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ABSTRACT
Leukocyte trafficking from the blood into the tissues
represents a key process during inflammation and re-
quires multiple steps mediated by adhesion molecules
and chemoattractants. Inflammation has a detrimental
role in several diseases, and in such cases, the molec-
ular mechanisms controlling leukocyte migration are
potential therapeutic targets. Over the past 20 years,
leukocyte migration in the CNS has been investigated
almost exclusively in the context of stroke and MS. Ex-
perimental models of ischemic stroke have led to the
characterization of adhesion molecules controlling leu-
kocyte migration during acute inflammation, whereas
EAE, the animal model of MS, has provided similar data
for chronic inflammation. Such experiments have led to
clinical trials of antileukocyte adhesion therapy, with
consistently positive outcomes in human subjects with
MS, showing that interference with leukocyte adhesion
can ameliorate chronic inflammatory CNS diseases.
This review summarizes our current understanding of
the roles of adhesion molecules controlling leukocyte–
endothelial interactions in stroke and MS, focusing on
recently discovered, novel migration mechanisms. We
also discuss the growing evidence suggesting a role
for vascular inflammation and leukocyte trafficking in
neurodegenerative diseases such as AD. Moreover, we
highlight recent findings suggesting a role for leukocyte–
endothelial interactions in the pathogenesis of seizures
and epilepsy, thus linking endothelial activation and leu-
kocyte trafficking to neuronal electrical hyperactivity.
These emerging roles for leukocytes and leukocyte ad-

hesion mechanisms in CNS diseases provide insight
into the mechanisms of brain damage and may contrib-
ute to the development of novel therapeutic strategies.
J. Leukoc. Biol. 89: 000–000; 2011.

Introduction
The migration of leukocytes from blood vessels into the CNS
is a key event in the pathogenesis of neurological diseases in-
volving acute and chronic inflammation. Leukocyte extravasa-
tion is a finely regulated sequence of events controlled by ad-
hesion molecules and activating factors [1, 2]. It is often de-
scribed in terms of the following four “classical” steps: 1)
capture (tethering) and rolling, which are mediated by inter-
actions between selectins and mucins and between integrins
and members of the Ig superfamily; 2) activation, during
which signaling through the G�i pathway is induced by che-
moattractants and leads to the activation of integrins; 3) arrest,
which is mediated by leukocyte integrins and their endothelial
counter-ligands; and 4) diapedesis/transmigration (Fig. 1) [3].
More recently, several additional steps have been defined, in-
cluding slow rolling, adhesion strengthening and spreading,
intravascular crawling, and finally, transcellular and paracellu-
lar transmigration [4].

Central to the role of leukocyte migration in inflammatory
CNS diseases is the concept of the BBB, the specialized lining
of capillaries that restricts the passage of certain types of mole-
cules into the CNS. Early research linked the BBB concept to
leukocyte migration and led to the misconception that leuko-
cyte extravasation and the diffusion of soluble molecules are
regulated at the same site in the vascular tree, resulting in the
imprecise evaluation of data [5]. Leukocyte trafficking from
the blood into the CNS occurs at postcapillary venules, and
the “barrier” function of the CNS endothelium is a result of
specialized microvascular endothelial cells that have intercellu-
lar tight junctions and are associated with a basement mem-
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brane and ECM [5–8]. In addition, astrocytes and microglial
foot processes form the glia limitans, which together with its
basement membrane, constitutes the parenchymal side of the
vascular wall (Fig. 1). Leukocyte migration from postcapillary
venules in the CNS parenchyma therefore involves crossing
the endothelium and endothelial basement membranes into
Virchow-Robin spaces, followed by migration through the glia
limitans with its distinct basement membrane and dense, albeit
discontinuous, layer of astrocytic and some microglial end feet
[5]. The complexity of leukocyte migration in the CNS paren-
chyma suggests that leukocytes require increased migration
capacity and/or a more-permeable vascular wall and glia limi-
tans to reach the neuropil. Finally, the motility behavior of
extravasated leukocytes in the neuropil is largely unknown,
and the molecular mechanisms controlling leukocyte traffick-
ing inside CNS parenchyma await elucidation.

This review first summaries the roles of selectins, integrins,
and their ligands in leukocyte migration and then focuses on
the adhesion receptors controlling leukocyte rolling and arrest
in CNS vessels during acute and chronic CNS inflammation.
We emphasize novel aspects of leukocyte migration in stroke
and MS and discuss the emerging role of leukocyte trafficking
in new contexts such as AD and epilepsy.

ADHESION MOLECULES CONTROLLING
LEUKOCYTE–ENDOTHELIAL
INTERACTIONS

Selectins and mucins
Selectins are adhesion molecules involved in the tethering
(capture) and rolling of leukocytes in the blood vessels of lym-
phoid and nonlymphoid tissues under physiological and
pathological conditions. All three of the known selectins (L, P,
and E) are type I transmembrane glycoproteins that bind sialy-
lated carbohydrate structures in a Ca2�-dependent manner.
Each selectin has several consensus repeat domains with ho-
mology to lectins and complement regulatory proteins, result-
ing in subtle differences in carbohydrate binding that confer
selectin specificity [9].

L-selectin is expressed on most circulating leukocytes and
controls homing to secondary lymphoid organs and migration
to sites of inflammation (see Table 1) [9–11]. It binds to pe-
ripheral node addressins and MAdCAM-1 in the HEVs and can
mediate secondary tethering by interacting with the mucin
PSGL-1 expressed by adhered leukocytes or leukocyte frag-
ments or directly expressed by inflamed endothelium, suggest-
ing it helps to deliver leukocytes expressing L-selectin to sites

Figure 1. The steps of leukocyte migration through the endothelium in CNS parenchymal venules. Endothelial cells in CNS parenchymal venules
have tight intercellular junctions and are associated with inner and outer basement membranes. End feet (projected mostly by astrocytes) form
the glia limitans, which is also associated with a glial basement membrane. The endothelial and glial basement membranes delimit the perivascu-
lar space. The steps of a “simplified” model of leukocyte migration through the endothelium are presented above: 1) capture and rolling, which
are mediated by selectins/mucins and integrins/members of the Ig superfamily; 2) activation, in which chemokines and other chemoattractants
induce intracellular signaling through the G�i pathway, leading to integrin activation; 3) arrest, which is mediated by activated integrins and their
endothelial Ig superfamily counter-ligands; and 4) diapedesis or transmigration. To reach the parenchyma and potentially interact with neural
cells, leukocytes must cross the endothelial basement membranes, interacting with cells in the perivascular space, and then cross the glia limitans.
Notably, CNS venules in the pial area lack the glia limitans and perivascular space. Once the leukocytes reach the brain parenchyma, they can
physically or chemically interact with neurons and glial cells.
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of inflammation (see Table 1) [9, 12–14]. P-selectin and E-
selectin are constitutively expressed on endothelial as well as
nonendothelial cells or cell fragments and are also up-regu-
lated by inflamed endothelium in most organs during inflam-
matory diseases (Table 1) [9, 15–19]. Several glycosyltrans-
ferases have a role in the synthesis of selectin ligands, includ-
ing the FucTs, FucT-IV and FucT-VII, the O-linked branching
enzyme core-2-�1,6-glucosaminyltransferase-I, a �1,4-galactosyl-
transferase-I, and at least two sialyltransferases of the ST3Gal
family—tyrosine sulfotransferases and sulfotransferases [4, 9, 26].

PSGL-1 is a mucin-type glycoprotein that binds all three se-
lectins in vivo [9, 20]. It is considered the main ligand for P-
selectin and is expressed on the surface of myeloid cells, acti-
vated lymphocytes, monocyte-derived microparticles, and in-
flamed endothelial cells [4, 9, 14]. The expression of
cutaneous lymphocyte antigen, a modified version of PSGL-1
generated by FucT-VII, has been implicated in the interactions
with E-selectin and in lymphocyte traffic to the brain in the
context of early EAE, the animal model of MS [27, 28].

CD44 is an additional ligand for E-selectin that controls roll-
ing velocity in neutrophils [21, 22]. It can also initiate the roll-
ing of activated T cells by binding to endothelial hyaluronic
acid, followed by firm adhesion mediated by the integrin
VLA-4 [29], which associates with CD44, forming a bimolecu-
lar complex between rolling and firm adhesion, which re-
quires an intact CD44 cytoplasmic tail [30].

Integrins and their ligands
The integrins are a large family of heterodimeric transmem-
brane glycoproteins that attach cells to ECM proteins or to
ligands on other cells. Integrins comprise a large (120–170
kDa) �-subunit and a small (90–100 kDa) �-subunit.

The most prominent member of the �2 integrin family is
leukocyte �L�2 integrin (CD11a/CD18), also known as LFA-1
[4], which participates in rolling interactions but predomi-
nantly mediates the firm adhesion/arrest of leukocytes in the
blood vessels of lymphoid organs or at sites of inflammation by
binding the Ig superfamily ligands ICAM-1 (CD54) and
ICAM-2 (CD102), expressed by the vascular endothelium [3, 4,
23]. Another important member of the �2 integrin family is
�M�2 (CD11b/CD18), also known as Mac-1 or complement
receptor 3, which mediates interactions with vascular ICAM-1
[3]. Interestingly, �L�2 and �M�2 have recently been shown to
be activated by intracellular signaling generated when PSGL-1
is cross-linked by P-selectin, suggesting that the PSGL-1 signal-
ing pathway is a key regulator of integrin-mediated firm adhe-
sion in the control of leukocyte recruitment [31].

The most important �1 integrin expressed on leukocytes is
VLA-4 (�4�1 integrin, CD49d/CD29). This binds to VCAM-1
(CD106) expressed on endothelial cells and is implicated in
the control of leukocyte rolling and firm arrest in inflamed
vessels [4, 24]. VLA-4 can associate with molecules that regu-

TABLE 1. Selectins and Integrins Controlling Leukocyte Trafficking

Adhesion
molecule Expression pattern

Ligands involved in leukocyte
trafficking Function

L-selectin Myeloid cells, naı̈ve and central
memory lymphocytes [9]

Peripheral node addressins
[9–11]

MAdCAM-I [9–11]
PSGL-1 [9, 13]

Lymphocyte capture and rolling in the (HEVs)
of peripheral LNs and Peyer’s patches
[9–11]

Leukocyte secondary tethering in inflamed
vessels [9, 12–14]

P-selectin Constitutive expression on the
microvessel endothelial cells in
the lung and choroid plexus, on
peritoneal macrophages, on
platelet-derived microparticles
[9, 15, 16]

PSGL-1 [9, 20] Lymphocyte migration in the normal lung and
CNS [9, 15, 16]

Up-regulated on activated
platetelets and inflamed
endothelium [9, 18, 19]

Leukocyte migration in sites of inflammation
[9, 18, 19]

E-selectin Constitutively expressed in normal
skin vessels [17]

PSGL-1 [9, 20]
CD44 [21, 22]

Lymphocyte homing in the normal skin
[9, 17]

Up-regulated on inflamed
endothelium [9, 18, 19]

Leukocyte migration in sites of inflammation
[9, 18, 19]

�L�2 integrin All leukocytes [3, 4] ICAM-1 [3, 4]
ICAM-2 [3, 4]

Lymphocyte arrest in HEVs (homing to
lymphoid organs) [1–4]

Leukocyte rolling and arrest in inflamed
venules [3, 4, 23]

�M�2 integrin Innate immunity cells and some T
cells [3, 4]

ICAM-1 [3, 4] Leukocyte migration to sites of inflammation
[3, 4]

�4�1 integrin Monocytes, T cells, eosinophils
[3, 4]

VCAM-1 [4] Lymphocyte, monocyte, and eosinophil rolling
and arrest in inflamed venules [3, 4]

Neutrophils under inflammatory
conditions [24]

Neutrophil rolling in sites of inflammation
[24]

�4�7 integrin T cells [3] MAdCAM-1 [3] Lymphocyte homing in mucosal tissues [3, 25]
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late its ability to bind VCAM-1, such as CD47, CD81, and CD44
[32]. Recently, a further VLA-4 ligand was identified as os-
teopontin, a member of the Sibling protein family (small inte-
grin-binding ligand, N-linked glycoproteins), but a role for this
molecule in leukocyte trafficking has yet to be demonstrated
[33]. Interactions between �4�7 integrin and its vascular li-
gand MAdCAM-1 play a specific role in lymphocyte homing by
acting as a brake during naı̈ve lymphocyte interactions in the
HEVs of Peyer’s patches [25].

The avidity of adhesion mediated by LFA-1 and VLA-4 is
regulated by two integrin activation mechanisms—i.e., binding
affinity and the valency of ligand binding [4]. Higher affinity
results from conformational changes of individual integrin het-
erodimers, which leads to increased ligand-binding energy and
a decrease in the rate of ligand dissociation. In contrast, va-
lency reflects the density of integrin heterodimers within the
plasma membrane region involved in cell adhesion and can
depend on the abundance of individual integrins and their
lateral mobility [4].

Endothelial chemokines bind to GPCRs, exposed by leuko-
cytes, and trigger integrin-dependent arrest to endothelial
cells. The following chemokines are able to induce activation
of �1, �2, and �7 integrin-dependent adhesion: CCL2, CCL3,
CCL4, CCL5, CCL17, CCL19, CCL21, CCL20, CCL22, CXCL8,
CXCL9, CXCL10, and CXCL12 [4, 34, 35]. In addition to che-
mokines, lipid mediators, such as LTs, PAF, and S1P, were
shown to trigger integrin-dependent adhesion in leukocytes
through GPCRs [36–39].

ADHESION RECEPTORS CONTROLLING
LEUKOCYTE–ENDOTHELIAL
INTERACTIONS IN CNS DISEASES

Ischemic stroke
Counter-ligands for leukocyte adhesion molecules are up-regu-
lated on damaged endothelial tissue soon after the onset of
ischemic stroke [40], and brain endothelium releases cyto-
kines and chemokines that recruit and activate platelets and
leukocytes [40, 41]. This leads to the migration of neutrophils
and monocytes through the brain endothelium during the
acute phase of stroke, which is also characterized by the secre-
tion of inflammatory mediators, the activation of microglia,
and neuronal damage [41–43]. Lymphocyte migration in the
CNS has also been observed during stroke and has been impli-
cated in the progression of cerebral I/R injury. Recently, it has
been shown that blocking T cell infiltration into the brain us-
ing the immunosuppressant FTY720 reduces I/R-induced
brain damage [44]. Although the role of specific lymphocyte
subpopulations in stroke pathogenesis is not clear, recent data
have shown that �� T cells producing IL-17 are recruited in
the brain and have a central, pathogenic role in the delayed
phase of experimental ischemic brain injury [44].

Selectins, mucins, integrins, and Ig superfamily proteins
have been implicated in the induction of neural damage in
experimental animal models of ischemic stroke. The up-regu-
lation of endothelial E- and P-selectin expression is required
for the development of postischemic inflammatory responses

and the amplification of brain injury [45–47]. Most studies
have also shown the presence of elevated, soluble selectins in
the serum and corticospinal fluid of human ischemic stroke
patients in the acute phase, suggesting vascular inflammation
and endothelial selectin expression [48–51]. Interestingly, re-
cent reports suggest that elevated levels of soluble P-selectin in
mice can modulate cerebral vascular function and thus, exac-
erbate the effects of stroke [52]. These results support recent
data obtained in patients with peripheral arterial occlusive dis-
ease, showing that higher levels of soluble P-selectin in the
plasma enhances neutrophil adhesion in a PSGL-1-dependent
manner [53]. Elevated levels of P-selectin may indeed favor
leukocyte adhesion to inflamed brain endothelium, as PSGL-1
binding to P-selectin promotes leukocyte integrin activation
through a complex signaling cascade involving Src kinases,
phosphorylated Nef-associated factor-1 and phosphoinositide-
3-OH kinase [31]. Taken together, these data suggest that P-
selectin is a crucial molecule in stroke pathogenesis.

Mice deficient for P-selectin and animals treated with anti-
bodies that inhibit P-selectin present a lower infarct volume,
lower mortality, and faster cerebral flux recovery after reperfu-
sion [54, 55]. Similar results were achieved in mouse and rat
models of ischemic stroke treated with sialyl-Lewisx analogs
that block E- and P-selectin or E-selectin alone [56, 57]. The
administration of a humanized anti-E/P-selectin mAb also re-
duced the cerebral infarct area and ameliorated the neurologi-
cal outcome in an experimental study of stroke performed on
nonhuman primates [58]. Interestingly, mucosal tolerance to
E-selectin conferred cell-mediated protection against ischemic
brain injury by immunomodulation targeted to activated blood
vessel segments [59–61]. In contrast to the anti-E- and -P-selec-
tin approaches described above, antibodies specific for L-selec-
tin did not affect stroke outcome in animal models [62]. The
effect of blocking PSGL-1 in animal models of ischemic stroke
has yet to be investigated, but in other noncerebral, experi-
mental models of ischemia, soluble rPSGL-1 or anti-PSGL-1
antibodies can reduce reperfusion-associated damage [63].

The expression of endothelial Ig superfamily adhesion mole-
cules has correlated with I/R injury in a variety of in vivo stud-
ies. ICAM-1 expression increased soon after stroke with a peak
12–24 h after onset and preceded leukocyte migration into the
brain [64, 65]. Neutralization of ICAM-1, with mAb or anti-
sense oligonucleotides, improved the neurological outcome in
several animal models of I/R injury [66–70]. Moreover, ICAM-
1-deficient mice presented with a smaller infarct volume and
fewer infiltrated leukocytes after reperfusion following stroke
[71–73]. The role of VCAM-1 in animal models of reperfusion
injury appears to be less significant, as the treatment of experi-
mental stroke models with an anti-VCAM-1 antibody did not
ameliorate the neurological outcome [74].

The role of leukocyte �2 integrins in animal stroke models
has been studied extensively. In agreement with the results
obtained by blocking ICAM-1, the inhibition of CD11b, CD18,
and CD11a activity (by gene knockout or by administering spe-
cific antibodies) led to a reduction in stroke-associated injury
and was related to low-level neutrophil infiltration [67, 75–85].
Importantly, the inhibition of �2 integrins appeared to selec-
tively improve the outcome of stroke associated with reperfu-
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sion, supporting the hypothesis that leukocyte trafficking is
involved in injuries associated with secondary reperfusion [83].
Although the role of VCAM-1 in ischemic stroke appears less
important, the inhibition of VLA-4 using a mAb led to a signif-
icant reduction in the infarct size in a rat model of transient
focal cerebral ischemia, supporting a role for �1 integrins in
ischemic brain injury [86].

Expression of endothelial chemokines potentially able to
activate leukocyte integrins and favor leukocyte trafficking has
been described in animal models of ischemic stroke. Vascular
expression of IL-8 was documented in animal models of stroke
and was implicated in neutrophil recruitment and cerebral
edema, whereas an anti-IL-8 antibody significantly reduced
brain edema and infarct size [87]. Expression of CCL2 in
stroke was studied by several laboratories, and the presence of
CCL2 on brain endothelium following focal ischemia is
thought to have a deleterious effect by increasing monocyte
infiltration [88]. In addition, deficiency of CCL2 or of its re-
ceptor CCR2 is protective in experimental models of stroke
[89, 90]. Monocyte infiltration is thought to be mediated also
by CCL3, and the neutralization of this chemokine inhibits
cell migration in vivo [91]. Expression of the CXCL12 chemo-
kine was documented on brain endothelium in the peri-infarct
and infarct regions, and CXCR4, the CXCL12R, was impli-
cated in the migration of leukocytes in the ischemic brain
[92]. CCL4, CCL5, and CXCL10 expression was also corre-
lated to leukocyte infiltration, but their presence on endothe-
lium needs to be clarified by further studies [88, 93, 94].

In addition to chemokines, lipid intermediates have been
suggested to mediate leukocyte adhesion in inflamed brain
vessels in experimental animal models with relevance to
stroke. LTB4 has been shown to mediate integrin-dependent
neutrophil adhesion in vitro and was suggested to mediate
neutrophil trafficking after cerebral ischemia [36, 95, 96]. In
addition, cysteinyl LTs are able to activate integrin-dependent
neutrophil adhesion and have been shown to induce neutro-
phil arrest in intravital microscopy settings with relevance to
stroke [97–99]. PAF is a classical activator of neutrophil inte-
grins, and its inhibition has therapeutic effects in animal
models of stroke [36, 100, 101]. Furthermore, it was shown
recently that S1P is able to trigger �2 integrin-dependent
adhesion of myeloid cells, and S1P analog FTY720 is neuro-
protective in mouse and rat models of ischemic stroke
[102–104].

Novel mechanisms of leukocyte migration have been discov-
ered in recent investigations using ischemic stroke models. For
example, leukocyte surface apyrase CD39 reduces neutrophil
and monocyte trafficking as well as platelet reactivity by phos-
phohydrolyzation of adenine nucleotides and modulation of
the ambient vascular nucleotide milieu and integrin expres-
sion [105]. Although no clear role in leukocyte adhesion has
been found for the VLA-4 ligand osteopontin, its expression in
endothelial cells is induced by impairing the BBB in hyperten-
sive rats, whereas the nasal administration of osteopontin pep-
tide mimetics confers neuroprotection in stroke models, sug-
gesting that osteopontin inhibitors may be useful therapeutic
leads [106, 107].

In support of the data from animal models, the expression
of leukocyte adhesion molecules can also help to predict the
clinical outcome in human ischemic stroke patients. On admis-
sion, patients with higher levels of PSGL-1 in neutrophils may
present a higher risk for early neurologic deterioration, and
the severity of acute ischemic stroke corresponds to the level
of Mac-1 expressed in monocytes [108]. Stroke patients also
express more endothelial ICAM-1 in the infarcted zone than
nonischemic areas [109]. The levels of soluble ICAM-1 and
VCAM-1 in the CSF and plasma of patients following cerebral
ischemia may also reflect the severity of the stroke, although
these results are controversial [48–51, 110–113].

Surprisingly, attempts to replicate the successful antiadhe-
sion molecule therapy achieved in animal models have largely
failed in the clinic. A phase-III, randomized, controlled trial
using murine monoclonal anti-ICAM-1 (enlimomab) was un-
successful, as the nonhuman antibody was cleared rapidly by
the immune system [114, 115]. A phase-II trial of a humanized
CD11/CD18 antibody (rovelizumab) failed to meet predefined
criteria for improvement in myocardial infraction and in acute
stroke patients [116, 117], and a phase-II trial of recombinant
neutrophil-inhibiting factor, a nonantibody inhibitor of Mac-1,
was curtailed as a result of the lack of positive results (acute
stroke therapy by inhibition of neutrophils) [118]. These dis-
crepancies may reflect differences in the inflammation mecha-
nisms during I/R in humans and experimental animals. The
evaluation of treatment duration and the type of pathology
(transient vs. permanent ischemia) may also be critical for the
design of successful clinical trials. Finally, the inhibition of �2

integrins may reduce the activity of Tregs, which are key cere-
broprotective immunomodulators in experimental stroke mod-
els [119–121].

MS
MS is considered a T cell-mediated, inflammatory, demyelinat-
ing, autoimmune disease of the CNS, characterized by multifo-
cal, perivascular infiltrates, predominantly of lymphocytes and
macrophages. It is accepted that vascular breakdown and T
cell migration into the CNS initiate an immune response
against myelin antigens that contributes to disease pathogene-
sis [122, 123]. EAE is a model used to study the pathogenic
mechanisms in demyelinating disorders, and MS is the most
common of these in humans. The disease model can be in-
duced by immunization with myelin components (active EAE)
or by transfer of encephalitogenic T cells (adoptive-transfer
EAE).

T cell migration into the CNS is a critical event in EAE/MS
pathogenesis. Early experiments suggested that inflammatory
cells migrate first into the SAS [124–126], and more recent
data suggest that T cells must cross the blood-CSF barrier in
choroid plexus vessels [16, 127, 128] or pial vessels [16, 129]
to achieve this. Elegant studies using two-photon microscopy
showed recently that transferred, myelin-specific T cells mi-
grate first in the pial zone of spinal cord venules, which ap-
proach the CNS surface from deeper parenchymal layers
[130]. Pial vessels provide an easier route for inflammatory
cells; they have different tight junction composition, a differ-
ent endothelial barrier antigen expression, and they also lack
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the astrocyte sheathes found in the parenchymal vessels [5,
131]. Choroid plexus venules also provide a route for leuko-
cyte migration, as they lack tight junctions between endothelial
cells and thus, represent and an early point for T cell entry
into the CNS in MS moldels [16, 127, 128]. The above data
confirm that T cell infiltration and reactivation involve migra-
tion into the SAS [132].

EAE can be induced by adoptive transfer of myelin-specific
Th1 cells, which produce IFN-�, IL-2, and TNF, or Th17 cells,
which produce IL-17A, IL-17F, and IL-22 [132]. Recent data
show that Th17 cells have a greater migration capacity than
Th1 cells in vitro and contribute to brain endothelium dam-
age, suggesting that Th17 cells migrate more aggressively
[133]. Although the adhesion molecules involved in Th1–en-
dothelium interactions in different vascular districts (including
the brain) are well characterized, the molecular mechanisms
controlling Th17 adhesion in the inflamed brain are un-
known, and their characterization will provide further insight
into EAE/MS pathogenesis. CD8� T cells are also emerging as
important players in MS and EAE, although their adhesion
mechanisms are poorly characterized, and their contribution
to tissue damage is still debated. Myelin-specific CD8� T cells
can induce EAE, and CD8� T cells migrating into in the CNS
outnumbered the CD4� T cells in some studies [134–136].
Moreover, single-cell analysis of active MS brain lesions re-
vealed that CD8� T cells are far more numerous than the
more heterogeneous, extravasated CD4� T cells and are also
capable of oligoclonal expansion [137]. In support of these
results, we have shown that CD8� T cells isolated from un-
treated patients with relapsing-remitting disease in the acute
phase display more rolling and arrest behavior than CD4� T
cells in inflamed murine brain pial venules, suggesting a po-
tential role for CD8� T cells in relapses [138]. CD4�CD25�

Tregs can also penetrate the CNS of mice with preclinical
EAE, and they accumulate after the onset of disease [139].
However, the adhesion mechanisms controlling Treg–endothe-
lium interactions in CNS venules are completely uncharacter-
ized.

Under physiological conditions, the CNS strictly regulates
the immigration of immune cells and performs immunosur-
veillance in the perivascular and SASs, leaving the parenchyma
untouched. P-selectin, E-selectin, and ICAM-1 immunoreactiv-
ity was detected in noninflamed human pial and choroid
plexus venules but not in parenchymal microvessels, whereas
activated memory T cells in normal CSF expressed high levels
of PSGL-1 [16]. Based on these important findings, it has
been proposed that activated T cells are recruited to the CSF
under normal conditions through interactions between P-selec-
tin/P-selectin ligands and ICAM-1/LFA-1 [16].

Recent investigations have identified the critical factors af-
fecting lymphocyte migration in the CNS during EAE, provid-
ing new insights into the mechanisms that control neuroin-
flammation. We have previously used intravital microscopy,
which allowed the visualization of pial and (to a limited ex-
tent) parenchymal vessels, to show that activated lymphocytes
but not resting T cells can roll and firmly adhere in the mouse
brain microcirculation when inflammation has been induced
with LPS or TNF [27]. Moreover, experiments with TCR trans-

genic mice showed that transgenic T cells specific for myelin
basic protein and the irrelevant antigen OVA accumulated in
the same quantity in the CNS, suggesting that antigen specific-
ity has no impact on lymphocyte extravasation in the CNS, and
it must instead be controlled by T cell activation [140].

Endothelial selectins and their leukocyte counter-ligand
PSGL-1 may also play a role in MS and EAE. E-selectin expres-
sion was detected in the endothelium of MS lesions in the
brain, whereas plasma levels of soluble P- and E-selectin were
associated with relapsing-remitting disease [141, 142]. In addi-
tion, peripheral blood CD4� T cells from MS patients express
more PSGL-1 and have a greater transmigration capacity
across human brain endothelial cells [143]. However, intravital
microscopy in murine cerebral pial vessels showed that CD8�

T cells from MS patients at the beginning of a new relapse
undergo more PSGL-1-dependent rolling on P-selectin than
CD4� T cells [138]. We have also shown previously that the
activation of cerebral microvessels with LPS or TNF induces P-
and E-selectin expression in cerebral endothelial cells, mimick-
ing early endothelial activation during EAE [27]. Furthermore,
PSGL-1 expression in Th1 cells, together with the FucT activity
responsible for PSGL-1 glycosylation, induced efficient tether-
ing and rolling of the T cells in inflamed brain vessels [28].
P-selectin mediates the tethering and rolling of leukocytes in
mice with preclinical and clinical EAE, and the inhibition of
P-selectin reduces the ability of activated T cells to migrate
into the brains of mice with EAE [144–146]. Interactions be-
tween endothelial E-selectin and hyaluronan and CD44 ex-
pressed on the surface of activated T cells may also contribute
to initial adhesive interactions in inflamed brain vessels [147].

Despite consistent data supporting the role of mucins and
selectins in leukocyte–endothelial interactions in inflamed
brain venules, experiments involving the inhibition of selectins
and PSGL-1 in EAE have produced inconsistent results. Anti-
bodies against P-selectin improved the outcome of EAE when
coadministered with an antibody against the �4 integrin [145],
but other studies have shown no effect [148–151], and some
have even shown that mice deficient in PSGL-1 develop more
severe symptoms, supporting recent results obtained in other
experimental models of autoimmune diseases [145, 152] (un-
published results). A possible explanation for these contradic-
tory results was offered in a recent study that revealed a corre-
lation between the migration behavior of CD4�CD25� Tregs
and their ability to bind E- and P-selectins, hinting at a protec-
tive role for PSGL-1 in EAE [153, 154]. It has also been shown
that the stimulation of DCs through PSGL-1 with P-selectin
enhanced their ability to generate CD4�CD25�forkhead box
p3� Tregs, suggesting a regulatory role for PSGL-1 and selec-
tins during EAE [155].

Endothelial integrin ligands, such as ICAM-1 and VCAM-1,
are expressed in the venules of MS/EAE lesions [27, 141, 156,
157]. Elevated levels of soluble endothelial adhesion molecules
have been detected in MS patients during relapses and have
been associated with disease severity and the spreading lesions
observed by magnetic resonance imaging [158–162]. The
counter-ligands LFA-1 and VLA-4 have been shown to mediate
the rolling and arrest of activated T cells on the endothelium
of inflamed cerebral pial vessels in EAE models investigated by
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intravital microscopy [27, 144, 145]. In contrast, myelin-spe-
cific T cells showed no evidence of rolling on spinal cord pial
vessel endothelium (apparently expressing constitutive VCAM,
an integrin ligand normally absent in healthy, nonlymphoid
inflammatory sites), instead undergoing a unique, immediate
arrest event mediated by VLA-4/VCAM-1 [163]. However,
more recent two-photon microscopy experiments dispute this
finding, showing that adoptively transferred, myelin-specific T
cells roll before undergoing arrest in spinal cord pial vessels
[130]. The importance of VLA-4–VCAM-1 adhesive interac-
tions has been confirmed in several studies using antibodies
against the �4�1 integrin, which have inhibited or reversed
EAE [164–167]. In addition, it has been shown that antibodies
against VLA-4 and P-selectin block EAE more efficiently than
antibodies against VLA-4 alone [145]. However, treatment with
antibodies against VLA-4 after the onset of relapsing EAE (at
the peak of acute disease or during remission) exacerbated
disease relapses and increased the accumulation of CD4� T
cells in the CNS [168]. Inhibiting LFA-1/ICAM-1 was less ef-
fective than inhibiting VLA-4/VCAM-1, suggesting a key role
for VLA-4 in the pathogenesis of EAE [169–171]. There may
also be a role for �M�2 in the induction of EAE, as gene
knockout and antibody inhibition experiments reduce leuko-
cyte infiltration in the CNS and improve the clinical outcome
[171, 172]. The inhibition of MAdCAM-1 and �4�7 integrin
has also been shown to inhibit EAE in some studies, but these
results conflict with in vitro data showing that MAdCAM-1 is
not expressed in the CNS endothelium during EAE, and
Stamper-Woodruff studies suggesting that MAdCAM-1 does not
mediate T cell adhesion on inflamed CNS endothelium [156,
173, 174]. Taken together, these results suggest that �4 inte-
grins, LFA-1 and Mac-1 do play a role in the control of leuko-
cyte trafficking in the brain during inflammation and that in-
hibiting them improves the clinical course of EAE.

Current data suggest that GPCR-dependent signaling is re-
quired in situ for stable integrin-dependent adhesion of lym-
phocytes in inflamed brain venules [27, 175]. Lymphoid che-
mokines CCL19 and CCL21, previously shown to mediate ar-
rest of naı̈ve lymphocytes in HEVs, are also expressed in
inflamed brain venules, whereas CCR7� cells accumulate in
inflammatory lesions during EAE, suggesting that CCL19 and
CCL21 are also involved in T lymphocyte migration into
chronically inflamed CNS [176, 177]. These results are in
agreement with recent data showing that CCL19 is constitu-
tively expressed in the CNS and up-regulated in MS lesions,
suggesting that CCR7 may have a role in lymphocyte traffic in
the human brain [178]. CXCL12 is expressed on CNS endo-
thelial cells in a normal spinal cord and at the onset of EAE
[179]. CXCL12 is also constitutively expressed in human CNS
parenchyma on blood vessel walls and is elevated in MS le-
sions, suggesting a role of this chemokine in leukocyte extrava-
sation in the human brain [180]. Intravital microscopy per-
formed at EAE onset has shown that CCL2 and CCL5 chemo-
kines are involved in leukocyte arrest in inflamed brain
venules [181]. CCL2 and CCL5 expression is also abundant
within MS lesions, suggesting a role for CCL5 in integrin-
dependent arrest in inflamed CNS vessels [182, 183]. The
chemokine receptor CXCR3, previously shown to trigger

rapid adhesion, was found on CSF T cells of healthy sub-
jects and patients with MS, whereas active MS lesions have a
high frequency of T cells expressing CXCR3, suggesting
that CXCR3 may be involved in T cell adhesion in CNS
venules [182, 184].

LTB4 has been shown recently to be not only a potent che-
moattractant and adhesion activator in neutrophils but also
mediate �1- and �2-integrin-dependent adhesion in monocytes
in vitro and in vivo under flow condition [185]. Moreover, in-
travital microscopy experiments showed that LTB4R BLT1 me-
diates effector CD4 and CD8 rapid integrin-dependent arrest
in postcapillary venules [37, 38]. In support of these results,
recent studies suggested that LTB4R BLT1 is required for the
induction of EAE [186]. S1P was shown recently to activate the
interactions of the integrin LFA-1 with its ligand ICAM-1 and
of the integrin VLA-4 with its ligand VCAM-1 of polarized T
cells at the basal surface of lymphatic but not blood vessel en-
dothelium, suggesting that S1P causes sequestration of lym-
phocytes in secondary lymphoid organs [39]. Involvement of
S1P in lymphocyte adhesion through GPCRs has been identi-
fied by previous work with FTY720 (fingolimod), a microbe-
derived immunosuppressive agent that acts as an agonist for
the S1PRs and increases �2 and �7 integrin-dependent adhe-
sion and homing of lymphocytes in HEVs [187–189]. The
administration of fingolimod in animal models of EAE had
a preventive and therapeutic effect by reducing T cell infil-
tration in the CNS as well as by exerting effects on the BBB
and resident neural cells [190 –194]. Therapeutic efficacy
observed in animal studies has been substantiated in Phase
2 and 3 trials involving patients with relapsing or relapsing-
remitting MS, and oral treatment with FTY720 was approved
by the U.S. Food and Drug Administration in September
2010 [195].

The prominent role of VLA-4 in EAE suggests that the inhi-
bition of �4 integrins might improve the prognosis of MS pa-
tients. Indeed, �4 integrins have already been targeted success-
fully with natalizumab, although its success in the treatment of
MS has been marred by occasional cases of the opportunistic
viral infection PML, which occurs in �1:1000 patients [196–
198]. The induction of PML during natalizumab therapy ap-
pears not to be a case of virus reactivation but rather, a modi-
fication of the JC virus-specific cellular immune response and
the mobilization of JC virus-infected pre-B cells from bone
marrow stores [199–201]. For this reason, clinical administra-
tion of the drug is restricted to patients with more aggressive
disease. Recent studies have demonstrated remarkable efficacy
in patients with higher disease activity, including rapid im-
provement of disability status and ambulation after the failure
of previous therapies in relapsing-remitting MS [202, 203].
Overall, the therapeutic efficacy of natalizumab is proof-of-
principle that the inhibition of leukocyte trafficking can be
used to treat neurological diseases in which leukocyte extrava-
sation has a detrimental role [204].

Although researchers studying leukocyte trafficking dur-
ing EAE/MS have focused on T cells, monocytes also play a
significant role, but their migration is poorly understood.
Circulating monocytes that transmigrate into the CNS pa-
renchyma play an active role in exacerbating inflammatory
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disease as tissue macrophages by providing a source of
proinflammatory cytokines. The presence of monocytes and
macrophages in early MS lesions has been correlated with
demyelination, and their elimination has been shown to
ameliorate EAE [205, 206]. VLA-4 promotes the adhesion of
monocytes in inflamed brain endothelium in vitro and in
vivo, but whether the known therapeutic effect of inhibiting
VLA-4 includes the repression of monocyte trafficking is not
yet clear [164, 204, 207, 208]. In addition to classical adhe-
sion mechanisms, the interaction between signal regulatory
protein-� and the integrin-associated protein (CD47) has
been shown to contribute to the adhesion step when mono-
cytes migrate into the brain [209].

ALCAM-1 (CD166) was characterized originally as a ligand
for CD6 and has been shown recently to regulate leukocyte
extravasation in the inflamed CNS [210, 211]. Although it is a
member of the Ig superfamily and mediates leukocyte adhe-
sion, it is not considered an integrin ligand. It is expressed on
activated CD4� T cells, B cells, monocytes, and endothelial
cells [210, 211]. ALCAM-1 is up-regulated in the endothelial
cells of active MS/EAE lesions. Inhibiting the molecule limits
the transmigration of CD4� lymphocytes and monocytes across
the BBB in vitro and in vivo and reduces the severity and de-
lays the onset of EAE [211]. Further in vivo studies are neces-
sary to clarify its involvement in the multistep process of leuko-
cyte extravasation.

AD
AD is the most common neurodegenerative disorder and the
leading cause of senile dementia worldwide [212]. Clinically,
the cognitive and behavioral symptoms of AD are concordant
with neuronal loss and atrophy in brain regions linked to
learning and memory [213]. Neuropathologically, the hall-
marks of the disease are intracellular, neurofibrillary tangles,
derived from the cytoskeletal protein �, neuronal degenera-
tion, and extracellular senile plaques composed primarily of
A� and surrounded by activated microglia, reactive astrocytes,
and dystrophic neurites [214, 215]. In addition, a more re-
cently established hallmark of AD is brain inflammation, but
whether its role in disease pathogenesis is beneficial or detri-
mental has yet to be determined [216]. Studies of AD pathol-
ogy, genetics, and therapy suggest that inflammatory mecha-
nisms are most likely involved in the early steps of the patho-
logical cascade [217].

Investigations of AD patients have revealed evidence of a
dysfunctional BBB and impaired perivascular flow, suggesting
that the initiation and progression of AD may involve vascular
pathology and hemodynamic changes [218, 219]. Ryu and
McLarnon [220] have recently provided morphological data
indicating a loss of BBB integrity in AD tissues, with extensive
areas of fibrinogen immunoreactivity in association with micro-
glial reactivity; this morphology is not present in normal brain
samples. The direct injection of A�(1–42) into rat hippocam-
pus induced a time-dependent increase in BBB leakage and
microgliosis, whereas i.v. infusion with A�1–40 produced ex-
tensive vascular disruption including endothelial and smooth
muscle damage [220, 221]. A� is also deposited in the vascular
wall of intracerebral and leptomeningeal vessels causing CAA,

which is present in �80% of AD brains [222–224]. A�-CAA is
associated with the degeneration of smooth muscle cells, peri-
cytes, endothelial cells, and loss of BBB integrity [225, 226].
Overall, the human data show that neurovascular dysfunction
is present in AD and suggest a pathogenic link between cere-
brovascular disease and AD [227].

Several studies have demonstrated that the vascular deposi-
tion of A� induces oxidative stress and apoptosis in the cere-
bral vasculature, promotes the expression of adhesion mole-
cules, alters the expression of tight junction proteins, and
changes mechanical properties of the endothelial membranes
in a manner favoring the transmigration of immune cells
[228]. A� also stimulates the secretion of inflammatory cyto-
kines and up-regulates the expression of CAMs in human vas-
cular cells cultured in vitro, suggesting it can function as an
inflammatory stimulator that activates vascular cells [229, 230].
Importantly, leukocyte adhesion and spreading on the endo-
thelium of mesenteric vessels were observed by intravital mi-
croscopy minutes after A� infusion in rats, and a consistent
number of adherent leukocytes underwent transmigration
through the vascular wall [221]. Similar results were obtained
recently in cerebral vessels after i.v. injection of A�1–40 and
A�1–42 using a cranial window preparation in rats [231]. A�

deposition in the cerebral vessels of AD brains correlated with
the accumulation of monocytes in the vessel walls and acti-
vated microglia in the adjacent parenchyma [232, 233]. In
support of these results, in vitro studies have shown that expo-
sure to A� enhances monocyte adhesion to endothelial mono-
layers and subsequent transendothelial migration, indicating
that A� deposition induces the brain endothelium to promote
leukocyte adhesion and transmigration (Figs. 2 and 3) [234,
235]. In vivo studies using transgenic mouse models of AD
have suggested that many microglial cells in the cores of amy-

Figure 2. ICAM-1 expression in brain vessels near amyloid plaques in
the cortex of an 8-month-old 5XFAD mouse. The 5XFAD mouse is a
transgenic model of AD, expressing recombinant human amino pre-
cursor protein and Presenilin-1 proteins carrying several pro-AD muta-
tions. The confocal image shows ICAM-1 immunoreactivity (red fluo-
rescence) on cerebrovascular endothelial cells in the cortex upper
layer in the proximity of A� plaques [thioflavin-S staining (ThioS),
green fluorescence]. DAPI staining was used to highlight the cell nu-
cleus (blue fluorescence; original scale bar�50 �m). The results rep-
resent original data obtained by the authors.
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loid plaques originate from bone marrow and are recruited
from the blood [236]. These cells have a beneficial effect, as
they can eliminate amyloid deposits by cell-specific phagocyto-
sis. In addition to monocytes, T cell infiltration has been ob-
served in AD patients [237–240]. Togo et al. [238] showed
that most T cells in postmortem AD brain tissue are located in
the hippocampus and other limbic structures, which are
among those regions most heavily affected in AD. In a study
investigating the immune response associated with CAA,
CD4� and CD8� T cells were observed in addition to mono-
cytes and macrophages in leptomeningeal and cortical ves-
sels [241].

Interestingly, A� induces adaptive immune responses in the
peripheral nervous system. A�-reactive T cells become more
abundant in the elderly and in patients with AD, and T cell
priming becomes less frequent with aging [242, 243]. Man et
al. [244] showed that peripheral T cells in AD patients overex-
press MIP-1�, which binds to CCR5 on the surface of brain
endothelial cells, promoting T cell migration through endo-
thelial tight junctions. Furthermore, the injection of A� into
the rat hippocampus induces an interaction with receptor for
advanced glycation end products expressed on the surface of
brain endothelial cells, which up-regulates CCR5 expression
and triggers T cell infiltration in the brain [245]. Peripheral T

cells in AD patients also overexpress CXCR2, potentially pro-
moting transendothelial migration [246]. However, it is not
clear how circulating T cells penetrate the BBB and infiltrate
the AD cerebral parenchyma or how the local inflammatory
milieu influences T cell emigration or survival, resulting in the
accumulation of T cells in the brain. It is important to deter-
mine whether T cell trafficking is involved in the pathogenesis
of AD or is solely an epiphenomenon and whether T cells are
beneficial or deleterious in AD.

Little is known about the molecular mechanisms controlling
leukocyte trafficking in the AD brain. The treatment of cere-
bral endothelial cells with oligomeric A� in vitro results in the
expression of P-selectin and increased endothelial stiffness
[228]. However, the expression of transmembrane or soluble
P-selectin has not been reported in vivo or in AD brains. In-
creased levels of E-selectin in the plasma, together with the
up-regulation of ICAM-1 and VCAM-1, are associated with an
increased risk of diabetes, a condition that is commonly associ-
ated with cardiovascular disease and AD [247–249]. Although
the expression of E-selectin in AD cerebral vessels has yet to
be shown, there are significant increases in plasma E-selectin
levels in patients with late-onset AD [250]. In addition, a clini-
cal and epidemiological study, aiming to demonstrate that vas-
cular risk factors may be involved in AD, clearly showed a sig-

Figure 3. Leukocyte trafficking mechanisms in AD, potentially induced by A�. Oligomeric A� assemblies, commonly known as amyloid-de-
rived diffusible ligands, are found in the blood, perivascular spaces, and brain parenchyma. A� stimulates the secretion of inflammatory cy-
tokines and up-regulates the expression of vascular adhesion molecules, leading to adhesion and transendothelial migration of leukocytes,
which can accumulate in brain parenchyma and interact with glial cells and neurons. The adhesion molecules and receptors are explained
in more detail in Fig. 1 and Table 1.
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nificant increase in soluble E-selectin levels in AD patients
compared with controls, suggesting that plasma E-selectin
could be used as a marker of endothelial dysfunction contrib-
uting to disease progression [251]. However, a smaller study
found that serum E-selectin levels did not increase in AD pa-
tients any more significantly than in other noninflammatory
neurological diseases [252].

PECAM-1 may also contribute to the pathogenesis of A�-
related cerebral vascular disorders, such as AD. Giri et al.
[229] demonstrated that interactions between A�1– 40 and
a monolayer of human brain endothelial cells promote the
adhesion and transendothelial migration of monocytes, but
this could be blocked with an antibody against PECAM-1.

Several studies have reported the endothelial expression of
Ig superfamily integrin ligands in AD as well as increased levels of
soluble endothelial integrin receptors, strongly indicating that
endothelium in the AD brain can mediate the integrin-depen-
dent adhesion of leukocytes. Microvascular endothelial cells
showed higher levels of ICAM-1, a marker of cytokine-activated
endothelial cells, in transgenic mouse models of AD and human
patients with the disease (Fig. 2) [253–255]. ICAM-1 was found
inside senile plaques containing fibrillar or nonfibrillar A�, in
structures containing low levels of A�, and around plaques [256–
258]. Frohman and colleagues [256] showed that the higher lev-
els of ICAM-1 expression were restricted to the cerebrovascular
endothelium, whereas its ligand LFA-1 was present on microglial
cells and infiltrating leukocytes, strongly suggesting a role for leu-
kocyte trafficking mechanisms in the pathogenesis of AD.
Whereas ICAM-1 can be expressed on a variety of cells under
inflammatory conditions, including neural cells, the expression of
VCAM-1 is restricted to endothelial cells. However, despite several
indirect indications suggesting that VCAM-1 expression in the
brain endothelium is linked to AD, there have been no neuro-
pathological studies showing vascular VCAM-1 expression in the
disease.

Elevated levels of soluble integrin ligands provide further
signs of vascular inflammation in AD. Increased serum lev-
els of ICAM-1 were observed in AD patients, but this was
thought to originate in neural cells rather than activated
endothelial cells [259]. Zuliani and colleagues [250] re-
ported higher levels of soluble VCAM-1 in the plasma of 60
patients with late-onset AD and 80 patients with vascular
dementia, compared with healthy elderly controls. In addi-
tion, another important study involving 260 AD patients
showed a strong correlation between the disease and the
presence of soluble forms of ICAM-1, VCAM-1, and PE-
CAM-1 in comparison with age and gender-matched, nonde-
mented controls [260].

Soluble adhesion receptors have also been proposed as AD
markers or as markers of aging. ICAM-1 was one of 18 plasma
proteins creating a signature that can be used to classify
blinded samples from AD and control subjects with �90% ac-
curacy and to identify patients whose mild cognitive impair-
ment progressed to AD 2–6 years later [261]. However, the
levels of soluble ICAM-1 and VCAM-1 were not associated with
an increased risk of AD in another study, using 727 randomly
selected subjects [262]. A recent study looking for markers of
systemic inflammation and endothelial dysfunction in an el-

derly population of 679 volunteers showed higher plasma lev-
els of circulating C-reactive protein, fibrinogen, ICAM-1, and
VCAM-1, suggesting that inflammatory changes, including vas-
cular inflammation, are associated with aging [263]. Moreover,
another study has shown that circulating VCAM-1, but not
ICAM-1 or E-selectin, is an age-dependent parameter, indepen-
dent of cardiovascular risk [264]. These results support the
idea that circulating VCAM-1 could be used as a marker for
biological aging and to strengthen further the link between
inflammatory responses and AD, which has an increased age-
dependent susceptibility.

PD
PD is the second-most common neurodegenerative disorder,
superseded only by AD [265]. The cause of PD is unknown,
but most experts share the opinion that PD is a result of a
combination of genetic and environmental factors that in-
duce a profound loss of dopaminergic neurons [266]. It has
been shown in human pathology, animal models, and in
vitro studies that PD shares common pathogenic mecha-
nisms with AD, including the aggregation and deposition of
misfolded proteins and chronic inflammation. There is in-
creasing evidence that chronic inflammation, BBB dysfunc-
tion, and immune cell migration play a significant role in
PD [267]. For example, one previous study showed substan-
tial infiltration of CD44� T cells into the substantia nigra
and striatum in a mouse model of PD [268], and another
showed a significant increase in the number of LFA-1� leu-
kocytes in the substantia nigra and its dorsal extension, as-
sociated with capillaries in PD and intoxication with 1-methyl-
4-phenyl-1,2,3,6-tetrahydropiridine in monkeys [269]. Other
reports have shown higher levels of CD4�CD45RO� T cells
expressing Fas in the peripheral blood of PD patients [270,
271]. Notably, it has been suggested recently that dopami-
nergic neuron loss may be driven by neutrophil infiltration,
leading to neuronal damage in the substantia nigra, re-
duced astrocyte density, and an increase in BBB permeabil-
ity [272]. However, further studies are needed to determine
how vascular inflammation and leukocyte trafficking mecha-
nisms contribute to PD pathogenesis.

Epilepsy
A seizure is a paroxysmal hypersynchronous discharge from
CNS neurons. Repeated seizures can lead by unknown mecha-
nisms to epilepsy, a chronic neurological disorder that affects
1% of the world’s population. Experimental and clinical data
indicate that repeated seizure activity can lead to chronic re-
current epileptic seizures, but the mechanisms responsible for
this transition remain unclear. Lymphocyte accumulation has
been observed in the brain parenchyma of patients with refrac-
tory epilepsy, along with a leaky BBB [273]. Perivascular and
parenchymal T cells (mainly CD8� cytotoxic T cells) were ob-
served in gray and white matter in samples obtained from pa-
tients with a tuberous sclerosis complex, which associates with
epilepsy [274]. Cells of the microglia/macrophage cell system
and CD3� lymphocytes were also shown to accumulate in
brain samples obtained from patients with temporal lobe epi-
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lepsy and hippocampal sclerosis [275]. Finally, our recent data
show that a number of leukocytes in the brain parenchyma of
patients with epilepsy increase independently of disease etiol-
ogy [276].

Early preclinical studies showed that the in vivo administra-
tion of the proconvulsant agent kainic acid up-regulates
ICAM-1 and VCAM-1 on the surface of brain endothelial cells
[277]. More recent in vitro studies showed that epileptiform
activity induced by bicucculine can rapidly induce the expres-
sion of adhesion molecules on the brain endothelium [278].
We have shown recently that seizures induce the expression of
VCAMs such as VCAM-1, ICAM-1, and E- and P-selectin [276]
and that seizures promote leukocyte rolling and arrest in corti-
cal vessels, mediated by PSGL-1 and leukocyte integrins VLA-4
and LFA-1 [276]. Interestingly, our recent data show that Th1,
but not Th2, cells are preferentially recruited in inflamed
brain venules after seizures, suggesting that cells from the
adaptive immune system may contribute to the progression of
epilepsy. The inhibition of leukocyte–vascular interactions with
antibodies dramatically reduced the number of seizures, and
fewer seizures were also observed in knockout mice lacking
functional PSGL-1 [276]. Vascular leakage, which is known to
enhance neuronal excitability, was induced by acute seizure
activity but prevented by inhibiting leukocyte–vascular adhe-
sion, suggesting a pathogenic link between leukocyte–vascular
interactions, vascular damage, and seizures [276]. In support
of these results, recent studies using a model of viral meningi-
tis showed that myelomonocitic cell recruitment leads to vascu-
lar leakage and acute, lethal seizures [279]. Taken together,
these data suggest that leukocyte–endothelial interactions
could be targeted by drugs to prevent and/or treat epilepsy, as
shown by the recent, successful treatment of epilepsy with na-
talizumab in a patient with MS and severe refractory epilepsy
[280].

Despite growing evidence suggesting a role for leukocytes in
the induction of seizures, limited information is available
about the role of vascular chemokines in promoting leukocyte
trafficking and epilepsy. However, CCL2 expression was docu-
mented in the blood vessels at late time-points after pilo-
carpine-induced status epilepticus in mice, potentially related
to changes in permeability of the BBB and leukocyte recruit-
ment during epileptogenesis [281]. CCL2 up-regulation has
also been shown following kainate-induced seizure in the rat
hippocampus and has been correlated to the temporal profile
of BBB permeability and immune cell trafficking at the site of
injury [282]. Importantly, a recent study by Louboutin and
colleagues [283] demonstrated a key role for the leukocyte
chemokine receptor CCR5 in the induction of seizures in a rat
model based on direct neural stimulation by kainic acid. In
this paper, the authors found that seizures induce elevated
expression of CCR5 ligands, CCL3 and CCL5, in the microvas-
culature, and increased BBB leakage and CCR5� cell migra-
tion into the CNS. The decrease in leukocyte CCR5 strongly
protected from acute seizure induction, BBB leakage, CNS in-
jury, and inflammation, suggesting a role for CCR5 expression
on circulating leukocytes and endothelial expression of CCL3
and CCL5 in the control of vascular inflammation and leuko-

cyte trafficking required for acute seizure generation by excito-
toxic agents [283].

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

It is clear that distinct leukocyte populations migrate at selec-
tive CNS sites under physiological conditions and during acute
and chronic vascular inflammation, according to local patterns
of adhesion molecule expression. The results obtained in ex-
perimental models of ischemic stroke and MS demonstrate
that inhibiting adhesion molecules can have therapeutic ef-
fects in brain diseases involving detrimental leukocyte traffick-
ing. The efficacy of natalizumab is greater than most conven-
tional MS therapies, and recent results suggest that patients
with other neurological diseases, such as epilepsy, may also
benefit from drugs that block the activity of VLA-4 [276, 280].
The challenge for the future is to determine which adhesion
mechanisms are critical for the control of leukocyte subsets
that promote or exacerbate CNS diseases and to identify
leukocyte subpopulations and their trafficking molecules
that have a beneficial role. This will help to prevent collat-
eral effects and adventitious infections and will leave protec-
tive leukocyte extravasation and immune surveillance unaf-
fected.

Preliminary studies have also shown links between inflamma-
tion and disease progression in AD and epilepsy, and a greater
understanding of the role of leukocyte trafficking in these dis-
eases will provide more insight into the mechanisms underly-
ing neurodegeneration and may help to identify novel thera-
peutic approaches. The role of inflammation and leukocyte
trafficking in AD and PD still remains to be clarified, but re-
cent AD research suggests that neuroinflammation in AD
brains is linked to endothelial changes mediated by A�,
greater endothelial permeability causing neurotoxic blood
plasma components to leak into the neuropil, and enhanced
adhesion and transendothelial migration of leukocytes. A key
research goal in AD is to determine which inflammatory path-
ways have useful, restorative, or scavenging roles and which are
detrimental, as this will reveal potential new drug targets and
leads. Currently, neurovascular dysfunction is thought to con-
tribute to the pathogenesis of dementias in the elderly, so a
greater understanding of this process is required for the devel-
opment of novel therapies aiming to normalize vascular and
neuronal dysfunction.

Recent studies have identified an inflammatory component
in the pathogenesis of epilepsy, but current antiepileptic drugs
aim to depress aberrant neuronal excitation and do nothing to
prevent inflammation. Interfering with the adhesion of im-
mune cells to the cerebral vasculature could open new ave-
nues for epilepsy treatment, particularly in refractory cases
[284]. Recent clinical data suggest the antiadhesion drug na-
talizumab may be safer and cases of PML less frequent than
understood previously [285]. The use of natalizumab to treat
refractory epilepsy and epilepsy following MS or proinflamma-
tory events such as trauma, stroke, and infection may therefore
be a useful therapeutic strategy.
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