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A B S T R A C T

Objective: To develop and evaluate machine learning (ML) approaches for muscle identification using intra-
operative motor evoked potentials (MEPs), and to compare their performance to human experts.
Background: There is an unseized opportunity to apply ML analytic techniques to the world of intraoperative
neuromonitoring (IOM). MEPs are the ideal candidates given the importance of their correct interpretation
during a surgical operation to the brain or the spine. In this work, we develop and test a set of different ML
models for muscle identification using intraoperative MEPs and compare their performance to human experts. In
addition, we provide a review of the available literature on current ML applications to IOM data in neurosurgery.
Methods: We trained and tested five different ML classifiers on a MEP database developed from six different
muscles in patients who underwent brain or spinal cord surgery. MEPs were obtained by both transcranial (TES)
and direct cortical stimulation (DCS) protocols. The models were evaluated within a single patient and on
previously unseen patients, considering signals from TES and DCS both independently and mixed. Ten expert
neurophysiologists classified a set of 50 randomly selected MEPs, and their performance was compared to the
best performing model.
Results: A total of 25.423 MEPs were included in the study. Random Forest proved to be the best performing
model with 99 % accuracy in the single patient dataset task and a 78 %–94 % accuracy range on previously
unseen patients. The model performance was maximized by representing MEPs as a set of features typically
employed in signal processing compared to traditional neurophysiological parameters. The classification ability
of the Random Forest model between six different muscles and across different MEP acquisition modalities (79
%) significantly exceeded that of human experts (mean 48 %).
Conclusions: Carefully selected ML models proved to have reliable capacity of extracting meaningful information
to classify intraoperative MEPs using a limited number of features, proving robustness across patients and signal
acquisition modalities, outperforming human experts, and with the potential to act as decision support systems to
the IOM team. Such encouraging results lay the path to further explore the underlying nature of clinically
important signals, with the aim to continue to produce useful applications to make surgeries safer and more
efficient.

1. Introduction

The monitoring of motor evoked potentials (MEPs) during a surgical

operation on the brain or the spine is a well-established technique for
real-time functional integrity assessment [1,2,3]. Intraoperative moni-
toring (IOM) is performed by connecting a standardized set of muscles of
the anesthetized patient to a monitoring machine, which enables the
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electrical stimulation of the neural pathways controlling the muscles
and the visualization of the responses on a dedicated screen (Fig. 1).
Classical stimulation methods include transcranial electrical stimulation
(TES), in which the stimulation is delivered through scalp electrodes,
and direct cortical stimulation (DCS), in which the stimulation is
delivered directly on the exposed cerebral cortex using strip electrodes
[4–6]. In both cases, the response is recorded at the level of target
muscles using subdermal electrodes. The correct implementation of the
monitoring settings and interpretation of the motor outputs, with
regards to ongoing surgical events, are essential to accurately warn of
signal changes that could lead to clinically meaningful deficits such as
the inability to walk, the inability to talk or the loss of hand motility [2,
3,7–9] Current interpretation of MEPs relies solely on the
semi-quantitative evaluation of a handful of parameters by experienced
neurophysiologists. These professionals mostly evaluate MEP amplitude
and the magnitude of its reduction, along with additional elements as
increase in latency, threshold elevation and morphology simplification
that can be considered and are variably employed [8,10–13].

Nonetheless, MEPs are complex biological signals produced by
summation of multiple electrical components, that present a certain
variability within and between subjects and even from one stimuli to the
next one, due to endogenous brain states or exogenous interventions
[14–16]. Such complexity and variability can hardly be captured and

effectively conveyed by a handful of parameters, making the real-time
monitoring of motor functions during a neurosurgical operation quite
challenging (Fig. 2). In addition, despite the complexity and the number
of connections happening between the patient and the monitoring ma-
chine (Fig. 3), currently there is no safety checklist to confirm the
relationship between each muscle and its label, which is manually
assigned on the machine. The muscle identification task, upon which
depends the reliability of the signal interpretation during the whole
surgical procedure, is currently entirely entrusted to the expertise of the
neurophysiologist. Such a task becomes of even higher difficulty in
consideration of the growing occurrence of surgical environments in
which a single neurophysiologist is following multiple patients in
different operative rooms at the same time.

Recent development in data analysis techniques, specifically in the
form of Machine Learning (ML) approaches applied to medical data such
as imaging, histology data, biological signals and biometric data, proved
the ability to efficiently extract and summarize clinically meaningful
information [17–21]. With specific regards to the analysis of electrical
biological signals, some successful and clinically significant examples
include the development of classification algorithms to recognize
different types of cardiac arrhythmias from EKG, or the ability to
recognize seizures from EEG or again using ML models to detect
muscular activity from surface EMG used in the programming of robotic
prosthesics [22–24]

Regardless, there is a currently unseized opportunity in applying
these powerful analytic techniques to the world of intraoperative neu-
romonitoring (IOM), with an unmet potential to deepen the knowledge
about the biological signals involved, to increase the safety of surgical
and medical procedures, and to refine diagnostic and warning criteria.

In this work, we developed and tested a set of different ML models in
the identification of different muscles by analyzing intraoperative MEPs
and compared their classification performance to that of human experts.
Finally, we conducted a review of the available literature on current ML
applications on IOM data in neurosurgery, in order to provide adequate
context to our work and assess the overall clinical readiness of these
technologies.

Abbreviations

ML Machine learning
TES Transcranial electrical stimulation
DCS Direct cortical stimulation
IOM Intraoperative neuromonitoring
TSFRESH Time Series FeatuRe Extraction on basis of Scalable

Hypothesis
NN Nearest Neighbor
linSVM linear support vector machine
rbfSVM radial basis function support vector machine
RF Random Forest

Fig. 1. Schematic drawing of a standard of care IOM setting. The patient (left) is connected to the monitoring machine (right) by means of a large number of cables
(continuous and dashed red thin lines), interposing amplification boxes (center) and derivation cables (four colored thick lines). The stimulation cables (dashed thin
red lines) provide the stimulation current to the brain and the MEPs are registered at the muscle level and sent back to the monitoring machine through the
acquisition cables (continuous thin red lines).

A. Boaro et al. Computers in Biology and Medicine 180 (2024) 109032 

2 



2. Methods

2.1. Patients’ selection

Patients were retrospectively selected from the database of the
neurosurgery department at the Verona Regional Hospital based on the
following criteria: a) clinical and radiological diagnosis of brain or spi-
nal cord lesions with indication for surgical treatment, b) employment of
TES, DCS or both as intraoperative MEP monitoring techniques, c) in-
clusion of biceps brachii (bb), extensor digitorum communis brevis
(edcb), abductor pollicis brevis (apb), quadriceps femoris (qf), tibialis
anterior (ta) and abductor hallucis (ah) among the muscles monitored d)
presence of monitorable responses. Pediatric patients were excluded. All
procedures were performed in compliance with institutional guidelines
and have been approved by the appropriate institutional committee. The
study obtained IRB approval with protocol ID: CRMS 23038 on the June
05, 2024.

2.2. MEP acquisition

For the TES protocol, MEPs were evoked by application of trans-
cranial anodal electrical stimulation with corkscrew electrodes placed
on the scalp at C1 and C2 by 10–20 International System. For the DCS
protocol, MEPs were evoked by application of anodal electrical stimu-
lation directly on the cortex through strip electrode as anode and a
corkscrew electrode as cathode, placed on the scalp in Fz position by
10–20 International System.

High frequency short train technique was used, by application of a
train of five pulses with an interstimulus interval of 4 ms for TES and 2
ms for DCS. Intensity ranged between 50 and 150 mA for TES and 5–20
mA for DCS.

MEPs were recorded from the same target muscles in all patients,
with pairs of subdermal needle electrodes placed into the muscle belly of
biceps brachii, extensor digitorum communis brevis, abductor pollicis
brevis for upper limbs and quadriceps femoris, tibialis anterior and
abductor hallucis for lower limbs.

2.3. Database creation

The MEP database was created by extracting and selecting all the
available MEPs from each single patient by an experienced neurophys-
iologist (F.B.) and an experienced neurosurgeon (A.B.). Signals with
high grade of noise or silent responses were excluded as well as signals
with latency not corresponding to each specific muscle physiological

range. The database was then duplicated in order to have one database
where each MEP was kept in its entirety (whole signal database) and
another database where the latency (the time occurring from stimula-
tion to MEP appearance) was removed and only the MEP waveform was
kept (no latency database) (schematic examples of signals from each
database in Fig. 4). For both databases, we produced five different signal
representations and specifically: RAW (unprocessed signal), NORM
(signals are normalized between − 1 and +1), TRAD (each signal is
represented as a set of 8 traditional neurophysiological features:
amplitude, area, duration, thickness, size index, number of phases,
number of turns, number of satellites) [25], TSFRESH (each signal is
represented as a set of 789 features produced by a time series feature
extraction model), TSFRESH_FS (each signal is represented as a selection
of the 10 most meaningful features from TSFRESH) [26,27]. To get this
last representation, we first employed the feature selection method
proposed in TSFRESH, which returned a set of 182 features; subse-
quently, in order to have a number of features comparable with the set of
traditional features used by neurophysiologists (TRAD), we refined the
selection by employing the Recursive Feature Elimination approach [28,
29]. The pipline just described to produce the TSFRESH_FS set, was
employed twice and separately for the whole signal database and the no
latency database, in order to properly take into account the pre-
sence/absence of the signal latency in the feature extraction process.

2.4. Machine learning models training and testing

A total of 5 different types of Machine Learning classifiers were
trained and tested: k-Nearest Neighbor with k = 1 (NN), k-Nearest
Neighbor with k = 10 (kNN), linear support vector machine (linSVM),
radial basis function support vector machine (rbfSVM), Random Forest
(RF) [30–32]. The k-Nearest Neighbors (k-NN) algorithm is an
instance-based learningmethod [31] that classifies a data point based on
the classes of its neighbors. It assumes that similar instances are in close
proximity within the feature space. For a given data point, k-NN iden-
tifies the ’k’ closest training examples and assigns the most frequent
label among these neighbors to the data point. In our experiments, we
employed the standard Euclidean Distance, using two values for k: k = 1
(i.e. the Nearest Neighbor rule) and k = 10. Support Vector Machines
(SVM) are supervised learning models used for classification and
regression tasks [33]. SVMs face classification by identifying the hy-
perplane that best separates data points of different classes; this is ob-
tained by maximizing the so-called margin. To get a non-linear decision
function the kernel-trick is used, which permits to project the data into a
higher-dimensional space where classes can be more easily separated. In

Fig. 2. Visualization of signal traces on monitor. The picture depicts the complexity of the signal traces as they are presented to the eye of the neurophysiologist
during a surgical operation. The yellow squares identify the two boxes where the MEPs are visualized.
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our study we employed two versions of SVM, each one corresponding to
a different kernel: linSVM, i.e. a SVM with a linear kernel, and rbf-SVM,
i.e. a SVM in which a Radial Basis Function Kernel is employed. In both
cases, we set the cost optimization parameter C (representing a measure
of the compromise between generalization and errors in the training set)
via 5-fold cross validation on the training set. In a similar way we also set
the parameter sigma for the rbf kernel. Random Forests (RF) represent
an approach for classification and regression [32] based on an ensemble
learning strategy. Specifically, a RF constructs multiple decision trees
and merges their outputs for improved accuracy and stability. To ensure

diversity among trees, each tree in the forest is trained on a different
bootstrapped sample of the data, by using a different random subset of
features or by employing other randomization mechanisms. For classi-
fying an object, the algorithm exploits a majority voting scheme among
the results of the different trees. In our experiments we employed 100
trees, each one trained using the classic GINI criterion.

A total of three classification tasks of increasing complexity were
defined.

Fig. 3. Photograph of amplification boxes and their connections. This photograph clearly depicts the complexity of the cable connections that must be put in place to
perform a standard intraoperative monitoring of motor functions.
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● Task 1. Intra-patient. In this task the models were trained on the
signals of a single patient and were tested on their ability to correctly
classify the MEPs of the same patient. MEPs from TES and DCS
protocols were considered separately.

● Task 2. Inter-patient. In this task the models were trained on the
signals of all patients except one and were tested on their ability to
correctly classify the MEPs of the patient not considered. As not all
the muscle categories were represented for all patients, two versions
of task 2 have been deployed, one in which the number of patients
was maximized and two muscles of the upper limb included, and
another in which the number of muscles (located in both the upper
and lower limbs) was maximized. MEPs from TES and DCS protocols
were considered separately.

● Task 3. Inter-protocol. In this task signals from TES and DCS pro-
tocols were mixed, and the models were tested in their classification
ability irrespective of the monitoring protocol used.

Each model was trained and tested on all five signal representations
independently.

Each task was conducted on both the whole signal and the no latency
databases.

The performance of each classifier was evaluated using cross-
validation techniques and specifically, repeated stratified k-fold cross-
validation (in task 2.1 k is equal to 25 in DCS and 10 in TES, in task
2.2 k is equal to 15 in DCS and 9 in TES) and stratified k-group cross-
validation (for both task 1 and task 3 we set k to 5 and r to 10), in
order to provide a more reliable estimate of each model’s performance
on unseen data as well as to maximize model robustness and general-
izability [34]. The performances have been measured and presented in
form of balanced accuracy (reported in the text and in Tables 4–6), F1
score and Matthews’s correlation coefficient (MCC) (reported in
Tables 4–6) [35–37].

2.5 model vs expert comparison

Ten expert neurophysiologists were asked to independently classify a
set of 50 MEPs randomly selected from the whole signal database. Their
classification performance expressed as the percentage of correctly
classified signals, was compared to the one from the best performing
model on the most difficult and generalizable task (task 3).

2.6 Literature review

We systematically reviewed the available literature to assess current
applications of artificial intelligence methods in the interpretation of
IOM data in neurosurgery. The literature review was conducted in
accordance with the 2020 Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) Statement [38]. MEDLINE

Fig. 4. Whole signal and no latency MEP example. On top, the first plot shows an example of a raw signal as considered in the whole signal database. The second plot
shows the interval from which the signal waveform is extracted, and the third plot shows the final extraction result as an example of a signal as considered in the no
latency database. The X axis of each plot represents time in ms (milliseconds), the Y axis of each plot represents MEP amplitude in μV (microvolts).

Table 1
Patients’ characteristics.

Total 54

Age (mean, years) 58
Gender (M:F) 1:1
Pathology
Brain-tumor 24
Brain-vascular 8
Spine-tumor 17
Spine-fracture 1

Spine degenerative 2
Spine-malformation 2
IOM protocol
TES 26
DCS 28

Table 2
MEP database. The table reports the databases composition specific to muscle
and IOM protocol.

TES
total

DCS
total

Task
2.1
TES

Task
2.1
DCS

Task
2.2
TES

Task
2.2
DCS

Biceps Brachii 2438 2208 / / 2167 904
Extensor
Digitorum
Communis
Brevis

2714 3128 2714 3101 1833 1601

Abductor Pollicis
Brevis

3433 3781 2971 3664 2179 1865

Quadriceps
Femoris

1593 312 / / / /

Tibialis Anterior 2311 702 / / 1189 /
Abductor
Hallucis

1987 816 / / / 804

Total 14476 10947 5685 6765 7368 5174
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(PubMed), Embase, and Cochrane databases were searched using key-
words related to intraoperative neuromonitoring techniques (MEP,
SSEP, VEP, EMG) in combination to artificial intelligence-related terms
(machine learning, deep learning, artificial intelligence). Relevant
studies identified in the bibliographies of the reviewed papers were also
included. Duplicate publications, non-English language papers, reviews,

and case reports were excluded. Two independent authors (A.B., S.N.)
screened the titles and abstracts of articles against the inclusion and
exclusion criteria. Subsequently, full texts were reviewed against eligi-
bility criteria for final selection. Any disagreements between the authors
were resolved by discussion.

Extracted data included (1) study information; (2) type of IOM
technique employed; (3) patient population characteristics; (4) type of
surgery; (5) type of ML approach employed; (6) ML model aim; (7)
variables included in the model; (8) model performance; (9) interpret-
ability assessment; (10) presence of prospective validation; (11) com-
parison to human/traditional methods performance. The findings are
presented in the form of a narrative review in the context of the dis-
cussion of our results.

3 Results

3.1 Patients and MEPs characteristics

We included a total of 54 patients who underwent either oncological,
vascular or trauma surgery to the brain or the spine (Table 1). TES

Table 3
TSFRESH_FS features. The table reports the TSFRESH_FS composition for the
whole signal database and the no latency databases.

Position Whole signal No latency

1 ratio beyond r sigma (r = 1) autocorrelation (lag = 8)
2 autocorrelation (lag = 9) agg. autocorrelation(aggtype =

median, maxlag = 40)
3 index mass quantile (q = 0.1) agg. autocorrelation (aggtype =

mean, maxlag = 40)
4 spkt welch density (coeff = 8) change quantiles (qh = 0.2, ql =

0.0)
5 lempel-ziv complexity (bins =

100)
ar coefficient (coeff = 3, k = 10)

6 index mass quantile (q = 0.2) agg. linear trend (chunklen = 10)
7 index mass quantile (q = 0.3) fft coefficient (attr = image, coeff =

1)
8 index mass quantile (q = 0.4) index mass quantile (q = 0.1)
9 energy ratio by chunks (n.seg =

10, seg.foc = 0)
energy ratio by chunks (n.seg = 10,
seg.foc = 0)

10 fft aggregated (aggtype =
variance)

cwt coefficients (coeff = 10)

r: ratio, q: quantile, agg: aggregator, aggtype: aggregator type, spkt: spectral,
coeff: coefficient, qh: higher quantile, ql: lower quantile, ar: autoregressive, k:
maximum lag, chunklen: length of chunk, attr: attribute, n.seg: number of seg-
ments, seg.foc: segment focus, cwt: continuous wavelet transform.

Table 4
Task 1 performances. The table reports the peak performances per model and
related signal representation in Task 1. The highest performances are reported in
bold. The standard error of the mean for accuracy, f1 score and mcc are
respectively all lower than 0.004, 0.004, 0.005.

TES DCS

Whole signal No latency Whole signal No latency

Accuracy
kNN (1) 96 % (raw/ts_fs) 93 % (raw) 97 % (raw/

norm)
97 % (raw/
norm)

kNN
(10)

91 % (ts_fs) 82 % (norm) 90 % (ts_fs) 88 % (norm)

linSVM 93 % (ts) 88 % (raw/
norm)

97 % (norm/
ts)

96 % (norm)

rbfSVM 89 % (norm) 89 % (norm) 93 % (raw/
norm)

95 % (norm)

RF 99 % (ts) 97 % (ts) 99 % (ts) 99 % (ts)
F1 score
kNN (1) 97 % (raw/

norm/ts_fs)
95 % (raw/
norm)

98 % (raw/
norm)

98 % (norm)

kNN
(10)

95 % (ts_fs) 89 % (norm) 94 % (ts_fs) 95 % (norm)

linSVM 96 % (ts) 91 % (raw/
norm)

98 % (norm/
ts)

98 % (norm)

rbfSVM 95 % (norm) 95 % (norm) 97 % (raw/
norm)

98 % (norm)

RF 99 % (ts) 98 % (ts) 99 % (raw/ts/
ts_fs)

99 % (raw/ts/
ts_fs)

MCC
kNN (1) 96 % (raw/ts_fs) 92 % (raw/

norm)
97 % (raw/
norm)

97 % (norm)

kNN
(10)

93 % (ts_fs) 85 % (norm) 92 % (ts_fs) 92 % (norm)

linSVM 94 % (ts) 87 % (norm) 97 % (norm/
ts)

97 % (norm)

rbfSVM 92 % (norm/
ts_fs)

92 % (norm) 96 % (raw/
norm)

97 % (norm)

RF 99 % (ts) 97 % (ts) 99 % (ts) 99 % (ts)

ts: TSFRESH, ts_fs: TSFRESH FS.

Table 5
Task 2 performances. The table reports the peak performances per model and
related signal representation in Task 2. The highest performances are reported in
bold. In Task 2.1, the standard error of the mean for accuracy, f1 score and mcc
are respectively all lower than 0.003, 0.003, 0.005. In Task 2.2, the standard
error of the mean for accuracy, f1 score and mcc are respectively all lower than
0.003, 0.004, 0.004.

TASK 2.1 TES DCS

Whole signal No latency Whole signal No latency

Accuracy
kNN (1) 85 % (ts_fs) 76 % (raw) 89 % (ts_fs) 73 % (raw)
kNN (10) 87 % (ts_fs) 76 % (norm) 90 % (ts_fs) 73 % (norm)
linSVM 90 % (ts_fs) 89 % (ts_fs) 92 % (ts_fs) 86 % (ts_fs)
rbfSVM 90 % (norm) 80 % (norm) 90 % (ts_fs) 76 % (raw)
RF 92 % (ts_fs) 94 % (ts) 90 % (ts_fs) 90 % (ts)
F1 score
kNN (1) 82 % (ts_fs) 71 % (raw) 90 % (ts_fs) 73 % (raw)
kNN (10) 85 % (ts_fs) 71 % (norm) 91 % (ts_fs) 74 % (raw)
linSVM 88 % (ts_fs) 87 % (ts_fs) 93 % (ts_fs) 85 % (ts_fs)
rbfSVM 88 % (ts_fs) 73 % (norm) 91 % (ts_fs) 78 % (raw)
RF 89 % (raw/ts_fs) 91 % (ts) 92 % (ts_fs) 91 % (ts_fs)
MCC
kNN (1) 68 % (ts_fs) 48 % (raw) 78 % (ts_fs) 44 % (raw)
kNN (10) 76 % (ts_fs) 49 % (norm) 80 % (ts_fs) 47 % (raw)
linSVM 82 % (ts_fs) 79 % (ts_fs) 85 % (ts_fs) 73 % (ts_fs)
rbfSVM 82 % (ts_fs) 59 % (norm) 81 % (ts_fs) 56 % (raw)
RF 86 % (/ts_fs) 89 % (ts) 83 % (ts_fs) 82 % (ts/ts_fs)

TASK 2.2 TES DCS
Whole signal No latency Whole signal No latency

Accuracy
kNN (1) 76 % (ts_fs) 56 % (raw) 75 % (ts_fs) 49 % (norm)
kNN (10) 78 % (ts_fs) 55 % (norm) 73 % (ts_fs) 47 % (norm)
linSVM 76 % (ts_fs) 70 % (ts_fs) 70 % (ts_fs) 54 % (ts_fs)
rbfSVM 79 % (ts_fs) 60 % (norm) 76 % (ts_fs) 50 % (norm)
RF 84 % (ts) 78 % (ts) 79 % (ts_fs) 61 % (ts)
F1 score
kNN (1) 72 % (ts_fs) 58 % (norm) 70 % (ts_fs) 49 % (raw)
kNN (10) 74 % (ts_fs) 60 % (norm) 67 % (ts_fs) 49 % (ts)
linSVM 71 % (ts_fs) 72 % (ts_fs) 62 % (ts_fs) 54 % (ts_fs)
rbfSVM 74 % (ts_fs) 63 % (norm) 71 % (ts_fs) 47 % (norm)
RF 85 % (ts) 81 % (ts) 73 % (ts_fs) 64 % (ts)
MCC
kNN (1) 65 % (ts_fs) 41 % (raw) 62 % (ts_fs) 30 % (norm)
kNN (10) 68 % (ts_fs) 44 % (norm) 60 % (ts_fs) 29 % (norm)
linSVM 67 % (ts_fs) 62 % (ts_fs) 58 % (ts_fs) 43 % (ts_fs)
rbfSVM 70 % (ts_fs) 48 % (norm) 65 % (ts_fs) 32%norm)
RF 80 % (ts) 74 % (ts) 68 % (ts_fs) 56 % (ts)

ts: TSFRESH, ts_fs: TSFRESH FS.
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protocol was performed in 26 patients and DCS protocol was employed
in 28 patients. We collected a total of 25423 MEPs (14476 MEPs of TES
protocol and 10947 MEPs of DCS protocol) variably distributed between
different patients and muscles (Table 2). Each feature included in
TSFRESH representation was part of one of the following categories:
signal summary statistics (e.g., max, min, length, etc.) characteristics of
sample distribution (e.g., symmetry, entropy, energy, etc.), regression
and correlation models (e.g., autoregression coefficients, etc.), observed
dynamics in the time domain (e.g., index of the first max, first deriva-
tive, maximal length over the mean, etc.) or observed dynamics in the
frequency domain (e.g., frequency analysis, Fourier coefficients, wave-
lets coefficients, etc.). The top 10 features composing the TSFRESH_FS
representation are reported in Table 3.

3.2 Models’ performances

3.2.1. Intra-patient classification – task 1
In the intra-patient classification task, with regards to the whole

signal database, the classification performances expressed as balanced
accuracy reached a maximum of 99 % both in the TES and in the DCS
groups using the RF model on the TSFRESH representation (Table 4).
The lowest performances were measured for the rbfSVM on the TRAD
representation for the TES group (49 %) and again on the TSFRESH
representation for the DCS group (58 %). With regards to the no latency
database, the RF model applied to the TSFRESH representation proved
to be the best with 99 % accuracy in the DCS group and 97 % in the TES
group (Table 4). The lowest performing model was the rbfSVM applied
to the TSFRESH_FS representation with 48 % in the TES group and 55 %
in the DCS group.

3.2.2. Inter-patient classification – task 2.1 (number of patients is
maximized)

In the first inter-patient classification task we considered a total of 41
patients and two muscle classes (extensor digitorum communis brevis
and abductor pollicis brevis). In the TES group the RF produced the
highest performance both in the whole signal and no latency databases
respectively with 92 % for the TSFRESH_FS and 94 % for the TSFRESH
representations. In the DCS group all the models performed similarly
high in the whole signal database with peak performances of 89–92% on
the TSFRESH_FS representation. In the no latency database, the highest
performance was obtained by the RF on TSFRESH and TSFRESH_FS with
90 % accuracy. (Table 5). The lowest performances were recorded for

the linSVM in the RAW and NORM representations in all the instances
(43 %–47 %) (Supplementary file 1).

Confusion matrices are provided in Fig. 5 for the best perfoming
models and related signal representations, where comparable results in
terms of classification accuracy are evident across muscles, iom mo-
dalities and presence/absence of signal latency.

3.2.3. Inter-patient classification – task 2.2 (number of muscles is
maximized)

In the second inter-patient classification task we considered a total of
21 patients and performed a four-muscle classification including biceps
brachii, extensor digitorum communis brevis, abductor pollicis brevis
and abductor hallucis. In the TES group, the highest performances were
reached by RF both in the whole signal and no latency databases,
respectively in the TSFRESH representation (84 %) and in the TSFRESH/
TSFRESH_FS representations (78 %). Similarly, in the DCS group, the
highest performances were reached by RF both in the whole signal and
no latency databases, respectively in the TSFRESH_FS representation
(79 %) and in the TSFRESH representation (61 %) (Table 5). The lowest
performances were obtained by linSVM in both groups and databases
(DCS/whole signal/RAW 27 %, DCS/no latency/RAW 21 %, TES/whole
signal/TSFRESH 22%, TES/no latency/TSFRESH 22%) (Supplementary
file 1). Confusion matrices are provided in Fig. 6 for the best performing
models and related signal representations.

3.2.4. Inter-protocol classification – task 3
In the final task, signals from TES and DCS groups were combined,

and all six muscles included. In the whole signal database, the best
performing model was RF on TSFRESH, RAW and TSFRESH_FS repre-
sentations with 77–79 % accuracies (Table 6), while the lowest was the
linSVM on the TSFRESH representation with only 16 % accuracy. In the
no latency database, the best performing model remained the RF with
65–66 % on the TSFRESH and TSFRESH_FS representations (Table 6),
while the lowest performing model was the linSVM with 18 % on the
RAW representation (Supplementary file 1).

In all three tasks, variations between balanced accuracy, F1
weighted, and MCC metrics are negligible, indicating consistent model
performance across measures.

3.3 Expert classification performance

The muscle identification task performed by the ten experts over 50
randomly selected MEPs reached an overall accuracy of 47.4 ± 11.9 %
on average, while the best performing model on the most difficult task,
which included signals from mixed protocols and produced by all six
muscle classes, was Random Forest with an accuracy of 79 % (Fig. 7).

3.4 Current applications of ML to IOM data in neurosurgery

A total of 3356 studies were identified during the search. Of those,
3301 were excluded in title and abstract screening. After full text review,
48 studies were excluded because either no surgical application was
employed, or no intraoperative data were used, or the target population
of the study was not human. A total of 7 studies were included in the
final data extraction phase (Fig. 8, Table 7). Two studies focused on EMG
data [39,40], one on VEP data [41], one on ECoG and DBS data [42], one
on SSEP data [43] and two onMEPs [44,45]. Five papers employed some
form of supervised learning approach while two out of six applied un-
supervised clustering methods. Four papers developed models aimed at
providing an estimate or prediction of clinically relevant post-operative
outcome, one aimed at refining IOM signals by removing stimulation
artifacts, one focused on transcranial MEP classification, and one aimed
at developing a tool for the automated intra-operative central sulcus
delineation. Four papers provided model interpretability assessments,
mainly in form of visual maps and six models out of seven compared the
models’ performance to that of human or traditional methods. No model

Table 6
Task 3 performances. The table reports the peak performances per model and
related signal representation in Task 3. The highest performances are reported in
bold. The standard error of the mean for accuracy, f1 score and mcc are
respectively all lower than 0.001, 0.001, 0.001.

Whole signal No latency

Accuracy
kNN (1) 70 % (ts_fs) 44 % (raw)
kNN (10) 72 % (ts_fs) 43 % (norm)
linSVM 64 % (ts_fs) 53 % (ts_fs)
rfbSVM 72 % (ts_fs) 49 % (norm)
RF 79 % (ts) 66 % (ts)

F1 score
kNN (1) 71 % (ts_fs) 45 % (raw)
kNN (10) 75 % (ts_fs) 46 % (norm)
linSVM 67 % (ts_fs) 57 % (ts_fs)
rfbSVM 76 % (ts_fs) 51 % (norm)
RF 81 % (ts) 68 % (ts)

MCC
kNN (1) 65 % (ts_fs) 31 % (raw)
kNN (10) 70 % (ts_fs) 32 % (raw/norm)
linSVM 63 % (ts_fs) 49 % (ts_fs)
rfbSVM 71 % (ts_fs) 39 % (norm)
RF 77 % (ts) 61 % (ts)

ts: TSFRESH, ts_fs: TSFRESH FS.
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was prospectively validated.

4 Discussion

We have demonstrated that ML provides efficient analytical tech-
niques to classify intraoperative MEPs coming from the main muscles
monitored during a neurosurgical operation to the brain or the spine.
Overall, the best performing model proved to be Random Forest applied
to MEPs expressed as a set of mathematically derived features
(TSFRESH/TSFRESH_FS representation) with 94 % accuracy when
considering two muscles from the upper limb (no latency database), 84
% when considering four muscle from upper and lower limbs (whole
signal database), and 79%when considering six muscles from upper and
lower limbs and mixed MEP acquisition protocols (whole signal data-
base). Our best performing model proved to be significantly more ac-
curate in identifying the correct muscles from their signals compared to
expert neurophysiologists.

The interpretation of biological electrical signals is challenging as
they are inherently complex and present a certain degree of variability
within and between subjects. The use of Pattern Recognition/Machine
Learning and time-series analysis techniques have greatly improved our
ability to extract meaningful information from complex signals, such as
those found in biomedical domains. These techniques have been used to

Fig. 5. Confusion matrices for Task 2.1 On the left, the confusion matrices for task 2.1 on DCS acquisition modality with reference to the best performing model and
signal representation. On the right, the confusion matrix for task 2.1 on TES acquisition modality with reference to the best performing model and signal
representation.

Fig. 6. Confusion matrices for Task 2.2. On the left, the confusion matrices for task 2.2 on DCS acquisition modality with reference to the best performing model and
signal representation. On the right, the confusion matrix for task 2.2 on TES acquisition modality with reference to the best performing model and signal
representation.

Fig. 7. Accuracy performance comparison between the best performing ML
model and ten human experts. The plot shows the classification accuracy per-
formance expressed as the percentage of correctly classified signals, between
ten human experts (mean and standard deviation) compared to the one from
the best performing model (Random Forest) in task 3.
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identify patterns in several different signals, from electrocardiograms to
fMRI scans, from EEG to EMG, and have led to significant advancements
in areas such as disease diagnosis and treatment as well as creation of
brain-machine interfaces to vicariate impaired functions [22–24,
46–51].

The novel approach we provided in our work was first focused on
evaluating if there was actual information within MEPs that could be
extracted by ML models. By conducting model training and testing
within the same patient, Task 1 provided convincing evidence about the
possibility to extract muscle-specific information, obtaining over 99 %
classification accuracy for the best performing model. Such evidence
provided the basis to use ML to classify MEPs coming from different
subjects that we tested on task 2. Here we could see that, while a two-
class classification problem was easier (task 2.1 - best performance 94
%) compared to correctly classifying MEPs from four different muscles
(task 2.2 - best performance 84 %), the peak performances remained
very high in both cases. It has to be considered that in task 2.1 the
models were able to account for a greater level of variability as more
patients were included compared to task 2.2; in addition, the two
muscles (apb and edcb) included in task 2.1 were by far the most rep-
resented in terms of number of signals. We can, therefore, reasonably
expect an additional improvement in task 2.2 performance by increasing
the number of patients and signals involved.

Finally, we conducted task 3 in order to try and take advantage of the
information provided by both DCS and TES protocols and in an attempt

to further generalize our model by considering all the six muscle classes
traditionally included in an intraoperative MEP monitoring setting. In
this case as well, the models were able to extract and retain useful in-
formation with a peak performance of 79 %.

It was interesting to see how the importance of latency, a key element
used by trained neurophysiologists to evaluate an MEP, was limited in
determining high classification performances in most of our models. In
fact, little difference is observed between the whole signal and no la-
tency databases both in the two muscle and in the TES four muscle task
performances. Interestingly, we observed that the models tended to do
slightly better by not considering the latency when trying to classify
transcranial MEPs coming from two muscle located in the same limb
(Table 5). Nevertheless, latency still retains its informative value in the
most difficult task where six different muscles located in upper and
lower limbs are considered, allowing an improvement in performance of
13 % when considering the MEP in its entirety (Fig. 9).

It is important to do some considerations with regards to the dif-
ferences in performance observed over the spectrum of ML models also
in relation to the different signal representations involved. Random
Forest proved to be the overall best classifier due to its ability to handle
high dimensional and complex data.

Random Forest is an ensemble method that combines multiple de-
cision trees to make a final prediction. The decision trees in a Random
Forest are different, being built on different random subsets of objects
and/or features. The final prediction is made by averaging the output of

Fig. 8. PRISMA flow diagram of the articles included in the review.
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Table 7
Summary of studies applying machine learning approaches to IOM data in neurosurgery.

Author Type of
IOM
technique
involved

Additional
data
streams
considered

Population
characteristics

Surgery Type of ML
approach

Model aim Variables included
in the model

Model
performance

Interpretability
assessment

Prospective
validation

Comparison
to human/
traditional
methods
performance

N. Qiao et al. [41] Flash VEP
monitoring

No 76 patients
with sellar
tumors

transphenoidal tumor
resection

Three layer
convolutional
neural network,
pretrained
convolutional
neural network,
combination of a
convolutional and
recurrent neural
network

detect no VEP
change, min 25
% increase, or
25 % decrease
compared to
baseline

amplitude from
the positive P2
peak at around
120 ms to the
preceding N2
negative peak at
around 90 ms

accuracy range
82.7–87.4 %
sensitivity
range
78.9–92.6 %
specificity
range
80.5–100 %

Class Activation
Map

No No

D.J. Caldwell et al.
[43]

ECoG
arrays and
DBS lead
recordings

No patients with
medically
intractable
epilepsy

invasive
electrophysiological
mapping and DBS

unsupervised
hierarchical
density-based
clustering
technique

define dictionary
of artifacts
templates

raw multi-channel
traces

no ground
truth, visual
spectral
overlap
between
filtering
methods

Spectral
features overlap

No Yes

P. Asman et al. [42] SSEP No 8 patients with
primary brain
tumors of the
Rolandic area

craniotomy for tumor
resection

unsupervised
spectral clustering

central sulcus
delineation

raw or derivative
SSEP traces

accuracy
85.8–96.3 %

Heat Map No Yes

M. Kim et al. [39] EMG No 50 patients
with hemifacial
spasm due to
vascular
compression

microvascular
decompression

convolutional
neural network

detect presence
or absence of
lateral spread
response

EMG screenshot
images

AUC 0.96 Heat Map No Yes

M.R. Jamaludin et al.
[44]

TcMEP No 55 patients
with lumbar
spine disease

decompression/
instrumentation/
correction surgery

KNN, bagged trees predict positive
functional
outcome

onset latency,
peak-to-peak
amplitude in μV,
AUC

sensitivity
75%–100 %,
specificity
0–33.3 %

No No Yes

S. Rampp et al. [40] EMG Yes 200 patients
with vestibular
schwannoma

vestibular
schwannoma
resection surgery

Neural Network estimate post-
operative facial
nerve deficit

traintime, tumor
size, pre-op facial
nerve function

Chi squared
51.3, CI
49.7–53.0 -
Cramer’s V
0.36

No No Yes

J. Wermelinger et al.
[45]

TcMEP No 36 patients
with brain
tumor or
vascular
pathology

tumor resection,
vascular pathology
exclusion

RF, KNN, LogReg TcMEP muscle
classification

pre-processed raw
signals

two muscles
accuracy
43–97 %, four
muscles
accuracy
28–83 %

No No Yes

Current study TcMEP/
DcMEP

No 54 patients
with brain or
spinal cord
tumor

tumor resection
surgery

KNN, linSVM,
rbfSVM, RF

MEP muscle
classification
within a single
patiens, between
different patients
and between
different iom
settings (tcMEP
vs dcMEP)

tcMEP and dcMEP
expressed as raw
signals or as a set
of clinically
relevant/
mathematically
extracted features

single patient
accuracy
49–99 %, inter-
patient
accuracy
45–93 %, inter
iom protocol
accuracy
44–79 %

No No Yes
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all the trees, thus reducing overfitting, which is a common problem in
the classification of medical data, where the data can be highly variable
and complex [52–54]

With regards to the signal representation considered, all the models
performed worse, also compared to the human experts, when trained on
traditional MEP features (TRAD) while excelled when considering the
signals in their raw format or as features obtained from mathematical
formulas whose meaning is not immediately apparent even to the
trained eye of human experts. Such findings suggest that ML models
work differently from the human mind and, while the information
provided by some more traditional MEP features might still be there - as
is depicted by the differences in performance between the whole signal
database vs the no latency database -, they probably appear in a different
form, as these models have very efficient but different ways of extracting
meaningful information. Also, it is important to observe that feature
selection permits to reduce the impact of the curse of dimensionality – a
set of problems which may appear if the number of features is too large
with respect to the number of objects in the training set [55]. By
selecting the most informative features compared to considering the raw
signal in its entirety, we can extract a more compact representation
which allows a better generalization to unseen patterns [53].

The highly systematic and analytic approach of Machine Learning
models is probably the reason why they proved to be significantly better
at classifying signals in comparison to human experts; it has to be noted,
to be fair, that experts in intraoperative neurophysiology are not trained
in recognizing different muscles but rather on evaluating changes over
time compared to MEP baseline. Such a scenario presents an important
opportunity for a direct clinical application of our model which, by
reliably matching an MEP to its muscle, it could be used as a clinical
decision support system. In the preparation phase of an IOM setting in
fact, instead of relying solely on the expertise of the neurophysiologist,
such a tool would confirm the correctness of the connections between
the patients’ actual muscles to the labels manually given before starting
the surgery, therefore preventing muscle mislabeling and erroneous
connections that could potentially lead to catastrophic clinical conse-
quences [56,57].

Despite the apparent clinical relevance of potential applications of
ML in IOM, there is a dearth of literature with regards to signal analysis
and ML application in the realm of intraoperative neurophysiology. In
the review work we conducted we found only seven papers focused on
the application of ML to IOM data in neurosurgery. Most of them aimed

at providing a prognostic tool to estimate or predict post-surgical out-
comes. Examples are Jamaludin et al. who explored the possibility to
predict positive functional outcomes of patients undergoing lumbar
spine surgery using three traditional MEP features (onset latency, peak-
to-peak amplitude in μV, and AUC) to train and test different ML models
with peak sensitivity and specificity achieved by Fine kNN of 87.5 % and
33.33 %, respectively [44]. Qiao et al. tested different deep learning
models to classify visual evoked potentials (VEPs) changes during
transsphenoidal surgery with good differentiation ability between no
change, improvement and reduction, comparable to human experts
[41]; and Rampp et al. combined EMG data with pre-operative nerve
functionality score and tumor size to estimate post-operative facial
nerve deficit [40]. Two works presented results that could have a direct
impact in the adjustment of an actual surgical strategy: Asman et al.
successfully applied an unsupervised clustering algorithm to SSEPs heat
maps assessed with ECoG grids to delineate the central sulcus auto-
matically with high precision, without the need for peak and latency
tracking [42], and Caldwell et al. provided a dictionary of signal arti-
facts that could be used to refine the IOM signal in real time, facilitating
its interpretation [43].

Finally, a recent work by Wermelinger et al. explored the potenti-
alities of standard ML models in classifying pre-processed and raw
transcranial MEPs on a population of 36 patients with good preliminary
results in classifying MEPs from two muscles (89 % same limb and 97 %
different limbs) and four muscles (83 %).

Our work significantly advances the preliminary works reported
mainly along two directions. On one hand, we better investigated the
effect of the representation of the neurophysiological signal in the ML
pipeline; in Qiao et al., Kim et al. and Wermelinger et al., the authors
mainly focused on the classification part, leaving the representation to
standard choices; in our work we studied more in depth this crucial
issue, showing that a careful set of advanced signal processing features
(TSFRESH and TSFRESH_FS) permits to better characterize the MEP,
improving the classification accuracy and increasing explainability,
while reducing the computational load. As a second point, we investi-
gated the potentialities of the proposed approach within different sce-
narios (called tasks in our paper): rather than simply quantifying how
easy it is to classify a muscle on a set on previously unseen subjects, we
also studied the discrimination capabilities of the approach within the
same subject, and across different protocols (TES and DCS). Further-
more, for all these scenarios, we considered both the whole signal and

Fig. 9. Bar chart of models’ performances. In this bar chart, we plotted the balanced accuracy results of every pair classifier-representation for tasks 1, 2.1 and 2.2 on
both whole signal and no latency databases. WS: whole signal, NL: no latency.
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the signal without latency, this last scenario permitting to assess the
possibility of discriminating the muscles on the sole basis of the MEP
waveform, which would allow a more general application of our model
also in clinical conditions that affect latency but not necessarily the
signal waveform.

It was interesting to see that, while most of the models did not pre-
sent completely explainable inner dynamics, there was almost consis-
tently an attempt to provide a form of model interpretation using heat
and activation maps. Similarly, almost all the papers provided com-
parison between the models’ performance and traditional methods or
human performance at the same task (Table 7).

The next step in light of additional future clinical application of such
algorithms, consists in the clinical characterization of the features
involved as well as the exploration of the correlation between signal
changes and different clinical states. With the continued advancement of
technology and the increasing availability of large-scale data sets, we
can expect to see even more breakthroughs in the field of pattern
recognition and time-series analysis of biomedical data. All these con-
siderations highlight the importance of collaborative work between
healthcare professionals and data scientists, as it is of fundamental
importance to choose the right model and the right data representation
for each specific problem [8,32,58,59]

Some important limitations have to be considered in the interpre-
tation of our results. Most importantly, the limited number of patients
along with the use of a single institution database and one type of
monitoring machine, limits the generalizability of our models. Secondly,
whilst we considered the overall classification accuracy in each task, the
differences in the number of signals available for each muscle might
make the models ablity to recognize some muscles better than others.
Finally, in this work we included only signals that were considered
’normal’, so the classification performance we found cannot be
considered representative of pathological MEPs.

5 Conclusions

In this initial era of exploration of ML in IOM, we found that carefully
selected and trained ML models, have the ability to extract meaningful
information to identify patient muscles from their intraoperative MEPs
using a limited number of mathematical features. In this regard, Random
Forest proved to be robust across patients and signal acquisition mo-
dalities, with the capacity of outperforming human experts and with the
potential to act as decision support system to the IOM team.

Such encouraging findings lay the path to further explore the un-
derlying nature of clinically important signals, with the aim to continue
to produce useful applications to be used to make surgeries safer and
more efficient.
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