fit, since the game data is the same as the one sent to
the spectator during a live match.

5.6 Graphical user interface

Figure 42: Code Colosseum graphical user interface.

Other than the replay functionality, the most requested feature was a graphical user
interface. This would allow the participants to participate in and spectate matches
without having to use the terminal. It would also allow the participants to visualize
the matches in a more user-friendly way. This would be especially useful for specta-
tors and less-experienced participants.

The graphical user interface was implemented [130] using Tauri [131], a framework
for building web applications using Rust. The frontend is a web application written
in TypeScript [105] and Angular [104]. The frontend communicates with the backend
using WebSockets using the same protocol as the coco client.

Currently, the graphical user interface allows the user to create matches, join
matches with a bot, and spectate matches. The replay functionality is still not avail-
able in the graphical user interface. A screenshot of the graphical user interface is
shown in Figure 42. The existence of a graphical user interface also makes some quirks
of the coco client more apparent, such as the lack of a ready command to signal the

100

server that the bot is ready to play. Thus, the protocol will be updated to reflect such
new requirements.

5.7 Additional games
To further increase the appeal of Code Colosseum, two new games were implemented:
Checkers and Chess. Both games are well-known and have a large player base. They
are also both turn-based and deterministic, making them easier to implement than
real-time games. Both games were implemented using Rust [75], since they must be
compiled with cocod.

5.7.1 Checkers

Figure 43: A checkers board with the pieces in their starting positions.

Checkers (or draughts) is a two-player strategy board game played on an 8 × 8 board
with 12 pieces per player. The goal of the game is to capture all the opponent’s pieces
or to block them from moving. Although checkers is a solved game [132], the number
of possible moves is still large enough to make it interesting to watch. An example
of a checkers board is shown in Figure 43.

The game of checkers was added [133] to Code Colosseum by implementing the
game manager for it. The manager has been called Dama (Italian for checkers). This
manager is more geared towards human players than the other managers, since it
allows the players to see the board state. However it is still possible to play as or
against a bot.

5.7.2 Chess

Chess is a two-player strategy board game played on an 8 × 8 board with 16 pieces
per player. The goal of the game is to capture the opponent’s king. Chess is one of

101

Figure 44: A chess board with the pieces in their starting positions.

the most popular games in the world, with millions of players worldwide. It is one
of the most complex games, with a large number of possible moves. An example of a
chess board is shown in Figure 44.

The game of chess was added [134] to Code Colosseum by implementing the game
manager for it. The implementation of the manager follows the typical interface of
the other managers, thus it is more geared towards bots than human players. How-
ever, it is still possible to play as a human player and use the spectator stream with a
graphical user interface to visualize the board state.

5.8 Future directions
The current state of Code Colosseum is still far from being a complete and polished
product. There are many features that could be added to make it more appealing and
user-friendly. To gather feedback on the current state of the project, other tourna-
ments should be organized. This would allow us to gather more feedback and improve
the platform accordingly.

Other than the feedback from the participants, the platform should be tested with
a crowd of spectators. This would allow us to gather feedback on the spectator expe-
rience and improve it accordingly, which is one of the main goals of Code Colosseum.
In this direction, a big feature that would improve the spectator experience and fur-
ther standardize the game manager interface would be the addition of a routine that
generates a series of images representing the game state given the spectator stream.

102

This would allow the spectators to watch the matches in a consistent way, regardless
of the game being played.

Another feature that would improve the making of new games for Code Colosseum
would be the support for writing game managers in other programming languages
other than Rust. While Rust has all the features needed to write a game manager, it is
still not a widely used language. Thus, supporting other languages would allow more
people to contribute to the project.

103

104

6 Conclusions

We presented the world of competitive programming and we gave an overview of
how a competitive programming problem looks like, what different kinds of prob-
lem solving techniques are used to solve them and what programming languages are
currently used in competitive programming. The techniques for solving problems in-
clude recursion, dynamic programming, greedy algorithms and divide and conquer. As
for the languages, we described the strengths and weaknesses, in competitive pro-
gramming, of C, C++, Java, Python and Pascal. We concluded that C++ is the most
used language in competitive programming at the time of writing this thesis.

We then gave an overview of the two biggest competitive programming compe-
titions in the world, the International Olympiad in Informatics (IOI) and the Interna-
tional Collegiate Programming Contest (ICPC). Regarding the IOI, we talked in specific
about the Italian team selection process for the IOI, the Olimpiadi Italiane di Informat-
ica (OII). In this context, we presented a report on the challenges of the organization
of the OII contests during the COVID-19 pandemic. In order to move everything on-
line, we developed new platforms that allowed for running the contest online while
still maintaining the same spirit of the in-person contests. For the school-level con-
test, we developed randomTeX, a program for generating randomized tests using a
pool of problem variants. For the regional-level contest, we adapted the previously
developed Terry contest management system to run the contest online. Finally, for
the national-level contest, we developed oii-proctor, a program for monitoring the
students during the contest. Moreover, we presented some analytics from CMSocial,
a fork of the CMS contest management system [58]. Here, we analyzed the data from
two groups of people using the CMSocial platform: the students and teachers. We
estimated the difficulty of the problems and we analyzed the performance of the stu-
dents compared to the one of the teachers, finding that the two groups have similar
performance distribution. Regarding the ICPC, we talked in specific about the South-
Western European Regional Contest (SWERC). In this context, we gave a report of the
organization of the 2022 and 2023 editions of the contest, which we organized. We
showed the statistics about the historical participation of the teams to the SWERC
and we showed that the last edition we organized was the largest one according to
all the three considered metrics.

Then, we presented the first of the two novel contest management systems we de-
veloped: Turing Arena light. This system was designed with problem interactivity and
ease of use in mind. The goal was to use it as an aid in teaching computer science con-
cepts to students. Its implementation was kept as simple as possible, while providing
all the feature needed to achieve these goals and keeping it extensible. To achieve

105

this, we kept all the critic features inside a small standardized core, and extended it
as needed. We described its client-server architecture and described the abstraction
of the communication protocol between the solution and the problem manager. We
then described how problem formats can be implemented through problem manager
libraries, and showed an in-progress implementation of a web graphical user interface
for the client. Finally, we talked about the usage of Turing Arena light in the compet-
itive programming course, at the University of Verona, both for laboratory exercises
and for the exams. We reported the statistics of the participation and scores of the
exams held using Turing Arena light and showed that there has been an increase over
time both of the number of students participating and of number of students achiev-
ing a perfect score. We then reported the results of a survey we conducted among
the students, which showed that the students were satisfied with the platform, the
problems and the platform, and found the interactivity element of Turing Arena light
to be of interest. These results combined show that Turing Arena light can be a viable
platform for teaching computer science concepts to students while retaining their
interest.

Finally, we presented the other novel contest management system we developed:
Code Colosseum. This system was designed as an arena where programs written by
the users can compete against each other in real-time playing a game. Many of the
concepts of Code Colosseum are inherited from Turing Arena light, such as the client-
server architecture, the interactivity and keeping it simple to use. While trying to be
a tool that creates engagement in the students using it, thus being useful for teaching
computer science in a fun way, it also tries to be a system that makes competitive
programming interesting to watch, by showing what the participants’ programs are
doing during the game in real-time. We described in detail the design, motivations
and goals of the tool, specifically by talking about the visualization element, the
tournaments opportunity and its simplicity aspects. We then dwelt into the imple-
mentation details, describing the client-server architecture and the communication
protocol. We then described the pilot experience we conducted with Code Colosseum,
where we organized a tournament for the students of the Italian competitive pro-
gramming community. For this pilot experience we chose the Royal Game of Ur as
the game to be played. We described the game and the rules of the tournament. Af-
ter the tournament, we conducted a survey among the participants, which showed
that participating in the tournament was a positive experience for the participants,
that the game chosen was interesting and that the visualization of the game, from a
spectator point of view, was mostly a positive experience. From these results we can
conclude that Code Colosseum can be a fun experience for teaching computer science
concepts to students, but it still needs some work to be done to make it also more
interesting for spectators to watch. After this pilot experience, more features were
added to Code Colosseum, namely: replay functionality to allow for watching past

106

games, a graphical user interface for the client, and two new games to be played on
the platform: checkers and chess.

6.1 Future works
There is still much that can be done for the development of competitive programming
platforms for computer science education. Aside from improvements to the two plat-
forms presented in this thesis (Turing Arena light and Code Colosseum), there are other
ideas that go in the direction of making competitive programming more accessible
to younger students, that do not necessarily have the programming skills needed to
compete in regular competitive programming contests, but can benefit from develop-
ing early the problem solving mindset of competitive programming. An example of
a project that goes in this direction is QuizMS [135], which is being developed by the
team of the Italian Olympiad in Informatics (Olimpiadi Italiane di Informatica, OII).

For Turing Arena light, the main point for future works is deciding in which direc-
tion to take the development of the platform. There are two main options: keep it
a very flexible tool, keeping the core as small as possible and continue adding fea-
tures only through extensions, or make it a more complete and opinionated platform,
standardizing more features into the core and enabling more complex features to be
developed, such as more accurate time limit management. Other than that, the sec-
ondary point of development is the betterment of the graphical user interface, which
is currently in an early and untested stage of development.

For Code Colosseum, the main way forward is to organize more tournaments, with
more games, and to collect more feedback from the participants. This will allow to
better understand what works and what does not work in the platform, and to im-
prove it accordingly. Moreover, the whole system has to be polished to become more
user-friendly, both in terms of the graphical user interface and in terms of the user
experience, such as the addition of tooling to automate the testing of the players’
programs. On the technical side, the way of showing the game to the spectators must
be standardized, so that it can be used for any game, and the visualization can be
easily done by all graphical clients. Furthermore, the game manager interface must be
expanded to allow for game managers to be written in any programming language,
and not only in Rust.

107

108

7 Other works

Aside from the work on competitive programming in these years we also worked on
other research topics. In particular, we worked on:

• AI playing Touhou from pixels: we investigated the possibility of using AI to play
Touhou, a bullet hell game. While AIs that play this game by looking at the in-
ternal state of the game are already available, we wanted to see if it was possible
to play the game only with the information that a human player would have, i.e.
the pixels on the screen.

• SMT, MILP and SAT models for DTP: we explored the Disjunctive Temporal Prob-
lem (DTP) and we developed models for solving it using Satisfiability Modulo
Theories (SMT), Mixed Integer Linear Programming (MILP) and Boolean Satisfia-
bility (SAT) solvers.

In this chapter we will report the results of our research on these topics.

109

110

7.1 AI playing Touhou only from pixels
In 2021, we³⁶ wrote a paper called Towards an AI playing Touhou from pixels: a dataset
for real-time semantic segmentation [136], that investigates what’s needed for an AI to

³⁶Dario Ostuni (University of Verona) and Ettore Tancredi Galante (University of Milan)

play a shoot ‘em up game when only looking at the pixels. What follows is a reworked
version of that paper.

This paper was motivated by the fondness we have for the Touhou Project, and a
willingness to study the problem of AIs playing games from pixels. During the ini-
tial research, we found out that the problem of AIs playing Touhou from pixels is
way more challenging than we initially thought, so we focused on doing a first step
towards it: creating a model capable of real-time semantic segmentation of Touhou
game frames.

We also found out that this secondary problem is not trivial, so we decided to write
a research paper about it.

When playing from pixels, AIs share some of the struggles humans face when playing
a game, namely, not knowing its internal state. We begin the exploration of the AI-
playing-from-pixels problem for Touhou, a bullet hell game. Albeit being a massively
popular game in some niches, the community has yet to produce an AI capable of
beating it while looking only at pixels in Lunatic mode, the hardest difficulty.

As a first step, we propose to build a semantic segmentation model to create a
bridge to the internal-state-looking AIs. We created a dataset to train models for this
task to achieve this. This dataset is procedurally generated using manually labeled
assets from classic era Touhou games.

After selecting five state-of-the-art real-time semantic segmentation networks, we
trained them using our dataset. The results indicate that the models produced have
a high classification performance over the validation set. However, all models except
one are too slow to run in real-time at the game’s target frame rate. The models show
promising results on actual game footage, but the dataset needs to be strengthened
to account for noise sources in the real game.

7.1.1 Introduction

The research on Artificial Intelligence is vital for an ever-expanding set of fields with
immediate applications (e.g., autonomous driving and robotics). However, a signifi-
cant driving force for it has come from Game AI, whose results are applied to other
fields [137].

One active topic of research is AIs playing games from pixels. The seminal paper in
this regard is from DeepMind, in which their general AI managed to play Atari games

111

from pixels [138]. Nonetheless, there is still interest in developing AIs playing from
pixels for a single game. For instance, the ViZDoom competition [139] is about AIs
playing Doom from pixels only. According to the competition report, although the
competition is centered around a single game, AIs can still not compete at the same
level as humans [140].

The Touhou Project, or simply Touhou, is a series of bullet hell (a sub-genre of shoot
‘em up) games that gained massive popularity in Japan, the country from which its
creator is from, and internationally [141]. As of 2021, there are 30 installments in the
Touhou series, with 18 main titles and 12 spin-offs. The gameplay of the main titles
consists of a vertical-scrolling setting where the main character must dodge a barrage
of bullets from the enemies while trying to shoot them down. Each title offers four
levels of difficulty: Easy, Normal, Hard and Lunatic.

Developing an AI for playing a Touhou game at Lunatic difficulty by reading only
the raw output pixels is challenging. One of the focuses of Touhou is to get swift re-
action times from players to dodge bullets. By running at 60 FPS³⁷, AIs playing it must

³⁷Frames Per Second.

make their decisions quickly. Delaying them by even a few frames could be fatal for
the main character. Thus, AIs should be able to keep up with the game in real-time.
Moreover, playing Touhou occasionally requires long-term planning of movements,
such as in boss fights. Some AIs for Touhou exist [142]. However, they rely on internal
game state information, such as the position of the main character and enemies, or
they need to swap the game assets to recognize different objects by simply color-
coding.

We propose creating a real-time semantic segmentation model as a first step to-
wards achieving the result of such an AI. This approach aims to achieve a similar
starting condition as the assets-swapping technique. To create a model, we first
need a dataset for training and testing possible models. The following section shows
how we created a dataset for this task starting from the assets of classic era Touhou
games³⁸. Then, we give an overview of real-time semantic segmentation and present

³⁸The classic era refers to the games from Touhou 6 to Touhou 9.5

five state-of-the-art networks. We then explore how we trained these networks using
our dataset and how the resulting trained models performed at labeling generated
and authentic images from Touhou games.

7.1.2 Dataset Generation

Creating an extensive dataset for semantic segmentation can be arduous; collecting,
preparing, and annotating data requires large amounts of effort. Nonetheless, sev-
eral large generic and domain-specific datasets exist, such as Pascal VOC [143, 144],
Microsoft COCO [145] and Cityscapes [146]. All these datasets were created by out-
sourcing the work necessary for the most time-consuming tasks, primarily image

112

annotation. A similar endeavor could be sought to create a dataset for semantic seg-
mentation of Touhou game frames, capturing thousands of screenshots of the game
and then manually labeling them. However, such a dataset can be created in another
way: by only manually marking the game assets and then crafting generated game
frames that can be labeled automatically.

Such an approach is possible because Touhou satisfies the following requirements:
• it is a primarily 2D game³⁹, thus creating an artificial game frame can be done by

simply compositing the 2D assets on a blank canvas;
• a typical actual game frame has a pretty simple structure; thus, it is easy to repli-

cate by using simple operations such as scaling and rotation of the assets;
• the amount of assets is small and unambiguous enough to label manually;
• there are no assets used in semantically different ways inside the game.

³⁹Some backgrounds are rendered in 3D.

Under such requirements, procedurally generating a dataset, given the manually la-
beled assets, should yield similar results to a manually labeled dataset of game frames
when such datasets are used to train semantic segmentation models. The former ap-
proach, however, comes at a fraction of the cost and can generate an arbitrarily large
dataset.

We extracted the assets of Touhou games from 6 to 9.5 with the help of Touhou
Toolkit [147] and manually labeled them into 15 categories. To aid the labeling, we
created a YAML-serialized [93] format to hold the labeling information. A total of
4129 bitmaps were labeled.

We then created ThGen, a program to procedurally generate Touhou-like game
frames of the main playing field. To ensure high generation speed, the programming
language chosen for ThGen was Rust [75], but bindings for Python were also written
to be able to access it from a more traditional machine learning environment. The
default target size for the generated image has been set to 576 × 672 to match the
original one.

ThGen reads the labeled assets extracted from the games and generates a fictional
game frame of the playing field by randomly placing objects on an initially blank
canvas. While placing such objects, it separately records the positions of the placed
objects’ pixels to generate a label for the created image. The process of ThGen to gen-
erate an image and its associated label from a given seed is entirely deterministic.
Thus, the same dataset can be generated on different runs starting from just the la-
beled assets and ThGen.

We have selected 15 semantic labels, colored with the hue palette from Seaborn
[148], that should almost entirely cover the kind of objects present in the game:

• Player: the main character (e.g., Reimu and Marisa);
• Boss: stage boss (e.g. Cirno);

113

• StandardEnemy: common enemy (e.g., fairies);
• MajorEnemy: more sturdy enemy (e.g., big fairies);
• StaticEnemy: undefeatable enemy (e.g., library books);
• PlayerBullet: bullet from the player;
• EnemyBullet: bullet from the enemies;
• PlayerBomb: bomb used by player (e.g. Master Spark);
• PowerItem: power-up item (e.g., red power-ups);
• PointItem: item to gain points (e.g., blue points);
• GameSpecificItem: power item specific to a certain game version (e.g., cherry

items in Touhou 7);
• LifeItem: 1-up for the player lives;
• BombItem: 1-up for the player bombs;
• Text: text as seen in the playing field;
• Background: 2D background of the game.

The major missing label is for dialogue objects, which occur when dialogues between
the characters arise. However, such objects are unimportant for active gameplay, as
they can be skipped.

7.1.3 Semantic Segmentation Networks

Original G. truth CGNet ENet BiSeNetV2 DFANet FastSCNN

Table 4: Labeling results of the best iteration for each model

To evaluate the performance of a semantic segmentation model, there are two com-
mon metrics: pixel accuracy and mean intersection over union (mIoU). Pixel accuracy

114

Figure 45: Predicted labelings of a Touhou 6 game frame

is the fraction of correctly labeled pixels over an image’s total number of pixels. The
mIoU measures each semantic class’s intersection of true positives. Let 𝑛 be the num-
ber of classes, 𝑇𝑖 be the set of pixels labeled with the class 𝑖 in the ground truth image,
and 𝑃𝑖 be the set of pixels labeled with the class 𝑖 in the predicted image. Then, the
mIoU is calculated as follows:

1
𝑛

∑
𝑛

𝑖=1

|𝑇𝑖 ∩ 𝑃𝑖|
|𝑇𝑖 ∪ 𝑃𝑖|

This section presents five semantic segmentation networks specialized for real-time
applications. Such specialization is needed since Touhou runs at 60 FPS, and a real-
time AI agent should be able to run at the same, or higher, frame rate to have good
performance. In their original evaluations, the selected semantic segmentation net-
works all advertise good pixel accuracy or mIoU.

Fast-SCNN [149], short for Fast Segmentation Convolutional Neural Network, is an
architecture for semantic image segmentation over high resolution images. The origi-
nal paper evaluated the model against the Cityscapes dataset, yielding a mIoU of 68.0
%. They also measured the inference speed, 123.5 FPS at a resolution of 1024 × 2048,
on an NVIDIA TITAN Xp GPU.

115

Figure 46: Predicted labelings of a Touhou 7 game frame

The Bilateral Segmentation Network V2, BiSeNetV2 [150], is an architecture focused
on fast model inference and high scores over both pixel accuracy and mIoU. The model
in the original paper was evaluated against three datasets, Cityscapes, CamVid [151,
152] and COCO-Stuff [153], yielding the following results:

• Cityscapes: a mIoU of 76.6% with an inference speed of 156 FPS at a resolution
of 1024 × 512;

• CamVid: a mIoU of 72.4% with an inference speed of 124.5 FPS at a resolution
of 960 × 720;

• COCO-Stuff: a mIoU of 25.2% and a pixel accuracy of 60.5% with an inference
speed of 87.9 FPS at a resolution of 640 × 640.

The inference speed was measured using a NVIDIA GeForce GTX 1080Ti GPU.

DFANet [154], short for Deep Feature Architecture Network, is an efficient CNN ar-
chitecture striving to balance speed and segmentation performance. In the original
paper, the DFANet model was evaluated against the Cityscapes dataset, yielding a
mIoU score of 71.3% in the best iteration of the model. The inference speed, measured
on an NVIDIA TITAN X GPU, was equal to 100 FPS at a resolution of 1024 × 1024.

116

Figure 47: Predicted labelings of a Touhou 8 game frame

The Efficient Neural Network, ENet [155], is a neural network architecture for real-
time semantic segmentation. In the original paper, ENet was evaluated over three
datasets, achieving the following results:

• Cityscapes: a mIoU of 58.3%;
• CamVid: a mIoU of 68.3%;
• SUN RGB-D [156]: a mIoU of 19.7%.

The inference speed was measured on a 1280 × 720 resolution using a NVIDIA Titan
X GPU, which resulted in 46.8 FPS.

The Context Guided Network, CGNet [157], is a neural network architecture for se-
mantic segmentation designed to work on mobile devices. The original paper evalu-
ated the model on the Cityscapes dataset, resulting in a mIoU of 64.8%. Using two
NVIDIA V100 GPUs, the measured inference speed was 17.61 FPS at 2048 × 1024 res-
olution.

7.1.4 Experiments and Results

To assess the quality of our dataset, we trained all the real-time semantic segmenta-
tion networks we described before with a generated instance of our dataset contain-
ing 16384 images for the training set and 512 for the validation set. We then evalu-

117

ated the trained networks against the validation set using two common metrics for
semantic segmentation: pixel accuracy and mean intersection over union. We also use
them to label actual game footage to give a qualitative analysis of the models’s per-
formance.

CPU Intel Core i7-6700K @ 4.00GHz
RAM 64 GB DDR4 @ 2133 MHz
GPU NVIDIA GeForce GTX 980M
OS Arch Linux — kernel 5.12.6-zen

Table 5: Experiments machine system specifications

All the models were implemented using the PyTorch framework [158]. All the
training, validation, and evaluation processes occurred on a machine whose charac-
teristics are described in Table 5. As specified in the dataset section, the resolution
of the images in the dataset is 576 × 672, and they are segmented using 15 different
semantic labels.

Figure 48: Pixel accuracy over cumulative training time

118

Figure 49: mIoU over cumulative training time

Model Epoch Accuracy (%) mIoU (%) FPS
CGNet 45 98.82 90.64 28.88
ENet 66 98.97 91.18 35.79

BiSeNetV2 37 99.31 94.03 21.68
DFANet 61 98.14 84.01 34.34

FastSCNN 21 98.18 85.44 82.24

Table 6: Best iteration for each model

Each model was trained for a time between 27 and 28 hours. The optimization algo-
rithm used was AMSGrad [159] with a plateau-based learning rate scheduler. The loss
function used was the cross-entropy loss function. For the FastSCNN and BiSeNetV2
networks, a variation of cross-entropy was used as suggested in their respective pa-
pers. While training, we evaluated the models using the pixel accuracy and mean in-
tersection over union metrics. The results are reported in Figure 48 and Figure 49.

We chose the one that maximized the average of the two collected metrics to se-
lect the best iteration for each model. The information about the best iterations is

119

reported in Table 6, alongside the inference speed measured in FPS. The speed metric
was obtained by averaging the speed of inference on the images of the validation set.

As we can see from Figure 48 and Figure 49, and from Table 6, the best-performing
model, by far, is BiSeNetV2 both in terms of pixel accuracy and mIoU. However, the
BiSeNetV2 model has the lowest inference speed at 21.68 FPS, which is less than half
of the frame rate of Touhou. The fastest model, although second worst performing, is
FastSCNN, which achieves and surpasses the 60 FPS target. The ENet model is good
enough, reaching the second position in all categories. The CGNet model performs
similarly to ENet, albeit with lower inference speed. The DFANet is the worst per-
former, with an inference speed lower than FastSCNN.

Table 4 presents some images from the validation set, their label, and the predic-
tion made by the models. All models produce a reasonably good segmentation of
the original image that closely resembles the ground truth. To assess the validity of
these models on real game frames, we made these models label some video record-
ings of Touhou games and posted the results on YouTube [160]. Some sample frames
are shown in Figure 45, Figure 46 and Figure 47. We can see from these videos that
the performance of the models on real Touhou game frames drops, mainly due to the
noise in the segmentation induced by the moving background, clusters of bullets,
and visual special effects. Three models give promising results: BiSeNetV2, DFANet,
and ENet. The first two seem more sensitive to moving backgrounds and special ef-
fects, while ENet to clusters of bullets. The first two perform best for Touhou 6, while
ENet performs better with Touhou 7 and 8. The FastSCNN and CGNet models perform
poorly on real game data.

7.1.5 Conclusions and Future Works

The research on AIs playing games from pixels is very active. Most of the best results
come from general AI research, but achieving better results for a specific game is still
more manageable. We presented the AI-playing-from-pixels problem for Touhou, a
bullet hell game that, albeit being massively popular in some niches, lacks an AI that
can beat it at its hardest difficulty by just looking at pixels.

We proposed semantic segmentation as a first step to bridge the gap between pixel-
looking AIs and internal-game-state-looking AIs. To achieve a semantic segmenta-
tion model for this task, we created a dataset procedurally generated using manually
labeled assets from a selected subset of Touhou games. We gave an overview of five
possible real-time semantic segmentation models, selecting them for their speed and
accuracy. We then trained these models with our dataset, and we showed that they
perform well against the validation set, albeit not at the 60 FPS target, except for
FastSCNN. We also evaluated these trained models on actual game footage, which
showed promising results but still had too much classification noise.

120

In the future, we plan to strengthen the dataset by adding noise to the background,
more clusters of bullets, and assets from more Touhou games. We also want to inves-
tigate faster semantic segmentation models to reach the 60 FPS target while main-
taining great classification accuracy.

121

122

7.2 SMT, MILP and SAT models for DTP
In 2023, we⁴⁰ wrote a paper called An interdisciplinary experimental evaluation on the
disjunctive temporal problem [161], that investigates three models to tackle the Dis-
junctive Temporal Problem. What follows is a reworked version of that paper.

⁴⁰Matteo Zavatteri (University of Padova), Alice Raffaele (University of Verona), Dario Ostuni (U-
niversity of Verona) and Romeo Rizzi (University of Verona)

We study the Disjunctive Temporal Problem (DTP). We present several formulations
coming from different communities, such as Artificial Intelligence (AI), Operations Re-
search (OR) and Theoretical Computer Science (TCS). In particular, we describe two
existing encodings of DTP into the Satisfiability Modulo Theory (SMT) framework.
Then, we offer a natural formulation of DTP as a Mixed Integer Linear Programming
(MILP) and we also propose a non-trivial reduction to Boolean Satisfiability (SAT).
Also, we offer a fully-reproducible experimental evaluation on two sets of instances:
one already available in the literature, the other being a new class of hard instances
that we define. The computational results show that in general no formulation always
outperforms the others, even if MILP solvers seem to be more promising. Anyway,
highlighting where one approach is stronger and where it has space for improvement,
with respect to the others, paves the way to enhance the synergy of AI, OR and TCS,
especially on those problems that lie in the intersection of these disciplines but have
usually been tackled separately. Indeed, DTP can play as a favorable cross-way for
confrontation and exchange of tools and techniques and for its suitability to be man-
aged from the different paradigms.

7.2.1 Introduction

The Disjunctive Temporal Problem (DTP) is an NP-complete problem that has been
proposed and has played a significant role within the Artificial Intelligence (AI) com-
munity (e.g., [162, 163, 164, 165]). Firstly considered and richly analyzed through
the constraint propagation paradigm, more recently it has effectively been addressed
with state-of-the-art Satisfiability Modulo Theory (SMT, [166]) technologies [167, 168].
Like the fundamental models studied in the 1960s, a DTP instance comprises a set of
real variables (called time points) and a set of linear difference constraints on them
(called temporal constraints). The problem of computing solutions (and deciding the
feasibility) for systems of temporal constraints was addressed by Bellman and Ford
[169, 170]}, Floyd [171] and Johnson [172]. Deciding whether there exists an assign-
ment of real values to the variables respecting all the constraints in the system is
known as the Simple Temporal Problem (STP) [162] by the AI community and can be
solved in polynomial time by the Bellman-Ford algorithm [169, 170]. In many appli-
cations, each time point represents an event to be scheduled and a temporal constraint
describes the condition on the temporal distance (i.e., a delay or a deadline) between
the scheduled times of a pair of events 𝑋 and 𝑌 . This is modeled with a linear dif-

123

ference constraint, in the form 𝑌 − 𝑋 ≤ 𝑘, with 𝑘 ∈ ℝ. DTP is more general in that
the assignment is required to satisfy each constraint in a system of disjunctive con-
straints. Here, a disjunctive constraint is a set of linear difference constraints called
disjuncts. For each disjunctive constraint, the assignment is required to satisfy at least
one of its disjuncts. No surprise DTP is NP-complete: this extra generality allows for
representing non-mutually exclusive alternatives by offering the scheduler/planner
a choice about which disjuncts to actually satisfy.

In this way, the DTP is one of the possible natural extensions of STP that offers an
abstraction to planning integrated with the underlying scheduling dimension. This
explains the attention that DTP and its further extensions have received in the AI
community. At the same time, all these issues are relevant to Operations Research (OR)
and Theoretical Computer Science (TCS), that also deal with computational problems
involving not only scheduling and resource management, but also planning and goal
selection, though with an historical preference to face them separately. We explore
how the tools and techniques from AI, OR and TCS can all be conveniently applied to
DTPs. Their strengths and weaknesses, to some extent, can surely play complemen-
tary and each of them is worth investigating. We offer a first and natural Mixed Inte-
ger Linear Programming (MILP) formulation and we propose a non-trivial reduction
to Boolean Satisfiability (SAT). Then, we provide an implementation of both formula-
tions. Our purpose is to compare these two approaches among themselves and with
state-of-the-art SMT solvers. Besides the benchmarks already available in the litera-
ture, we propose one further family of hard instances and measure the performances
of the three instruments on all of them. By evaluating the three paradigms, we aim to
offer a better comprehension of the properties of the problem and of those features
of the instances that add up to its complexity, whether independently from the ap-
proach or not. The goal of the comparison is not to determine the best “gun” overall,
but rather to highlight where one behaves better, or, on the contrary, it should have
much space for improvement, possibly inspired by cross-fertilization from the others.
We hope to initiate an interdisciplinary collaborative study on DTP and to propose
this problem as a common challenge to foster fruitful confrontation among different
communities. To favor them, we commit to open-source code and fully-reproducible
experiments.

We wish some general take-home messages could be obtained from this three-side
attack to this NP-complete problem. This perspective should appeal to both the ap-
plication-oriented engineers and the scientists working at refining the core tools or
applying them at their best through close analysis of the problem. A common play-
ground might also promote or inspire other synergies.

7.2.2 The Disjunctive Temporal Problem

In this section, we give a formal definition of DTP as stated in the AI community. We
also introduce a running example that we use throughout the whole work.

124

Definition 7.2.2.1 (Disjunctive constraints) : Given a finite set of real variables
𝑇 , a disjunctive constraint is a disjunction coming in the form:

(𝑌1 − 𝑋1 ∈ [𝑙1, 𝑢1]) ∨ … ∨ (𝑌𝑛 − 𝑋𝑛 ∈ [𝑙𝑛, 𝑢𝑛])

where each disjunct 𝑌𝑗 − 𝑋𝑗 ∈ [𝑙𝑗, 𝑢𝑗] is equivalent to the pair of linear dif-
ference inequalities 𝑌𝑗 − 𝑋𝑗 ≥ 𝑙𝑗 and 𝑌𝑗 − 𝑋𝑗 ≤ 𝑢𝑗, with 𝑋𝑗, 𝑌𝑗 ∈ 𝑇 , 𝑙𝑗, 𝑢𝑗 ∈
ℝ ∪ {−∞, +∞} with 𝑙𝑗 ≤ 𝑢𝑗, for 𝑗 = 1, …, 𝑛.

Definition 7.2.2.2 (Schedule, integer schedule, and feasible schedule) : A
schedule for a DTP instance (𝑇 , 𝐶) is a total mapping 𝜎 : 𝑇 → ℝ. When
𝜎 : 𝑇 → ℤ, then it is called integer. A schedule 𝜎 is feasible if 𝜎 satisfies
every constraint in 𝐶 . Here, 𝜎 satisfies a constraint (𝑌1 − 𝑋1 ∈ [𝑙1, 𝑢1]) ∨
… ∨ (𝑌𝑛 − 𝑋𝑛 ∈ [𝑙𝑛, 𝑢𝑛]) if and only if (𝜎(𝑌1) − 𝜎(𝑋1) ∈ [𝑙1, 𝑢1]) ∨ … ∨
(𝜎(𝑌𝑛) − 𝜎(𝑋𝑛) ∈ [𝑙𝑛, 𝑢𝑛]) (i.e., 𝜎 satisfies at least one disjunct of that con-
straint).

The following problem definition soaks up those provided in [163, 164, 165].

Definition 7.2.2.3 (DTP) : Given a finite set 𝑇 of real variables called time
points and a finite set 𝐶 of disjunctive constraints, does there exist a feasible
schedule?

We write 𝐶𝑖 to refer to the 𝑖th disjunctive constraint in 𝐶 and 𝐶𝑖,𝑗 to refer to the 𝑗th}
disjunct of 𝐶𝑖 (i.e., 𝑌𝑖,𝑗 − 𝑋𝑖,𝑗 ∈ [𝑙𝑖,𝑗, 𝑢𝑖,𝑗]). We write |𝐶| for the cardinality of 𝐶
(i.e., the number of disjunctive constraints in it). We write ‖𝐶𝑖‖ for the number of dis-
juncts 𝑌𝑖,𝑗 − 𝑋𝑖,𝑗 ∈ [𝑙𝑖,𝑗, 𝑢𝑖,𝑗] appearing in the disjunctive constraint 𝐶𝑖. Likewise,
we write ‖𝐶‖ for the overall number of disjuncts appearing in all constraints (i.e.,

125

‖𝐶‖ ≔ ∑|𝐶|
𝑖=1‖𝐶𝑖‖). When all disjunctive constraints contain exactly one disjunct, the

DTP instance is actually an STP instance.

Figure 50: Graphical representation of Example 7.2.2.1. All constraints with
one single disjunct are colored in black. For every other constraint, all of its
disjuncts are represented with edges of the same color. The green numbers at-
tached to the nodes comprise a feasible schedule. Each shaded box highlights

which time points and constraint model a specific task.

Example 7.2.2.1 : Three tasks 𝑡1, 𝑡2 and 𝑡3 have to be scheduled before execution
under the following conditions:

• 𝑡1 and 𝑡2 start simultaneously;
• 𝑡1 takes between 2 and 8 seconds;
• 𝑡2 takes at least 10 seconds;
• 𝑡3 starts upon the completion of 𝑡1;
• 𝑡3 takes between 10 and 12 seconds;
• 𝑡2 ends within one second since the completion of 𝑡1 or 𝑡3 ends exactly

one second after the completion of 𝑡2.

To model this problem as a DTP instance (𝑇 , 𝐶), introduce the following time
points: 𝐴 is the start of both 𝑡1 and 𝑡2 (Condition 1); 𝐵 is both the end of 𝑡1 and
the start of 𝑡3 (Condition 4); 𝐶 is the end of 𝑡2; 𝐷 is the end of 𝑡3. Actually, 𝐴
collapses 𝐴1 (the start of 𝑡1) and 𝐴2 (the start of 𝑡2) plus the constraint 𝐴1 −
𝐴2 ∈ [0, 0] (simultaneous occurrence); the same holds for 𝐵, but with respect
to 𝐵1 (the end of 𝑡1) and 𝐵2 (the start of 𝑡3). Thus, 𝑇 ≔ {𝐴, 𝐵, 𝐶, 𝐷}. The

126

set 𝐶 contains three disjunctive constraints with a single disjunct each (𝐶1,
𝐶2, 𝐶3) to be always satisfied, and one disjunctive constraint (𝐶4) with two
disjuncts.

|
|
|
|
|
|𝐶1 : 𝐵 − 𝐴 ∈ [2, 8] 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2
𝐶2 : 𝐶 − 𝐴 ∈ [10, +∞] 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 3
𝐶3 : 𝐷 − 𝐵 ∈ [10, 12] 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 5
𝐶4 : 𝐶 − 𝐵 ∈ [−∞, 1] ∨ 𝐷 − 𝐶 ∈ [1, 1] 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 6

We graphically represent a DTP instance as a directed multi-graph, where nodes and
arcs model time points and constraints, respectively, according to the following con-
vention. Each constraint comprising one single disjunct 𝑌 − 𝑋 ∈ [𝑙, 𝑢] ∈ 𝐶 is rep-
resented by a black arc 𝑋 → 𝑌 labeled with [𝑙, 𝑢]. Instead, to each constraint com-
prising more than one disjunct, we assign a fresh color and we represent each of its
disjuncts with an arc of that color, with head and tail as above. In this way, a feasible
schedule needs to satisfy all black arcs and at least one arc for any other color. Fig-
ure 50 shows the graphical representation of Example 7.2.2.1. A feasible schedule is
𝜎(𝐴) = 0, 𝜎(𝐵) = 2, 𝜎(𝐶) = 11, 𝜎(𝐷) = 12.

7.2.3 Existence of integer schedules

As humans, we are naturally inclined to use integer quantities such as minutes, hours,
days, and so on, when thinking about time. Therefore, it is interesting to understand
whether this feature could have an impact on the set of possible solutions. In the fol-
lowing theorem, we identify a fragment of DTP for which integer feasible schedules
exist, by generalizing well-known facts about STP.

Theorem 7.2.3.1 : Let 𝑁 = (𝑇 , 𝐶) be a DTP instance where each disjunct
𝑌 − 𝑋 ∈ [𝑙, 𝑢] appearing in 𝐶 is such that 𝑙, 𝑢 ∈ ℤ ∪ {−∞, ∞}. Let 𝑊 be the
biggest absolute value of all finite integers appearing in 𝐶 . If 𝑁 has a feasible
schedule, then 𝑁 also has an integer feasible schedule in which all numbers are
non-negative integers of value at most 𝑊 ⋅ |𝑇 |.

127

Proof : Let 𝜎 : 𝑇 → ℝ be a feasible schedule for 𝑁 . Then, from every constraint
𝐶𝑖 ∈ 𝐶 , we can select a disjunct 𝐶𝑖,𝑗 that is satisfied by 𝜎. Let 𝐶′ be the set of
the selected disjuncts. Then, the DTP instance 𝑁 ′ = (𝑇 , 𝐶′) is actually an STP
instance. The statement of the theorem then follows from known facts about
STP. First, every STP instance admits a directed weighted graph representation,
where the set of nodes coincides with the set of time points and, for each con-
straint 𝑌 − 𝑋 ∈ [𝑙, 𝑢], there exist two arcs, one from 𝑌 to 𝑋 of weight −𝑙 (if
𝑙 ≠ −∞) and the other from 𝑋 to 𝑌 of weight 𝑢 (if 𝑢 ≠ ∞). It is well known
that an STP instance has a feasible schedule if and only if its weighted directed
graph representation has no negative weight cycle [162]. Second, to prove that
there exists an integer feasible schedule further restricting to natural numbers
only, we proceed as follows. We add to 𝑁 ′ an extra time point 𝑍 . Then, for
each 𝑋 ∈ 𝑇 , we add to 𝐶′ the constraint 𝑋 − 𝑍 ∈ [0, ∞]. Now, consider again
the directed weight graph representation of 𝑁 ′. This addition cannot introduce
any negative-weight cycle (in fact, no cycle at all). Moreover, for every node
𝑋 ∈ 𝑇 there exists some path to 𝑍 . Finally, for every node 𝑋, let 𝛿(𝑋) be the
weight of a shortest path from 𝑋 to 𝑍 . Note that 𝛿(𝑋) is well defined and is a
non-positive integer, with |𝛿(𝑋)| ≤ 𝑊 ⋅ |𝑇 |. It is well known and easy to verify
that 𝜎′(𝑋) ≔ −𝛿(𝑋), for each 𝑋 ∈ 𝑇 , is an integer feasible schedule. □

We may also refer to the value 𝑊 ⋅ |𝑇 | as the horizon, similarly to other works on
temporal networks (e.g., [173]) that define it as a numeric value big enough to guar-
antee that, if a feasible schedule 𝜎 exists, then 𝜎(𝑋) ∈ [−𝑊 ⋅ |𝑇 |, 𝑊 ⋅ |𝑇 ⟧ for each
time point 𝑋 ∈ 𝑇 . This result generalizes to the case of rational numbers. Indeed, if a
DTP instance uses only rational numbers in all constraints, we can easily transform it
into an equivalent DTP instance that uses only integers by multiplying each number
by the least common multiple of all denominators.

7.2.4 Encoding DTP into SMT

The traditional way to solve a DTP instance is by means of a reduction to a formula
in Quantifier Free Real Difference Logic (QF_RDL), which is satisfiable if and only if
the original instance has a feasible schedule. QF_RDL is a logic supported by the
framework of Satisfiability Modulo Theory (SMT, [166]). It allows for arbitrary Boolean
composition of atoms 𝑌 − 𝑋 ⨝ 𝑘, where 𝑋, 𝑌 are real variables, ⨝ ∈ {<, ≤, >, ≥
, ≠, =}, and 𝑘 ∈ ℚ. SMT-solvers supporting this logic are nowadays very efficient
and are used, in particular, to conveniently and effectively solve DTPs. They offer the
current state-of-the-art approach for them. An SMT solver combines standard SAT
technologies with decision procedures that are called from the logical solver operat-
ing at the meta-level to investigate all of the possibilities. The domain-specific proce-
dures are meant to speed up the whole exploration by eliminating big chunks of the

128

search space and by inferring the values for certain variables. These procedures are
responsible to capture domain-specific knowledge. In the case of the temporal prob-
lems generalizing STP, they are heavily based on single source shortest paths (SSSP)
algorithms (e.g., the Bellman-Ford algorithm [169]).

We sum up two encodings provided in [168] (originally appeared in [167]). We
point the reader there for the corresponding proofs of correctness.

7.2.4.1 Naive encoding

Let 𝑁 = (𝑇 , 𝐶) be any DTP instance. The naive encoding is as follows:

⋀
|𝐶|

𝑖=1⎝
⎜⎛⋁

‖𝐶𝑖‖

𝑗=1
(𝑌𝑖,𝑗 − 𝑋𝑖,𝑗 ≥ 𝑙𝑖,𝑗) ∧ (𝑌𝑖,𝑗 − 𝑋𝑖,𝑗 ≤ 𝑢𝑖,𝑗)

⎠
⎟⎞

We omit the generation of the atoms 𝑌 − 𝑋 ≥ 𝑙 and/or 𝑌 − 𝑋 ≤ 𝑢 for a disjunct
𝑌 − 𝑋 ∈ [𝑙, 𝑢] whenever 𝑙 and/or 𝑢 are −∞ and +∞, respectively. The complexity
of the encoding is 𝑂(‖𝐶‖).

Example 7.2.2.1 (cont.)

The naive encoding of Example 7.2.2.1 is the following formula:

(𝐵 − 𝐴 ≥ 2 ∧ 𝐵 − 𝐴 ≤ 8) ∧ (𝐶 − 𝐴 ≥ 10) ∧

(𝐷 − 𝐵 ≥ 10 ∧ 𝐷 − 𝐵 ≤ 12) ∧

((𝐶 − 𝐵 ≤ 1) ∨ (𝐷 − 𝐶 ≥ 1 ∧ 𝐷 − 𝐶 ≤ 1))

7.2.4.2 Switch Encoding

Let 𝑁 = (𝑇 , 𝐶) be any DTP instance. The switch encoding adds as many Boolean
variables⁴¹ 𝑠𝑖,𝑗 as ‖𝐶‖. Each 𝑠𝑖,𝑗 is responsible of either switching on or off the cor-
responding disjunct 𝐶𝑖,𝑗.

⁴¹Actually, SMT also allow for Boolean variables to appear as atoms in the formulae.

The encoding is as follows:

⋀
|𝐶|

𝑖=1⎝
⎜⎛

⎝
⎜⎛⋀

‖𝐶𝑖‖

𝑗=1
(¬𝑠𝑖,𝑗 ∨ ((𝑌𝑖,𝑗 − 𝑋𝑖,𝑗 ≥ 𝑙𝑖,𝑗) ∧ (𝑌𝑖,𝑗 − 𝑋𝑖,𝑗 ≤ 𝑢𝑖,𝑗)))

⎠
⎟⎞ ∧

⎝
⎜⎛⋁

‖𝐶𝑖‖

𝑗=1
𝑠𝑖,𝑗

⎠
⎟⎞

⎠
⎟⎞

A switch variable 𝑠𝑖,𝑗 is irrelevant whenever ‖𝐶𝑖‖ = 1. In such a case, it should not
be added at all, and 𝐶𝑖 should be naively converted and appended as a conjunct to
the formula. The complexity of the encoding is still 𝑂(‖𝐶‖).

Example 7.2.2.1 (cont.)

The switch encoding of Example 7.2.2.1 is the following formula:

129

(¬𝑠1,1 ∨ (𝐵 − 𝐴 ≥ 2 ∧ 𝐵 − 𝐴 ≤ 8)) ∧

(¬𝑠2,1 ∨ (𝐶 − 𝐴 ≥ 10)) ∧

(¬𝑠3,1 ∨ (𝐷 − 𝐵 ≥ 10 ∧ 𝐷 − 𝐵 ≤ 12)) ∧

(𝑠1,1) ∧ (𝑠2,1) ∧ (𝑠3,1) ∧

(¬𝑠4,1 ∨ (𝐶 − 𝐵 ≤ 1)) ∧

(¬𝑠4,2 ∨ (𝐷 − 𝐶 ≥ 1 ∧ 𝐷 − 𝐶 ≤ 1)) ∧

(𝑠4,1 ∨ 𝑠4,2)

7.2.5 Encoding DTP into MILP

In this section, we show how to model the DTP in the framework of Mixed Integer
Linear Programming (MILP), where we naturally exploit binary variables to imple-
ment the switches introduced in Section 7.2.4.2 .

Definition 7.2.5.1 (MILP) : A Mixed Integer Linear Programming (MILP) prob-
lem consists of 𝑛 decision variables, 𝑚 constraints and an objective function
which should be either maximized or minimized.

• Each decision variable is either continuous (i.e., its domain is ℝ) or integer
(i.e., its domain is ℤ).

• Each constraint is a linear inequality in the form ∑𝑛
𝑖=1 𝑎𝑖,𝑗𝑥𝑖 ⨝ 𝑏𝑗, where

⨝ ∈ {≤, ≥, =}, 𝑎𝑖,𝑗, 𝑏𝑗 ∈ ℝ, for each 𝑖 = 1, …, 𝑛 and 𝑗 = 1, …, 𝑚.
• Also the objective function is a linear expression of the variables in the

form ∑𝑛
𝑖=1 𝑐𝑖𝑥𝑖, where 𝑐𝑖 ∈ ℝ for each 𝑖 = 1, …, 𝑛.

A MILP problem is feasible when all constraints can be satisfied, thus allowing
for a solution. When the problem concerns feasibility only, the objective func-
tion expression can be discarded (or, equivalently, set to zero).

7.2.5.1 MILP Formulation

Let 𝑁 = (𝑇 , 𝐶) be any DTP instance. The MILP formulation is as follows.

130

⎩{
{{
{{
⎨
{{
{{
{⎧𝑦𝑖,𝑗 − 𝑥𝑖,𝑗 > 𝑙𝑖,𝑗 ⋅ 𝑠𝑖,𝑗 − 𝑀(1 − 𝑠𝑖,𝑗), 𝑖 = 1, …, |𝐶|, 𝑗 = 1, …, ‖𝐶𝑖‖

𝑦𝑖,𝑗 − 𝑥𝑖,𝑗 < 𝑢𝑖,𝑗 ⋅ 𝑠𝑖,𝑗 + 𝑀(1 − 𝑠𝑖,𝑗), 𝑖 = 1, …, |𝐶|, 𝑗 = 1, …, ‖𝐶𝑖‖

∑‖𝐶𝑖‖
𝑗=1 𝑠𝑖,𝑗 > 1, 𝑖 = 1, …, |𝐶|

𝑥𝑖,𝑗, 𝑦𝑖,𝑗 ∈ ℝ,
𝑠𝑖,𝑗 ∈ (0, 1).

The set of variables 𝑥𝑖,𝑗 coincides with the set 𝑇 of time points, which take real values
as stated in Constraints (4). Being just a matter of feasibility, the objective function is
not needed. Each disjunct 𝐶𝑖,𝑗 = 𝑌𝑖,𝑗 − 𝑋𝑖,𝑗 ∈ [𝑙𝑖,𝑗, 𝑢𝑖,𝑗] is equivalent to the pair of
inequalities 𝑦𝑖,𝑗 − 𝑥𝑖,𝑗 > 𝑙𝑖,𝑗 and 𝑦𝑖,𝑗 − 𝑥𝑖,𝑗 < 𝑢𝑖,𝑗. However, we need to model the
relationship among 𝐶𝑖,𝑗 and all the other disjuncts belonging to the same disjunctive
constraint 𝐶𝑖. Indeed, a disjunctive constraint is satisfied when at least one of its dis-
juncts is so. To express this condition, first we introduce a binary variable 𝑠𝑖,𝑗 whose
value is 1 if 𝐶𝑖,𝑗 is satisfied. Then, we use the Big 𝑀 method, linking the variables
𝑠𝑖,𝑗, 𝑥𝑖,𝑗 and 𝑦𝑖,𝑗 in Constraints (1) and (2): when 𝑠𝑖,𝑗 = 0, 𝑦𝑖,𝑗 − 𝑥𝑖,𝑗 ∈ [−𝑀, 𝑀],
thus 𝑥𝑖,𝑗 and 𝑦𝑖,𝑗 can assume any real values such that their difference is in this in-
terval; otherwise, 𝑠𝑖,𝑗 = 1 and 𝑦𝑖,𝑗 − 𝑥𝑖,𝑗 ∈ [𝑙𝑖,𝑗, 𝑢𝑖,𝑗]. Finally, Constraints (3) impose
that, for each disjunctive constraint 𝐶𝑖, the sum of the 𝑠𝑖,𝑗 variables associated to the
disjuncts in 𝐶𝑖 must be at least one. When ‖𝐶𝑖‖ = 1, then 𝑠𝑖,1 = 1 and Constraints
(1) and (2) become 𝑦𝑖,1 − 𝑥𝑖,1 > 𝑙𝑖,1 and 𝑦𝑖,1 − 𝑥𝑖,1 < 𝑢𝑖,1, respectively.

Notice that the value 𝑀 should be large enough not to compromise feasibility.
Thus, we set 𝑀 ≔ 𝑊 ⋅ |𝑇 |, i.e., the horizon defined in Section 7.2.3 . The complexity
of this encoding is 𝑂(‖𝐶‖).

Theorem 7.2.5.1.1 (Correctness of the MILP formulation) : Let 𝑁 = (𝑇 , 𝐶) be
any DTP instance. Then, 𝑁 has a feasible schedule if and only if the MILP for-
mulation of 𝑁 is feasible.

Proof : (⇒) Let 𝜎 be a feasible schedule to 𝑁 . We build a solution for the MILP
formulation as follows. We set all variables 𝑥𝑖,𝑗 to their corresponding values
𝜎(𝑋𝑖,𝑗). For each disjunctive constraint 𝐶𝑖 ∈ 𝐶 and for each disjunct 𝐶𝑖,𝑗 =
𝑌𝑖,𝑗 − 𝑋𝑖,𝑗 ∈ [𝑙𝑖,𝑗, 𝑢𝑖,𝑗], we set the corresponding switch variable 𝑠𝑖,𝑗 to 1 if
and only if 𝜎(𝑌𝑖,𝑗) − 𝜎(𝑋𝑖,𝑗) ∈ [𝑙𝑖,𝑗, 𝑢𝑖,𝑗]. Being 𝜎 a feasible schedule, there
exists at least one satisfied disjunct in each 𝐶𝑖, thus Constraints (3) are satisfied.
Furthermore, Constraints (1) and (2) are satisfied too as follows:

131

1. 𝜎(𝑌𝑖,𝑗) − 𝜎(𝑋𝑖,𝑗) > 𝑙𝑖,𝑗 and, by the construction given above, 𝑦𝑖,𝑗 −
𝑥𝑖,𝑗 > 𝑙𝑖,𝑗 ⋅ 𝑠𝑖,𝑗 − 𝑀(1 − 𝑠𝑖,𝑗) becomes 𝑦𝑖,𝑗 − 𝑥𝑖,𝑗 > 𝑙𝑖,𝑗.

2. 𝜎(𝑌𝑖,𝑗) − 𝜎(𝑋𝑖,𝑗) ≤ 𝑢𝑖,𝑗 and, by the construction given above, 𝑦𝑖,𝑗 −
𝑥𝑖,𝑗 < 𝑢𝑖,𝑗 ⋅ 𝑠𝑖,𝑗 + 𝑀(1 − 𝑠𝑖,𝑗) becomes 𝑦𝑖,𝑗 − 𝑥𝑖,𝑗 < 𝑢𝑖,𝑗.

Thus, the MILP formulation of 𝑁 is feasible.

(⇐) Conversely, consider a solution for the MILP formulation of 𝑁 . Then,
𝜎(𝑋𝑖,𝑗) ≔ 𝑥𝑖,𝑗, for 𝑖 = 1, …, |𝐶|, 𝑗 = 1, …, ‖𝐶𝑖‖. When 𝑠𝑖,𝑗 = 1, it holds that:

1. 𝑦𝑖,𝑗 − 𝑥𝑖,𝑗 > 𝑙𝑖,𝑗 ⋅ 𝑠𝑖,𝑗 − 𝑀(1 − 𝑠𝑖,𝑗) becomes 𝑦𝑖,𝑗 − 𝑥𝑖,𝑗 > 𝑙𝑖,𝑗 and, by
the construction of 𝜎 given above, it holds that 𝜎(𝑌𝑖,𝑗) − 𝜎(𝑋𝑖,𝑗) > 𝑙𝑖,𝑗,
and

2. 𝑦𝑖,𝑗 − 𝑥𝑖,𝑗 < 𝑢𝑖,𝑗 ⋅ 𝑠𝑖,𝑗 + 𝑀(1 − 𝑠𝑖,𝑗) becomes 𝑦𝑖,𝑗 − 𝑥𝑖,𝑗 < 𝑢𝑖,𝑗 and, by
the construction of 𝜎 given above, it holds that 𝜎(𝑌𝑖,𝑗) − 𝜎(𝑋𝑖,𝑗) ≤ 𝑢𝑖,𝑗.

The 𝑠𝑖,𝑗 variables in the MILP formulation are in a one-to-one correspondence
with the disjuncts 𝐶𝑖,𝑗. Constraints (3) impose that, for each 𝑖 ∈ 1, …, |𝐶|, there
exists 𝑗 ∈ 1… ‖𝐶{𝑖}‖ such that the related Constraints (1) and (2) are satisfied.
Hence, 𝐶𝑖,𝑗 is also satisfied by 𝜎, and therefore 𝜎 is a feasible schedule for 𝑁 .
□

Example 7.2.2.1 (cont.)

The MILP formulation of Example 7.2.2.1 is the following:

132

⎩
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
⎨
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
⎧

𝐵 − 𝐴 > 2 ⋅ 𝑠1,1 − 𝑀(1 − 𝑠1,1)

𝐵 − 𝐴 < 8 ⋅ 𝑠1,1 + 𝑀(1 − 𝑠1,1)
𝑠1,1 > 1

𝐶 − 𝐴 > 10 ⋅ 𝑠2,1 − 𝑀(1 − 𝑠2,1)
𝑠2,1 > 1

𝐷 − 𝐵 > 10 ⋅ 𝑠3,1 − 𝑀(1 − 𝑠3,1)

𝐷 − 𝐵 < 12 ⋅ 𝑠3,1 + 𝑀(1 − 𝑠3,1)
𝑠3,1 > 1

𝐶 − 𝐵 < 1 ⋅ 𝑠4,1 + 𝑀(1 − 𝑠4,1)

𝐷 − 𝐶 > 1 ⋅ 𝑠4,2 − 𝑀(1 − 𝑠4,2)

𝐷 − 𝐶 < 1 ⋅ 𝑠4,2 + 𝑀(1 − 𝑠4,2)
𝑠4,1 + 𝑠4,2 > 1
𝐴, 𝐵, 𝐶, 𝐷 ∈ ℝ
𝑠1,1, 𝑠2,1, 𝑠3,1, 𝑠4,1, 𝑠4,2 ∈ {0, 1}

Constraints (6)–(8) model the temporal relationship between events 𝐴 and 𝐵, where
𝑠1,1 is trivially set to 1. The same holds for any other constraint comprising a single
disjunct, i.e., the relationships between 𝐴 and 𝐶 (Constraints (9) and (10)) and be-
tween 𝐵 and 𝐷 (Constraints (11)–(13)). The disjunctive constraint involving the pairs
(𝐵, 𝐶) and (𝐶, 𝐷) is described by Constraints (14)–(17), where at least one binary
variable between 𝑠4,1 and 𝑠4,2 is switched on.

7.2.6 Encoding DTP into SAT

We provide a reduction from DTP to Boolean Satisfiability problem (SAT), passing
through the Circuit Satisfiability problem (CSAT).

133

Definition 7.2.6.1 (Boolean Circuits and Logic Gates) : Given a finite set 𝕍 of
𝑛 Boolean variables, a Boolean circuit 𝔹 computes a Boolean function defined
over the set 𝕍. Formally, it is an acyclic directed graph (𝑉 , 𝐴), where 𝑉 is com-
posed of a set of input nodes (corresponding to the variables in 𝕍), two nodes
for the constants 0 and 1, and a set of logic gates (e.g., 𝐚𝐧𝐝, 𝐨𝐫, 𝐧𝐨𝐭). There ex-
ists exactly one logic gate corresponding to the output of the circuit; the other
logic gates are internal nodes. The number of incoming edges of the input and
constant nodes is 0, whereas the number of outgoing edges is arbitrary. A logic
gate computes some arbitrary function of the input nodes and outputs a single
Boolean value, that can be fed to other logic gates in the circuit. An input for 𝔹
is a total mapping 𝜑 : 𝕍 → {0, 1}. We write 𝔹(𝜑) for the output of 𝔹 on input
𝜑.

Definition 7.2.6.2 (Satisfiability of Boolean Circuits) : A Boolean circuit 𝔹 is
satisfiable if there exists an input 𝜑 such that 𝔹(𝜑) = 1.

Definition 7.2.6.3 (Circuit SAT): Given a Boolean circuit 𝔹 defined over a fi-
nite set 𝕍 of 𝑛 Boolean variables, is 𝔹 satisfiable?

7.2.6.1 CSAT encoding

Let 𝑁 = (𝑇 , 𝐶) be a DTP instance, where all numbers appearing in 𝐶 are integers.
We assume these numbers are encoded into their two’s complement representation.
By Theorem 7.2.3.1, we can restrict ourselves to handling only integer schedules 𝜎 :
𝑇 → [−𝑊 ⋅ |𝑇 |, 𝑊 ⋅ |𝑇 ⟧, where 𝑊 is the biggest absolute value of all finite integers
in 𝐶 . This can be done within 𝑏 ≔ ⌊log2(𝑊 ⋅ |𝑇 | + 1)⌋ + 1 bits, in order to represent
the value and the sign of 𝑋 in 𝜎. Likewise, ⌊log2(𝑎 + 1)⌋ + 1 will suffice to represent
each number 𝑎 appearing in 𝐶 . To perform the logical 𝐨𝐫 and 𝐚𝐧𝐝 operations on
several bits, we can use cascade binary 𝐨𝐫 and 𝐚𝐧𝐝 gates, respectively. We assume to
have two more kinds of gates, namely, the subtraction and comparison gates (in sym-
bols, “−” and “≤”), to subtract and compare two integers in their two’s complement
representation, respectively. This comes, without loss of generality, as these two gates

134

Figure 51: Logic gates and Boolean circuit of Example 7.2.2.1.

can be implemented as compositions of the basic logic gates, for instance by using a
ripple-carry subtractor (𝐬𝐮𝐛) and a digital comparator (𝐥𝐞𝐪), respectively [174]. Each
𝑋 ∈ 𝑇 corresponds to an input node in the circuit, whose value is shared among the
logic gates that are fed with it.

Now we can show how to encode a generic disjunctive constraint 𝐶𝑖 ∈ 𝐶 . We
model 𝐶𝑖 by using at most one 𝐨𝐫, ‖𝐶𝑖‖ 𝐚𝐧𝐝 logic gates, 2 ⋅ ‖𝐶𝑖‖ subtraction and 2 ⋅
‖𝐶𝑖‖ comparison gates as follows:

𝔹𝑖 ≔ 𝐨𝐫({𝐚𝐧𝐝(𝑙𝑖,𝑗 < 𝑌𝑖,𝑗 − 𝑋𝑖,𝑗, 𝑌𝑖,𝑗 − 𝑋𝑖,𝑗 < 𝑢𝑖,𝑗) | 𝑌𝑖,𝑗 − 𝑋𝑖,𝑗 ∈ [𝑙𝑖,𝑗, 𝑢𝑖,𝑗] ∈ 𝐶𝑖}).

Of course, the 𝐨𝐫 gate should be omitted if 𝐶𝑖 comprises a single disjunct. The same
holds for an 𝐚𝐧𝐝 gate, should 𝑙𝑖,𝑗 be −∞ or 𝑢𝑖,𝑗 be ∞. Hence the Boolean circuit 𝔹𝑁
corresponding to 𝑁 is as follows:

𝔹𝑁 ≔ 𝐚𝐧𝐝({𝔹𝑖 | 𝔹𝑖 is the subcircuit of 𝐶𝑖 ∈ 𝐶}).

This encoding generates a CSAT instance with 𝑂(|𝑇 | ⋅ 𝑏) input nodes and 𝑂(‖𝐶‖ ⋅ 𝑏)
logic gates.

Theorem 7.2.6.1.1 (Correctness of the CSAT encoding) : Let 𝑁 = (𝑇 , 𝐶) be a
DTP instance. Then, 𝑁 has an integer feasible schedule if and only if the cor-
responding Boolean circuit 𝔹𝑁 is satisfiable.

135

Proof : Given an integer 𝑎, we write 𝑎⌊log2(𝑎)⌋+1, …, 𝑎0 for its two’s complement
representation, where we recall that the most significant bit 𝑎⌊log2(𝑎)⌋+1 = 1 if
and only if 𝑎 is negative.

(⇒) Let 𝜎 be an integer feasible schedule for 𝑁 . Then, we build a satisfying
input 𝜑 for 𝔹𝑁 as follows:

𝜑(𝑋𝑘) ≔ 𝜎(𝑋)𝑘, for each 𝑋 ∈ 𝑇 , for each 𝑘 = 0, …, 𝑏.

Let 𝑌𝑖,𝑗 − 𝑋𝑖,𝑗 ∈ [𝑙𝑖,𝑗, 𝑢𝑖,𝑗] be any disjunct satisfied by 𝜎 in a constraint 𝐶𝑖.
We know that one exists otherwise 𝜎 would not be feasible. Now, the corre-
sponding subcircuit 𝔹𝑖,𝑗 of 𝔹𝑁 that encodes 𝑌𝑖,𝑗 − 𝑋𝑖,𝑗 ∈ [𝑙𝑖,𝑗, 𝑢𝑖,𝑗] is such
that 𝔹𝑁′(𝜑′) = 1, where 𝜑′ : {𝑌𝑖,𝑗, 𝑋𝑖,𝑗} → {0, 1}, with 𝜑′(𝑌𝑖,𝑗) ≔ 𝜑(𝑌𝑖,𝑗)
and 𝜑′(𝑋𝑖,𝑗) ≔ 𝜑(𝑋𝑖,𝑗). We know that this is true by construction. Moreover,
the subcircuit 𝔹𝑖 that encodes 𝐶𝑖 is in turn satisfiable by construction since it
encodes the 𝐨𝐫 of all 𝐶𝑖,𝑗 ∈ 𝐶𝑖. Finally, 𝔹(𝜑) = 1 since it encodes the 𝐚𝐧𝐝 of
all 𝐶𝑖 ∈ 𝐶 .

(⇐) Let 𝜑 be a satisfying input for 𝔹𝑁 . Let 𝜎 be defined as follows:

𝜎(𝑋) ≔ −𝜑(𝑋𝑏−1) ⋅ 2𝑏−1 + ∑
𝑏−2

𝑝=0
𝜑(𝑋𝑝) ⋅ 2𝑝, for each 𝑋 ∈ 𝑇 .

Let 𝔹𝑖,𝑗 be the subcircuit of 𝔹𝑁 encoding the disjunct 𝐶𝑖,𝑗 = 𝑌𝑖,𝑗 − 𝑋𝑖,𝑗 ∈
[𝑙𝑖,𝑗, 𝑢𝑖,𝑗] such that 𝔹𝑖,𝑗(𝜑′) = 1, where 𝜑′ : {𝑌𝑖,𝑗, 𝑋𝑖,𝑗} → {0, 1} with
𝜑′(𝑌𝑖,𝑗) ≔ 𝜑(𝑌𝑖,𝑗) and 𝜑′(𝑋𝑖,𝑗) ≔ 𝜑(𝑋𝑖,𝑗). Then, 𝔹𝑖,𝑗 corresponds to the
check 𝑌𝑖,𝑗 − 𝑋𝑖,𝑗 ∈ [𝑙𝑖,𝑗, 𝑢𝑖,𝑗] and thus 𝜎(𝑌𝑖,𝑗) − 𝜎(𝑋𝑖,𝑗) ∈ [𝑙𝑖,𝑗, 𝑢𝑖,𝑗]. Let

𝔹𝑖 = 𝐨𝐫({𝔹𝑖,𝑗 | 𝔹𝑖,𝑗 is the 𝑗th subcircuit of 𝔹𝑖 encoding 𝐶𝑖,𝑗})

136

be the 𝑖th subcircuit of 𝔹𝑁 corresponding to the 𝐨𝐫 encoding of 𝐶𝑖. Then, 𝔹𝑖 is
satisfiable because it is the 𝐨𝐫 of all 𝔹𝑖,𝑗 and at least one of them is so. Likewise,
𝔹𝑁 is satisfiable because it is the 𝐚𝐧𝐝 of all 𝔹𝑖 that are so. □

Example 7.2.2.1 (cont.)

The CSAT encoding of Example 7.2.2.1 is shown in Figure 51. There, 𝑊 = 12 and
|𝑇 | = 4, thus 𝑏 = ⌊log2(12 ⋅ 4 + 1)⌋ + 1 = 7. As a result, we have a Boolean circuit
with 4 ⋅ 𝑏 = 28 input bits, i.e., 𝐴6, …, 𝐴0, 𝐵6, …, 𝐵0, 𝐶6, …, 𝐶0, 𝐷6, …, 𝐷0 to encode
the values of 𝐴, 𝐵, 𝐶 and 𝐷 that we are looking for. We also have the hard-coding
of all the integers appearing in 𝐶 , i.e., 1, 2, 8, 10, 12. These constants along with the
input are fed to the logic gates, implemented as discussed before, and converge in a
single output bit.

7.2.6.2 SAT encoding

Given a finite set 𝕍 of Boolean variables, a literal is either 𝑣 or ¬𝑣, where 𝑣 ∈ 𝕍. A
clause over 𝕍 is a finite disjunction of literals. An assignment is a total mapping 𝛼 :
𝕍 → {0, 1}. An assignment 𝛼 satisfies a clause if 𝛼 satisfies at least one literal in it
(i.e., 𝛼 satisfies 𝑣 (resp., ¬𝑣) if and only if 𝛼(𝑣) = 1, (resp., 𝛼(𝑣) = 0)).

Definition 7.2.6.2.1 (SAT): Given a finite set 𝕍 of Boolean variables and a fi-
nite set of clauses over 𝕍, does there exist an assignment satisfying all clauses?

Any instance 𝔹 of CSAT, with 𝑂(|𝑇 | ⋅ 𝑏) input variables and 𝑂(‖𝐶‖ ⋅ 𝑏) logic gates,
can be transformed into a conjunction of clauses, containing all the input Boolean
variables in 𝑇 , by applying Tseitin’s transformation [175]. This transformation can
remove a logic gate by adding a new Boolean variable and 𝑂(1) new clauses. Thus,
by removing all 𝑂(‖𝐶‖ ⋅ 𝑏) logic gates in 𝔹, we obtain a SAT instance with 𝑂((|𝑇 | +
‖𝐶‖) ⋅ 𝑏) Boolean variables and 𝑂(‖𝐶‖ ⋅ 𝑏) clauses.

Theorem 7.2.6.2.1 (Correctness of the SAT encoding) : Let 𝑁 = (𝑇 , 𝐶) be any
DTP instance. Then, 𝑁 has a feasible schedule if and only if the SAT encoding
of 𝑁 has a satisfiable assignment.

137

Proof : Theorem 7.2.6.1.1 proves that 𝑁 has a feasible schedule if and only if the
corresponding Boolean circuit 𝔹𝑁 is satisfiable. Tseitin’s transformation [175]
proves that 𝔹𝑁 is satisfiable if and only if the encoding of 𝔹𝑁 into the corre-
sponding SAT formula is so. The proof of this theorem follows by transitivity.
□

7.2.7 Experimental Evaluation

Metric Definition
timepoints Number of time points.
constraints Number of constraints.

(un)constrained_tps Number of time points (not) appearing in at least
one disjunct.

horizon Horizon value used as Big 𝑀 .
non_disj_constr Number of one single disjunct constraints.

disj_constr Number of constraints with more than one dis-
junct.

equalities Number of disjuncts 𝑌 − 𝑋 ∈ [𝑙, 𝑢] where 𝑙 = 𝑢.
disj_equalities Number of disjunctive constraints containing

only equalities as disjuncts.
max_disjuncts Maximum number of disjuncts in a constraint.
min_lu (max_lu) Minimum (maximum) value of any number ap-

pearing in any constraint.
avg_interval_size Average size of any closed interval [𝑙, 𝑢] where

−∞ < 𝑙 ≤ 𝑢 < +∞. The size is computed as the
absolute value of 𝑢 − 𝑙.

avg_tp_connectivity Average number of time-points a time-point is
connected to, where two time points 𝑋, 𝑌 are
connected if they appear in some disjunct 𝑌 −

𝑋 ∈ [𝑙, 𝑢].
avg_constr_diversity Average number of different time points appear-

ing in a constraint.

Table 7: Metrics computed for the two sets of instances.

For the SMT framework, we chose Yices2 v2.6.2 [176], winner of the SMT-COMP 2020
for QF_RDL [177]. For the MILP framework, we chose the two commercial solvers

138

cmr cmr cmr orrz orrz orrz

Metric min max 𝑎𝑣𝑔 min max 𝑎𝑣𝑔
timepoints 6 19994 10000 11 210 110.5
constraints 3 9997 5000 46 961 503.3

constrained_tps 4 18995 9488.02 11 210 110.5
unconstrained_tps 0 1101 511.98 0 0 0

horizon 2652 > 107 > 107 11 210 110.5
non_disj_constr 0 2567 1249.71 10 209 109.5

disj_constr 1 7523 3750.29 36 752 393.8
equalities 0 165 66.92 108 2256 1181.4

disj_equalities 0 1 0.02 36 752 393.8
max_disjuncts 3 6 5.99 3 3 3

min_lu 0 63 0.08 0 0 0
max_lu 442 1170 1082.57 1 1 1

avg_interval_size 59.61 87.6 67.03 0.08 0.09 0.08
avg_tp_connectivity 1.34 3.22 2.97 1.81 1.99 1.97
avg_constr_diversity 3 6.46 5.93 3.56 3.56 3.56

Table 8: Min, max, and average metric values shown in Figure 52 (cmr) and
Figure 53 (orrz).

Figure 52: cmr-2013-dtp metrics.

Gurobi v9.1 [178] and CPLEX v20.1.0 [179], broadly recognized as state of the art.
For the SAT framework, we chose Kissat [180], winner of the SAT Competition 2020

139

Figure 53: orrz-2021-dtp metrics.

Figure 54: cmr-2013-dtp model generation time.

[181]. We carried out the same experimental evaluation⁴² on two sets of benchmarks.

⁴²http://y1a.altervista.org/ee-dtp.tar.bz2

The first one is a well recognized set of benchmarks on instances of DTP provided by
Cimatti, Micheli, and Roveri in 2012-2013 [167, 168]. Such a set contains 2108 random
instances of DTP generated according to [182]. We refer to this set as cmr-2013-dtp.
We created a second set of benchmarks in this way. We built a generator of instances
by using the balanced SAT construction in [183]. We generated 200 instances, for each
𝑛 = 11, …, 210 being the number of time points. Each instance with 𝑛 time points
contains exactly 𝑛 − 1 constraints with a single disjunct. Also, it has 𝑘 ⋅ (𝑛 − 1) dis-
junctive constraints with more than one disjunct, all composed of equalities only. The
value of 𝑘 = 3.6 was experimentally determined such that the generated instances

140

http://y1a.altervista.org/ee-dtp.tar.bz2

Figure 55: orrz-2021-dtp model generation time.

Figure 56: cmr-2013-dtp solving time.

were hard [184, 183]. We refer to this set as orrz-2021-dtp. Even if these instances
do not represent many real-world situations, we defined them to stress the solvers,
and in particular the MILP ones that performed well on the instances collected in
cmr-2013-dtp. Since no details on the parameters used to generate cmr-2013-dtp
were given in [167, 168], we defined some metrics to highlight features of interest
(Table 7). We show the values of these metrics in Table 8 and graphically in Figure 52
(cmr-2013-dtp) and Figure 53 (orrz-2021-dtp). For the former set and most of the
latter, the bigger the instance, the bigger the corresponding metrics.

We tried to solve all the instances with respect to SMT, MILP and SAT encodings
given in this work. We set a timeout of 60 seconds per instance. We used an Ubuntu
Linux 20.04.1 LTS virtual machine, run on top of a VMWare ESXi Hypervisor 6.5.0,

141

Figure 57: orrz-2021-dtp solving time.

using a physical machine equipped with an Intel i7 2.80GHz and 16GB of RAM. The
virtual machine, assigned with 12 GB of RAM and full CPU power, was the only one
running on the server. For each framework, we show in Figure 54 and Figure 55 the
time taken by each solver to generate the models for cmr-2013-dtp and orrz-2021-
dtp, whereas Figure 56 and Figure 57 show their performance on cmr-2013-dtp and
orrz-2021-dtp, respectively.

The results show that no formulation always outperforms the others on both sets.
Gurobi is the fastest solver for cmr-2013-dtp, also being the only one able to solve
all the instances within the time limit (see Table 9). For orrz-2021-dtp, on average
Kissat and Yices go head-to-head; the former able to solve more instances eventually.
Looking at the metrics of orrz-2021-dtp, we can see that these instances are far more
constrained than the ones in cmr-2013-dtp. This factor may slow down Gurobi (and
CPLEX as well) by making harder to find a first feasible solution at the root relaxation
of the Branch-and-Bound, i.e., the exact method at the core of their resolution.

7.2.8 Conclusions and future work

In this work, we tackled the Disjunctive Temporal Problem from three different sides:
Satisfiability Modulo Theory, Mixed Integer Linear Programming, and Boolean Satis-
fiability. After describing two existing encodings of DTP into SMT, we offered a nat-
ural MILP formulation and a new non-trivial reduction to SAT, based on the observa-
tion that DTPs involving only integer numbers admit integer schedules. We carried
out an experimental evaluation on a set of benchmarks already existing in the liter-
ature and on another generated by ourselves. The results show that no formulation
always outperforms the others but, according to the nature of the instances, one or
another may be preferable. Even if MILP solvers did not excel on our benchmarks,

142

cmr cmr cmr orrz orrz orrz

Solver Encoding Yes No ? Yes No ?
Gurobi milp-switch 2088 20 0 4 51 145
CPLEX milp-switch 2080 20 8 4 32 164
Yices2 smt-naive 1739 20 349 6 147 47
Yices2 smt-switch 1547 20 541 6 125 69
Kissat sat 173 7 1928 6 166 28

Table 9: For each solver, we provide the number of instances that admit a so-
lution (Yes), do not admit any (No), or hit the timeout (?), respectively.

they seem to be more promising in the real applications not involving a huge number
of disjunctions of equalities.

To assess this, we are working on extending the experimental evaluation to other
solvers and to consider further families of instances obtained through reductions
from NP-complete problems other than SAT. Moreover, we want to identify which
features of an instance might hinder a solver. This could allow for the development of
tools that, by analyzing the metrics of an instance, suggest which framework might
be more promising. Finally, we will extend our models to consider optimization prob-
lems. In general, we are curious to focus on other interesting problems at the inter-
section of the communities of Artificial Intelligence, Operations Research and Theo-
retical Computer Science.

143

144

Bibliography

[1] “International Collegiate Programming Contest.” [Online]. Available: https://
icpc.global/

[2] S. Halim, F. Halim, and S. Effendy, Competitive programming 4: The new lower
bound of programming contests in the 2020s. Lulu. com, 2018.

[3] K. K. Yuen, D. Y. Liu, and H. V. Leong, “Competitive programming in com-
putational thinking and problem solving education,” Computer Applications in
Engineering Education, 2023.

[4] I. N. Bandeira, T. V. Machado, V. F. Dullens, and E. D. Canedo, “Competitive
programming: A teaching methodology analysis applied to first-year program-
ming classes,” in 2019 IEEE Frontiers in Education Conference (FIE), 2019, pp.
1–8.

[5] S. Malik and A. Rana, “A study of competitive programming platform with its
need and benefits,” JIMS8I International Journal of Information Communication
and Computing Technology, vol. 10, no. 2, pp. 573–578, 2022.

[6] J. Voigt, T. Bell, and B. Aspvall, “Competition-style programming problems for
computer science unplugged activities,” A new learning paradigm: competition
supported by technology, pp. 207–234, 2010.

[7] “Ordinamento a paletta, OII 2016.” [Online]. Available: https://training.olinfo.
it/#/task/oii_paletta/statement

[8] V. Dagiene and J. Koivisto, “International Olympiads in Informatics,” Encyclo-
pedia of Education and Information Technologies, pp. 982–991, 2020.

[9] “Turing Arena light.” [Online]. Available: https://github.com/romeorizzi/
TALight

[10] A. M. Turing and others, “On computable numbers, with an application to the
Entscheidungsproblem,” J. of Math, vol. 58, no. 345–363, p. 5–6, 1936.

[11] M. M. Vopson, “Estimation of the information contained in the visible matter
of the universe,” AIP Advances, vol. 11, no. 10, 2021.

[12] P. Bachmann, Analytische zahlentheorie. Springer, 1904.

[13] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1. BG
Teubner, 1909.

[14] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37,
1966.

145

https://icpc.global/
https://icpc.global/
https://training.olinfo.it/#/task/oii_paletta/statement
https://training.olinfo.it/#/task/oii_paletta/statement
https://github.com/romeorizzi/TALight
https://github.com/romeorizzi/TALight

[15] “Fibonacci sequence.” [Online]. Available: https://oeis.org/A000045

[16] E. H. Friend, “Sorting on electronic computer systems,” Journal of the ACM
(JACM), vol. 3, no. 3, pp. 134–168, 1956.

[17] D. L. Shell, “A high-speed sorting procedure,” Communications of the ACM, vol.
2, no. 7, pp. 30–32, 1959.

[18] N. Auger, V. Jugé, C. Nicaud, and C. Pivoteau, “On the worst-case complexity
of TimSort,” arXiv preprint arXiv:1805.08612, 2018.

[19] D. R. Musser, “Introspective sorting and selection algorithms,” Software: Prac-
tice and Experience, vol. 27, no. 8, pp. 983–993, 1997.

[20] C. A. Hoare, “Quicksort,” The computer journal, vol. 5, no. 1, pp. 10–16, 1962.

[21] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, R. E. Tarjan, and others, “Time
bounds for selection,” J. Comput. Syst. Sci., vol. 7, no. 4, pp. 448–461, 1973.

[22] A. H. Land and A. G. Doig, An automatic method for solving discrete program-
ming problems. Springer, 2010.

[23] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of
complex Fourier series,” Mathematics of computation, vol. 19, no. 90, pp. 297–
301, 1965.

[24] D. E. Knuth, J. H. Morris Jr, and V. R. Pratt, “Fast pattern matching in strings,”
SIAM journal on computing, vol. 6, no. 2, pp. 323–350, 1977.

[25] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to bibliographic
search,” Communications of the ACM, vol. 18, no. 6, pp. 333–340, 1975.

[26] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching algo-
rithms,” IBM journal of research and development, vol. 31, no. 2, pp. 249–260,
1987.

[27] M. G. Main and R. J. Lorentz, “An O (n log n) algorithm for finding all repeti-
tions in a string,” Journal of Algorithms, vol. 5, no. 3, pp. 422–432, 1984.

[28] D. Gusfield, “Simple Uniform Preprocessing for Linear-time Pattern Matching.”

[29] G. Manacher, “A New Linear-Time``On-Line''Algorithm for Finding the Small-
est Initial Palindrome of a String,” Journal of the ACM (JACM), vol. 22, no. 3,
pp. 346–351, 1975.

[30] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Edsger
Wybe Dijkstra: His Life, Work, and Legacy. pp. 287–290, 2022.

[31] R. A. Jarvis, “On the identification of the convex hull of a finite set of points
in the plane,” Information processing letters, vol. 2, no. 1, pp. 18–21, 1973.

146

https://oeis.org/A000045

[32] R. L. Graham, “An efficient algorithm for determining the convex hull of a fi-
nite planar set,” Info. Proc. Lett., vol. 1, pp. 132–133, 1972.

[33] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for
convex hulls,” ACM Transactions on Mathematical Software (TOMS), vol. 22, no.
4, pp. 469–483, 1996.

[34] A. M. Andrew, “Another efficient algorithm for convex hulls in two dimen-
sions,” Information Processing Letters, vol. 9, no. 5, pp. 216–219, 1979.

[35] D. G. Kirkpatrick and R. Seidel, “The ultimate planar convex hull algorithm?,”
SIAM journal on computing, vol. 15, no. 1, pp. 287–299, 1986.

[36] A. L. F. Meister, Generalia de genesi figurarum planarum et inde pendentibus
earum affectionibus. 1769.

[37] B. Braden, “The surveyor's area formula,” The College Mathematics Journal, vol.
17, no. 4, pp. 326–337, 1986.

[38] D. Lehmer, “A factorization theorem applied to a test for primality,” 1939.

[39] J. Stein, “Computational problems associated with Racah algebra,” Journal of
Computational Physics, vol. 1, no. 3, pp. 397–405, 1967.

[40] “Codeforces survey.” [Online]. Available: https://codeforces.com/blog/entry/
83875

[41] D. M. Ritchie, “The development of the C language,” ACM Sigplan Notices, vol.
28, no. 3, pp. 201–208, 1993.

[42] B. Stroustrup, “A history of C++ 1979–1991,” History of programming languages
—II. pp. 699–769, 1996.

[43] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic
binary instrumentation,” ACM Sigplan notices, vol. 42, no. 6, pp. 89–100, 2007.

[44] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “{AddressSanitizer
}: A fast address sanity checker”, in 2012 USENIX annual technical conference
(USENIX ATC 12), 2012, pp. 309–318.

[45] N. Wirth, “The development of procedural programming languages personal
contributions and perspectives,” in Joint Modular Languages Conference, 2000,
pp. 1–10.

[46] G. Van Rossum and others, “Python Programming Language.,” in USENIX an-
nual technical conference, 2007, pp. 1–36.

[47] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” the Journal of
machine Learning research, vol. 12, pp. 2825–2830, 2011.

147

https://codeforces.com/blog/entry/83875
https://codeforces.com/blog/entry/83875

[48] W. McKinney, Python for data analysis: Data wrangling with Pandas, NumPy,
and IPython. " O'Reilly Media, Inc.", 2012.

[49] A. C. Müller and S. Guido, Introduction to machine learning with Python: a guide
for data scientists. " O'Reilly Media, Inc.", 2016.

[50] A. Rigo, M. Hudson, and S. Pedroni, “Compiling dynamic language implemen-
tations.” Technical report, PyPy Consortium, 2005. http://codespeak. net/pypy/
dist~…, 2005.

[51] J. Gosling and H. McGilton, “The Java language environment,” Sun Microsys-
tems Computer Company, vol. 2550, p. 38–39, 1995.

[52] A. Binstock, “Java’s 20 years of innovation,” Forbes, vol. 5, 2015.

[53] “Google Code Jam.” [Online]. Available: https://codingcompetitionsonair.
withgoogle.com/#code-jam

[54] “Meta Hacker Cup.” [Online]. Available: https://www.facebook.com/codingco
mpetitions/hacker-cup

[55] “Codeforces.” [Online]. Available: https://codeforces.com/

[56] “AtCoder.” [Online]. Available: https://atcoder.jp/

[57] “International Olympiad in Informatics.” [Online]. Available: https://
ioinformatics.org/

[58] S. Maggiolo and G. Mascellani, “Introducing CMS: A Contest Management
System.,” Olympiads in Informatics, vol. 6, 2012.

[59] “Terry: a very customizable ``Google Code Jam'' clone useful for holding pro-
gramming contests.” [Online]. Available: https://github.com/algorithm-ninja/
terry

[60] G. Audrito, W. DI LUIGI, L. Laura, E. Morassutto, D. Ostuni, and others, “The
Italian Job: Moving (Massively) Online a National Olympiad,” OLYMPIADS IN
INFORMATICS, pp. 3–12, 2021.

[61] G. Casadei, B. Fadini, and M. Vita, “Italian Olympiads in Informatics,”
Olympiads in Informatics, vol. 1, pp. 24–30, 2007.

[62] “randomTeX: a quiz randomizer for LaTeX.” [Online]. Available: https://github.
com/olimpiadi-informatica/randomtex

[63] L. Prechelt and M. Phlippsen, “JPlag: Finding plagiarisms among a set of pro-
grams,” 2000.

[64] “Starplag: a tool for finding the similarities between two source files.” [Online].
Available: https://github.com/olimpiadi-informatica/starplag

148

https://codingcompetitionsonair.withgoogle.com/#code-jam
https://codingcompetitionsonair.withgoogle.com/#code-jam
https://www.facebook.com/codingcompetitions/hacker-cup
https://www.facebook.com/codingcompetitions/hacker-cup
https://codeforces.com/
https://atcoder.jp/
https://ioinformatics.org/
https://ioinformatics.org/
https://github.com/algorithm-ninja/terry
https://github.com/algorithm-ninja/terry
https://github.com/olimpiadi-informatica/randomtex
https://github.com/olimpiadi-informatica/randomtex
https://github.com/olimpiadi-informatica/starplag

[65] “Dashboard with Terry's metrics.” [Online]. Available: https://snapshot.
raintank.io/dashboard/snapshot/Uw7uECvHWCbYjoNicT1DSn4ZKhdbamSd

[66] “Dashboard with System's metrics for Terry.” [Online]. Available:
https://snapshot.raintank.io/dashboard/snapshot/kPnzTPMNAIAmOHuubdd
s2ltUmdJ3Q9Xc

[67] W. Di Luigi, G. Farina, L. Laura, U. Nanni, M. Temperini, and L. Versari, “oii-
web: an Interactive Online Programming Contest Training System,” Olympiads
in Informatics, vol. 10, pp. 195–205, 2016.

[68] N. Amaroli, G. Audrito, and L. Laura, “Fostering informatics education through
teams olympiad,” in 30th International Olympiad in Informatics, IOI 2018, 2018,
pp. 133–146.

[69] W. Di Luigi et al., “Learning analytics in competitive programming training
systems,” in 2018 22nd International Conference Information Visualisation (IV),
2018, pp. 321–325.

[70] “OII-Proctor: a portable proctoring script.”

[71] “Statistics about the Italian National Phase.” [Online]. Available: https://stats.
olinfo.it/

[72] “Dashboard with CMS's metrics.” [Online]. Available: https://snapshot.
raintank.io/dashboard/snapshot/0J29w0KruEiymy6zV30beX98aRG6njiX

[73] “Dashboard with System's metrics for CMS.” [Online]. Avail-
able: https://snapshot.raintank.io/dashboard/snapshot/1s1wQCSYPgWdQe9f6
sAeYZns5Ln1y6e5

[74] J. A. Donenfeld, “WireGuard: Next Generation Kernel Network Tunnel.,” in
NDSS, 2017.

[75] N. D. Matsakis and F. S. Klock, “The rust language,” ACM SIGAda Ada Letters,
vol. 34, no. 3, pp. 103–104, 2014.

[76] B. Schneier, Beyond fear: Thinking sensibly about security in an uncertain world.
Springer Science & Business Media, 2006.

[77] G. Audrito, G. B. Demo, and E. Giovannetti, “The Role of Contests in Changing
Informatics Education: A Local View.,” Olympiads in Informatics, vol. 6, 2012.

[78] O. Astrachan, “Non-competitive programming contest problems as the basis
for just-in-time teaching,” in Frontiers in Education, 2004. FIE 2004. 34th Annual,
Oct. 2004, p. T3H/20–T3H/24 Vol. 1. doi: 10.1109/FIE.2004.1408553.

[79] M. Blumenstein, S. Green, S. Fogelman, A. Nguyen, and V. Muthukku-
marasamy, “Performance analysis of GAME: a generic automated marking en-
vironment,” Computers and Education, vol. 50, pp. 1203–1216, 2008.

149

https://snapshot.raintank.io/dashboard/snapshot/Uw7uECvHWCbYjoNicT1DSn4ZKhdbamSd
https://snapshot.raintank.io/dashboard/snapshot/Uw7uECvHWCbYjoNicT1DSn4ZKhdbamSd
https://snapshot.raintank.io/dashboard/snapshot/kPnzTPMNAIAmOHuubdds2ltUmdJ3Q9Xc
https://snapshot.raintank.io/dashboard/snapshot/kPnzTPMNAIAmOHuubdds2ltUmdJ3Q9Xc
https://stats.olinfo.it/
https://stats.olinfo.it/
https://snapshot.raintank.io/dashboard/snapshot/0J29w0KruEiymy6zV30beX98aRG6njiX
https://snapshot.raintank.io/dashboard/snapshot/0J29w0KruEiymy6zV30beX98aRG6njiX
https://snapshot.raintank.io/dashboard/snapshot/1s1wQCSYPgWdQe9f6sAeYZns5Ln1y6e5
https://snapshot.raintank.io/dashboard/snapshot/1s1wQCSYPgWdQe9f6sAeYZns5Ln1y6e5
https://doi.org/10.1109/FIE.2004.1408553

[80] V. Dagienė, “Sustaining informatics education by contests,” in International
Conference on Informatics in Secondary Schools-Evolution and Perspectives,
2010, pp. 1–12.

[81] G. Garcia-Mateos and J. L. Fernandez-Aleman, “Make learning fun with pro-
gramming contests,” Transactions on Edutainment II. Springer, pp. 246–257,
2009.

[82] T. Wang, X. Su, P. Ma, Y. Wang, and K. Wang, “Ability-training-oriented auto-
mated assessment in introductory programming course,” Computers and Edu-
cation, vol. 56, pp. 220–226, 2011.

[83] S. S. Skiena and M. A. Revilla, Programming challenges: The programming con-
test training manual. Springer Science & Business Media, 2003.

[84] S. Halim and F. Halim, Competitive Programming, Third Edition. Lulu. com,
2013.

[85] A. Laaksonen, Guide to Competitive Programming. Springer, 2017.

[86] S. Maggiolo, G. Mascellani, and L. Wehrstedt, “CMS: a Growing Grading Sys-
tem,” Olympiads in Informatics, p. 123–124, 2014.

[87] T. Di Mascio, L. Laura, and M. Temperini, “A Framework for Personalized
Competitive Programming Training,” in Proc. of 17th International Conference
on Information Technology Based Higher Education and Training, 2018.

[88] “PC2.” [Online]. Available: https://pc2.ecs.csus.edu/

[89] “DOMjudge.” [Online]. Available: https://www.domjudge.org/

[90] “SouthWestern Europe Regional Contest.” [Online]. Available: https://swerc.
eu/

[91] “Turing Arena.” [Online]. Available: https://github.com/turingarena/
turingarena

[92] J. Eldering, T. Kinkhorst, and P. van de Warken, “DOM Judge–Programming
Contest Jury System. 2020.” 2010.

[93] O. Ben-Kiki, C. Evans, and B. Ingerson, “Yaml ain't markup language (yaml™)
version 1.1,” Working Draft 2008-05, vol. 11, 2009.

[94] I. Fette and A. Melnikov, “The websocket protocol,” 2011.

[95] “Serde.” [Online]. Available: https://serde.rs/

[96] “Tokio.” [Online]. Available: https://tokio.rs/

[97] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor formalism for
artificial intelligence,” in Proceedings of the 3rd international joint conference on
Artificial intelligence, 1973, pp. 235–245.

150

https://pc2.ecs.csus.edu/
https://www.domjudge.org/
https://swerc.eu/
https://swerc.eu/
https://github.com/turingarena/turingarena
https://github.com/turingarena/turingarena
https://serde.rs/
https://tokio.rs/

[98] C. A. R. Hoare, “Communicating sequential processes,” Communications of the
ACM, vol. 21, no. 8, pp. 666–677, 1978.

[99] D. Crockford, “The application/json media type for javascript object notation
(json),” 2006.

[100] D. Merkel and others, “Docker: lightweight linux containers for consistent de-
velopment and deployment,” Linux j, vol. 239, no. 2, p. 2–3, 2014.

[101] “Turing Arena light rust utilities.” [Online]. Available: https://github.com/
dariost/tal-utils-rs

[102] M. Owens, The definitive guide to SQLite. Springer, 2006.

[103] “Turing Arena light desktop.” [Online]. Available: https://talco-team.github.io/
TALightDesktop/

[104] B. Green and S. Seshadri, AngularJS. " O'Reilly Media, Inc.", 2013.

[105] “TypeScript.” [Online]. Available: https://www.typescriptlang.org/

[106] “Pyodide.” [Online]. Available: https://pyodide.org/

[107] “GitHub.” [Online]. Available: https://github.com/

[108] “Google Drive.” [Online]. Available: https://drive.google.com/

[109] “OneDrive.” [Online]. Available: https://onedrive.live.com/

[110] “GitHub Copilot.” [Online]. Available: https://copilot.github.com/

[111] “Google Forms.” [Online]. Available: https://www.google.com/forms/about/

[112] D. Ostuni, E. Morassutto, and R. Rizzi, “Make your programs compete and
watch them play in the Code Colosseum,” in 2021 IEEE Conference on Games
(CoG), 2021, pp. 1–5.

[113] C. Bellettini et al., “Extracurricular activities for improving the perception of
informatics in secondary schools,” in International Conference on Informatics
in Schools: Situation, Evolution, and Perspectives, 2014, pp. 161–172.

[114] T. Verhoeff, “The role of competitions in education,” Future world: Educating
for the 21st century, pp. 1–10, 1997.

[115] V. Lonati, M. Monga, A. Morpurgo, and M. Torelli, “What’s the fun in informat-
ics? Working to capture children and teachers into the pleasure of computing,”
in International Conference on Informatics in Schools: Situation, Evolution, and
Perspectives, 2011, pp. 213–224.

[116] M. Mirzayanov et al., “Codeforces as an Educational Platform for Learning
Programming in Digitalization,” 2020.

[117] “TopCoder.” [Online]. Available: https://www.topcoder.com/

151

https://github.com/dariost/tal-utils-rs
https://github.com/dariost/tal-utils-rs
https://talco-team.github.io/TALightDesktop/
https://talco-team.github.io/TALightDesktop/
https://www.typescriptlang.org/
https://pyodide.org/
https://github.com/
https://drive.google.com/
https://onedrive.live.com/
https://copilot.github.com/
https://www.google.com/forms/about/
https://www.topcoder.com/

[118] “CodeChef.” [Online]. Available: https://www.codechef.com/

[119] “CMSocial.” [Online]. Available: https://training.olinfo.it/

[120] M. Papastergiou, “Digital game-based learning in high school computer sci-
ence education: Impact on educational effectiveness and student motivation,”
Computers & education, vol. 52, no. 1, pp. 1–12, 2009.

[121] “CodinGame.” [Online]. Available: https://www.codingame.com/

[122] “CodeCombat.” [Online]. Available: https://codecombat.com/

[123] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, “Robocup: The ro-
bot world cup initiative,” in Proceedings of the first international conference on
Autonomous agents, 1997, pp. 340–347.

[124] “Code Colosseum.” [Online]. Available: https://github.com/dariost/
CodeColosseum

[125] I. L. Finkel, “On the rules for the Royal Game of Ur,” Ancient Board Games in
Perspective, pp. 16–32, 2007.

[126] “Challonge.” [Online]. Available: https://challonge.com/

[127] “Discord.” [Online]. Available: https://discord.com/

[128] “Feedback results.” [Online]. Available: https://docs.google.com/spreadsheets/
d/1HPgLU-hNN3vGydThcqcRaFKLox5fkfFfWkNabBURkRM/

[129] “Code Colosseum replay functionality.” [Online]. Available: https://github.
com/dariost/CodeColosseum/pull/2

[130] “Code Colosseum GUI.” [Online]. Available: https://github.com/TALCo-Team/
CodeColosseumDesktop

[131] “Tauri.” [Online]. Available: https://github.com/tauri-apps/tauri

[132] J. Schaeffer et al., “Checkers is solved,” science, vol. 317, no. 5844, pp. 1518–
1522, 2007.

[133] “Code Colosseum checkers.” [Online]. Available: https://github.com/dariost/
CodeColosseum/pull/3

[134] “Code Colosseum chess.” [Online]. Available: https://github.com/dariost/
CodeColosseum/pull/4

[135] “QuizMS.” [Online]. Available: https://training-2023-fibonacci-medie.web.app/

[136] D. Ostuni and E. T. Galante, “Towards an AI playing Touhou from pixels:
a dataset for real-time semantic segmentation,” in 2021 IEEE Conference on
Games (CoG), 2021, pp. 1–5.

152

https://www.codechef.com/
https://training.olinfo.it/
https://www.codingame.com/
https://codecombat.com/
https://github.com/dariost/CodeColosseum
https://github.com/dariost/CodeColosseum
https://challonge.com/
https://discord.com/
https://docs.google.com/spreadsheets/d/1HPgLU-hNN3vGydThcqcRaFKLox5fkfFfWkNabBURkRM/
https://docs.google.com/spreadsheets/d/1HPgLU-hNN3vGydThcqcRaFKLox5fkfFfWkNabBURkRM/
https://github.com/dariost/CodeColosseum/pull/2
https://github.com/dariost/CodeColosseum/pull/2
https://github.com/TALCo-Team/CodeColosseumDesktop
https://github.com/TALCo-Team/CodeColosseumDesktop
https://github.com/tauri-apps/tauri
https://github.com/dariost/CodeColosseum/pull/3
https://github.com/dariost/CodeColosseum/pull/3
https://github.com/dariost/CodeColosseum/pull/4
https://github.com/dariost/CodeColosseum/pull/4
https://training-2023-fibonacci-medie.web.app/

[137] S. Risi and M. Preuss, “From chess and atari to starcraft and beyond: How game
AI is driving the world of AI,” KI-Künstliche Intelligenz, vol. 34, no. 1, pp. 7–
17, 2020.

[138] V. Mnih et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[139] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski, “Vizdoom:
A doom-based ai research platform for visual reinforcement learning,” in 2016
IEEE Conference on Computational Intelligence and Games (CIG), 2016, pp. 1–8.

[140] M. Wydmuch, M. Kempka, and W. Jaśkowski, “Vizdoom competitions: Play-
ing doom from pixels,” IEEE Transactions on Games, vol. 11, no. 3, pp. 248–259,
2018.

[141] F.-Y. Lam, “Comic market: How the world's biggest amateur comic fair shaped
Japanese dōjinshi culture,” Mechademia, vol. 5, no. 1, pp. 232–248, 2010.

[142] K. Sakai, Y. Okada, and Y. Muraoka, “Developing AI for playing shooter games
Touhou Kaeizuka,” in ICAI 2010: proceedings of the 2010 international conference
on artificial intelligence (Las Vegas NV, July 12-15, 2010), 2010, pp. 748–752.

[143] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The
pascal visual object classes (voc) challenge,” International journal of computer
vision, vol. 88, no. 2, pp. 303–338, 2010.

[144] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A.
Zisserman, “The pascal visual object classes challenge: A retrospective,” Inter-
national journal of computer vision, vol. 111, no. 1, pp. 98–136, 2015.

[145] T.-Y. Lin et al., “Microsoft coco: Common objects in context,” in European con-
ference on computer vision, 2014, pp. 740–755.

[146] M. Cordts et al., “The cityscapes dataset for semantic urban scene understand-
ing,” in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2016, pp. 3213–3223.

[147] “Touhou Toolkit.” [Online]. Available: https://github.com/thpatch/thtk

[148] M. L. Waskom, “Seaborn: statistical data visualization,” Journal of Open Source
Software, vol. 6, no. 60, p. 3021–3022, 2021.

[149] R. P. Poudel, S. Liwicki, and R. Cipolla, “Fast-scnn: fast semantic segmentation
network,” arXiv preprint arXiv:1902.04502, 2019.

[150] C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, and N. Sang, “Bisenet v2: Bilateral
network with guided aggregation for real-time semantic segmentation,” arXiv
preprint arXiv:2004.02147, 2020.

153

https://github.com/thpatch/thtk

[151] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation and recog-
nition using structure from motion point clouds,” in European conference on
computer vision, 2008, pp. 44–57.

[152] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes in video: A
high-definition ground truth database,” Pattern Recognition Letters, vol. 30, no.
2, pp. 88–97, 2009.

[153] H. Caesar, J. Uijlings, and V. Ferrari, “Coco-stuff: Thing and stuff classes in
context,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 1209–1218.

[154] H. Li, P. Xiong, H. Fan, and J. Sun, “Dfanet: Deep feature aggregation for real-
time semantic segmentation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 9522–9531.

[155] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep neural
network architecture for real-time semantic segmentation,” arXiv preprint
arXiv:1606.02147, 2016.

[156] S. Song, S. P. Lichtenberg, and J. Xiao, “Sun rgb-d: A rgb-d scene understanding
benchmark suite,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 567–576.

[157] T. Wu, S. Tang, R. Zhang, J. Cao, and Y. Zhang, “Cgnet: A light-weight context
guided network for semantic segmentation,” IEEE Transactions on Image Pro-
cessing, vol. 30, pp. 1169–1179, 2020.

[158] N. Ketkar, “Introduction to pytorch,” Deep learning with python. Springer, pp.
195–208, 2017.

[159] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,”
arXiv preprint arXiv:1904.09237, 2019.

[160] “Comparison on real Touhou videos.” [Online]. Available: https://www.
youtube.com/playlist?list=PL28XtHfG7kBVADdTifjlNOc9OVK-N4-5z

[161] M. Zavatteri, A. Raffaele, D. Ostuni, and R. Rizzi, “An interdisciplinary exper-
imental evaluation on the disjunctive temporal problem,” Constraints, vol. 28,
no. 1, pp. 1–12, 2023.

[162] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,” Artificial In-
telligence, vol. 49, no. 1, pp. 61–95, 1991.

[163] A. Oddi and A. Cesta, “Incremental Forward Checking for the Disjunctive
Temporal Problem.,” in ECAI 2000, IOS Press, 2000, pp. 108–112.

[164] K. Stergiou and M. Koubarakis, “Backtracking Algorithms for Disjunctions of
Temporal Constraints,” Artificial Intelligence, vol. 120, pp. 81–117, 2000.

154

https://www.youtube.com/playlist?list=PL28XtHfG7kBVADdTifjlNOc9OVK-N4-5z
https://www.youtube.com/playlist?list=PL28XtHfG7kBVADdTifjlNOc9OVK-N4-5z

[165] I. Tsamardinos and M. Pollack, “Efficient solution techniques for disjunctive
temporal reasoning problems,” Artificial Intelligence, vol. 151, pp. 43–89, 2003.

[166] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability Modulo
Theories,” Handbook of Satisfiability, vol. 185. in Frontiers in Artificial Intelli-
gence and Applications, vol. 185. IOS Press, pp. 825–885, 2009.

[167] A. Cimatti, A. Micheli, and M. Roveri, “Solving Temporal Problems Using SMT:
Strong Controllability,” in CP 2021, Springer, 2012, pp. 248–264.

[168] A. Cimatti, A. Micheli, and M. Roveri, “Solving strong controllability of tempo-
ral problems with uncertainty using SMT,” Constraints, vol. 20, pp. 1–29, 2014.

[169] R. Bellman, “On a routing problem,” Quarterly of applied mathematics, vol. 16,
no. 1, pp. 87–90, 1958.

[170] L. R. Ford Jr, “Network flow theory,” 1956.

[171] R. W. Floyd, “Algorithm 97: Shortest Path,” Commun. ACM, vol. 5, no. 6, p. 345–
346, 1962, doi: 10.1145/367766.368168.

[172] D. B. Johnson, “Efficient Algorithms for Shortest Paths in Sparse Networks,” J.
ACM, vol. 24, no. 1, pp. 1–13, 1977.

[173] M. Cairo, L. Hunsberger, R. Posenato, and R. Rizzi, “A Streamlined Model of
Conditional Simple Temporal Networks - Semantics and Equivalence Results,”
in TIME 2017, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, pp.
1–19.

[174] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The
Hardware/Software Interface, 5th ed. Morgan Kaufmann., 2013.

[175] G. S. Tseitin, “On the complexity of derivation in propositional calculus,” Au-
tomation of reasoning. Springer, pp. 466–483, 1983.

[176] SRI International's Computer Science Laboratory, “The Yices SMT Solver.” [On-
line]. Available: https://yices.csl.sri.com/

[177] SMT Steering Committee, “15th International Satisfiability Modulo Theo-
ries Competition.” [Online]. Available: https://smt-comp.github.io/2020/index.
html

[178] L. Gurobi Optimization, “Gurobi Optimizer Reference Manual.” [Online].
Available: http://www.gurobi.com/

[179] IBM, “ILOG CPLEX Optimization Studio.” [Online]. Available: https://www.
ibm.com/products/ilog-cplex-optimization-studio

[180] Armin Biere, “kissat.” [Online]. Available: http://fmv.jku.at/kissat/

155

https://doi.org/10.1145/367766.368168
https://yices.csl.sri.com/
https://smt-comp.github.io/2020/index.html
https://smt-comp.github.io/2020/index.html
http://www.gurobi.com/
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
http://fmv.jku.at/kissat/

[181] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling Entering the SAT Competition 2020,” in Proc.~of
SAT Competition 2020 – Solver and Benchmark Descriptions, T. Balyo, N. Fro-
leyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda, Eds., in Department of
Computer Science Report Series B. University of Helsinki, 2020, pp. 51–53.

[182] A. Armando, C. Castellini, and E. Giunchiglia, “SAT-Based Procedures for
Temporal Reasoning,” in Recent Advances in AI Planning, Springer, 2000, pp.
97–108.

[183] I. Spence, “Balanced random SAT benchmarks,” SAT COMPETITION 2017, p.
53–54, 2017.

[184] G. Escamocher, B. O'Sullivan, and S. D. Prestwich, “Generating difficult sat in-
stances by preventing triangles,” arXiv:1903.03592, 2019.

156

