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ABSTRACT Facial expressions are an essential part of nonverbal communication and major indica-
tors of human emotions. Effective automatic Facial Emotion Recognition (FER) systems can facilitate
comprehension of an individual’s intention, and prospective behaviors in Human-Computer and Human-
Robot Interaction. However, FER faces an enduring challenge, commonly encountered in real-life, of
partial occlusions caused by objects such as sunglasses and hands. With the onset of the COVID-19
pandemic, facial masks become a major obstruction for FER systems. The utilization of facial masks
exacerbates the occlusion issue since these cover a significant portion of a person’s face, including the highly
informative mouth area from which positive and negative emotions can be differentiated. Conversely, the
efficacy of FER is largely contingent upon the supervised learning paradigm, which necessitates costly and
laborious data annotation. Our study centers on utilizing the reconstruction capability of a Convolutional
Residual Autoencoder to differentiate between positive and negative emotions. The proposed approach
employs unsupervised feature learning and takes as inputs facial images of individuals with masks and
without masks. Our study puts particular emphasis on the transferability of the proposed approach to
different domains in comparison to current state-of-the-art fully supervised methods. The comprehensive
experimental evaluation demonstrates the superior transferability of the proposed approach, highlighting the
effectiveness of the unsupervised feature learning pipeline. Despite outperforming more complex methods
in some scenarios, the proposed approach is characterized by relatively low computational expense. The
source code of the proposed approach, along with the facial images created for this study, will be publicly
accessible following the acceptance of this paper.

INDEX TERMS Facial emotion recognition, facial mask, partial occlusions, affective computing, unsuper-
vised pre-training, human-robot interaction

. INTRODUCTION complex human-machine interfaces [10] for a wide number
of applications such as social robotics [15], [16], therapy,
diagnosis, and health-care applications [17], virtual training

and serious games [18].

In the last two decades, several researchers proposed models
for automatic emotion recognition from nonverbal cues such
as voice activity [1], [2], [3], body motions [4], [5], [6],
touch [7], as well as their combinations [8], [9]. However,
the most often considered indicators of emotional states are

In recent years, the FER methods have attracted increasing
attention and achieved remarkable performance by integrat-

facial expressions [10], [11], [12], [13]. In particular, emotion
recognition from facial images (referred to as Facial Emo-
tion Recognition (FER)) has attracted a tremendous number
of researchers [14]. FER is useful to design and develop
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ing deep learning architectures [14], [19], [20]. Still, partial
occlusions of the face, e.g., by hands, hairs, sunglasses,
scarves, and so forth, are challenges for the FER systems and
make them less effective in some cases. Upon the presence
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of the COVID-19 pandemic, facial masks have become a
major source of partial occlusions, and consequently, several
solutions were proposed to perform FER for the facial images
with masks [21], [22], [23], [24], [25], [26], [27], [28], [29].
Indeed, using facial masks creates a particularly challenging
condition for FER since the masks typically cover half of a
person’s face, and importantly the mouth area from which
highly informative cues for emotion recognition can be ex-
tracted [30]. Moreover, in the real world, while some people
may wear a facial mask, others may not be able to wear it,
or some might use the mask only for a limited period and
later take it off. Motivated by such cases, it is important to
develop a FER model that can deal with the images of people
wearing a mask (referred to as F},, throughout the paper) as
well as images of faces without a mask (referred to as Fi,,,,).

The success of FER predominantly reckons on the super-
vised learning paradigm in which the data annotation is ex-
pensive and laborious. Importantly, obtaining highly reliable
emotion labels is tough [8] since the perception of emotional
expressions depends on several factors such as gender and
culture [31]. There exists a few attempts to perform unsuper-
vised learning: Xiao et al. [32] apply Restricted Boltzmann
Machines (RBMs), and Yu et al. [33] use Cycle Generative
Adversarial Network (CycleGAN), for this purpose.

This paper tackles the FER problem in images of individu-
als who may or may not be wearing facial masks. It employs
Unsupervised Feature Learning (also called Unsupervised
Pre-training) [34] to address this challenge. The primary
advantage of our approach is the elimination of a time-
consuming annotation process for feature learning [35], [8].
The proposed method leverages the reconstruction capabil-
ity of a Convolutional Residual Autoencoder. The rationale
behind our proposal is to develop a model that can extract
informative features applicable to both masked (F},) and
unmasked (F),,,) facial expression recognition, as well as
mask detection, without the need for specific pre-training.
Furthermore, our approach is designed to be applicable in
real-life scenarios, as it does not strictly require the presence
of masks in the target images.

Our model and its application are majorly different from
the unsupervised learning-based prior arts [32], [33]. First,
none of them [32], [33] uses autoencoders. Furthermore,
RBMs applied in [32] have relatively less time efficiency
compared to the autoencoders (notice that the computation
remains intractable for regular-sized RBMs because its com-
plexity is exponential even in the size of the smallest layer,
see [36] for details). On the other hand, the approach in [33]
requires neutral facial images (and annotations) for image
generation, and suits only small-scale data as mentioned by
the authors. Importantly, neither of these works [32], [33] has
been tested on F},, images or in-the-wild large-scaled datasets
or in case of partial occlusions.

According to a widely employed model of emotions, emo-
tional experiences can be represented in a two-dimensional
(2D) space of valence and arousal [37]. In this model, va-
lence determines whether a state is negative (unpleasant)
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or positive (pleasant), while arousal refers to the degree of
activation, ranging from low arousal (deactivated) to high
arousal (activated). Representing emotions along dimensions
offers several advantages, with the primary benefit being the
facilitation of constructing computational models [38]. The
2D model, in particular, is extensively utilized for emotion
recognition in domains such as human-computer interaction
and human-robot interaction [39]. In these contexts, the
knowledge of emotional valence is particularly critical for
guiding the progression of interactions, necessitating fast
and reliable detection [40]. Motivated by these findings,
we utilize our approach to distinguish between positive and
negative emotions. When comes to the human ability to
perceive and differentiate positive and negative emotions
from the face, several studies confirm that this is related to
specific facial areas. For instance, according to [41], positive
emotions are mainly perceived by humans from the motion of
the lower part of the face. It was also demonstrated that the
presence of facial masks decreases humans’ ability to per-
ceive and recognize emotions from the face [42], [43], [44].
Such findings make the problem of automatic discrimination
of positive and negative emotions from the facial images of
people wearing a mask particularly interesting. Therefore, we
examine the effect of facial masks on the proposed method’s
performance such as examining if the positive emotion detec-
tion performance of the proposed method is relatively lower
in F;,, images.

In this paper, we particularly study the transferability of
FER systems capable of recognizing emotions from F},, and
F,.nm images. Unsupervised feature learning has the potential
to provide a more robust adaptation to real-world applications
due to the fact that it does not require (labeled) re-training
when the domain changes [35], [8], [45]. In this regard, we
investigate the following cross-dataset scenarios to evaluate
whether:

« an unsupervised feature learning-based approach (i.e.,
Ours) performs better than fully supervised methods
(i.e., state-of-the-art (SOTA)) when the pre-training
model and classifier share the same domain, but the
testing dataset differs.

« an unsupervised feature learning-based method (i.e.,
Ours) performs better than fully supervised approaches
(SOTA) when the pre-training domain differs from the
domains used for training and testing the classifiers.

The first case is particularly relevant for evaluating the
performance of methods in real-world scenarios where a
domain gap often exists between the training data and the
deployment domain. This case helps assess the robustness
and generalization capabilities of the methods when faced
with variations in the testing dataset. On the other hand, the
second case assumes that during deployment, a portion of
the data becomes available for fine-tuning the pre-trained
models, whether they are supervised or unsupervised. This
scenario reflects a situation where some adaptation can be
performed on the pre-trained models using limited additional
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data to enhance their performance in the specific deployment
domain. By considering both cases, we can gain insights
into the effectiveness of the methods in addressing domain
gaps and the potential for further fine-tuning to improve
performance in specific deployment scenarios.

The comprehensive experimental analysis conducted
demonstrates the superior transferability of our proposed
method compared to state-of-the-art (SOTA) approaches in
the aforementioned cross-dataset settings (refer to Section
IV-D). Notably, our method offers the added advantage of
lower computational costs compared to several SOTA meth-
ods. This feature has been instrumental in integrating our
approach into a social robot as part of the EU Horizon
2020 SPRING project (GA #871245)!, whose memory is
restricted, particularly, when performing several tasks at the
same time (Sec. V). Furthermore, when the proposed method
was evaluated with the traditional set-up i.e., the pre-training,
training, and testing splits are formed from the same dataset,
there exist some cases that the proposed method performs
better than more complex fully-supervised methods (e.g.,
having multi-head attention), which is remarkable to spot
given our model’s significantly lower number of parameters
and fewer FLOPs (Sec. IV-C). Notably, the proposed au-
toencoder is also good at differentiating F;,, images from
F.., images (aka face-mask detection) without requiring
additional pre-training different from the one applied for
FER (Sec. IV-F). The code of the proposed method and the
facial masked images curated within this study will be made
publicly available upon the acceptance of this paper.

The remainder of this paper is structured as follows. Sec-
tion II provides an overview of previous research on Facial
Expression Recognition (FER) methods capable of recogniz-
ing emotions from masked (F7,,) images. It also reviews the
datasets that have been used for evaluating such methods.
The proposed method is introduced in Section III, which
outlines the design of the convolutional residual autoencoder,
and the inference stage, and includes implementation details.
Section IV presents the experimental analysis, including the
construction of datasets and the obtained results. In Section
V, we describe an application of our method in a real-world
scenario, where our model is integrated into a PAL Robotics
ARI robot designed to provide assistance in hospital settings.
Finally, the paper concludes with a summary and discussions
in Section VI.

Il. RELATED WORK

With the continuous advancement of deep learning methods,
Facial Emotion Recognition (FER) systems have shown re-
markable performance improvements in recent times. How-
ever, the challenge of face occlusion has emerged as a sig-
nificant concern due to the increased use of facial masks as
a precautionary measure during the COVID-19 pandemic.
It’s important to note that in some countries, the usage of
facial masks remains mandatory, while in others, it may be

Uhttps://spring-h2020.eu/
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limited to specific sensitive locations like hospitals. Nev-
ertheless, there are still individuals who voluntarily choose
to wear masks, especially in densely populated enclosed
spaces. Numerous studies have demonstrated a decrease in
the human ability to recognize emotions when a person is
wearing a facial mask [42], [43], [44]. These studies confirm
that individuals tend to focus primarily on the eyes rather than
the mouth for emotion recognition. However, the number of
studies that address automated FER in the presence of facial
masks remains relatively limited. In Table 1, we provide a
summary of such methods while discussing them in detail in
the subsequent sections.

A. FER SYSTEMS CAPABLE TO RECOGNIZE
EMOTIONS FROM MASKED FACES

To distinguish positive and negative emotions in F;,, images,
Yang et al. [24] improved effectiveness of MobileNet [46]
and VGG19 [47] by fine-tuning them with relevant facial
images. That is the first study showing that i) FER can
feasibly be performed on the images with the generated
(simulated) facial masks, ii) masked faces decrease the per-
formance of the models trained on F),,, images, implying
that model fine-tuning with F,,, images is needed, and iii)
MobileNet fine-tuned with F},, images performs better than
the VGG19 counterpart. However, it is also observable that
iv) the proposed solutions perform well only when the front
view mask is used and v) the models are insufficient for
small-size training data. The experimental analysis [24] lacks
differently shaped or colored masks and does not perform
training and/or testing on both F,, and F},,,, images unlike we
perform in this work. Barros and Sciutti [21] use FaceChan-
nel [48], which is an adaptation of VGG16 [47] with much
fewer parameters, composed of 10 convolutional layers with
batch normalization and ReLU, and 4 pooling layers. They
tested several pre-training and fine-tuning combinations for
the estimation of arousal and valence values. The results
show that the pre-training FaceChannel [48] on the original
AffectNet dataset [49], and then fine-tuning all layers of the
network with masked-AffectNet performs the best no matter
the testing data is masked or not. It is also highlighted that su-
pervised pre-training with F,,,,, images improves the results,
and training the network from scratch with F},, images lowers
the performance significantly while it is also not sufficient to
only fine-tune the last convolutional layer. The model of [21]
was tested on a larger dataset compared to [24], and brought
in important findings. However, the experimental analysis
was limited to one dataset and one type of mask.

In [22], the authors propose a two-stage deep-attention
model to address the face mask problem in FER for three
emotions (positive, negative, and neutral). In the first stage,
a binary deep model recognizes whether an image contains
a mask or not, and generates attention heatmaps to roughly
distinguish the masked facial parts from the unobstructed
regions. The second stage of the method utilizes the bi-
nary attention heatmaps and feature embeddings of the deep
model and further includes fully connected layers to perform
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TABLE 1: The summary of SOTA FER systems capable of recognizing emotions from F,,, images. The preferable method
would be independent to mask detection and face segmentation, tested on multiple large-scale in-the-wild datasets (no role-
play, no in-lab. settings), able to process both input types F},, and F,,,,, images, being trained on several mask types to potentially
better generalize, and able to perform well both on small and large scale datasets. DNN refers to deep neural networks. Sup.
and Unsup. stand for supervised and unsupervised, respectively.

Independent to Independent to
Feature correct correct Inputs: Mask Types
Ref. Learning DNN mask detection  face segmentation  Dataset(s) Fopor By
[24] Sup. MobileNet, multiple, small-scale Fo synthesized, real,
VGG19 in-lab. (private) surgical
[21] Sup. FaceChannel single, large-scale, Fon synthesized,
in-the-wild surgical
[22] Sup. ResNet, VGG X multiple, large-scale, Fo & Fyum synthesized, real,
w/attention in-lab. (private), in-the-wild surgical
[25] Sup. ResNet multiple, large-scale, Fo synthesized,
w/attention in-lab., in-the-wild surgical
[29] Sup. Vision Transformer X multiple, large-scale, Fr, & Fum synthesized, real,
in-lab. (private), in-the-wild 8 types
[27] Sup. MobileNet X single, large-scale Fr, & Fum synthesized,
in-the-wild surgical
[23] Sup. VGG19, ResNet50 X small-scale Fr synthesized,
InceptionV3 frontal, role-play surgical
[28] Sup. CNN X single, small-scale Fr synthesized,
frontal, role-play surgical
Ours Unsup. Autoencoder + MLP multiple, small/large-scale, Fon & Fyum synthesized,
in-the-wild 162 types

FER in the way that the model pays more attention to the
unmasked region but less to the masked region. The same
authors later on proposed a deep learning pipeline based on
face parsing and a vision Transformer with a cross-attention
mechanism [29] motivated by the findings of [22], which
shows a performance increment upon injecting attention over
the mask area. The architecture in [29] consists of three com-
ponents: /) unmasked facial region segmentation using a pre-
trained face parsing model, 2) feature map extractor of pre-
trained ResNet50 [50] followed by a multi-layer Transformer
encoder, and 3) fusion of patches from the face mask branch
and the feature map patches with the classification token
([CLS]) from the unmasked face branch with a Multilayer
Perceptron. The results of [22] remarkably surpass the perfor-
mances of MobileNet and VGG19 presented in [24] while the
performance of [29] is the best out of all. As shown in [29],
the computational cost in terms of FLOPs and the number
of parameters, the model in [22] is 45 times and five times
higher than MobileNet of [24], respectively. Similarly, the
model of [24] is 18 times more than MobileNet [24] in terms
of FLOPs and seven times more than MobileNet [24] in terms
of the number of parameters. As reported in Sec. IV, out of all
methods, our proposed method is the most computationally
efficient one. Additionally, different from [22], [29], our
method excludes the need of detecting the location of the
mask and it is able to perform FER in both F,,, and F),,
images within a single model. Instead, [22], [29] requires
additional classifiers to perform FER on F,, images to
compensate for the performance, which would increase the
model complexity. Nevertheless, as shown empirically, our
unsupervised feature learning stage is able to learn relevant
features to be able to distinguish F;,, and F),,,, images from
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each other very effectively. Moreover, it is important to high-
light that [29] dependents on a face parsing model requiring
to be pre-trained on F,, images, includes two pre-trained
ResNet50 [50], a pre-trained transformer, and an MLP head
while we rely on a convolutional residual autoencoder, which
is pre-trained with an unsupervised manner and an MLP head
for classification. The model of [29] was tested on eight types
of facial masks, which is the highest number in the literature
but still majorly lower than what we tested in this paper.

Another study using a Convolutional Neural Network
(CNN) with an attention mechanism is [27]. In that work,
the authors additionally check whether the performance of
FER system processing F},, images is comparable to humans’
performance. Similar to [22], [29], their model [27] requires
a mask detector, which in their case is a fine-tuned MobileNet
[46]. If a mask is detected, then only the part of the face
around the eyes is kept as a Region Of Interest (ROI) and
that ROl is classified by a ResNet50 [50] pre-trained on such
cropped images. In case of a mask is not detected, then,
the entire face is considered as an ROI, which is classified
by another ResNet50 [50] to detect discrete emotions (hap-
piness, surprise, anger, sadness, fear, disgust, and neutral).
In conclusion, their FER system outperformed humans. It is
important to notice that [22], [29], [27] all require additional
models to perform FER on F,,,, images and majorly focus
on FER on F,, images. However, such a preference can
perform poorly, especially in real-world deployment in which
the mask detectors fail to detect the existence of a mask or
localize the facial masks incorrectly. Therefore, as performed
in our study, we claim that a single model able to learn feature
representations from both F;,, and F,,,, images is beneficial
in real-world processing, also promoting less computational
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complexity. Shehu et al. [23] likewise compared several pre-
trained CNN architectures: VGG19 [47], ResNet50 [50],
and InceptionV3 [51] for discrete FER (anger, disgust, fear,
happy, neutral, sad and surprise) within four settings of
images: i) without a mask, ii) with a mask covering the lower
face, iii) a partial mask with a transparent mouth window,
and iv) with sunglasses. Keeping in mind that the evaluation
was performed on a single constraint dataset (in terms of
images, which were all captured frontally and the number
of instances): extended Cohn-Kanade (CK+) [52], that study
[23], in line with [27], shows that the aforementioned models
can perform better than humans when the facial area is
covered more than 15%. Importantly, human mainly confuses
the neutral class with positive/negative emotions, instead, the
automated models are able to differentiate the neutral class
from emotion classes, but sometimes confuse the negative
and positive emotions [23].

To sum up, none of the SOTA has performed unsupervised
feature pre-training to develop a FER system capable of rec-
ognizing emotions from both F;,, and F,,,, images. We also
show that our autoencoder supplying feature representations
to perform FER can be used for mask detection without the
need for any alterations. Instead, in addition to requiring
labeled data, the more recent (and more effective) SOTA
involves several pre-trained models to detect the mask loca-
tion, and in some cases to perform FER in F},,, images. The
proposed method’s transferability is the best as confirmed by
extensive experiments. Among all SOTA, we present one of
the most efficient architectures in terms of FLOPS and the
number of parameters. It is remarkable that our solution is
able to surpass several fully supervised SOTA while perform-
ing almost equally well on F;,, and F,,, images.

B. EXPERIMENTAL SETUP OF RELATED WORK
Several earlier approaches in the field have not been thor-
oughly tested on unconstrained, real-world datasets, as can
be noticed in studies such as [23], [28]. Additionally, some
of these methods have not consistently been evaluated using
publicly available datasets, as seen in research works like
[24], [22], [29]. Furthermore, the experimental analysis of
these approaches often revolves around a single dataset,
limiting the breadth of their evaluation, as evident in papers
such as [24], [21], [27], [23], [28]. Some datasets used in the
evaluation of [24], [22], [29] were collected in the laboratory
environment, composed of a single ethnical group, which
might be a concern since a FER system trained on one
ethnical group might not generalize well to others given
that facial expressions might vary from culture to culture
[53]. It is also worth highlighting that there is currently no
widely adopted (masked) dataset used for comparing the
performance of SOTA methods in this domain. Consequently,
we curated our datasets from existing in-the-wild, large-scale
FER datasets having valence annotations.

Similar to previous studies [21], [25], we incorporated
AffectNet [54], which is widely recognized as a large-
scale database for facial expression, valence, and arousal in
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unconstrained settings, into our evaluation. In addition to
AffectNet, we included two other unconstrained FER video
datasets, namely Aff-wild2 [55], [56], [57], [58], [59], [60],
[61], [62], [63] and AFEW-VA [64], [65], both of which pro-
vide valence annotations. Similar to the approaches discussed
in the related work, we also employed synthesized masks
in our study. We conducted visual inspections to ensure that
the facial masks were correctly positioned, and we discarded
any images where the masks were improperly placed. It is
worth noting that different research groups used different
facial mask generators, such as those mentioned in [66], [28],
[21]. Furthermore, it is important to highlight that several
studies only tested their methods on a single type of mask
[48], [23], [27], [24]. However, in our work, we introduced
a wide variety of masks for evaluation purposes. While [29]
stands out for using eight types of masks, the number of mask
variations used in their study is still limited compared to the
diverse range of masks we utilized in our research.
Importantly, our experimental setup is different from
SOTA since we use both F},, and F,,,, images in training and
testing. We claim that such a scenario is more suitable given
the current evaluation of COVID-19 such that it is possible to
observe both masked and unmasked individuals in our daily
life. In terms of experimental analysis, we specifically focus
on the cross-dataset performance of our model with respect
to SOTA. This transferability has not been investigated by
earlier art before, however, we argue that it allows an under-
standing of the real-world robustness of the methods.

lll. PROPOSED METHOD

The proposed Convolutional Autoencoder (AE), visualized
in Fig. 1-top is composed of an encoder having three main
residual blocks, each featuring three convolutions with ReL.U
and a max-pooling operation. The input image of this net-
work is of dimension 64 x 64 x 3. A single residual block has
the 2D-kernels 3x 1, 1x3, 3x1. The output of the encoder
has a size of 2048. The encoder employs residual connec-
tions; particularly the first layer of each block is shared
among the block itself and the skip connection, the output
of the block is then summed with the output from the skip
connection.

The decoder is the transpose version of the encoder em-
ploying the same structure that takes as input the latent space
from the encoder reconstructing the original image. Each de-
coder block uses a transpose-convolutional layer with ReLU
and batch normalization. A single transpose-convolutional
block has the 2D-kernels 3x 1, 1x3, 3x1. Decoder has also
residual connections and we apply max-unpooling at the
beginning of each decoder block while it should be noted that
batch normalization is employed only for the decoder.

The reconstruction objective function of our AE is the
Mean Squared Error (MSE):

Luse = sExs[|X — X|3], (1)

where X is the input image, and || - || r denotes the Euclidean
norm of the vector obtained after flattening the tensor X. The
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FIGURE 1: Proposed convolutional autoencoder trained with Mean Squared Error loss (top). Downstream task; posi-
tive/negative emotion classification learned with an MLP using the features extracted from the frozen encoder of our

convolutional autoencoder trained unsupervised way (bottom).

MSE loss in (1) is minimized by using ADAM optimizer over
mini-batches BB and the reconstructed data are defined as:

X =Dy o E,(X), )

The MSE loss has the learnable parameters 6, ¢ updated by
mini-batch gradient descent, where we estimate

Ex~s [Lrmse (8, ¢)] = Exop [[|[x — Do(Ey(x))[|7]

by averaging the MSE loss Ly over the mini-batch B.

Inference. Once the proposed AE is trained with MSE,
without using the labels of the data (aka unsupervised pre-
training), following the representation learning literature, we
freeze the AE and use it only to extract features for the
training/testing data, which are used to train/test a linear
classifier (see Fig. 1-bottom).

That linear classifier is a Multilayer Perceptron (MLP)
composed of two layers with parametrized ReLu as the
activation function, trained to perform the classification of
positive and negative emotions. The training of the MLP is
performed with Focal Loss [67] motivated by the fact that it
could be able to better handle the class imbalance problem,
if any.

Implementation Details. The proposed AE was trained
for 20 epochs using a combination of Real-World Masked
Face (RMFD) and Real-World Masked Face-V2 (RWMFD)
datasets [68] and the FER datasets described in Sec. IV-A.
RMFD and RWMFD [68] are two datasets containing real
(i.e., not synthesized) images of people wearing a mask. We
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used them in our unsupervised pre-training to allow our AE to
learn from real-world F;,, images since the FER datasets we
used in this study involve synthesized facial masks. Notice
that RMFD and RWMFD [68] were used only during the
training of AE, but not for training or inference with MLP.
Following unsupervised pre-training, the MLP was trained
for 45 epochs. In all our experiments, we exploited ADAM
as the optimizer with le — 3 when the batch size was set
to 256. During training, we applied random rotation with a
degree range of [—60, 60] to augment the data.

IV. EXPERIMENTAL ANALYSIS

This section first describes the curated FER datasets used
for the evaluation of the proposed method and the state-of-
the-art models (SOTA) in Sec. IV-A. Then, we introduce the
implementation details of the SOTA in Sec. IV-B, which we
compare against the proposed method in Sec. IV-C within
the same-dataset evaluation setting. Sec. IV-D reports the
results of the cross-dataset analysis, which corresponds to
the main research questions sought that are with respect to
model transferability. Following that, we discuss our model’s
predictions in terms of positive and negative emotion classes
as well as on F},, and F),,,, images in Sec IV-E and highlight
our model’s capability for mask detection in Sec. IV-F.

A. DATASETS & EVALUATION METRICS

We utilized three large-scale, in-the-wild FER datasets that
provide valence annotations. These are: AffectNet [54], Aff-
wild2 [55], [56], [57], [58], [59], [60], [61], [62], [63] and
AFEW-VA [64], [65]. The AffectNet dataset [54] is one of
the largest image-based datasets for FER, including 287651

VOLUME 10, 2022



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3308047

IEEE Access

D’Inca et al.: Unsupervised Pre-Training for Emotion Recognition in Masked and Unmasked Facial Images

training, and 4000 validation images annotated manually.
We follow the studies in the literature, e.g., [21], [25], [22]
using the validation set for model evaluation. The images
from the AffectNet dataset exhibit variations in size. The
valence annotations provided in the dataset are numerical
values ranging between —1 and +1. In contrast to Af-
fectNet [54], there is currently no other publicly available
large-scale (an important characteristic to train deep models
effectively) FER dataset that meets the criteria of being
image-based, collected in-the-wild, and providing valence
annotations. To overcome the limitations of available image-
based FER datasets with valence annotations, we curated
our own datasets by extracting images from two existing
unconstrained, large-scale video-based FER datasets: Aff-
wild2 and AFEW-VA. The Aff-wild2 dataset [55], [56], [57],
[58], [59], [60], [61], [62], [63] is composed of 558 videos
collected from Youtube including 458 subjects. The valence
values are between —1 and +1. Lastly, the AFEW-VA dataset
[64], [65] contains 600 video clips selected from movies
including indoor and outdoor scenes. That dataset provides
a wide spectrum of facial expressions, captured in various
circumstances with natural head pose movements, complex
backgrounds, and severe occlusions [64], [65]. The valence
annotations are per frame in a range between —10 to 10.

To ensure consistency in cross-dataset analysis, we dis-
cretized the valence annotations in both the AffectNet/Aff-
Wild2 and AFEW-VA datasets. We categorized values
smaller than zero as belonging to the negative class and
values greater than zero as belonging to the positive class.
While FER datasets may exhibit variations in the range of
valence annotations, the sign of the valence (positive or
negative) is crucial for FER analysis, as emphasized in prior
work [54].

The F),, images were created from Fj,, images of the
original datasets by using the facial mask generation method
proposed in [69]. That mask generator [69] provides five
different mask types (surgical, N95, KN95, cloth, gas mask),
which we used all except the gas mask. It also provides 24
different patterns that can be applied to mask types while it
is also allowed to modify the color and intensity of the mask
color. To generate the masks, we randomly selected the mask
type, pattern, and color for each image in a dataset. We also
changed the intensity of the color randomly. This resulted in
162 different facial masks. Since each mask type has multiple
templates based on angle, they cover a wide range of face
tilts, resulting in accurate F;,, images [69]. Still, we applied
a manual visual inspection to discard the facial images of
having the mask misplaced. Sample F;,, images are given in
Fig. 2. The datasets’ final curation is summarized as follows
and the numbers of F;, and F,,,, images in the training and
testing splits are given in Table 2.

a) Dataset 1: Its training and testing splits are composed
of randomly selected 50% of the original (F,,,) images of
AffectNet combined with the F;,, images generated from the
other 50% of the dataset. The training and testing instances
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FIGURE 2: Samples of F), images obtained by applying
Anwar and Raychowdhury’s method [69] to the original F),,,
images.

were kept the same as supplied by the original dataset.

b) Dataset 2: Once we removed highly similar faces from the
video clips of Aff-Wild2, which refers to faces appearing in
consecutive frames with the same emotion type, we utilized
facial mask generation techniques described in [69] on the
remaining images. The original dataset’s provided training
and testing splits were retained. We ensured that if a certain
type of image (either F,, or F),,,,) appeared in the training set,
its corresponding counterpart would not be present in the test
set, and vice versa. Moreover, the identities across training
and testing splits are not overlapping.

c) Dataset 3: To create an in-the-wild image-based dataset
from AFEW-VA, we initially removed highly similar faces.
These were defined as faces appearing in consecutive frames
of the videos with the same emotion type. Subsequently,
we applied the mask generation technique from [69] to the
remaining images. Any facial images where the generated
mask was inaccurately placed were discarded from the group
of F,, images. However, their corresponding original images
were retained as F),,,, images. These images, although rela-
tively challenging, are still valuable for evaluation purposes.
Rather than completely excluding them from the evaluation,
which is the common approach followed by state-of-the-art
(SOTA) methods, including them as F},,, images contribute
to a more comprehensive assessment. In this case, it is
possible for the same identities to appear in both the training
and testing splits, but with differences in head orientation,
emotion classes, and image types (F},, or Fy.,).

As observed in Table 2, Datasets 1-3 exhibit a slight
imbalance in the number of F), and F),, images within
their respective training sets. This may pose an additional
challenge for FER models. However, we deliberately avoided
manipulating the training splits to achieve balanced classes,
as imbalanced data is a common occurrence in real-world
applications [70]. We believe that the dataset curation un-
dertaken in this study is a valuable contribution, particularly
considering the absence of a standardized benchmark. The ef-
fectiveness of the proposed method and SOTA are measured
with Fl-score (F'1).

B. THE STATE-OF-THE-ART METHODS

We adopted several fully supervised SOTA methods in order
to compare their efficiency and effectiveness against the
proposed approach. Each of them was first pre-trained for
the mask detection task using the relevant real-world, large-
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TABLE 2: Details of the datasets used in the experimental analysis.

Dataset Source # of Training Images # of Testing Images

Unmasked  Masked

1 AffectNet 143825 130205
2 Aff-Wild2 145920 105032
3 AFEW-VA 5658 7024

Total Unmasked  Masked Total
274030 1999 1903 3902
250952 31873 24624 56497

12682 631 781 1412

TABLE 3: Evaluation of the proposed method and the SOTA on Datasets 1, 2, and 3 in terms of F1-score. The best results are
indicated in bold and the second best results are given underlined. The symbol 1 implies that a higher value is preferred.

FI (D
Method Feature Learning  Dataset 1  Dataset 2  Dataset 3
Barros & Sciutti [21] supervised 48.8 26.9 75.2
ResNet50 [50] supervised 66.2 41.2 79.2
(Proposed) Know. Dist. supervised 70.3 44.1 83.8
ViT [71] supervised 38.3 29.9 58.2
Swin-L [72] supervised 46.3 449 56.8
ViT (w/ResNet50) [71], [73] supervised 71.0 65.7 87.7
Proposed unsupervised 58.8 46.6 95.4
Dataset 1 Dataset 2 Dataset 3

Predicted Predicted

Predicted

FIGURE 3: Confusion matrices correspond to the proposed method trained and tested on Dataset 1 (left), Dataset 2 (middle),

and Dataset 3 (right).

TABLE 4: Computational cost of the SOTA and the proposed
method in terms of floating-point operations per second
(FLOPs) and the number of parameters. * represents the
results based on our implementation. The number of param-
eters (# Params) of the knowledge distillation methodology
is given in terms of the sum of the teacher and the student,
respectively, while the FLOPs are given for the student model
since it is the one used in deployment time. The FLOPs
of the proposed method include the autoencoder and the
MLP. In parenthesis, we state the MLP’s FLOPs. The values
are indicated in bold and the second best values are given
underlined. The symbol | indicates that a lower value is
considered better.

Computational Cost

Method FLOPs ({) # Params ({.)
Barros & Sciutti [21] 0.1G* 2.1M*
ResNet50 [50] 25.7G 4.3M
(Proposed) Know. Dist. 0.1G 24.3M+1.5M
ViT [71] 17.6G 86.7M
Swin-L [72] 34.5G 197M
ViT (w/ResNet50) [71], [73] 17.6G 86.7M
Proposed 0.45G (0.09G) 2.75M

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

scale, in-the-wild datasets: RMFD and RWMFD [68] in line
with the proposed autoencoder’s pre-training. The further
implementation details are described as follows.

The methodology of Barros & Sciutti [21]. We utilized
the FaceChannel network [48] in our implementation, adapt-
ing its last layer to suit the binary classification task (i.e.,
softmax). Following the implementation details described in
[21], we employed the same search space for the number of
layers and units per layer. The ADAM optimizer [74] was
utilized, with a learning rate of le — 3, and the model was
trained using cross-entropy loss.

Proposed Knowledge Distillation. One can observe that
several SOTA methods, e.g., [24], [29] adapted MobileNet
while some other studies, e.g., [23] showed the effective-
ness of InceptionV3 to recognize emotions from masked
faces. Eyiokur et al. [75] recently showed SOTA results
of InceptionV3 and MobileNet for face mask detection in
unconstrained environments. Motivated by such studies, we
developed a fully supervised method performing knowledge
distillation between InceptionV3 and MobileNet. Knowledge
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distillation among neural networks is wildly used for several
applications when resource constraints are in place [76]. This
is also valid for us since our final aim is to integrate the
FER approach into a Social Robot. However, knowledge
distillation has not been tested before by a relevant prior
study. Given the final model’s efficiency by being com-
putationally less expensive (i.e., MobileNetV3 has a lower
number of parameters and fewer floating-point operations
per second (FLOPs), see Table 3 for details) compared to
several SOTA, and its on-par performance against several
CNN-based SOTA, we argue that the proposed knowledge
distillation model is the fairest fully supervised counterpart
of the proposed unsupervised feature learning-based method.

Knowledge distillation revolves around the utilization
of two neural networks, namely a student and a teacher.
The teacher network is designed to be larger, prioritizing
high classification performance without considering resource
limitations. On the other hand, the student network is a
smaller network specifically designed to meet low resource
requirements while aiming to achieve similar results to the
teacher network. Our teacher, InceptionV3, was pre-trained
on ImageNet [77], while our student network, MobileNetV3,
was trained from scratch. The PyThorch implementations of
these networks were exploited by keeping their architectures
unchanged except for the classification layers which were
updated to fit our aim. The teacher network was fine-tuned
using the cross-entropy loss function. The student’s objective
function was the weighted sum of a soft and a hard loss.
The soft loss has the goal to distill the knowledge of the
teacher via soft targets computed over the predictions of
the teacher (i.e., soft outputs). The soft loss function is the
Kullback-Leibler divergence of the soft outputs and soft
targets. The hard loss is the cross-entropy function between
the student predictions and the ground truth. Consequently,
the overall student objective function is: Ly = Lo - T? .
ws + Lpara - (1 — ws) where w; is the soft weight set to
0.9, Loy is the soft loss and Lyj,qyq is the hard loss. It is
important to multiply the soft loss by 72 (T stands for the
temperature value) when using both hard and soft targets.
This ensures that the relative contributions of the hard and
soft targets remain roughly unchanged if the temperature
used for distillation is changed while experimenting with
meta-parameters [76]. For all corresponding experiments,
ADAM [74] was used as the optimizer with a 1e — 3 learning
rate in line with the proposed unsupervised feature learning-
based method. The input images were resized to several
scales such as 64x64 or 224x224 (note that we did not
observe significant performance differences for the same
dataset experiments). The best results were obtained when
the number of epochs and the batch size were taken as 20
and 64, respectively, for the InceptionV3 while MobileNetV3
was trained up to 30 epochs with 64 batch size.

ResNet50. Another network that has been frequently adapted
by SOTA is ResNet50 [27], [29], [25], [23]. Moreover, since
the autoencoder of the proposed method employs residual
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connections (which as shown through the ResNet family, is
an important characteristic to avoid the problem of vanishing
gradient and mitigating the degradation problem, resulting
in poor learning for deep networks), we included that model
into the comparative study. We used the ResNet50 pre-trained
on ImageNet and employed softmax loss at the end of the
network. For training, we used le — 3 and le — 4 learning
rates and 0.0005 weight decay parameters. The optimization
was performed with ADAM [74] while the inputs were scaled
to 256 x 256. Training of the models was executed with batch
sizes from 64 to 256.

Vision Transformer (ViT) and Swin Transformer (Swin-
L). Since the attention mechanisms have been adopted by
several FER studies (see Sec. II for details), we also included
the Visual Transformers [71] and Swin Transformer [72] into
our comparisons following the implementation details given
in [78], [24].

It is currently very well-known that the performance of
ViT majorly drops when it is trained from scratch compared
to being fine-tuned. The reason for this is its limited fea-
ture extraction capacity appearing in case of not using the
guidance of large-scale datasets. In other words, ViT has
less induction bias compared to a CNN, thus, it is harder
to train, and large-scale datasets help to compensate for the
performance gap [73]. A typical way to handle this situation
is to use a pre-trained CNN. In [78], it was shown that the
performance of ViT trained from scratch can be 38% less
than using pre-trained CNN together with ViT for FER. In
this study, we integrated a ResNet50 model (i.e., the pre-
trained model on ImageNet was further fine-tuned on RMFD
and RWMFD datasets [68] as mentioned at the beginning of
this section) to extract features from the last convolutional
layer of it, referring to the FER model in [78] as well as the
FER model for F;,, images in [24]. The number of layers and
the head were set to 4 and 6, respectively for the multi-layer
transformer encoder in line with [24]. The hidden dimension
of the MLP head was set to 1000 [24] or 3072 [78]. The
learning rate was initialized as 5e — 3 [24], [78], following
a warmup of 250 steps and a cosine learning rate decay [24],
[78]. The model was trained up to 300 epochs with ADAM
optimizer [74] with cross-entropy loss when the batch size
was varied between 64 to 256.

In the case of the Swin-L Transformer [72], we fine-tuned
it up to 50 epochs using a learning rate of le — 2 with the
ADAM optimizer.

C. COMPARISONS AGAINST THE STATE-OF-THE-ART
Even though our main focus is to study the transferability
of the proposed method with respect to other approaches,
we first report a comparative study across our model and the
prior art on the same-dataset setup to draw us an empirically
validated comparative method out of all SOTA (see Table 3
and Fig. 3).

The results highlight the better performance of ViT [71]
used together with pre-trained ResNet50, on average. How-
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TABLE 5: Cross-dataset analysis when the testing dataset is different from the pre-training and training datasets. The best
results of each metric are given in bold. Notice that the pre-training of the proposed method is unsupervised, i.e., without using

the labels. The symbol 1 implies that a higher value is preferred.

Classifier
Method Feature Learning  Pre-training Training  Testing F1 (1)
Dataset Dataset Dataset

Know. Dist. supervised - 1 2 38.3
Proposed unsupervised 1 1 2 44.7

~ Know. Dist. ~ supervised - 2 1 440
Proposed unsupervised 2 2 1 58.4

~ Know. Dist. ~ supervised - 1T 3 604
Proposed unsupervised 1 1 3 53.2

~ Know. Dist.  supervised - 2 3 468
Proposed unsupervised 2 2 3 51.2

ever, our approach surpasses ViT with ResNet50 when tested
on datasets whose scalability is relatively smaller such as
the case of Dataset 3. For relatively larger datasets such as
Dataset 2, our model demonstrates the second-best perfor-
mance after ViT with ResNet50 by surpassing all other fully
supervised methods. Without using pre-trained ResNet50,
ViT [71] underperforms in all datasets. The proposed Knowl-
edge Distillation approach, overall, achieves better results
compared to Barros and Sciutti [21] and ResNet50 even
though its student component is much lightweight compared
to both approaches. Based on the confusion matrices, it is
evident that the proposed method exhibits a higher detection
rate for negative emotions compared to positive emotions in
Dataset 1. Conversely, for Dataset 2, the positive emotion
detection rate surpasses the negative emotion detection rate.
In the case of Dataset 3, the detection rates for each class are
relatively closer to each other, although negative emotions
still tend to be better predicted.

In terms of computational cost (see Table 4) and per-
formance trade-off, the best-performing fully supervised
method is the proposed knowledge distillation model. There-
fore, we use that model to compare its performance against
the proposed method within the cross-dataset evaluations
performed to validate the transferability.

D. CROSS-DATASET ANALYSIS
The cross-dataset analysis includes two types of investiga-
tion. In the first one, we evaluate the models’ performances
when the datasets used in the pre-training and during the
training of the classifier are the same, but the classifier’s
testing dataset is different. Such experiments are relevant
given that there is often a domain gap between the train-
ing/validation data and the testing domain in real-world
applications. The corresponding results are given in Table 5.
Table 5 shows that the majority of the time the proposed
unsupervised feature learning-based model’s transferability
is superior to the proposed fully supervised knowledge dis-
tillation model. The only exception occurred when Dataset
1 was used as the training dataset and the testing is per-
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formed on Dataset 3. Still, even in the further case, the
performance gap between the two models is lower than
the former, i.e., the proposed unsupervised feature learning-
based model surpasses the knowledge distillation. Overall,
a drop in performance is possible due to the domain gap
between the datasets. Particularly, training on either Dataset
1 or Dataset 2 significantly decreases the performance on
Dataset 3 compared to both training and testing on Dataset
3.

The second type of cross-dataset analysis is to evaluate
the models’ performances when the pre-training dataset is
different from the dataset the classifiers are trained and
tested on. Such a setting simulates real-world applications
in which one typically has models trained on one dataset
(so-called pre-trained models) but further needs to be fine-
tuned on another dataset whose distribution is the same as
the testing dataset but different from the pre-training dataset.
We evaluated the performance of the knowledge distillation
model in two settings:

(a) The teacher model was trained on the pre-training dataset,
and then the student network was trained on the same dataset.
Furthermore, the student network was fine-tuned with the
classifier’s training dataset and tested with the classifier’s test
set. All layers of the student network were fine-tuned.

(b) The teacher network was trained on the pre-training
dataset, and then the student model was trained on the
same dataset. Consequently, the student network was fine-
tuned with the classifier’s training dataset and tested with the
classifier’s test set. Only the last layer of the student was fine-
tuned.

The corresponding results are given in Table 6. Herein, we
used Dataset 1 and Dataset 2 in pre-training, and Dataset
3 was used for the classifier’s training and testing. It is a
common practice that model pre-training is performed on
relatively larger datasets. In this vein, we did not perform pre-
training on Dataset 3 given that it is the smallest dataset out of
all (otherwise it is highly likely that a catastrophic forgetting
would happen, therefore the transferability cannot be stud-
ied). Also in such cases, the proposed unsupervised feature
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TABLE 6: Cross-dataset analysis when the pre-training dataset is different from the dataset the classifier is fine-tuned and tested
on. The best results of each metric are given in bold. Notice that the pre-training of the proposed method is unsupervised, i.e.,
without using the labels. See the text for the description of (a) and (b). The symbol 1 implies that a higher value is preferred.

Classifier
Method Feature Learning  Pre-training Training  Testing F1 (1)
Dataset Dataset Dataset
Know. Dist. (a) supervised 1 3 3 81.8
Know. Dist. (b) supervised 1 3 3 69.5
Proposed unsupervised 1 3 3 95.8
~ Know. Dist. (a) ~ supervised 2 3 3 847
Know. Dist. (b) supervised 2 3 3 60.2
Proposed unsupervised 2 3 3 94.5

learning-based approach surpasses the proposed knowledge
distillation model for both settings (a) and (b), once again
proving its better transferability. It is notable that pre-training
on Dataset 1 slightly improves the results (from 95.4% to
95.8%) of our unsupervised feature learning-based method
with respect to the one given in Table 3 (i.e., the same-dataset
analysis) and pre-training on Dataset 2 improves the results
of proposed knowledge distillation with respect to the same-
dataset analysis (from 83.8% to 84.7%).

E. FURTHER ANALYSIS ON EMOTION CLASSES

Table 7 reports the F1 score of the proposed method for pos-
itive and negative emotion classes as well as its performance
on F,, and F),, images. Overall, the proposed method is
better at performing emotion classification on F,,, images
than the F), images. The average performances on F),,
images and F;,, images do not have a significant gap.

Specifically, the performance of the proposed method on
positive emotions is better than the detection of negative
emotions when the test dataset is Dataset 2. This finding is on
par with the model in [27] showing that positive emotions are
better identified since they are more related to the eye regions
while negative emotions are mainly related to the mouth
region and therefore barely recognized. However, when the
test datasets are Dataset 1 or Dataset 3, we observe the
opposite results such that the negative emotions are detected
better than the positive emotions.

In general, these last two results obtained for our model
are consistent with the results on the identification of posi-
tive/negative emotions from F},, images by humans, which
are also unequivocal [43], [44].

F. MASK DETECTION

Given that several SOTA assume the input image includes
a facial mask to perform FER (e.g., [24], [23], [28]) or first
detect the mask location (e.g., [22], [29], [27]) and then apply
the corresponding FER network, we believe that it is interest-
ing to show the mask detection capacity of our method. To
do so, instead of training an MLP for emotion classification,
we train an MLP for a mask detection task, importantly by
keeping the unsupervised feature learning stage unchanged
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across emotion recognition and mask detection tasks. We
obtained 99.8%, 99.9%, and 99.4% F1 scores for Datasets
1, 2, and 3, respectively.

V. CASE STUDY: HUMAN-ROBOT INTERACTION

Within the EU Horizon 2020 SPRING project (GA #871245)
the proposed unsupervised feature learning-based method
was integrated into the robot ARI developed by PAL
Robotics. The project focuses on Socially Assistive Robots
(SARs) and their applications in healthcare.

In one scenario, where robots are envisioned to serve as re-
ceptionists and interact with humans, their role would involve
greeting human agents, gathering basic information about the
purpose of their visit, and guiding them to the appropriate
specialist. Given that a single robot would interact with
numerous individuals, it is crucial for the embedded models
to demonstrate robustness in dealing with a wide variety of
facial images. Additionally, while mask requirements have
been relaxed in many countries, there remains a significant
number of individuals who continue to wear masks as a
precaution against respiratory diseases. Hence, it becomes
essential to handle both masked (F},,) and unmasked (F,,,,)
facial images equally well, ensuring optimal performance
across both categories.

For this scenario, it is essential that the robot is able
to detect the faces and then recognize as soon as possible
(i.e., nearly in real-time) the emotional states of a human
interaction partner, or at least the emotional valence (i.e.,
whether the person feels a negative or positive emotion). This
basic information about the emotional state of the human
agent can be crucial for the course of the interaction. It is so
because there exists a risk that the person might withdraw
from interacting with the robot when being in a negative
emotional state (see [79] for more information) or feeling not
at ease (e.g., she/he might feel offended or misunderstood by
a robot). In such cases, the robot should be able to detect
the negative valence and potentially modify its behavior to
maintain the interaction.

Fig. 4 shows a simulation of this use case. The robot
is interacting with a human agent wearing a mask. In this
demo, on the touchscreen, the images captured by the head
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TABLE 7: Positive/negative emotion discrimination of the proposed method together with its emotion classification perfor-
mance (in terms of F1 score) on the F;,, and F,,, images. P, T, and Te stand for pre-training, training, and testing, respectively.
D1, D2, and D3 mean Datasets 1, 2, and 3.

P(DHT(DH)Te(D1) PMD2)TD2)Te(D2) P(D3)T(D3)Te(D3)
Positive 48.0 61.5 93.8
Negative 69.5 31.7 97.1
Masked 60.0 46.1 93.9
Unmasked 63.7 44.6 96.2
PODHTDO1)Te(D2) PMD2)T(D2)Te(D1) PMODTMDTe(D3) P(D2)T(D2)Te(D3)
Positive 554 43.5 329 41.2
Negative 34.0 73.2 73.6 61.1
Masked 554 56.8 48.9 52.2
Unmasked 55.6 60.0 42.4 44.9
P(D1)T(D3)Te(D3) P(D2)T(D3)Te(D3)
Positive 94.3 92.6
Negative 97.3 96.4
Masked 94.3 92.9
Unmasked 96.5 96.5
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FIGURE 4: An example of interaction between an ARI robot and a human agent. On the touchscreen, the images captured by
the head camera of the robot as well as the FER result per image are displayed.

camera of the robot as well as the detected emotion label are
displayed.

VI. DISCUSSION AND CONCLUSIONS

We have presented a method exploiting the reconstruction
capability of a Convolutional Residual Autoencoder to dif-
ferentiate between positive and negative emotions when F,
and F),,,, images are the inputs. This method performs unsu-
pervised feature training, therefore, learns the relevant latent
features without using labeled data, which brings an advan-
tage since gathering relevant data annotations for emotion
recognition could be challenging. The detailed experimental
analysis demonstrates the better transferability of the pro-
posed method, which is an important property for its real-
world application. It is also important to highlight that our
method has lower computational costs compared to several
existing solutions, allowing us to integrate it into a social
robot that performs several tasks simultaneously. When the
proposed method was evaluated within the same dataset
setting, its better performance compared to more complex
methods such as Vision Transformers is noticeable partic-
ularly when the quantity of data is relatively scarce (e.g.,
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around 13K training images). The proposed autoencoder is
also good at differentiating F),, images from F,,, images,
thus, performs mask detection without a need for additional
pre-training (i.e., pre-training different from the one applied
for emotion recognition) while recognizing emotions mostly
equally well in both F},, and F,,,, images.

To summarize, the contributions of this study are:

o The presented unsupervised pre-training leverages the
reconstruction property of autoencoders. The classifier
trained on top of the learned features is lightweight in
terms of the number of parameters and the FLOPs.

o Motivated by the SOTA, we propose an additional FER
method, which is fully supervised, and based on knowl-
edge distillation. That method is the best among all prior
SOTA given the performance and efficiency tradeoff.

o The experimental analysis of the two proposed methods
(a) unsupervised feature learning-based and (b) knowl-
edge distillation-based show the better generalizability
of the unsupervised one.

o The proposed autoencoder, without any additional need
of training, can be effectively used for other downstream

VOLUME 10, 2022



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3308047

IEEE Access

D’Inca et al.: Unsupervised Pre-Training for Emotion Recognition in Masked and Unmasked Facial Images

tasks than FER such as mask detection.

Overall, the proposed unsupervised feature learning-
based method performs equally well on F,, and F,,,
images.

The datasets used in this study, containing the F),
images generated from existing in-the-wild, large-scale
FER datasets (F),,,) having the valence annotations, will
be shared with the community to serve as a benchmark
to foster the following research.

The effective performance and efficiency of the pro-
posed unsupervised learning-based method allowed us
to integrate it into a social robot.

Future work will adapt continual learning strategies and
focus on not only positive and negative classes but also the
classification of several discrete emotion classes. Another
future objective of us is to investigate the social acceptance
of a robot equipped with an automatic emotion recognition
capability, utilizing the proposed methodology.
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