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Somatic mosaicism appears as a recurrent phenomenon among patients suffering
from Fanconi anemia (FA), but its direct prognostic significance mostly remains an
open question. The clinical picture of FA mosaic subjects could indeed vary from
just mild features to severe hematologic failure. Here, we illustrate the case of a
proband whose FA familiarity, modest signs (absence of hematological anomalies
and fertility issues), and chromosome fragility test transition to negative overtime
were suggestive of somatic mosaicism. In line with this hypothesis, genetic testing
on patient’s peripheral blood and buccal swab reported the presence of the only
FANCA paternal variant (FANCA:c.2638C>T, p. Arg880*) and of both parental
alleles (the additional FANCA:c.3164G>A, p. Arg1055Gln), respectively. Moreover,
the SNP analysis performed on the same biological specimens allowed us to
attribute the proband’s mosaicism status to a possible gene conversion
mechanism. Our case clearly depicts the positive association between somatic
mosaicism and the proband’s favorable clinical course due to the occurrence of
the reversion event at the hematopoietic stem cell level. Since this condition
concerns only a limited subgroup of FA individuals, the accurate evaluation of the
origin and extent of clonality would be key to steer clinicians toward the most
appropriate therapeutic decision for their FA mosaic patients.

KEYWORDS

Fanconi anemia, gene conversion, mosaicism, natural gene therapy, phenotype reversion

Introduction

Fanconi anemia (FA) is a rare genetic condition attributable to variants in over
20 protein-coding genes of the FA/BRCA pathway, which preserves genome stability via
the resolution of interstrand crosslinks (ICLs) (Kottemann and Smogorzewska, 2013;
Bogliolo and Surrallés, 2015). Upon clastogen exposure (e.g., mitomycin C, MMC, and
diepoxybutane, DEB), FA cells indeedmanifest a typical chromosomal breakage increase and
unique multiradial figures, both linchpins of FA first-line diagnostic tests (i.e., the DEB test)
(Auerbach, 1988; Auerbach, 2003).

FA genetic instability accounts not only for probands’ main clinical features, such as
bone marrow failure (BMF) and augmented hematological and solid tumor hazards (Kutler
et al., 2003; Alter et al., 2018), but also for the substantial incidence (~30%) of mosaic cases
among them (Soulier et al., 2005; Ramírez et al., 2021). As a result of blood’s hierarchical
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nature (Nicoletti et al., 2020), somatic mosaicism springs from
reversion or compensatory events in hematopoietic stem/
progenitor cells (HSPCs). All these mechanisms hold the
potential to restore a wild-type (WT) allele within daughter cells,
thereby promoting the correction of recessive genetic syndromes in
compound heterozygotes (Nicoletti et al., 2020). Herein, we describe
an FA patient characterized by complete loss of one FANCAmutant
allele at least in the peripheral blood DNA, exhibiting phenotypic
reversion at the hematopoietic level.

Materials and methods

Patient

A 34-year-old patient was presented to genetic counseling for
reproductive issues because their sister died in childhood. The
patient had post-axial polydactyly in the right hand and
congenital unilateral kidney agenesis without any hematological
alterations, cardiac defects, hearing impairment, and ocular
anomalies. From their records, the DEB test performed at the age
of 7 provided a doubtful positive result at the lower limit. The DEB
test repeated on peripheral blood at the age of 34 was negative.
Informed consent was obtained for genetic testing, which was
conducted in accordance with the Declaration of Helsinki.

Mutation screening

Genomic DNA was extracted from the patient’s peripheral
blood and oral swab. FA genes were analyzed using the Ion PGM
system for next-generation sequencing (Life Technologies, Carlsbad,
CA), as described in De Rocco et al. (2014).

For Sanger sequencing, PCR was carried out using the KAPA2G
Fast HotStart ReadyMix (Kapa Biosystems, Wilmington, MA). PCR
products were purified using ExoSAP-IT (Applied Biosystems,
Foster City, CA) and sequenced using the ABI PRISM sequencer
(Applied Biosystems, Foster City, CA). Nucleotide numbering
reflects FANCA cDNA with +1 corresponding to the A of the
ATG translation initiation codon in the reference sequence
(RefSeq NM_000135). Variants identified were searched in the
following annotation databases: the Single Nucleotide
Polymorphism Database (dbSNP; http://www.hgmd.cf.ac.uk/ac/
index.php), Genome Aggregation Database (gnomAD; https://
gnomad.broadinstitute.org), Human Gene Mutation Database
(HGMD; http://www.hgmd.cf.ac.uk/ac/index.php), and Fanconi
Anemia Mutation Database (https://www2.rockefeller.edu/
fanconi/).

Results

Clinical features of the patient

The patient (II-2) was born with post-axial polydactyly of the
right hand, and right kidney agenesis and a history of growth
retardation during infancy were reported. II-2 was referred twice
(at 7 and 34 years of age) to the Medical Genetics Unit of the

University Hospital in Turin due to the clinical diagnosis of FA in
the sister (1 year older) (II-1) who developed acute leukemia shortly
after the diagnosis of medullary aplasia.

The DEB test performed at the age of 7 revealed chromosomal
instability in two different assays: 40%–42% of unstable cells and
0.72–0.94 chromosomal breaks per cells were observed. Blood count
at the age of 15 was found to be normal (white cells 6.68 × 109/L,
normal leukocyte formula, red cells 4.78 × 1012/L, and platelets 230 ×
109/L).

At the age of 34, DEB tests on peripheral blood resulted negative
for chromosomal breaks, and blood count was in the normal range
(white cells: 5.86 × 109/L, normal leukocyte formula, red cells: 4.66 ×
1012/L, platelets: 217 × 109/L, and LDH: 165 UI/L). The patient
presented hypovitaminosis D, normal thyroid, and renal function.
FSH levels were increased (26.8 U/L), with LH and testosterone
within the normal range; the sperm count was reduced with a total
number of sperm cells lower than 2.000.000/mL. At clinical
evaluation, the patient’s height was 165 cm, with a weight of
63 kg; no skin anomalies were identified, and neither hearing nor
visual impairments were referred.

Mutation screening

Targeted next-generation sequencing (t-NGS) of patient’s (II-2)
DNA from PB revealed single-nucleotide heterozygous substitutions
(FANCA:c.2638C>T) in exon 28 of the FANCA gene, leading to a
premature stop codon (p.Arg880*), which was confirmed in the
father (I-1) by Sanger sequencing (Figure 1). In the hypothesis of
mosaicism, DNA extracted from patient’s buccal swab was analyzed,
revealing a compound heterozygous genotype at the FANCA gene
with the additional FANCA:c.3164G>A substitution
(p.Arg1055Gln) inherited from the mother (Figure 1). Both
variants, previously reported in the sister (De Rocco et al., 2014),
were rare with an allele frequency of 0.003% in GnomAD and were
classified as pathogenic in the Fanconi Anemia Mutation Database.

Mechanism of reversion

To study in depth the mechanism responsible for the absence of
the FANCA:c.3164G>A substitution in the peripheral blood, we
analyzed approximately 2 and 3 kb upstream and downstream,
respectively, of the FANCA:c.3164G>A mutation for the purpose
of identifying any heterozygote SNP. The only informative SNP was
identified in intron 33 (FANCA:c.3348 + 18A>G, rs1800347). It was
in homozygous and heterozygous status in DNA from the peripheral
blood and oral swab, respectively, suggesting that a gene conversion
event was likely to be the underlying mechanism responsible for the
mosaic condition observed in the proband (Figure 2).

Discussion

Hematopoietic mosaicism has been defined as a “natural gene
therapy” process and has recently been rated as a good prognostic
factor in FA (Ramírez et al., 2021; Nicoletti et al., 2020). Accordingly,
our work emphasizes the beneficial effect of the loss of one FANCA
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mutant allele, resulting in the proband (II-2)’s HSPC phenotypic
reversion and minor FA clinical features.

The shift of II-2’s DEB test from “mildly positive” in childhood
to “negative” in adulthood, together with the patient’s family
history (dead 8-year-old sister with FA diagnosis) and fertility
issues, led us to formulate a clinical suspicion of FA somatic
mosaicism. Consistent with this hypothesis, routine genetic
analysis on blood DNA demonstrated the presence of the sole
paternal FANCA allele (FANCA:c.2638C>T, p. Arg880*), while
both parental causative variants (the maternal FANCA:
c.3164G>A, p. Arg1055Gln) were identified after buccal swab
testing. Moreover, the detection of the FANCA:c.3348 + 18A>G
SNP in the homozygous and heterozygous status in proband’s PB
and oral swab DNA, respectively, allowed us to explain II-2’s
mosaicism as the outcome of a gene conversion event. This
phenomenon, together with an intragenic crossover and back
mutations, is a reversion mechanism that stands out for the
unilateral conveyance of the genetic material via homologous
recombination between non-allelic or interallelic regions with a
high sequence similarity (at least >92%), possibly resulting in the
transfer of genetic information from a functional donor sequence
to a mutant acceptor sequence (Chen et al., 2007).

Regarding II-2’s clinical course, the bone marrow reversion
event explained the complete absence of hematological
anomalies observed in our patient since the age of 15, and
the presence of the clinical signs of FA (polydactyly, renal
agenesis, growth delay, and infertility) is in line with the
resultant somatic mosaicism.

Accordingly, recent clinical pictures of blood cell count
normalization suggest that FA mosaic patients with a sufficient
reversion degree accompanied by the clonal selective advantage tend
to manifest late-onset andmilder hematological features over at least
3 decades, thus representing a powerful rationale of the possible

gene therapy (GT) success in FA (Ramírez et al., 2021; Gregory et al.,
2001).

Nevertheless, neither somatic mosaicism should be erroneously
regarded as an unequivocal index to foretell a favorable prognosis
nor reversion be regarded as a definite protection against the risk of
solid tumors.

Mosaic subjects could indeed exhibit clinical features ranging
from no evident FA signs to severe hematologic failure, regardless of
the presence of a population of reverted clones. The explanation
behind these observations entails that long-term hematological
stability generally derives from reversion events in HSPCs, yet
involving less than 1/6 of all FA mosaic cases (Fargo et al., 2014;
Castella et al., 2011). Only a proper assessment of the origin of
clonality and its extent beyond the lymphoid compartment will thus
be informative of patients’ actual proclivity toward BMF (Hughes
and Kurre, 2022).

Moreover, incertitude about the susceptibility of FA mosaic
individuals to myeloid malignancies persists. Despite the
presence of native mutant cells, these patients are commonly
less prone to cancer development by virtue of the proliferative
advantage of the corrected clones (Gregory et al., 2001; Tsai and
Lindsley, 2020). In the case of the accumulation of cancer-driven
mutations before the reversion event, it could be the very reverted
population that exposes individuals to the tumoral onset instead
(Tsai and Lindsley, 2020).

Eventually, since the dawn of FA therapy, hematopoietic stem
cell transplantation (HSCT) has remained the only curative
approach for hematological defects, performed in the case of
marrow function below the level of transfusion dependence or
blood malignant evolution (Dufour, 2017; Fanconi Anemia
Research Fund, 2022). This procedure, however, could still imply
important life-threating consequences (e.g., graft-versus-host
disease and increased solid tumor risks) (Kutler et al., 2003;

FIGURE 1
Identification of variants in the FANCA gene. (A) Patient’s familial pedigree: the black arrow shows the proband (II-2), and plus symbols (+) represent
the wild-type alleles. (B) Electropherograms of the family members’ variants confirmed by Sanger sequencing. Black arrows indicate FANCA:c.3164G>A
substitutions in the heterozygous status found in the mother (I-2) and proband’s epithelial cells. PB, peripheral blood; BS, buccal swab.
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Ramírez et al., 2021; Fargo et al., 2014; Kalb et al., 2007), from which
FA mosaic patients could be spared or exposed at later ages by
means of a more attentive evaluation of their own reversion-
triggering events. Conversely, whether HSCT would be necessary,
the chimeric state of FA and corrected cells in mosaic patients could
hamper the immunosuppression provided by the standard low-
conditioning regimen used in FA therapeutics (MacMillan et al.,
2000).

To sum up, herein, we illustrated the case of II-2, an FA proband
with somatic mosaicism likely due to a gene conversion event and
associated with a moderate clinical presentation. Our findings
highlight the relevance to investigate the positive role of “disease
modifier events” for a clearer prognosis interpretation and new
personalized therapeutic strategies, enabling more accurate
treatments and decision plans for the sizable subset of FA mosaic
individuals and, by means, patients undergoing GT. The molecular
diagnosis plays an important role in defining the proper surveillance
for the “extra hematological complications” of FA, including

screening for head and neck tumors, skin cancers, and endocrine
dysfunctions.
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FIGURE 2
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