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Abstract
The extended Burrows-Wheeler-Transform (eBWT), introduced by Mantaci et al. [Theor. Comput.
Sci., 2007], is a generalization of the Burrows-Wheeler-Transform (BWT) to multisets of strings.
While the original BWT is based on the lexicographic order, the eBWT uses the omega-order, which
differs from the lexicographic order in important ways. A number of tools are available that compute
the BWT of string collections; however, the data structures they generate in most cases differ from
the one originally defined, as well as from each other. In this paper, we review the differences
between these BWT variants, both from a theoretical and from a practical point of view, comparing
them on several real-life datasets with different characteristics. We find that the differences can be
extensive, depending on the dataset characteristics, and are largest on collections of many highly
similar short sequences. The widely-used parameter r, the number of runs of the BWT, also shows
notable variation between the different BWT variants; on our datasets, it varied by a multiplicative
factor of up to 4.2.
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1 Introduction

The Burrows-Wheeler-Transform [9] (BWT) is a fundamental string transformation which is
at the heart of many modern compressed data structures for text processing, in particular
in bioinformatics [34, 36, 33]. With the increasing availability of low-cost high-throughput
sequencing technologies, the focus has moved from single strings to large string collections,
such as the 1000 Genomes project [53], 10,000 Genomes Project [44], the 100,000 Human
Genome Project [55], the 1001 Arabidopsis Project [54], and the 3,000 Rice Genomes Project
(3K RGP) [52]. This has led to a widespread use of compressed data structures for string
collections.

Concurrently, ever increasing text sizes have been driving a trend towards ever smaller
data structures. The size of BWT-based data structures is typically measured in the number
of runs (maximal substrings consisting of the same letter) of the BWT, commonly denoted r.
This parameter r has become fundamental as a measure of storage space required by such
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25:2 An Analysis of BWT Variants of String Collections

Table 1 The different BWT variants on the multiset M = {ATATG, TGA, ACG, ATCA, GGA}. For
detailed explanations, see Section 3.

variant result on example tools

eBWT CGGGATGTACGTTAAAAA pfpebwt [6]
dolEBWT GGAAACGG$$$TTACTGT$AAA$ G2BWT [14], pfpebwt [6], msbwt [28]
mdolBWT GAGAAGCG$$$TTATCTG$AAA$ BCR [3], ropebwt2 [35], nvSetBWT [48],

Merge-BWT [50], eGSA [38], eGAP [16],
bwt-lcp-parallel [5], gsufsort [37]

concBWT $AAGAGGGC$#$TTACTGT$AAA$ BigBWT [8], tools for single-string BWT
colexBWT AAAGGCGG$$$TTACTGT$AAA$ ropebwt2 [35]

data structures. Moreover, much recent research effort has concentrated on the construction
of data structures which can not only store but query, process, and mine strings in space
and time proportional to r [22, 2, 47, 12].

The parameter r is also being increasingly seen as a measure of repetitiveness of the
string, with several recent works theoretically exploring its suitability as such a measure, as
well as its relationship to other such measures [43, 24, 1].

Several tools exist that compute variants of the BWT for string collections, among these
BCR [3], ropebwt2 [35], nvSetBWT [48], msbwt [28], Merge-BWT [50], eGSA [38], BigBWT [8],
bwt-lcp-parallel [5], eGAP [16], gsufsort [37], G2BWT [14], and pfpebwt [6]. It should be
noted though that, when the input is a collection of strings, it is not completely straightforward
how to compute the BWT – since the BWT was originally designed for individual strings.
In fact, there exists more than one way to compute a Burrows-Wheeler-type transform for a
collection of strings, and it turns out that different tools not only use different algorithms,
but they output different data structures. As a first example, in Table 1, we give the BWT
variants as computed by 12 tools on a toy example of 5 DNA-strings.

The classical way of computing text indexes of string collections is to concatenate the
strings, adding a different end-of-string-symbol at the end of each string, and then computing
the index for the concatenated string. This is the method traditionally used for generating
classical data structures such as suffix trees and suffix arrays for more than one string, and
results in the so-called generalized suffix tree resp. generalized suffix array (see e.g. [27, 45]).
The drawback of this method is an increase in the size of the alphabet, from σ, often a
small constant in applications, to σ + k, where k is the number of elements in the collection,
typically in the thousands or even tens or hundreds of thousands. One way to avoid this
is to use only conceptually different end-of-string-symbols, i.e. to have only one dollar-sign
and apply string input order to break ties. This is the method used e.g. by ropebwt2 [35]
and by BCR [3]. Another method to avoid increasing the alphabet is to separate the input
strings using the same end-of-string-symbol; in this case, a different end-of-string-symbol
has to be added to the end of the concatenated string, to ensure correctness, as e.g. in
BigBWT [8]. An equivalent solution is to concatenate the input strings without removing
the end-of-line or end-of-file characters, since these act as separators; or to concatenate
them without separators and use a bitvector to mark the end of each string. Many studies
nowadays use string collections in experiments (e.g. [49, 2, 32]); often the input strings are
turned into one single sequence using one of the methods described above, and then the
single-string BWT is computed; it is, however, not always stated explicitly which was the
method used to obtain one sequence. Underlying this is the implicit assumption that all
methods are equivalent.
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In 2007, Mantaci et al. [40] introduced the extended Burrows-Wheeler-Transform (eBWT),
which generalizes the BWT to a multiset of strings. The eBWT, like the BWT, is reversible;
moreover, it is independent of the order in which the strings in the collection are presented.
This is not true of any of the other methods mentioned above. Note that the eBWT differs
from the BWT in several ways, most importantly in the order relation for sorting conjugates:
while the BWT uses lexicographic order, the eBWT uses the so-called omega-order. (For
precise definitions, see Section 2.)

The only tool up to date that computes the eBWT according to the original definition
is pfpebwt [6]; all other tools append an end-of-string character to the input strings, explicitly
or implicitly, and as a consequence, the resulting data structures differ from the one defined
in [40]. Moreover, the output in most cases depends on the input order of the sequences
(except for [14], [28], and, using a specific option, [35]). As a further complication, the exact
nature of this dependence differs from one data structure to another.

The result is that the BWT variants computed by different tools on the same dataset, or
by the same tool on the same dataset but given in a different order, may vary considerably.
This variability extends to the parameter r, the number of runs of the BWT. This is all the
more important given the fact that r (and the related parameter n/r, the average length of
a run) is increasingly being used as a parameter characterizing the dataset itself, namely as
a measure of its repetitiveness (see e.g. [12, 2, 7]).

1.1 Our contribution
To the best of our knowledge, this is the first systematic treatment of the different BWT
variants in use for collections of strings. Our contributions are:

1. We define five distinct BWT variants which are computed by 12 current tools specific-
ally designed for string collections and formally describe the differences between these,
identifying specific intervals to which differences are restricted.

2. We show the influence of the input order on the output, in dependence of the BWT
variant.

3. We describe the consequences on the number r of runs of the BWT and give an upper
bound on the amount by which the colexicographic order (sometimes referred to as
“reverse lexicographic order”) can differ from the optimal order of Bentley et al. [4].

4. We complement our theoretical analysis with extensive experiments, comparing the five
BWT variants on eight real-life datasets with different characteristics.

1.2 Related work
This paper deals with tools for string collections, so we did not include any tool that
computes the BWT of a single string, such as libdivsufsort [42], sais-lite-lcp [20], libsais [26],
bwtdisk [17]. Even though, in many cases, these are the tools used for collections of strings,
the data structure they compute depends on the method used for turning the string collection
into a single string, as explained above. Nor did we include other BWT variants for single
strings such as the bijective BWT [23, 30], since, again, these were not designed for string
collections.

The Big-xBWT [21] is a tool for compressing and indexing read collections, using the
xBWT of Ferragina et al. [18, 19]. In addition to the string collection, it requires a reference
sequence as input, in contrast to the other tools. Moreover, the output is not comparable
either, since its length can vary – as opposed to all other BWT variants we review, the xBWT
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is not a permutation of the input characters but can be shorter, due to the fact that it first
maps the input to a tree and then applies the xBWT to it, a BWT-like index for labeled
trees, rather than for strings. Likewise, the tool [46] for reference-free xBWT is not included
in this review: even though it does not require a reference sequence, it, too, computes the
xBWT, which is a data structure that does not fall within the category we focus on. Further,
we did not include SPRING [11], a reference-free compressor for FASTQ and FASTA files:
even though it employs a BWT-based compressor (BSC) during computation, it does not
output the BWT.

There has been considerable interest recently in the parameter r, the number of runs of
the BWT: it was put in relation with other measures of repetitiveness in [29], while both [10]
and [4] studied the question which permutation of the input strings of the collection results
in the lowest value for r. Since the method for concatenating the input strings used in [10]
(using the same separator symbol but without an additional end-of-string character) differs
from all BWT variants that have been implemented by some tool, we do not include it in
this study. The result by Bentley et al. [4], on the other hand, is more general, and we will
employ it as a benchmark in our experimental comparisons (see Section 5).

1.3 Overview

We give the necessary definitions in Section 2; note that we assume familiarity of the reader
with the Burrows-Wheeler-Transform. In Section 3, we present the BWT variants and
analyse their differences. In Section 4 we discuss the effects on the repetitiveness measure r,
while our experimental results are presented in Section 5. We draw some conclusions from
our study in Section 6. Due to space restrictions, most proofs have been omitted and can be
found in the full version, along with the full tables with detailed results on all eight datasets.

2 Preliminaries

Let Σ be a finite ordered alphabet of size σ. We use the notation T = T [1..n] for a string T

of length n over Σ, T [i] for the ith character, and T [i..j] for the substring T [i] · · · T [j] of T ,
where i ≤ j; |T | denotes the length of T , and ε the empty string. For a string T over Σ and
an integer m > 0, T m denotes the m-fold concatenation of T . A string T is called primitive
if T = Um implies T = U and m = 1. Every string T can be written uniquely as T = Um,
where U is primitive. We refer to U as root(T ) and to m as exp(T ), i.e., T = root(T )exp(T ).
A run in string T is a maximal substring consisting of the same character; we denote by
runs(T ) the number of runs of T . Often, an end-of-string character (usually denoted $) is
appended to the end of T ; this character is not element of Σ and is assumed to be smaller
than all characters from Σ. Note that appending a $ makes any string primitive.

For two strings S, T , the (unit-cost) edit distance distedit(S, T ) is defined as the minimum
number of operations necessary to transform S into T , where an operation can be deletion
or insertion of a character, or substitution of a character by another. The Hamming distance
distH(S, T ), defined only if |S| = |T |, is the number of positions i such that S[i] ̸= T [i].

The lexicographic order on Σ∗ is defined by S <lex T if S is a proper prefix of T , or if
there exists an index j s.t. S[j] < T [j] and for all i < j, S[i] = T [i]. The colexicographic
order, or colex-order (referred to as reverse lexicographic order in [35, 13]) is defined by
S <colex T if Srev <lex T rev, where Xrev = X[n]X[n − 1] · · · X[1] denotes the reverse of the
string X = X[1..n]. String S is a conjugate of string T if S = T [i..n]T [1..i − 1] for some
i ∈ {1, . . . , n} (also called the ith rotation of T ).
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Given a string T = T [1..n] over Σ, the Burrows-Wheeler-Transform [9], BWT(T ), is
a permutation of the characters of T , given by concatenating the last characters of the
lexicographically sorted conjugates of T . The number of runs of the BWT of string T is
denoted r(T ), i.e. r(T ) = runs(BWT(T )). To make the BWT uniquely reversible, one can
add an index to it marking the lexicographic rank of the conjugate in input. For example,
BWT(banana) = nnbaaa, hence r(banana) = 3, and the index 4 specifies that the input was
the 4th conjugate in lexicographic order. Alternatively, one adds a $ to the end of T , which
makes the input unique: BWT(banana$) = annb$aa. Note that BWT with and without
end-of-string symbol can be quite different.

Next we define the omega-order [40] on Σ∗: S ≺ω T if root(S) = root(T ) and exp(S) <

exp(T ), or if Sω <lex T ω (implying root(S) ̸= root(T )), where T ω denotes the infinite string
obtained by concatenating T infinitely many times. The omega-order relation coincides with
the lexicographic order if neither of the two strings is a proper prefix of the other. The two
orders can differ otherwise, e.g. GT <lex GTC but GTC ≺ω GT.

Given a multiset of strings M = {T1, . . . , Tk}, the extended Burrows-Wheeler-Transform,
eBWT(M) [40], is a permutation of the characters of the strings in M, given by concatenating
the last characters of the conjugates of each Ti, for i = 1, . . . , k, listed in omega-order. For
example, the omega-sorted conjugates of M = {GTC, GT} are: CGT, GTC, GT, TCG, TG, hence,
eBWT(M) = TCTGG. Again, adding the indices of the input conjugates, in this case 2, 3,
makes the eBWT uniquely reversible.

3 BWT variants for string collections

We identified five distinct transforms, which we list below, that were computed by the
programs listed above. Let M = {T1, . . . , Tk} be a multiset of strings, with total length
NM =

∑k
i=1 |Ti|. Since several of the data structures depend on the order in which the

strings are listed, we implicitly regard M as a list [T1, . . . , Tk], and write (M, π) explicitly
for a specific permutation π in which the strings are presented.

1. eBWT(M): the extended BWT of M of Mantaci et al. [40]
2. dolEBWT(M) = eBWT({Ti$ | Ti ∈ M}) (“dollar-eBWT”)
3. mdolBWT(M) = BWT(T1$1T2$2 · · · Tk$k), where dollars are assumed to be smaller than

characters from Σ and $1 < $2 < . . . < $k (“multidollar BWT”)
4. concBWT(M) = BWT(T1$T2$ · · · Tk$#), where # < $ (“concatenated BWT”)
5. colexBWT(M) = mdolBWT(M, γ), where γ is the permutation corresponding to the

colexicographic (’reverse lexicographic’) order of the strings in M.

Because all BWT variants except the eBWT use additional end-of-string symbols as string
separators, we refer to these four by the collective term separator-based BWT variants. In
Table 2 we show the five data structures on our running example of 5 DNA-strings, and give
first properties. For ease of exposition and comparison, we replaced all separator-symbols
by the same dollar-sign $ for all string separator symbols, even where, conceptually or
concretely, different dollar-signs are assumed to terminate the individual strings, as is the
case for mdolBWT. Moreover, the concBWT contains one additional character, the final
end-of-string symbol, here denoted by #, which is smaller than all other characters; thus, the
additional rotation starting with # is the smallest and results in an additional dollar in the
first position of the transform. For ease of comparison, we remove this first symbol from
concBWT and replace the # by $.
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Table 2 Overview of properties of the five BWT variants considered in this paper. The colors in
the example BWTs correspond to interesting intervals in separator-based variants, see Section 3.2.

BWT variant example order of shared suffixes independent
of input order?

non-sep.based
eBWT(M) CGGGATGTACGTTAAAAA omega-order of strings yes
separator-based
dolEBWT(M) GGAAACGG$$$TTACTGT$AAA$ lexicographic order of strings yes
mdolBWT(M) GAGAAGCG$$$TTATCTG$AAA$ input order of strings no
concBWT(M) AAGAGGGC$$$TTACTGT$AAA$ lexicographic order of no

subsequent strings in input
colexBWT(M) AAAGGCGG$$$TTACTGT$AAA$ colexicographic order yes

It is important to point out that the programs listed in Table 1 do not necessarily use
the definitions given here; however, in each case, the resulting transform is the one claimed,
up to renaming or removing separator characters, see Section 3.1 and 3.2.

3.1 The effect of adding separator symbols
The first obvious difference between the eBWT and the separator-based variants is their
length: eBWT(M) has length NM, while all other variants have length NM + k, since they
contain an additional character (the separator) for each input string.

In all four separator-based transforms, the k-length prefix consists of a permutation of
the last characters of the input strings. This is because the rotations starting with the dollars
are the first k lexicographically; in the eBWT, these k characters occur interspersed with
the rest of the transform; namely, in the positions corresponding to the omega-ranks of the
input strings Ti (see Table 2).

The next point is that adding a $ to the end of the strings introduces a distinction, not
present in the eBWT, between suffixes and other substrings: since the separators are smaller
than all other characters, occurrences of a substring as suffix will be listed en bloc before all
other occurrences of the same substring. On the other hand, in the eBWT, these occurrences
will be listed interspersed with the other occurrences of the same substring.

▶ Example 1. Let M = {AACGAC, TCAC} and U = AC. U occurs both as a suffix and as an
internal factor; the characters preceding it are A (internal substring) and C,G (suffix), and
we have eBWT(M) = CGACATAACC, dolEBWT(M) = CC$GCAAATAC$.

Finally, it should be noted that adding end-of-string symbols to the input strings changes
the definition of the order applied. As observed above, the omega-order coincides with the
lexicographic order on all pairs of strings S, T where neither is a proper prefix of the other;
but with end-of-strings characters, no input string can be a proper prefix of another. Thus,
on rotations of the Ti$’s, the omega-order equals the lexicographic order. As an example,
consider the multiset M = {GTC$, GT$} from Section 2: we have the following omega-order
among the rotations: $GT, $GTC, C$GT, GT$, GTC$, T$G, TC$G, which coincides with the
lexicographic order. Similarly, adding different dollars $1, $2, . . . , $k and applying the
omega-order results again in the lexicographic order between the rotations, with different
dollar symbols considered as distinct characters. Indeed, if we append a different dollar-sign
to each input string, then the omega-order, the lexicographic order, and the order of the
suffixes of the concatenated string (i.e. our mdolBWT) are all equivalent.
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Regarding the differences among the four separator-based BWT variants, we will show
that all differences occur in certain well-defined intervals of the BWT, and that the differences
themselves depend only on a specific permutation of {1, . . . , k}, given by the combination of
the input order, the lexicographic order of the input strings, and the BWT variant applied.
In Tables 3 and 4 we give the full BWT matrices for all five BWT variants, along with the
optimal one minimizing the number of runs, see Section 4.

Table 3 From left to right we show the mdolBWT, the dolEBWT, and the concBWT of the
string collection M = {ATATG, TGA, ACG, ATCA, GGA}.

index mdol rotation
(1,6) G $1ATATG
(2,4) A $2TGA
(3,4) G $3ACG
(4,5) A $4ATCA
(5,4) A $5GGA
(2,3) G A$2TG
(4,4) C A$4ATC
(5,3) G A$5GG
(3,1) $3 ACG$3

(1,1) $1 ATATG$1

(4,1) $4 ATCA$4

(1,3) T ATG$1AT
(4,3) T CA$4AT
(3,2) A CG$3A
(1,5) T G$1ATAT
(3,3) C G$3AC
(2,2) T GA$2T
(5,2) G GA$5G
(5,1) $5 GGA$5

(1,2) A TATG$1A
(4,2) A TCA$4A
(1,4) A TG$1ATA
(2,1) $2 TGA$2

index dolE rotation
(3,4) G $ACG
(1,6) G $ATATG
(4,5) A $ATCA
(5,4) A $GGA
(2,4) A $TGA
(4,4) C A$ATC
(5,3) G A$GG
(2,3) G A$TG
(3,1) $ ACG$
(1,1) $ ATATG$
(4,1) $ ATCA$
(1,3) T ATG$AT
(4,3) T CA$AT
(3,2) A CG$A
(3,3) C G$AC
(1,5) T G$ATAT
(5,2) G GA$G
(2,2) T GA$T
(5,1) $ GGA$
(1,2) A TATG$A
(4,2) A TCA$A
(1,4) A TG$ATA
(2,1) $ TGA$

index conc rotation
23 A $#ATATG$TGA$ACG$ATCA$GGA
10 A $ACG$ATCA$GGA$#ATATG$TGA
14 G $ATCA$GGA$#ATATG$TGA$ACG
19 A $GGA$#ATATG$TGA$ACG$ATCA
6 G $TGA$ACG$ATCA$GGA$#ATATG

22 G A$#ATATG$TGA$ACG$ATCA$GG
9 G A$ACG$ATCA$GGA$#ATATG$TG

18 C A$GGA$#ATATG$TGA$ACG$ATC
11 $ ACG$ATCA$GGA$#ATATG$TGA$
1 $ ATATG$TGA$ACG$ATCA$GGA$#

15 $ ATCA$GGA$#ATATG$TGA$ACG$
3 T ATG$TGA$ACG$ATCA$GGA$#AT

17 T CA$GGA$#ATATG$TGA$ACG$AT
12 A CG$ATCA$GGA$#ATATG$TGA$A
13 C G$ATCA$GGA$#ATATG$TGA$AC
5 T G$TGA$ACG$ATCA$GGA$#ATAT

21 G GA$#ATATG$TGA$ACG$ATCA$G
8 T GA$ACG$ATCA$GGA$#ATATG$T

20 $ GGA$#ATATG$TGA$ACG$ATCA$
2 A TATG$TGA$ACG$ATCA$GGA$#A

16 A TCA$GGA$#ATATG$TGA$ACG$A
4 A TG$TGA$ACG$ATCA$GGA$#ATA
7 $ TGA$ACG$ATCA$GGA$#ATATG$

3.2 Interesting intervals
Let us call a string U a shared suffix w.r.t. multiset M if it is the suffix of at least two strings
in M. Let b be the lexicographic rank of the smallest rotation beginning with U$ and e

the lexicographic rank of the largest rotation beginning with U$, among all rotations of
strings T$, where T ∈ M. (One can think of [b, e] as the suffix-array interval of U$.) We
call [b, e] an interesting interval if there exist i ≠ j s.t. U is a suffix of both Ti and Tj , and
the preceding characters in Ti and Tj are different, i.e., the two occurrences of U as suffix
of Ti and Tj constitute a left-maximal repeat. (Interesting intervals correspond to internal
nodes in the suffix tree of the reverse string, within the subtree of $.) Clearly, [1, k] is an
interesting interval unless all strings end with the same character. Note that interesting
intervals differ both from the SAP-intervals of [13] and from the tuples of [4] (called maximal
row ranges in [41]): the former are the intervals corresponding to all shared suffixes U , even
if not left-maximal, while the latter include also suffixes U that are not shared. The next
lemma follows from the fact that no two substrings ending in $ can be one prefix of the other.
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Table 4 From left to right we show the eBWT, the colexBWT, and the optimal BWT of the
string collection M = {ATATG, TGA, ACG, ATCA, GGA}, see Section 4.

index eBWT rotation
(4,4) C AATC
(3,1) G ACG
(5,3) G AGG
(1,1) G ATATG
(4,1) A ATCA
(1,3) T ATGAT
(2,3) G ATG
(4,3) T CAAT
(3,2) A CGA
(3,3) C GAC
(5,2) G GAG
(1,5) T GATAT
(2,2) T GAT
(5,1) A GGA
(1,2) A TATGA
(4,2) A TCAA
(1,4) A TGATA
(2,1) A TGA

index colexBWT rotation
(1,5) A $1ATCA
(2,4) A $2GGA
(3,4) A $3TGA
(4,4) G $4ACG
(5,6) G $5ATATG
(1,4) C A$1ATC
(2,3) G A$2GG
(3,3) G A$3TG
(4,1) $ ACG$4

(5,1) $ ATATG$5

(1,1) $ ATCA$1

(5,3) T ATG$5AT
(1,3) T CA$1AT
(4,2) A CG$4A
(4,3) C G$4AC
(5,5) T G$5ATAT
(2,2) G GA$2G
(3,2) T GA$3T
(2,1) $ GGA$2

(5,2) A TATG$5A
(1,2) A TCA$1A
(5,4) A TG$5ATA
(3,1) $ TGA$3

index optimum rotation
(1,4) A $1TGA
(2,4) A $2GGA
(3,5) A $3ATCA
(4,4) G $4ACG
(5,6) G $5ATATG
(1,3) G A$1TG
(2,3) G A$2GG
(3,4) C A$3ATC
(4,1) $ ACG$4

(5,1) $ ATATG$5

(3,1) $ ATCA$3

(5,3) T ATG$5AT
(3,3) T CA$3AT
(4,2) A CG$4A
(4,3) C G$4AC
(5,5) T G$5ATAT
(1,2) T GA$1T
(2,2) G GA$2G
(2,1) $ GGA$2

(5,2) A TATG$5A
(3,2) A TCA$3A
(5,4) A TG$5ATA
(1,1) $ TGA$1

▶ Lemma 2. Any two distinct interesting intervals are disjoint.

We can now narrow down the differences between any two separator-based BWTs of the
same multiset to interesting intervals. This implies that the dollar-symbols appear in the
same positions in all separator-based variants except for one very specific case. Moreover, we
get an upper bound on the Hamming distance between two separator-based BWTs:

▶ Proposition 3. Let L1 and L2 be two separator-based BWTs of the same multiset M.

1. If L1[i] ̸= L2[i] then i ∈ [b, e] for some interesting interval [b, e].
2. Let I1 resp. I2 be the positions of the dollars in L1 resp. L2. If I1 ̸= I2 then there exist

i ̸= j such that Ti is a proper suffix of Tj.
3. distH(L1, L2) ≤

∑
[b,e] interesting interval

(e − b + 1).

Proof. 1. Let L1[i] = x and L2[i] = y. Since all separator-based BWT variants use the
lexicographical order of the rotations, this means that there exists a substring U which is
preceded by x in one string Tj and by y in another Tj′ , the first occurrence has rank i in
one BWT and the other has rank i in the other BWT variant. This implies that the two
occurrences are followed by two dollars, and either the two dollars are different, or they
are the same dollar, and the subsequent substrings are different. Therefore, U defines an
interesting interval. Parts 2. and 3. follow from 1. ◀
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Proposition 3 implies that the variation of the different transforms can be explained
based solely on what rule is used to break ties for shared suffixes. We will see next how the
different BWT variants determine this tie-breaking rule.

3.3 Permutations induced by separator-based BWT variants
Let us now restrict ourselves to M being a set, i.e., no string occurs more than once. (This
is just for convenience since now the input order uniquely defines a permutation w.r.t.
lexicographic order; the results of this section apply equally to multisets M.) As we showed
in the previous subsection, the only differences between the different separator-based BWT
variants are given by the order in which shared suffixes are listed. It is also clear that
the same order applies in each interesting interval, as well as to the k-length prefix of the
transform, whether or not it is an interesting interval.

Since the strings are all distinct, they each have a unique lexicographic rank within
the set M. Thus the input order can be seen as a permutation ρ of the lexicographic
ranks1; if the strings are input in lexicographic order, then ρ = id. For our toy example
M = [ATATG, TGA, ACG, ATCA, GGA], we have ρ = 25134.

Let us now define as output permutation π the permutation of the last characters of
the input strings, as found in the k-length prefix of the BWT variant in question. We will
denote the output permutations of the dolEBWT, mdolBWT, concBWT, and colexBWT
by πde, πmd, πconc, and πcolex, respectively. Again, we give these permutations w.r.t. the
lexicographic ranks of the strings. In our running example, we have πde = 12345, πmd = 25134,
πconc = 45132, and πcolex = 34512.

It is easy to see that the permutation πmd is equal to ρ, since the dollar-symbols are
ordered according to ρ. For the dolEBWT, the rank of $Ti equals the lexicographic rank of
Ti among all input strings, i.e., πde = id. Further, πcolex = γ by definition, where γ denotes
the colexicographic order of the input strings. The situation is more complex in the case of
concBWT. Since the # is the smallest character, the last string of the input will be the first,
while for the others, the lexicographic rank of the following string decides the order. In our
running example, πconc = 45132. We next formalize this.

Let Φρ be the linking permutation [31] of ρ, defined by Φρ(i) = ρ(ρ−1(i) + 1), for i ̸= ρ(k),
and Φρ(ρ(k)) = ρ(1), the permutation that maps each element to the element in the next
position and the last element to the first. Let us also define, for j ∈ {1, . . . , k} and i ̸= j,
fj(i) by fj(i) = i if i < j and i − 1 otherwise. The next lemma gives the precise relationship
between ρ and πconc. It says2, essentially, that πconc is the BWT of ρ.

▶ Lemma 4. Let ρ be the permutation of the input order w.r.t. the lexicographic order, i.e.
the ith input string has lexicographic rank ρ(i). Then πconc = πconc(ρ) is given by:

πconc(1) = ρ(k), and for i ̸= ρ(k) : π−1
conc(i) = fρ(1)(Φρ(i)) + 1. (1)

▶ Example 5. The mapping ρ 7→ πconc for k = 3 is as follows: 123 7→ 312, 132 7→ 231,
312 7→ 231, 213 7→ 321, 231 7→ 132, and 321 7→ 123. Note that no ρ maps to 213.

As can be seen already for k = 3, not all permutations π are reached by this mapping.
We will call a permutation π feasible if there exists an input order ρ such that πconc(ρ) = π.
For k = 4, there are 18 feasible permutations (out of 24), for k = 5, 82 (out of 120). In

1 For those used to thinking about suffix arrays, ρ can be seen as the inverse suffix array of the input if
the strings are thought of as meta-characters.

2 We thank Massimiliano Rossi for this observation.
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Table 5, we give the percentage of feasible permutations π, for k up to 11. The lexicographic
order is always feasible, namely with ρ = k, k − 1, . . . , 2, 1; however, the colex order is not
always feasible, as the following example shows.

▶ Example 6. Let M = {GAA, ACA, TGA}, thus γ = 213, but as we have seen, no per-
mutation of the strings in M will yield this order for concBWT. In addition, the
colexBWT(M) = AAAACGG$AT$$ has 7 runs, while all feasible ones have at least 8:
AAAGACG$AT$$, AAACGAG$AT$$, AAAAGCG$AT$$, AAAGCAG$AT$$, AAACAGG$AT$$.

Table 5 Percentage of feasible permutations w.r.t. concBWT.

no. of seq’s k 3 4 5 6 7 8 9 10 11

83.33% 75.0% 68.33% 63.89% 60.12% 57.29% 54.8% 52.81% 51.0%

An important consequence is that the permutations induced by mdolBWT and concBWT
are always different: πmd ̸= πconc holds always, since πconc(1) = ρ(k). This means that,
in whatever order the strings are given w.r.t. lexicographic order, on most string sets the
resulting transforms mdolBWT and concBWT will differ.

4 Effects on the parameter r

What is the effect of the different permutations π of the strings in M, induced by these
BWT variants, on the number of runs of the BWT? As the following example shows, the
number of runs can differ significantly between different variants.

▶ Example 7. Let M = {AAAA, AGCA, GCAA, GTCA, CAAA, CGCA, TCAA, TTCA}. Then
mdolBWT(M) = AAAAAAAAACACACACACACAC$$GTGTGT$$AC$$GT$$ has 28 runs, while
colexBWT(M) = AAAAAAAAAAAACCCCAACCAC$$GGTTGT$$AC$$GT$$ has 18 runs.

▶ Lemma 8. Let [b, e] be an interesting interval, and (n1, . . . , nσ) the Parikh vector of L[b..e],
i.e. ni is the number of occurrences of the ith character. Let a be such that na = maxi ni,
and Na = (e − b + 1) − na, the sum of the other character multiplicities. Then the maximum
number of runs in interval [b, e] is e − b + 1 if na − 1 ≤ Na, and 2Na + 1 otherwise.

We will use this lemma to measure the variability of a dataset:

▶ Definition 9. Let M be a multiset. For an interesting interval [b, e], let var([b, e]) be the
upper bound on the number of runs in [b, e] from Lemma 8. Then the variability of M is

var(M) =
∑

[b,e] interesting interval var([b, e])∑
[b,e] interesting interval(e − b + 1) .

Which of the BWT variants produces the fewest runs? As we have shown, this depends on
the input order with most BWT variants, and the only possible variation is within interesting
intervals. The colexBWT has been shown experimentally to yield a low number of runs of
the BWT [35, 13]. Even though it does not always minimize r (one can easily create small
examples where other permutations yield a lower number of runs), we can bound its distance
from the optimum.

▶ Proposition 10. Let L be the colexBWT of multiset M, and let rOPT denote the minimum
number of runs of any separator-based BWT of M. Then runs(L) ≤ rOPT + 2 · cM, where
cM is the number of interesting intervals.



D. Cenzato and Zs. Lipták 25:11

Bentley, Gibney, and Thankachan recently gave a linear-time algorithm for computing
the order of the dollars which minimizes the number of runs [4], i.e. the optimal order for
mdolBWT. The idea is, in effect, to start from the colex-order and then adjust, where
possible, the order of the runs within interesting intervals in order to minimize character
changes at the borders, i.e. such that the first and the last run of each interesting interval is
identical to the run preceding and following that interesting interval. This is equivalent to
sorting groups of sequences sharing the same left-maximal suffix. This sorting can be done
on each interesting interval independently without affecting the other interesting intervals.
In Table 4, we show the result on our toy example, where it reduces the number of runs by
2 w.r.t. colex order. We implemented an algorithm that computes the number of optimal
runs according to the method of [4] and applied it to our datasets. In the next section, we
compare the number of runs of each of the five BWT variants to the optimum.

5 Experimental results

We computed the five BWT variants for eight different genomic datasets, with different
characteristics. Four of the datasets contain short reads: SARS-CoV-2 short [51], Simons
Diversity reads [39], 16S rRNA short [57], Influenza A reads [56], and four contain long
sequences: SARS-CoV-2 long [25], 16S rRNA long [15], Candida auris reads [58], one of
which, SARS-CoV-2 genomes, whole viral genomes [6]. The main features of the datasets,
including the number of sequences, sequence length, and the mean runlength of the optimal
BWT are reported in Table 6. Details of the experiment setup are included in the full version.

On each of the datasets, we computed the pairwise Hamming distance between separator-
based BWTs. To compare them to the eBWT, we computed the pairwise edit distance on
a small subset of the sequences (for obvious computational reasons), computing also the
Hamming distance on the small set, for comparison. We generated some statistics on each of
the data sets: the number of interesting intervals, the fraction of positions within interesting
intervals (total length of interesting intervals divided by total length of the dataset), and the
dataset’s variability (Def. 9). To study the variation of the r-parameter, we implemented
the algorithm by Bentley et al. [4] for the optimal input order and computed rOP T for each
data set, comparing it to the number of runs of all five BWT variants. In Table 8 and 9,
we include a compact version of these results for the two datasets with the highest and
the lowest variation between the BWT variants, the SARS-CoV-2 short sequences and the
SARS-CoV-2 genomes, respectively. The full experimental results for all eight datasets are
contained in the full version.

In Table 7 we give a brief summary of the results, reporting, for each dataset, the fraction
of positions in interesting intervals, the dataset’s variability, the average pairwise Hamming
distance between separator-based BWT variants, and the maximum and minimum value,
among the five BWT variants, of the average runlength of the BWT.

The experiments showed a high variation in the number of runs in particular on datasets
of short sequences. The highest difference was between colexBWT and concBWT, by a
multiplicative factor of over 4.2, on the SARS-CoV-2 short dataset. In Figure 1 we plot
the average runlength n/r for the four short sequence datasets, and the percentage increase
of the number of runs w.r.t. rOP T . The variation is less pronounced on the one dataset
which is less repetitive, namely Simons Diversity reads. Recall that the mdolBWT and
concBWT vary depending on the input permutation. On most long sequence datasets, on
the other hand, the differences were quite small (see full version). To better understand how
far the colexBWT is from the optimum, we plot in Figure 2 the number of runs of colexBWT
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w.r.t. to rOP T , on all eight datasets. The strongest increase is on short sequences, where
the variation among all BWT variants is high, as well; on the long sequence datasets, with
the exception of SARS-CoV-2 long sequences, the colexBWT is very close to the optimum;
however, note that on those datasets, all BWTs are close to the optimum.

The average number of runs and the average pairwise Hamming distance strongly depend
on the length of the sequences in the input collection. If the collection has a lot of short
sequences which are very similar, then the differences between the BWTs both w.r.t. the
number of runs, and as measured by the Hamming distance, can be large. This is because
there are a lot of maximal shared suffixes and so many positions are in interesting intervals.
To better understand this relationship, we plotted, in Figure 3, the average Hamming distance
against the two parameters variability and fraction of positions in interesting intervals. We
see that the two datasets with highest average Hamming distance, SARS-CoV-2 short dataset
and the Simons Diversity reads, have at least one of the two values very close to 1, while for
those datasets where both values are very low, the BWT variants do not differ very much.

Table 6 Table summarizing the main parameters of the eight datasets. From left to right we
report the dataset name, the number of sequences, the total length, the average, minimum and
maximum sequence length and the optimum average runlength (n/r), according to [4].

dataset no. seq total length avg min max n/r (opt)

SARS-CoV-2 short 500,000 25,000,000 50 50 50 35.125
Simons Diversity reads 500,000 50,000,000 100 100 100 8.133
16S rRNA short 500,000 75,929,833 152 69 301 44.873
Influenza A reads 500,000 115,692,842 231 60 251 50.275
SARS-CoV-2 long 50,000 53,726,351 1,075 265 3,355 74.498
16S rRNA long 16,741 25,142,323 1,502 1,430 1,549 47.140
Candida auris reads 50,000 124,150,880 2,483 214 8,791 1.732
SARS-CoV-2 genomes 2,000 59,610,692 29,805 22,871 29,920 523.240

Table 7 Table summarizing the results on the eight datasets. From left to right we report dataset
names followed by the ratio of positions in interesting intervals, the variability of the dataset (see
Def. 9), the average normalized Hamming distance between any two separator-based BWT variants.
In the last two columns we report the maximum and minimum average runlength (n/r) taken over
all five BWT variants.

dataset ratio pos.s varia- avg. Hamming d. max n/r min n/r

in intr.int.s bility betw. $-sep. BWTs (avg. runlength) (avg. runlength)

SARS-CoV-2 short 0.792 0.210 0.11754 31.524 7.494
Simons Diversity reads 0.107 0.976 0.07195 7.873 5.299
16S rRNA short 0.741 0.058 0.02982 44.253 18.836
Influenza A reads 0.103 0.363 0.02609 49.172 23.100
SARS-CoV-2 long 0.175 0.037 0.00464 73.204 57.568
16S rRNA long 0.047 0.104 0.00289 46.879 45.015
Candida auris reads 0.007 0.497 0.00246 1.732 1.726
SARS-CoV-2 genomes 0.001 0.148 0.00012 521.610 499.549
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Table 8 Results for the SARS-CoV-2 short dataset. Top left: absolute and normalized pairwise
Hamming distance between separator-based BWT variants. Top right: summary of the dataset
properties. Bottom left: absolute and normalized pairwise edit distance between all BWT variants
on a subset of the input collection. Bottom right: number of runs and average runlength (n/r) taken
over all BWT variants.
SARS-CoV-2 short (500,000 short sequences)

norm. Hamming d.

Hamming d. Hamming distance on the big dataset

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 3,014,183 2,926,602 2,912,860

mdolBWT 0.11820 0 3,013,908 3,102,887

concBWT 0.11477 0.11819 0 3,013,634

colexBWT 0.11423 0.12168 0.11818 0

dataset properties

no. sequences 500,000

average length 50

total length 25,000,000

no. of interesting intervals 116,598

total length intr.int.s 20,187,840

fraction pos.s in intr.int.s 0.792

variability 0.210

norm. edit d.

edit d. edit distance on a subset of 5,000 sequences

eBWT dolEBWT mdolBWT concBWT colexBWT

eBWT 0 28,702 43,903 43,828 46,936

dolEBWT 0.11256 0 17,000 16,921 20,104

mdolBWT 0.17217 0.06667 0 16,130 20,812

concBWT 0.17187 0.06636 0.06325 0 20,830

colexBWT 0.18406 0.07884 0.08162 0.08169 0

no. runs big dataset

r n/r

eBWT 1,902,148 13.143

dolEBWT 1,868,581 13.647

mdolBWT 3,113,818 8.189

concBWT 3,402,513 7.494

colexBWT 808,906 31.524

optimum 725,979 35.125

Figure 1 Results regarding r on short sequence datasets, of all BWT variants. Left: average
runlength (n/r). Right: number of runs (percentage increase with respect to optimal BWT).
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Figure 2 Number of runs of the colexBWT with respect to optimal BWT (percentage increase)
on all eight datasets.

Figure 3 Average normalized Hamming distance variations with respect to variability and fraction
of positions in interesting intervals on all datasets.
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Table 9 Results for the SARS-CoV-2 genomes dataset. Top left: absolute and normalized
pairwise Hamming distance between separator-based BWT variants. Top right: summary of the
dataset properties. Bottom left: absolute and normalized pairwise edit distance between all BWT
variants on a subset of the input collection. Bottom right: number of runs and average runlength
(n/r) taken over all BWT variants.
SARS-CoV-2 genomes (2,000 long sequences)

norm. Hamming d.

Hamming d. Hamming distance on the big dataset

dolEBWT mdolBWT concBWT colexBWT

dolEBWT 0 7,958 7,900 7,263

mdolBWT 0.00013 0 7,958 7,957

concBWT 0.00013 0.00013 0 7,990

colexBWT 0.00012 0.00013 0.00013 0

dataset properties

no. sequences 2,000

total length 59,612,692

average length 29,085

no. interesting intervals 1863

total length intr.int.s 80,486

fraction pos.s in intr.int.s 0.001

variability 0.148

norm. edit d.

edit d. edit distance on a subset of 50 sequences

eBWT dolEBWT mdolBWT concBWT colexBWT

eBWT 0 786 795 801 791

dolEBWT 0.00053 0 98 107 86

mdolBWT 0.00053 0.00007 0 105 112

concBWT 0.00054 0.00007 0.00007 0 114

colexBWT 0.00053 0.00006 0.00008 0.00008 0

no. runs big dataset

r n/r

eBWT 117,628 506.773

dolEBWT 117,410 507.731

mdolBWT 118,870 501.495

concBWT 119,334 499.549

colexBWT 114,287 521.605

optimum 113,930 523.240

6 Conclusion

We presented the first study of the different variants of the Burrows-Wheeler-Transform for
string collections. We found that the data structures computed by different tools differ not
insignificantly, as measured by the pairwise Hamming distance: up to 12% between different
BWT variants on the same dataset in our experiments. We showed that most BWT variants
in use are input order dependent, so the same tool can produce different variants if the input
set is permuted. These differences extend also to the number of runs r, a parameter that is
central in the analysis of BWT-based data structures, and which is increasingly being used
as a measure of the repetitiveness of the dataset itself.

With string collections replacing individual sequences as the prime object of research
and analysis, and thus becoming the standard input for text indexing algorithms, we believe
that it is all the more important for users and researchers to be aware that not all methods
are equivalent, and to understand the precise nature of the BWT variant produced by a
particular tool. We suggest further to standardize the definition of the parameter r for string
collections, using either the colexicographic order or the optimal order of Bentley et al. [4].
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