
Mechanical proofs of the Levi commutator

problem

Maria Paola Bonacina ⋆

Department of Computer Science
The University of Iowa

Iowa City, IA 52242-1419, USA
bonacina@cs.uiowa.edu

Abstract. This note presents purely mechanical proofs of the Levi com-
mutator problem in group theory. The problem was solved first by using
the theorem prover EQP, developed by William McCune at the Argonne
National Laboratory. The fastest proof was found by using Peers-mcd,
the Clause-Diffusion parallelization of EQP, developed by the author at
the University of Iowa.

1 The Levi commutator problem

The Levi commutator problem is an equational problem in group theory. Given
the axioms for a group with product ∗ and identity e

e ∗ x ≃ x

x−1
∗ x ≃ e

(x ∗ y) ∗ z ≃ x ∗ (y ∗ z)

the commutator is a binary operator [,] defined by:

[x, y] ≃ x−1
∗ y−1

∗ x ∗ y.

The Levi commutator problem consists in proving that

x ∗ [y, z] ≃ [y, z] ∗ x⇔ [[x, y], z] ≃ [x, [y, z]]

that is, x ∗ [y, z] ≃ [y, z] ∗ x holds if an only if the commutator is associative. A
textbook proof of this theorem can be found in [10].

In the input to the theorem provers, the group axioms and the commutator
definition are written using prefix notation:

f(e,x) = x

f(g(x),x) = e

f(f(x,y),z) = f(x,f(y,z))

h(x,y) = f(g(x),f(g(y),f(x,y)))

⋆ Supported in part by the National Science Foundation with grant CCR-97-01508.

where f is the product, g is the inverse, and h is the commutator. The theorem
is broken into two parts, the implication ⇒ and the implication ⇐. The ⇒

direction assumes

f(x,h(y,z)) = f(h(y,z),x)

h(h(a,b),c) != h(a,h(b,c))

where the second formula is the negation of the associativity of the commutator
(i.e., there exist elements, denoted by the Skolem constants a, b and c, for which
h is not associative). The ⇐ direction assumes

h(h(x,y),z) = h(x,h(y,z))

f(a,h(b,c)) != f(h(b,c),a)

where the second formula is the negation of f(x, h(y, z)) ≃ f(h(y, z), x) (i.e.,
there exist elements, denoted by the Skolem constants a, b and c, for which the
property f(x, h(y, z)) ≃ f(h(y, z), x) does not hold).

The ⇒ direction is easy: it can be proved by Otter (version 3.0.4) [13] in
auto mode (i.e., with the strategy chosen automatically by the prover) in 0.07
sec (hence 1 sec of wall-clock time; all run times in this paper are obtained
on workstations HP B132L+ with 256M of memory). The ⇐ direction is the
challenge: a fully automated proof by Otter has not been obtained so far. The
rest of this paper presents completely automatic proofs of this problem generated
by the provers EQP and Peers-mcd.

To mention a bit of history, a different problem involving the commutator
in group theory (proving that x3

≃ e implies h(h(x, y), y) ≃ e) was a challenge
problem in the early days of equational theorem proving [15, 1, 11].

2 The theorem prover EQP

EQP implements contraction-based strategies for equational reasoning (e.g., [5]
for a general treatment), with associativity and commutativity (AC) built-in.
The following summary does not include features (e.g., reasoning modulo AC)
that were not used to solve the Levi commutator problem. A more complete
description of EQP can be found in [14, 3].

Contraction-based strategies assume a well-founded ordering ≻ on terms,
typically a complete simplification ordering [9]. In EQP, this ordering is a recur-

sive path ordering [7], built from a total precedence on the function symbols. The
user gives the precedence in the input file, and the prover completes it if it is not
total. Function symbols have lexicographic status by default, and multiset status
if specified in the input file. An input or generated equation s ≃ t is oriented
into s → t, if s ≻ t. If s#t (neither s ≻ t nor t ≻ s), EQP “flips” the equation:
it stores it as two pairs s ≃ t and t ≃ s.

Similar to Otter, EQP has a default strategy that the user can modify by
assigning values to parameters in the input file. The proofs of the Levi commuta-
tor problem were obtained by using the default inference system, which includes

paramodulation, simplification, and subsumption. EQP applies paramodulation
to the left side of stored rewrite rules or equations. If s#t, EQP considers for
paramodulation s in s ≃ t and t in t ≃ s. Simplification applies as simplifiers
only the rewrite rules, not the equations. EQP inherited from Otter an inference
rule called deletion by weight, which deletes all generated equations whose weight
is larger than a maximum weight (parameter max-weight) given in the input
file. Normally, the weight of a term is equal to the number of its symbols, and
the weight of an equation is the sum of the weights of its sides. This inference
rule obviously makes any strategy incomplete, but it is useful in practice.

EQP features two search plans, the given-clause algorithm and the pair al-

gorithm. The given-clause algorithm is the same of Otter and it is the default
search plan. It works with a list of clauses to be selected, called sos for historical
reasons (the Set of Support strategy of [17]), and a list of clauses already se-
lected, called usable, because these clauses can be used for inferences. It selects
a given clause from sos, makes all expansion inferences between the given clause
and the clauses in usable, process and appends to sos the non-trivial normal
forms of all clauses thus generated, moves the given clause from sos to usable,
and repeats.

The pair algorithm works on an index of all possible pairs of equations ex-
isting in the database (e.g., [6, 16, 12] for indexing techniques). It selects a pair
from the index, performs all expansion inferences between the equations in the
pair, if at least one of them belongs to sos, and repeats. The partition of the
equations into sos and usable is relevant, because no inferences are performed
on two equations in usable.

Contraction is handled in the same way regardless of whether the given-clause
algorithm or pair algorithm is adopted. Each newly generated clause is normal-
ized right after generation (forward contraction). If the clause is not deleted, its
normal form is applied to contract other clauses (backward contraction).

By default, clauses/pairs to be selected are sorted by increasing length, so
that the shortest one is picked next. This amounts to best-first search with the
length of the clause as heuristic evaluation function. The pick-given-ratio pa-
rameter, also inherited from Otter, allows one to add some breadth-first search. If
the value of pick-given-ratio is k, the search plan selects the oldest candidate
every k choices.

3 The proofs by EQP

The first proof for the difficult half of the Levi commutator problem was found
by EQP (version 0.9) with the following input (% precedes comments):

set(lrpo). % use a lexicographic recursive path ordering

lex([a,b,c,e,f(x,x),g(x),h(x,x)]). % set the precedence

set(para_pairs). % use the pair algorithm as search plan

assign(max_mem, 80000).

assign(max_weight, 49).

assign(pick_given_ratio, 4).

end_of_commands.

list(usable).

f(a,h(b,c)) != f(h(b,c),a). % Denial of conclusion

end_of_list.

list(sos).

f(e,x) = x. % Group axioms

f(g(x),x) = e.

f(f(x,y),z) = f(x,f(y,z)).

h(x,y) = f(g(x),f(g(y),f(x,y))). % Definition of commutator

% Theorem: commutator is associative implies x*[y,z] = [y,z]*x.

h(h(x,y),z) = h(x,h(y,z)). % Hypothesis

end_of_list.

The precedence a ≺ b ≺ c ≺ e ≺ f ≺ g ≺ h was chosen because it orients the
definition of commutator into a rewrite rule h(x, y) → f(g(x), f(g(y), f(x, y))).
The input equations were put in sos, except the denial of the conclusion in
usable, to obtain a pure forward-reasoning behaviour. Actually, putting the
denial of the conclusion in usable is irrelevant, because it is simplified by the
definition of commutator during the processing of the input, and the resulting
normal form is placed in sos. Given this input, EQP found a contradiction after
148.96 sec and terminated in 163 sec of wall-clock time, after generating 96,219
equations, 9,657 of which were kept (that is, not deleted by contraction).

In other experiments the three group axioms were moved from sos to usable.
This amounts to a strategy that is more oriented towards backward-reasoning,
because it does not perform all the inferences between the axioms. With the input
thus modified, a contradiction was found after 127.77 sec, and EQP terminated
in 145 sec of wall clock time, after generating 96,846 equations and keeping 9,854
of them.

3.1 Tuning the parameters of the system to find a proof

Several parameters control a search by EQP. The parameter max-mem represents
the maximum number of kilobytes that the system is allowed to allocate. Typi-
cally, one would start with a relatively low value, e.g., 20, 000, and raise it if the
prover runs out of memory. The value 80, 000 is high for this parameter: it was
chosen fairly early in the experimentation, in order to be sure to have plenty of
memory. Not too surprisingly, it turned out to be unnecessarily high: the two
proofs found with max-weight equal to 49 used 22, 949 and 23, 437 dynamically
allocated kilobytes, respectively.

However, EQP runs out of memory with max-mem 80, 000, if no max-weight

is set. For this parameter, there are two rules of thumb. If the prover runs out of
memory, then decrease max-weight. If the prover terminates without finding a
proof (EQP prints the message no more inferences to make), then increase

max-weight. The latter rule is based on the consideration that since deletion
by weight is the only (with the default inference system) or the main source
of incompleteness, the prover terminated without finding a proof because too
many equations were deleted by weight. Assuming that the Levi commutator
problem was very difficult, max-weight was initialized to 20, which is typically
a low value for this parameter. Indeed, EQP terminated without finding a proof,
regardless of whether the group axioms were in usable or sos. With max-weight

equal to 35, EQP terminated without finding a proof, if the group axioms were in
usable, and ran out of memory, if the group axioms were in sos. For max-weight
equal to 36, 40, and 48, EQP ran out of memory, regardless of whether the group
axioms were in usable or sos. Finally, EQP succeeded with max-weight 49. This
behaviour of the max-weight parameter contradicts the first rule of thumb given
above, because the prover was running out of memory and yet it was necessary
to increase max-weight. A possible explanation is that a max-weight between
36 and 48 may cause EQP to discard by weight some important simplifier, so
that it runs out of memory even if max-weight is smaller.

The parameter pick-given-ratio was assigned value 4 as a first guess,
because it had worked well before; since a proof was found in a reasonable time
with this value, no other values were tried.

3.2 Tuning the parameters of the system to improve performance

The above observation that it was necessary to increase max-weight in order
to find a proof suggested to investigate what happens with max-weight greater
than 49. Given the same input listed above, but with max-weight equal to 60,
EQP generated an empty clause after only 60.28 sec, and terminated in 64 sec
of wall-clock time, having generated 32,553 equations and kept 4,491 of them.

On the other hand, with max-weight 60, and the group axioms in usable,
EQP did worse, finding a contradiction at 155.03 sec, and reporting 176 sec of
wall-clock time, 75,534 equations generated, and 9,490 equations kept. A simple
inspection of the proofs shows that rewrite rules from the canonical rewrite sys-
tem for groups are included in both proofs: if the group axioms are in sos, these
rewrite rules are derived right away, whereas they are derived later, if the group
axioms are in usable. This may account for the different behaviour. Therefore,
the pure forward-reasoning strategy with the more generous max-weight was
the overall winner.

3.3 Comparison with a guided proof by Otter

Otter can be guided to find a proof for this problem by using an ad-hoc strat-
egy: the precedence is lex([a,b,c,e,h(x,x),f(x,x),g(x)]), which orients
the commutator definition backward (f(g(x), f(g(y), f(x, y))) → h(x, y)); the
max-weight is 20 (much lower than those afforded by the purely mechanical
proofs); and the pick-given-ratio is 4 (same as in the purely mechanical
proofs). The group axioms are in usable and everything else is in sos. Most
important, the input file needs to include a list of “hints” in the form:

weight_list(purge_gen).

weight(h($(0),f($(0),h($(0),$(0)))), 100).

...

end_of_list.

The weight instruction above tells Otter to assign weight 100 to any term that
matches the pattern h(x1, f(x2, h(x3, x4))). Because max-weight is 20, all gen-
erated equations containing terms matching those in the purge-gen list are
deleted. Since these patterns are provided by the user, this proof is not com-
pletely automatic.

Given this input, Otter found a contradiction at 316.08 sec, and terminated
in 316.11 sec of user CPU time (425 sec of wall-clock time), after generating
871,524 equations, only 6,806 of which were kept. Note that the number of
generated equations is one order of magnitude higher than in the EQP proofs.

It seems that the search plan with the pair algorithm may have played an
important role in allowing EQP to find a completely mechanical proof: Otter does
not have the pair algorithm, and EQP could not find a proof with the given-
clause algorithm, regardless of whether the group axioms were in usable or in
sos, and regardless of max-weight (e.g., it went out of memory with max-weight

49 and max-weight 60).

3.4 Presentation of the proofs

In forward-reasoning strategies the generated proof is made of the ancestors
of the empty clause. In EQP, each clause is stored with its identifier and its
“justification,” that is, the name of the inference rule that generated it, and the
identifiers of its parents. As soon as an empty clause is generated, the prover
reconstructs the proof by listing first the empty clause, then its parents, then
the parents of each parent and so on, until it reaches input clauses. Then, this
list of clauses is printed with the input clauses first and the empty clause last.
Each clause is printed on a separate line preceded by its identifier, weight, and
justification. For instance, the 64 sec proof begins as follows:

1 (wt=11) [flip(1)] -(f(h(b,c),a) = f(a,h(b,c))).

2 (wt=5) [] f(e,x) = x.

3 (wt=6) [] f(g(x),x) = e.

4 (wt=11) [] f(f(x,y),z) = f(x,f(y,z)).

5 (wt=13) [] h(x,y) = f(g(x),f(g(y),f(x,y))).

6 (wt=23) [back_demod(1),demod([5,4,4,4,5])]

-(f(g(b),f(g(c),f(b,f(c,a)))) = f(a,f(g(b),f(g(c),f(b,c))))).

7 (wt=51) [demod([5,5,4,4,4,5,5])]

f(g(f(g(x),f(g(y),f(x,y)))),f(g(z),f(g(x),f(g(y),f(x,f(y,z)))))) =

f(g(x),f(g(f(g(y),f(g(z),f(y,z)))),f(x,f(g(y),f(g(z),f(y,z)))))).

8 (wt=51) [flip(7)]

f(g(x),f(g(f(g(y),f(g(z),f(y,z)))),f(x,f(g(y),f(g(z),f(y,z)))))) =

f(g(f(g(x),f(g(y),f(x,y)))),f(g(z),f(g(x),f(g(y),f(x,f(y,z)))))).

9 (wt=8) [para(3,4),demod([2]),flip(1)] f(g(x),f(x,y)) = y.

10 (wt=6) [para(2,9)] f(g(e),x) = x.

...

Input equations have empty justification, except equation 1 which is the
result of flipping the denial of the conclusion. (Note that negation is denoted
by the infix operator != in the input, by the prefix operator - in the ouput.)
Equation 6 is the result of simplifying 1 by equation 5, then 4, applied three
times, and then 5 again. Because 1 was an existing equation, this is backward-
simplification, as indicated by the code back-demod. Equation 7 is the result
of normalizing associativity of the commutator, and equation 8 is the result of
orienting 7. Equation 9 is generated by paramodulating 3 into 4, simplifying the
result by 2 (forward simplification) and orienting it. Paramodulating 2 into 9
generates equation 10. The entire proof is made of 215 equations.

This proof was the fastest but not the shortest: the first proof by EQP (group
axioms in sos, max-weight 49) contains 123 equations; the second proof (group
axioms in usable, max-weight 49) has 193 equations; and the slowest one (group
axioms in usable, max-weight 60) has 281. The guided proof by Otter includes
138 equations. Therefore, the pure forward-reasoning strategy with the more
conservative max-weight generates the shortest proof. This instance confirms
that proof length is not a suitable measure of complexity for theorem proving,
because a shorter proof may take longer time.

4 The distributed theorem prover Peers-mcd

Peers-mcd is the parallelization of EQP, according to the Modified Clause-
Diffusion method for distributed deduction. A Clause-Diffusion strategy launches
concurrent, asynchronous, deductive processes to search in parallel the space of
the problem. Each process executes a theorem-proving strategy, develops its own
derivation, and builds its own database of clauses. The search space is subdi-
vided among the processes, which cooperate to find a proof, and communicate
by broadcasting the clauses they generate. As soon as one of them succeeds, all
processes halt.

When Peers-mcd is invoked on a problem, it starts n processes, if n is the
number of processes specified on the command line. Each process runs on a dif-
ferent workstation, and all processes execute the same code, which incorporates
the code of EQP and uses MPI for message passing [8]. The workstations in-
volved are specified by the user in a “procgroup” file. Process p0 reads the input
file and broadcasts to the other processes the input equations and parameters.
Then, n processes p0, . . . , pn−1 execute the strategy on the given problem.

A key issue for this type of distributed prover is how to subdivide the search
space. Since the search space is infinite and unknown, the search plan of the
strategy induces a subdivision of the search space by subdividing the clauses
that generate it. Thus, the subdivision is built dynamically during the search.
The component of the search plan that determines the subdivision is the sub-

division criterion, implemented as an allocation algorithm to assign clauses to

processes. Since decisions are based on partial knowledge of the search space,
the subdivision criteria are heuristic in nature.

Peers-mcd implements several subdivision criteria, including ancestor-graph

oriented (AGO) criteria [3]. The general idea of these criteria is to use infor-
mation in the ancestor-graphs of clauses to assign them to processes, in such a
way to prevent the parallel searches from overlapping too much, at least in an
intuitive sense.

The assignment of equations to processes determines the subdivision of the
search space as follows. For paramodulation, a process executes a paramodu-
lation step only if it owns the equation paramodulated into. For backward-
contraction, Modified Clause-Diffusion distinguishes between deletion, such as
in subsumption, and replacement, such as in simplification. The former is unre-
stricted. For the latter, if ψ can be simplified, only the owner of ψ generates its
normal form. The other processes merely delete ψ.

Complete descriptions of Clause-Diffusion, Modified Clause-Diffusion and
Peers-mcd can be found in [4], [2] and [3], respectively.

5 The proofs by Peers-mcd

In Peers-mcd, the user can select the subdivision criterion by assigning a value to
the parameter decide-owner-strat. Therefore, Peers-mcd was given the same
input as EQP, with one additional line:

assign(decide_owner_strat, 4). % subdivision crit. para-parents

The criterion para-parents is an AGO criterion of type parents. These cri-
teria have the property of assigning equations with the same parents to the same
process. The intuition is that equations with the same parents are in the same
neighborhood in the seach space: giving them to different processes might bring
those processes to search in the same area, with consequent overlap and waste
of resources. In order to make sure that equations with the same parents belong
to the same process, it is sufficient to make the allocation algorithm a function
of the identifiers of the parents: if the identifiers are the same, the destination
process is the same. Different criteria may be defined depending on the notion
of parents and the chosen function. The criterion para-parents only consid-
ers paramodulation parents, and uses addition modulo the number of processes.
Thus, if ϕ was generated by paramodulating ψ1 into ψ2, or vice versa, ϕ is as-
signed to process pk, where k = id(ψ1) + id(ψ2) mod n. If ϕ was generated by
flipping ϕ′, ϕ is assigned to the same process that owns ϕ′. If ϕ was generated
by backward-contraction, or was an input equation, it is assigned to p0.

Peers-mcd was tried first with max-weight 49. With this max-weight, EQP
did better with the three group axioms in usable, finding a contradiction in
127.77 sec, and terminating after 145 sec of wall-clock time. Therefore, Peers-mcd
also started with the axioms in usable. Using two processes, Peers-mcd found a
contradiction after 71.43 sec, and terminated in 88 sec of wall-clock time, which
represents a speed-up of 1.65 (ratio of wall-clock times) and efficiency 0.82. Also,

EQP generated 96,846 equations, keeping 9,854, whereas Peers-mcd generated
only 38,126 equations, and kept 7,348 of them (these numbers for Peers-mcd are
the sums of the numbers for the two processes). The proof by Peers-mcd is made
of 123 equations, and is therefore shorter than the proof found by EQP with the
same input (193 equations).

Then, the experiment was repeated with max-weight 60 and the group ax-
ioms in sos. This was the best configuration for EQP, which produced a contra-
diction in 60.28 sec, and halted in 64 sec of wall-clock time. With this input and
two processes, Peers-mcd generated a contradiction in 22.51 sec, and halted in
27 sec of wall-clock time, yielding a super-linear speed-up of 2.37, with efficiency
1.18. The number of generated equations was 18, 374 (2, 831 kept), significantly
smaller than the 32, 553 (4, 491 kept) reported by EQP. The distributed prover
also found the shortest proof, made of only 88 equations, while the proof by
EQP with this input included 215 equations, and the shortest of all EQP proofs
listed 123 equations. Using more processes or other subdivision criteria did not
improve the performance.

Both distributed proofs were found by process p0. This may be related to the
fact that criterion para-parents privileges p0 by assigning it the equations gen-
erated by backward-contraction. However, this is no general rule (that is, using
para-parents does not imply that p0 finds the proof). Furthermore, both proofs
contained equations of all kinds, generated by p0 and belonging to p0, generated
by p0 and belonging to p1, generated by p1 and belonging to p0, and generated
by p1 and belonging to p1, which shows that both processes contributed to the
proofs. Actually, in distributed forward-reasoning strategies, a process may help
another one also by doing work that is irrelevant for the proof, since the proof
is such a small fraction of the generated search space.

In summary, for both inputs that were most successful for EQP, there is a
configuration of Peers-mcd that can do better, and with super-linear speed-up
in the best case.

Acknowledgements Thanks to William McCune for providing the input file for
the guided Otter proof, after the first EQP proof was found.

References

1. W. W. Bledsoe. Non-resolution theorem proving. Artificial Intelligence, 9:1–35,
1977. Section written by D. Lankford.

2. M. P. Bonacina. On the reconstruction of proofs in distributed theorem proving: a
modified Clause-Diffusion method. J. of Symbolic Computation, 21(4–6):507–522,
1996.

3. M. P. Bonacina. Experiments with subdivision of search in distributed theorem
proving. In M. Hitz and E. Kaltofen, editors, Proc. of PASCO-97, pages 88–100.
ACM Press, 1997.

4. M. P. Bonacina and J. Hsiang. The Clause-Diffusion methodology for distributed
deduction. Fundamenta Informaticae, 24:177–207, 1995.

5. M. P. Bonacina and J. Hsiang. Towards a foundation of completion procedures as
semidecision procedures. Theoretical Computer Science, 146:199–242, 1995.

6. J. D. Christian. Fast Knuth-Bendix completion: summary. In N. Dershowitz, ed-
itor, Proc. of the 3rd RTA, volume 355 of LNCS, pages 551–555. Springer Verlag,
1989.

7. N. Dershowitz. Termination of rewriting. J. of Symbolic Computation, 3(1 &
2):69–116, 1987.

8. W. Gropp and E. Lusk. User’s guide for mpich, a portable implementation of MPI.
Technical Report 96/6, MCS Division, Argonne Nat. Lab., 1996.

9. J. Hsiang and M. Rusinowitch. On word problems in equational theories. In
T. Ottman, editor, Proc. of the 14th ICALP, volume 267 of LNCS, pages 54–71.
Springer Verlag, 1987.

10. A. G. Kurosh. The Theory of Groups. Chelsea, New York, 1955.
11. E. L. Lusk and R. A. Overbeek. Reasoning about equality. J. of Automated Rea-

soning, 1:209–228, 1985.
12. W. McCune. Experiments with discrimination tree indexing and path indexing for

term retrieval. J. of Automated Reasoning, 9(2):147–167, 1992.
13. W. McCune. Otter 3.0 reference manual and guide. Technical Report 94/6, MCS

Division, Argonne Nat. Lab., 1994.
14. W. McCune. 33 Basic test problems: a practical evaluation of some paramodu-

lation strategies. In R. Veroff, editor, Automated Reasoning and its Applications:

Essays in Honor of Larry Wos, pages 71–114. MIT Press, 1997.
15. A. J. Nevins. A human oriented logic for automatic theorem proving. J. ACM,

21:606–621, 1974.
16. M. E. Stickel. The path-indexing method for indexing terms. Technical Report

473, SRI International, 1989.
17. L. Wos, D. Carson, and G. Robinson. Efficiency and completeness of the set of

support strategy in theorem proving. Journal of the ACM, 12:536–541, 1965.

