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ABSTRACT
Social communication involves interpreting nonverbal behaviors,
detecting and anticipating others’ actions and intentions. Actions
convey not only the goal and motor intention but also the form,
i.e., variations in action execution. These variations, termed vitality
forms, communicate attitudes during interactions, such as being
gentle, calm, vigorous, and rude. Automatic vitality form recogni-
tion may have several applications in social robotics, social skills
training, and therapy, yet it remains a rarely studied topic. This
paper introduces an unsupervised pre-training approach that uti-
lizes 2D-body key point trajectories as input and employs diffusion
models to derive more effective features for representing these tra-
jectories. The features learned from the diffusion model’s encoder
are utilized to train a multilayer perceptron for vitality form recog-
nition. Experimental analysis showcases the superior performance
of the proposed method not only across various videos but also for
action classes not encountered during training.
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• Human-centered computing → Collaborative and social
computing.
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1 INTRODUCTION
The vitality forms, introduced by Daniel Stern [46] are the forms
of actions that convey information about the performer’s attitude.
They can be manifested through movements (e.g., goal-oriented
actions, communicative gestures) [12], voice [11], or touch [28].
Although extensively studied in psychology and neuroscience, [13,
45], the potential benefits of studying vitality forms extend across
diverse research domains. For instance, incorporating the recogni-
tion of vitality forms in artificial agents, such as humanoid robots
or virtual agents, would enhance their understanding of human
interaction partners, e.g., in the context of human-agent politeness
[19, 32]. Beyond social robotics, models for recognizing vitality
forms can find applications in social skills training (e.g., simulating
job interviews, presentation skills, leadership) or as part of training
programs dedicated to neurodivergent individuals with reduced
abilities to perceive and communicate vitality forms [40].

Unfortunately, there is a scarcity of publicly available datasets
containing relevant ground-truth data for automatic recognition
of vitality forms. Recently, Niewiadomski et al. [33] introduced a
dataset collected during various daily-life actions or gestures, cap-
turing different vitality forms. Additionally, to illustrate that vitality
forms are distinct from gesture velocity modulation, the authors in-
cluded classes such as neutral (see its definition in Section 4.1), fast,
and slow. The dataset underwent benchmarking using traditional
machine learning methods like Support Vector Machines (SVM)
and Random Forest, employing motion descriptors built by the data
captured with a Motion Capture System (MoCap). The analysis ulti-
mately demonstrates the possibility of the automatic differentiation
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of vitality forms from other classes, along with presenting differ-
ences among vitality forms in terms of kinematic features. On the
other hand, considering the aforementioned real-life applications
such as social robotics, social skills development, and so forth, it is
worth performing the automatic recognition of vitality forms by
using non-invasive sensors such as cameras.

In this paper, we tackle the challenge of automatically recogniz-
ing vitality forms from videos. Our approach involves analyzing
the movements of an individual during action performance. The
body movement is represented using body-key points (also referred
to as skeletons or body pose), which are extracted for each frame of
the video. We explore various methods, including the one based on
hand-crafted features similar to those employed in [33]. Another
approach is adopted by a recent study [3], where trajectories of
different body key points sensed by MoCap technology are repre-
sented as images and distinguished using Convolutional Neural
Networks (CNNs). Additionally, we evaluate the efficacy of unsuper-
vised pre-training with autoencoders, following a similar approach
to the recent studies: [14, 34, 35]. Notably, for the first time in
this study, we propose a diffusion model-based unsupervised pre-
training approach for more intricate movement modeling. To the
best of our knowledge, such a pipeline has not been introduced,
not only for vitality form recognition but also for overall move-
ment analysis, encompassing areas such as social signal processing
[5], body movement-based emotion recognition [26], or movement
quality recognition [49].

The proposed method leverages diffusion models, a category of
generative deep learning models that have demonstrated improve-
ments across diverse computer vision and multimedia tasks. These
tasks include content generation [25], denoising [41], and segmen-
tation [16]. More notably, diffusion models have also exhibited
effectiveness in discriminative tasks such as image classification
[51], object detection [8], and anomaly detection in videos [47, 48].
The input to our diffusion model comprises the 2D trajectories of
body key points extracted by a standalone body pose extractor over
a specific time frame. The objective is to harness the noise sampling,
corruption, and reconstruction characteristics inherent in diffusion
models to learn more compact and effective feature representations.
The latent features of the encoder structure of the proposed diffu-
sion model are then utilized as input for a dense neural network,
specifically a Multilayer Perceptron (MLP), to facilitate the training
of this classifier and carry out the inference process.

The experimental analysis carried out on the solely available
dataset [33] showcases the superior performance of the proposed
diffusion-based model. Our method outperforms all others not only
in accurately predicting vitality forms across various actions but
also in demonstrating robustness in predictions for previously un-
seen action classes. Our findings indicate that unsupervised pre-
training methods (i.e., autoencoders and diffusion models) exhibit
greater promise in generalizing well to novel classes for predicting
vitality forms and other categories, including soft, fast, and neu-
tral. This outcome holds promise for implementing the proposed
method in real-life applications.

The remaining sections of the paper are organized as follows.
Section 2 describes relevant works on automatic recognition of the
vitality forms, expressive movement qualities, emotion recognition,

and social signal processing from body movements. Section 3 de-
scribes the proposed method along with its implementation details.
In Section 4.2, we provide details on the dataset used, experimen-
tal setups, and implementation details of the SOTA, and present
the results with discussions. The paper concludes with a summary
of the contributions of this study, along with elaborations about
limitations and future work.

2 RELATEDWORK
Despite numerous studies in psychology and neuroscience focus-
ing on vitality forms [13, 45, 46], the literature on their automatic
recognition is quite limited. A work on automatic recognition
of vitality forms was presented in [33], which explores the spa-
tiotemporal characteristics of various actions captured through a
motion capture system for distinguishing vitality forms. The study
extracts multiple hand-crafted features per body key point and
employs traditional machine learning models for classification. The
findings emphasize that recognizing vitality forms goes beyond
features like velocity and acceleration, advocating for a more ex-
tensive feature set that models the spatiotemporal properties of
body motion data. Our study distinguishes itself significantly from
[33]. Firstly, we do not rely on motion capture data; instead, we
present a methodology exclusively grounded in computer vision.
Consequently, our methodology is non-intrusive, demonstrating
the potential for integration, for instance, into a social robot to
enhance its perceptual capabilities. Moreover, we opt not to rely
on hand-crafted features. Instead, our approach leverages the tra-
jectories of 2D-body key points, and the feature learning process is
entirely unsupervised, employing a generative model known as the
diffusion models. Through unsupervised pre-training, we extract
effective features, facilitating proficient performance in the targeted
task using a classifier.

The automatic classification of vitality forms, concerningmethod-
ology and data, is associated with topics such as the recognition of
expressive movement qualities (e.g., [29–31]), emotion recognition
from body movements (e.g., [2, 3, 9, 10, 21, 34, 37, 50]) and body
pose-based social signal processing such as detection of emergent
leaders [4], social role detection [20], and body language detection
[1].

The advancements in the field of automatic recognition of
expressive movement qualities are discussed in detail in a recent
study [49]. As mentioned in [49], Laban Movement Analysis (LMA),
developed by the choreographer Laban [24], is the most widely
adopted movement system for formalizing movement qualities. For
example, Hachimura et al. [17] detect poses corresponding to four
Laban movement characteristics: Space, Weight, Shape, and Time.
Four high-level features, each addressing one of them is defined
and by observing the temporal changes in these feature values,
they extract body movements associated with the different Laban
characteristics. Similarly, Ran et al. [38] employ supervised learning
to detect Laban qualities from Kinect data by introducing a com-
prehensive set of hand-crafted descriptors, including 100 features
associated with Laban’s qualities and an additional 6000 descriptors
characterizing the skeleton data. More recently, Samadani et al. [42]
propose a set of continuous measures of Laban Effort and Shape
components in terms of low-level features such as position, kinetic
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energy, velocity, acceleration, and jerk, which are extracted from
the motion capture data of hand and arm movements. Different
from LMA, the other movement qualities automatically measured
using hand-crafted features, and traditional machine learning meth-
ods such as SVMs are Fluidity [7], Impulsivity [31], Smoothness
[27], Lightness and Fragility [30]. It is crucial to emphasize that the
literature on the automatic recognition of expressive movement
qualities is limited in terms of deep learning solutions, possibly due
to the relatively smaller size of the collected datasets.

A recent survey [26] on emotion expression in human body
posture and movement summarizes all the studies in this re-
gard, highlighting the significance of this topic. For the analysis
of emotional body gestures, existing methods commonly employ
covariance matrices to capture spatial correlations among joints
during human actions. Consequently, they leverage the geometric
properties of the Riemannian manifold to extract features from
these covariance matrices. For instance, Daoudi et al. [10] com-
pute the Riemannian center of mass for each emotion using the
training set and classified five emotions using the log-Euclidean
Riemannian metric between the test data and class centers with
a nearest-neighbor classifier. Kacem et al. [21] introduce a novel
geometric measure and a pairwise proximity function Support Vec-
tor Machine (SVM) for emotion recognition based on the gesture
covariance matrix. Instead, for temporal analysis, previous studies
have extracted kinematic features to characterize emotional pos-
ture movements, including velocity, acceleration, force, fluency,
height/vertical position, and so forth. For instance, Dael et al. [9]
demonstrated the significance of such hand-crafted features as cru-
cial posture features reflecting emotion. Piana et al. [37] utilize
features such as contraction index, fluidity, and impulsiveness from
posture movements, and employ an SVM classifier for automatic
emotion recognition. Barliya et al. [2] suggested that happiness and
anger are predominantly expressed through increased movement
speed, arm swings, and cadence.

Recently, researchers have explored deep learning approaches
to acquire discriminative emotional representations from body ges-
tures in both spatial and temporal domains. For example, Beyan et
al. [3] present an image representation of spatio-temporal skele-
ton data and subsequently employ a multiscale CNN structure to
classify such images for emotional gesture recognition. Similarly,
Wang et al. [50] encode the body skeleton data using gesture co-
variance matrices and also obtain 3D gesture images, similar to the
method presented in [3]. These two representations are learned
with a multiscale spatial network based on the Riemannian net-
work architecture and a multiscale temporal network based on the
CNN architecture, with fusion applied as the final step to recognize
emotions. Rather than representing the trajectory of body skeleton
data in the form of images, as done in [3, 50], Paoletti et al. [34]
utilize the raw trajectories of full-body key points for a fixed time
duration. These trajectories are input into a convolutional autoen-
coder for unsupervised pre-training. The latent features extracted
from the autoencoder’s encoder are then employed to train an MLP
for emotion recognition. This method [26] demonstrates that the
features learned through unsupervised pre-training are transferable
across different datasets.

In this paper, we adapted the approach outlined in [3, 26] to
assess its performance in comparison to our proposed method. Our

method shares similarities with the approach presented in [26]
as both involve unsupervised pre-training and use an MLP as the
classifier. However, our method utilizes diffusion models, resulting
in more effective features for vitality form recognition.

As mentioned earlier, body pose-based social signal process-
ing is also relevant to the automatic recognition of vitality forms
through movement analysis, as similar methodologies can be ap-
plied to both. For example, in the context of automatic leader detec-
tion and leadership style analysis, Feese et al. [15] utilize wearable
motion sensors to extract nonverbal cues, including the number
and average length of gestures and postures, which are indicative
of behavioral mimicry. Beyan et al. [4] define nonverbal cues that
represent the motion of 12 different body parts in terms of angles
and extract the trace of each angle. Statistical measures of these
traces, such as standard deviation, skewness, the number of zero
crossings, and the number of mean crossings, are used to unsuper-
visedly train Deep Boltzmann Machines, providing more compact
features for classification with SVMs in emergent leader detection.
That study [4] is similar to our study in applying unsupervised
feature learning, although the two generative models used in their
work and ours are different.

In another study [43], the engagement of children playing with
a robot was detected by analyzing posture and body motion. Joo
et al. [20] present a relatively large collection of skeleton data
during social interactions and gameplay, which can be used for role
detection by extracting body movement-related features from the
provided skeleton, once again highlighting the utility of body pose
in interaction analysis.

3 METHODOLOGY
The proposed method comprises two stages. The first stage involves
unsupervised pre-training, where features are learned without uti-
lizing the ground-truth labels of the task at hand. The second stage
involves recognition, encompassing the training of a classifier with
the learned features and subsequent inference.

Specifically, our method relies on the trajectories of body key
points extracted using a 2D body pose estimator. We have devised
an approach that employs diffusion models for unsupervised pre-
training, leveraging their reconstruction capability to potentially
obtain more compact, less noisy, and transferable data representa-
tions. These representations are then fed as input to an MLP for
Vitality Forms Recognition. It is crucial to emphasize that once the
diffusion model is unsupervisedly trained, it is frozen and detached
from the recognition part. An overview of the proposed method is
presented in Fig. 1.

3.1 Preliminaries
Given a video of 𝐹 frames, each containing a single person perform-
ing a certain action (also called gesture throughout this paper), we
first extract 𝐾 body points at each video frame. In case of missing
body parts upon application of the 2D pose extractor, we apply
spline interpolation that considers the timestamps as well. Spline
interpolation was performed independently for each body part,
emphasizing that it is not an interpolation between adjacent body
parts but rather for the same type of body part using its detections
over time.
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Figure 1: The proposed method comprises two stages. The initial stage is unsupervised feature learning (pre-training). The
inputs for this stage include the trajectories of selected relevant body key points (refer to the text for details), obtained from the
2D pose estimator [6]. By employing the diffusionmodel, our objective is to generate a robust, compact, and transferable feature
space. After completing the feature learning process, the learned features are extracted from the encoder of the diffusion
model for use in the second stage, known as recognition. The diffusion model remains frozen and detached during the training
and inference of the second stage. In the second stage, the learned features serve as input to a classifier (i.e., MLP), enhancing
its capability to differentiate vitality forms (i.e., gentle and rude) among other classes such as slow, fast, and neutral. While
the figure illustrates the pipeline for a video clip for simplicity, the actual task involves recognizing the entire video. This is
accomplished by applying majority voting to the predictions made by the MLP for each video segment belonging to the same
video.

We then divide this video into𝐶 equal segments (also called video
clips), without performing any overlapping, such that each video
segment contains 𝐶 number of consecutive video frames, each is
represented in terms of 𝐾 body points. Such an approach allows us
to obtain a fixed input space as well as augment the number of data
fed to the diffusion models and the MLP. In case the last portion of
the video is shorter than 𝐶 frames, we replicate the corresponding
body key points to arrive 𝐶 number of data. Applying replications
is indeed frequently applied in action recognition literature e.g.,
[34, 35]. It is important to clarify that an input of the diffusion
model is a tensor of 𝐶 × 𝐾 × 2. Since the task involves recognizing
the entire video, we additionally employ majority voting on the
predicted classes after obtaining predictions for each corresponding
video segment.

3.2 Diffusion Model
Diffusion models incorporate a stepwise addition of Gaussian noise
𝜖𝑡 with standard deviation𝜎𝑡 to an input data point𝑥𝑇 sampled from
a distribution 𝑝𝑑𝑎𝑡𝑎 (𝑥) at each timestep 𝑡 ∈ [0,𝑇 ]. The resulting
noised distribution 𝑝 (𝑥, 𝜎) transforms into an isotropic Gaussian,
enabling efficient sampling of new data points 𝑥0 ∼ N(0, 𝜎2𝑚𝑎𝑥 I).
These data points undergo gradual denoising with noise levels
𝜎0 = 𝜎𝑚𝑎𝑥 > 𝜎1 > · · · > 𝜎𝑇−1 > 𝜎𝑇 = 0 to generate new samples.
Diffusion models are trained by minimizing the expected 𝐿2 error

(also called Mean Squared Error (MSE)) between predicted and
ground truth added noise [18], denoted as L𝑠𝑖𝑚𝑝𝑙𝑒 = |𝜖𝑡 − 𝜖 |2.

In this study, we adopt the diffusion formulation from [22] (called
k-diffusion in the rest of this paper), motivated by its effectiveness
to e.g., the DDPM [18] in other visual tasks. k-diffusion allows the
network to predict either 𝜖 , 𝑥0, or something in between based on
the noise scale 𝜎𝑡 , which is also called 𝜎-dependent skip connec-
tion. In this way, it mitigates the error amplification observed in
DDPM [22].

Our denoising network 𝐷𝜃 is defined as:

𝐷𝜃 (𝑥 ;𝜎𝑡 ) = 𝑐𝑠𝑘𝑖𝑝 (𝜎𝑡 ) 𝑥 + 𝑐𝑜𝑢𝑡 (𝜎𝑡 ) 𝐺𝜃

(
𝑐𝑖𝑛 (𝜎𝑡 ) 𝑥 ; 𝑐𝑛𝑜𝑖𝑠𝑒 (𝜎 −𝑇 )

)
,

(1)
where 𝐺𝜃 functions as the network undergoing training, 𝑐𝑠𝑘𝑖𝑝 reg-
ulates the skip connection, 𝑐𝑖𝑛 (·) and 𝑐𝑜𝑢𝑡 (·) adjust input and out-
put magnitudes, and 𝑐𝑛𝑜𝑖𝑠𝑒 (·) scales 𝜎 . Our denoising network 𝐷𝜃

assumes an encoder-decoder structure. The input is noised trajec-
tories, composed of two channels 𝑥 , 𝑦 with a fixed length. In the
encoder layers, the length of the trajectory is progressively reduced,
and the channels are increased. In the decoder layers, the length
and the channels return gradually to their original size. In the en-
coder and decoder parts of the model, the time step 𝜎𝑡 is integrated
through transformation via Fourier embedding and FiLM layers
[36]. As demonstrated in [47, 48], we exploit the flexibility that
denoising does not have to commence from noise with variance
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𝜎2𝑚𝑎𝑥 ; instead, it can initiate at any arbitrary timestep 𝑡 ∈ (0,𝑇 ].
Consequently, following the implementation in [47], we sample
𝑓 𝑒𝑎𝑡 ∼ C(𝑓 𝑒𝑎, 𝜎2𝑡 ) and apply the reverse diffusion process to re-
construct 𝑓 𝑒𝑎𝑇 .

In summary, the overall diffusion process for an input of the
network 𝑥 and its reconstructed counterpart 𝑥𝑟 consists of:

(1) Noise sampling: 𝜖 ∼ N(0, I),
(2) Diffusion input corruption: 𝑥𝑡 = 𝑥 + 𝜖 ∗ 𝜎𝑡 and
(3) Reconstruction of the data with k-diffusion:

𝑥𝑟 = 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝐷 (𝑥𝑡 , 𝜎𝑡 )).

3.3 Multilayer Perceptron
After training the proposed diffusion model in an unsupervised pre-
training fashion, where the data labels are not utilized, we adhere to
the principles of representation learning literature. Therefore, the
generative model is frozen (and detached) and exclusively employed
to extract features for both training and testing data. These features
are then used to train a classifier, which is an MLP consisting of
four fully connected layers with PReLU as the non-linearity and
Batch Normalization. The inference is also performed only by the
trained MLP.

3.4 Implementation Details
Extraction of 2D Poses and Trajectory Construction. Given

that the dataset under consideration in this study comprises a single
individual at a time seated on a chair that maintains a fixed position
and distance from the camera and considering that actions are
executed solely with one hand (specifically, the right hand), we
chose to employ body key point filtering. Therefore, we concentrate
our analysis and model development on a specific subset of body
key points. These are indexed in OpenPose API [6] as 0 (nose), 1
(chest), 2 (right shoulder), 3 (right elbow), 4 (right wrist), and 8
(hip) for body skeleton, and 0 (right wrist), 9, and 13 for the right
hand where 9 and 13 are two points in the palm. It is worth noting
that this key point selection aligns with the motion capture system
attached to the participant’s body who performs an action in the
used dataset [33].

For each selected key point (in total 8), we construct a trajectory
with the length of 𝐶 video frames. Therefore, a single data point as
an input of the diffusion model is 8 ×𝐶 × 2, representing the 𝑥 and
𝑦 image coordinates, respectively.

Unsupervised Feature Learning. Throughout training, k-diffusion
model is exposed to the data comprising fixed-length trajectories.
As themodel aims to acquire the ability to reconstruct these trajecto-
ries without relying on labels, during this unsupervised pre-training
stage following the relevant literature of emotion and action recog-
nition, e.g., [14, 34], the entire dataset is utilized. The optimization
of the network’s parameters is performed using the Adam opti-
mizer, in conjunction with an inverse decay learning rate scheduler.
This scheduler starts with the learning rate set to a default value of
zero. Subsequently, it incrementally raised the learning rate until it
reached its maximum value during the final epoch of the training.

The noise plays a crucial role in the diffusion process, necessi-
tating the configuration of its distribution and parameters based
on the task and dataset. In our implementation, the noise is drawn

from a log-normal distribution with parameters 𝑃𝑚𝑒𝑎𝑛 and 𝑃𝑠𝑡𝑑 , de-
noting the mean and standard deviation of that distribution. These
parameters are linked to the maximum and minimum 𝜎 values
(𝜎𝑚𝑎𝑥 and 𝜎𝑚𝑖𝑛) through the formula:

𝜎𝑚𝑎𝑥 , 𝜎𝑚𝑖𝑛 = 𝑒𝑃𝑚𝑒𝑎𝑛±5𝑃𝑠𝑡𝑑 , (2)

making the parameter search decrease to two values instead of four
[47].

Diverse combinations of 𝑃𝑚𝑒𝑎𝑛 and 𝑃𝑠𝑡𝑑 values, alongside stan-
dard hyper-parameters learning rate, batch size, and weight decay,
underwent testing and exploration. Random generators were em-
ployed to assign these values, ensuring a thorough evaluation of the
model’s performance. The considered ranges for each parameter
are given in Table 1.

parameter min value max value
learning rate 0.00002 0.002
batch size 64 8192

weight decay 0 0.59
𝑃𝑚𝑒𝑎𝑛 -4 1.8
𝑃𝑠𝑡𝑑 0.65 1.68

Table 1: Parameters range values which were tested during
training of our diffusion model.

As mentioned before the reverse process of a diffusion model
does not have to commence from the maximum noise level with
variance 𝜎2𝑚𝑎𝑥 . It can initiate from any noise level, at an arbitrary
step 𝑡 ∈ [0,𝑇 ], where a value close to zero implies a noised 𝑥𝑡
closer to 𝜎2𝑚𝑎𝑥 = 𝜎20 , and a value closer to 𝑇 indicates a noised 𝑥𝑡
approaching the original data distribution. Depending on the value
of 𝑡 , the network can yield various loss values and reconstructed
trajectories. Additionally, the same network can generate distinct
loss values and trajectories in multiple runs of the evaluation pro-
cess. Therefore, to ensure a fair comparison between models and at
each time step 𝑡 , the noise is initialized once and then kept fixed.
As 𝑡 increases and the noise decreases, the error tends to take lower
values, and the reconstructed trajectories more closely resemble
the original ones. We utilized 10-time steps similar to [47], marked
by diverse 𝑡 values, to act as inputs for the subsequent classifica-
tion model, facilitating a thorough examination of the influence of
various diffusion stages on the classification task.

Finally, given our objective, which is to enhance the classification
model by inputting not raw trajectories but rather the learned fea-
tures derived from our diffusion model, we extract learned features
of size 512 after the encoder segment of the denoising network.
Note that the size of the learned features is much smaller, indicating
that we achieve a more compact data representation.

Recognition. The MLP network’s input consists of the learned
features extracted from the diffusion model, with a size of 512. The
inputs of the four layers systematically shrink, with the last layer
having the same number of neurons as the class label. In other
words, the defined MLP comprises layers with the following inputs:
512, 256, 128, 64, and 𝑎, where 𝑎 represents the number of classes,
depending on the experiments. The MLP was trained using Cross-
Entropy Loss, employing Adam as the optimizer. The learning rate
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was dynamically adjusted by the scheduler until the network’s
performance becomes a plateaue. Various parameter combinations
were explored, including learning rates of 0.00005 and 0.0005, batch
sizes of 8, 16, 32, and 64, weight decays of 0, 0.0001, and 0.001, and
dropout rates of 0.1 and 0.5.

4 EXPERIMENTAL ANALYSIS & RESULTS
This section provides an overview of the dataset used, outlines the
experimental setup, presents implementation details of the other
methods adapted for comparison with the proposed method, and
discusses the results.

4.1 Dataset
To assess and compare the effectiveness of the proposed method,
experiments are conducted on the only available large-scale dataset
for vitality forms recognition [33]. The dataset comprises various
actions executed with two vitality forms: gentle and rude, along
with the same actions performed at different speeds—slow, fast, and
neutral. In this context, neutral denotes the functional aspect of
the movement, such as passing an object, without involving any
affective or communicative intention.

The choice of two specific vitality forms is based on previous
fMRI studies showing neural responses when performing move-
ments with these two vitality forms [13] and the actions are com-
mon ones that can occur during human-human and/or human-robot
interaction. The involved actions are 1) grasping an object, 2) trans-
ferring an object to an agent, 3) raising a thumb, 4) pointing to
another agent seated in front of the gesture maker, 5) placing an
object down, 6) indicating a specific point on the table surface and
7) signaling the need for quiet or silence by lifting a finger to the
mouth. Each action is performed by two professional theater ac-
tors (declare themselves as male and female) while the actions are
performed in three directions: i) with 0 degrees derivation, ii) 45
degrees towards the right side of the performer, and iii) 45 degrees
towards the left side of the performer.

The videos of the actions vary in length. In total, the dataset
comprises 518 videos for the male actor: 151 in the rude class, 155
in the gentle class, 71 in the slow class, 71 in the fast class, and 70 in
the neutral class. Additionally, there are 504 videos for the female
actor: 143 in the rude class, 147 in the gentle class, 71 in the slow
class, 72 in the fast class, and 71 in the neutral class. Overall, we
used 1022 action executions, comprised of 302196 images, in which
145472 images belong to the male actor and 156724 images belong
to the female actor.

4.2 Experiments
Following the experimental setup outlined in [33], we conducted
leave-one-out and leave-one-action-out cross-validations. It is cru-
cial to note that, in this study, leave-one-out refers to using the data
from a single video as a test set while the remaining data is utilized
for training the MLP classifier. In other words, the cross-validation
folds are not divided based on trajectories which represent a video
segment but not the entire video. This approach ensures compa-
rability with the existing study presented in [33]. The results are
assessed in terms of accuracy (ACC) and F1-score (F1) following
the prior art.

4.3 Methods Employed for Comparisons
The implementation details of the methods utilized in this study for
comparison with the proposed method are summarized as follows.

(1) Niewiadomski et al. [33] use motion capture data to extract
22 features composed of kinematics features such as velocity, ac-
celeration, jerk, arc length, and curvature. For the classification
of the five aforementioned classes, they use machine learning
approaches such as SVMs with Radial Basis and polynomial
kernels, k-NN, MLP, and Random Forest.

(2) Motivated by the performance of the features used in [33], we
present a computer vision-based solution to extract semantically
the same features (i.e., angles and velocities) from the selected
key points (see Sec. 3.4 for the list of selected key points) ob-
tained by using OpenPose [6]. Applying the formula from [4],
we extracted angles between the following body key points:
a) nose, neck, and middle hip, b) neck, right shoulder, and the
right elbow, c) right shoulder, right elbow, and right wrist, d)
right elbow, the midpoint between the right wrist from the body
skeleton and the wrist from the skeleton’s right hand, and the
central point calculated from the average between two points
on the right hand (9 and 13) to be used as features. Furthermore,
we incorporated velocities calculated from two consecutive
frames for the key points: nose, neck, right shoulder, right el-
bow, right wrist, and the right-handmiddle finger knuckle. Once
the aforementioned features were obtained, we implemented
a bag-of-words strategy [44] for each of them to represent a
single video in terms of it. The second and third derivatives
of the key points, namely accelerations and jerks, were also
considered as features. However, after applying bag-of-words,
we observed that such features are not contributing, therefore,
we limited the feature space to angles and velocities for this
computer vision-based approach. As the classifier, we used an
SVM with RBF kernel. We refer to this method throughout this
paper as Bag-of-Words.

(3) We followed the methodology of Beyan et al. [3], which repre-
sents 3DMoCap data as 8-bit RGB images. After obtaining these
images, we applied the described augmentation from that study.
Subsequently, we utilized all original and augmented images to
train a single-head CNN structure, incorporating only the full
images (referred to as coarse-grained representation in [3]) as
input. The last layer of the CNN is specifically configured for
the classification of the 5 classes of our study.

(4) Several studies on action recognition and emotion recognition
[14, 23, 34, 35] have demonstrated the effectiveness of the au-
toencoders in unsupervised pre-training such that the learned
features are further used for the training and testing of a classi-
fier. We adopted the autoencoder structure of [14, 34], while we
merged it with the MLP structure of the proposed method. The
input of the autoencoder is a trajectory of length𝐶 , composed of
two channels. At each encoder layer, the length of the trajectory
gets progressively shrunk in half, while the channels (64 and
128) are increased. In the decoder layers, the opposite happens.
Encoder and decoder blocks have 2 layers, and the latent repre-
sentation is naturally placed in between the two blocks. During
training, the network weights are changed iteratively through
the Adam optimizer. The learning rate is changed accordingly
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to a scheduler: when the loss reaches a plateau, i.e. it does not
decrease in a certain number of epochs, it gets reduced. We
explored different combinations of the parameter values for the
learning rate (0.0001, 0.001, and 0.1), batch size (32, 64, 128, 256,
512), and latent representation dimension (128, 256, 512, 2048).
The autoencoder was trained using the Mean Squared Error
(MSE) loss. We refer to this method throughout this paper as
Autoencoder.

4.4 Results
The results for the leave-one-out and leave-one-action-out settings
are presented in Tables 2 and 3, respectively. In both settings, our
proposed method outperforms all others.

In the leave-one-out setting, the second-best performance is
achieved by [3], while the autoencoder-based approach performs
2% worse than [3], even though the feature learning is entirely per-
formed without using ground-truth labels. Overall, the trajectory-
based approaches surpass the methods relying on handcrafted fea-
tures, regardless of the data modality. Another computer vision
approach, the bag-of-words, despite utilizing fewer features, per-
forms comparably to the method proposed by [33]. Importantly,
the bag-of-words approach, along with the proposed method and
the method with autoencoder, is less intrusive than [3, 33], as it
does not require data captured with wearable sensors.

Table 2: The best results in terms of accuracy (ACC) and
F1-score for leave-one-out setting. MoCap and CV stand for
motion capture system and computer vision, respectively.
The best and second best results are in black and underlined,
respectively.

Approach Data Modality Feature Learning ACC F1-score
Niewiadomski et al. [33] MoCap Supervised 87.4 87.3
Bag-of-Words CV Supervised 86.7 86.9
Beyan et al. [3] MoCap Supervised 91.0 90.9
Autoencoder CV Unsupervised 88.9 88.8
Proposed (Diffusion) CV Unsupervised 92.2 92.1

Table 3: The best results in terms of accuracy (ACC) and F1-
score for leave-one-action-out setting. MoCap and CV stand
for motion capture system and computer vision, respectively.
The best and second best results are in black and underlined,
respectively.

Approach Data Modality Feature Learning ACC F1-score
Niewiadomski et al. [33] MoCap Supervised 74.7 74.2
Bag-of-Words CV Supervised 65.4 65.3
Beyan et al. [3] MoCap Supervised 76.8 76.6
Autoencoder CV Unsupervised 78.4 78.2
Proposed (Diffusion) CV Unsupervised 83.0 83.1

In the leave-one-action-out setting (Table 3), the results for all
methods are lower than those in Table 2. There are possible ex-
planations for such a result. Firstly, the training data size in the
leave-one-out setting is much larger than in the leave-one-action-
out setting, and having a model trained on a larger dataset typically
generalizes better, especially for deep models. On the other hand,
this setting requires the prediction of 5 classes considered in this

study to be made on a completely different class of action in the test.
Therefore, one can claim that the prediction of these 5 classes is
also dependent on the type of action class, especially for the meth-
ods [3, 33] and bag-of-words. Furthermore, the results show the
effectiveness of unsupervised feature pre-training, indicating that
the features extracted from autoencoders and diffusion models are
still more generalizable (i.e., transferable), given that they perform
better than others.

Fig. 2 demonstrates the confusion matrices representing the
performance of the proposed method in both cross-validation set-
tings. In the leave-one-out setting, the neutral class exhibits the
most accurate classification, followed by rude, slow, gentle, and
fast. Conversely, in the leave-one-action-out setting, the highest
performance is achieved for fast and gentle, followed by rude, slow,
and neutral classes. Notably, several instances across various classes
are misclassified as rude. For example, there is a relatively higher
likelihood of predicting fast as rude (12%), neutral as rude (12%),
gentle as rude (11.7%), and slow as rude (11%).

5 CONCLUSIONS
Vitality forms communicate the attitudes and intentions behind
actions. In this paper, we have explored the automatic recognition
of two vitality forms—gentle and rude—expressed in various daily
life actions and gestures. We have also considered the same set of
actions and gestures performed neutrally, slowly, and quickly.

We have introduced a newmethod for automatically recognizing
vitality forms through the analysis of body motion data. Using 2D-
body pose skeleton data detected by computer vision, we employ
diffusion models to reconstruct features without relying on labels.
These features, which are compact, informative, and transferable,
are then used to train a classifier to distinguish between vitality
form classes. Additionally, we explore several other methodologies
from related fields, such as social signal processing, action recog-
nition, and emotion recognition, to assess their performance and
compare them to our proposed approach. Experimental analyses
are conducted with a single action video as a test set and with all
videos of an action class as the test set, confirming the effective-
ness of our method. Notably, the features learned with diffusion
models are found to be informative and compact, with a smaller
size compared to the input. The results, particularly in a leave-one-
action-out setting, highlight the transferability of our proposed
method.

The main contributions of this study can be summarized as
follows:

• For the first time, we demonstrated that automatic recognition
of vitality forms can be achieved within a fully non-invasive
pipeline through video data processing.

• We benchmarked the targeted task by incorporating several state-
of-the-art works in related fields (such as emotion recognition)
and illustrated that computer vision-based methods can outper-
form MoCap data-based approaches.

• We introduced a diffusionmodel-based unsupervised pre-training
approach, surpassing all other SOTA methods when tested on
various setups to differentiate gentle, rude, slow, fast, and neutral
expressions during the performance of various daily-life actions
and gestures.
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Figure 2: Confusion matrices illustrating the optimal performance of the proposed method align with those presented in Tables
2 and 3, respectively.

• By incorporating autoencoder-based unsupervised pre-training
and proposing diffusion-based unsupervised pre-training, we
demonstrated that such methods hold promise for effectiveness
while exhibiting superior generalization across different action
classes.

Limitations. We have only been able to assess the proposed
method and our state-of-the-art implementations on a single dataset,
as there is a scarcity of publicly available and annotated datasets
for vitality forms. While the existing dataset is sufficiently large
for effectively training deep models, encompassing a variety of
action classes performed multiple times with inherent variations,
it is necessary to conduct similar analyses on other action classes,
involve more participants, and encompass additional vitality forms
for a more comprehensive evaluation.

Future Work. We aim to study the automatic recognition of vi-
tality forms from a multimodal perspective. We are interested in
proposing effective unsupervised pre-training that yields informa-
tive features learned from different modalities (e.g., audio and video)
to enhance the performance of vitality forms recognition. Further-
more, the proposed model will be integrated into a social robot to
work in real-time interactions, especially in contexts where recog-
nizing and expressing the appropriate attitudes is crucial. Examples
of such scenarios include e.g., health care (robot receptionists in
the hospitals [14]), and robot interviewers [39]. The other possible
applications involve virtual reality (e.g., immersive virtual train-
ing environments to improve social skills), innovative forms of
entertainment (e.g., video-games), security and surveillance (e.g.,
detection of aggressive behavior), therapy (e.g., support of autis-
tic persons) and a large number of other multimodal interfaces
allowing for natural human-like interaction such as virtual agents
[32].
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