
Analysis of distributed-search contraction-based

strategies

Maria Paola Bonacina ⋆

Dept. of Computer Science, University of Iowa, Iowa City, IA 52242-1419, USA
bonacina@cs.uiowa.edu

Abstract. We present a model of parallel search in theorem proving for
forward-reasoning strategies, with contraction and distributed search.
We extend to parallel search the bounded-search-spaces approach to the
measurement of infinite search spaces, capturing both the advantages of
parallelization, e.g., the subdivision of work, and its disadvantages, e.g.,
the cost of communication, in terms of search space. These tools are
applied to compare the search space of a distributed-search contraction-
based strategy with that of the corresponding sequential strategy.

1 Introduction

The difficulty of fully-automated theorem proving has led to investigate ways
of enhancing theorem-proving strategies with parallelism. We distinguish among
parallelism at the term level (i.e., parallelizing the inner algorithms of the strat-
egy), parallelism at the clause level (i.e., parallel inferences within a single search)
and parallelism at the search level or parallel search [8]. This paper considers par-
allel search: deductive processes search in parallel the space of the problem, and
the parallel search succeeds as soon as one of the processes succeeds. A parallel-
search strategy may subdivide the search space among the processes (distributed
search), or assign to the processes different search plans (multi-search), or com-
bine both principles. The processes communicate to merge their results, and
preserve completeness (e.g., if the search space is subdivided or unfair search
plans are used). This paper concentrates on distributed search.

Parallel search applies to theorem-proving strategies in general. This paper
studies forward-reasoning and in particular contraction-based strategies (e.g., [13,
19, 9, 4]). There has been much interest in parallelizing these strategies (e.g., [12,
11, 5, 15, 6] and [8, 21] for earlier references), because they behave well sequen-
tially (e.g., Otter [17], RRL [14], Reveal [2], EQP [18] are based on these strate-
gies, and thanks to them succeeded in solving challenge problems, e.g., [2, 1, 18]).
However, the parallelization of contraction-based strategies is difficult, primar-
ily because of backward contraction: the clauses used as premises are subject to
being deleted, the database is highly dynamic, and eager backward contraction
(inter-reduce before expanding) diminishes the degree of concurrency of the in-
ferences. The qualitative analysis in [8] showed how these factors affect adversely
approaches based on parallelism at the term or clause level.

⋆ Supported in part by NSF grants CCR-94-08667 and CCR-97-01508.

This paper begins a quantitative analysis of distributed-search contraction-
based strategies, which poses several problems. We need to represent subdivision
of the search space and communication, and measure their advantage and cost,
respectively. Since the subdivision may not be effective, the search processes
overlap: one needs to capture also the disadvantage of duplicated search. These
problems are made worse by a fundamental difficulty: the search spaces in theo-
rem proving are infinite. Therefore, we cannot analyze subdivision and overlap
in terms of total size of the search space. Neither can we rely on the classi-
cal complexity measure of time to capture the cost of communication, because
theorem-proving strategies are semidecision procedures that may not halt, so
that “time” is not defined. Finally, the problems are not well-defined. Since
parallel theorem proving is a young field, and an analysis of this kind was not
attempted before, there are no standard formal definitions for many of the con-
cepts involved. In recent work [10], we proposed an approach to the analysis
of strategies, comprising a model for the representation of search, a notion of
complexity of search in infinite spaces, and measures of this complexity, termed
bounded search spaces. In this paper we build on this previous work to address
the problems listed above.

The first part of the paper (Sections 2 and 3) develops a framework of

definitions for parallel theorem proving by forward-reasoning distributed-
search strategies. Three important properties of parallel search plans (mono-
tonicity of the subdivision, fairness and eager contraction) are identified, and
sufficient conditions to satisfy them are given. We point out that it is not ob-
vious that a parallelization of a contraction-based strategy is contraction-based.
On the contrary, this issue is critical in the parallelization of forward reasoning.
A model of parallel search is presented in Section 4. A strategy with con-
traction not only visits, but also modifies the search space [10]. In distributed
search also subdivision and communication modify the search space, and many
processes are active in parallel. Our solution is based on distinguishing the search
space and the search process, and yet representing them together in a parallel
marked search graph. The structure of the graph represents the search space
of all the possible inferences, while the marking represents the search process,
including contraction, subdivision and communication.

Once we have a model of the search, we turn to measuring benefits and

costs of parallelization in terms of search complexity (Section 5). The
methodology of [10] is based on the observation that for infinite search spaces
it is not sufficient to measure the generated search space. It is necessary to
measure also the effects of the actions of the strategy on the infinite space that
lies ahead. An exemplary case is that of contraction, where the deletion of an
existing clause may prevent the generation of others. Our approach is to enrich
the search space with a notion of distance, and consider the bounded search space
made of the clauses whose distance from the input is within a given bound. The
infinite search space is reduced to an infinite succession of finite bounded search
spaces. Since the bounded search spaces are finite, they can be compared (in
a multiset ordering), eliminating the obstacle of the impossibility of comparing

infinite spaces. The second fundamental property of the bounded search spaces is
that they change with the steps performed by the strategy. In the sequential case,
the only factor which modifies the bounded search spaces is contraction, which
makes clauses unreachable (infinite distance). In the parallel case, there are also
subdivision and communication: subdivision makes the bounded search spaces
for the parallel processes smaller (advantage of parallelism), while comunication
undoes in part the effect of the subdivision (disadvantage of parallelism). The
parallel bounded search spaces for the parallel derivation as a whole measure also
the cost of duplicated search due to overlapping processes.

Section 6 applies these tools to the analysis of distributed-search con-

traction-based strategies. In distributed search, eager contraction depends on
communication (e.g., to bring to a process a needed simplifier). We discover two
related patterns of behaviour, called late contraction and contraction undone,
where eager contraction fails. It follows that search paths that eager contraction
would prune are not pruned. While in a sequential derivation the bounded search
spaces decrease monotonically due to contraction, in a parallel derivation they
may oscillate non-monotonically, because they reflect the conflict of subdivision
and communication, and the conflict of contraction and communication. How-
ever, the incidence of late contraction and contraction undone decreases as the
speed of communication increases, and at the limit, if communication takes no
time, they disappear. For the overlap, we give sufficient conditions to minimize
it relying on local eager contraction, independent of communication.

The last task is to compare a sequential contraction-based strategy C with
its parallelization C′. We prove that if C′ has instantaneous communication and
minimizes the overlap, its parallel bounded search spaces are smaller than those
of C. On one hand, this result represents a limit that concrete strategies may
approximate. For instance, this theorem justifies formally the intuition about
improving performance by devising subdivision criteria that reduce the over-
lap (e.g., [6]). On the other hand, since the hypothesis of instantaneous com-
munication is needed, it represents a negative result on the parallelizability of
contraction-based strategies, which contributes to explain the difficulty with ob-
taining generalized performance improvements by parallel theorem proving.

This kind of analysis is largely new, especially for parallel strategies. Most
studies of complexity in deduction analyze the length of propositional proofs as
part of the NP 6= co−NP quest (e.g., [22]), or work with Herbrand complexity
and proof length to obtain lower bounds for sets of clauses (e.g., [16]). The study
in [20] analyzes measures of duplication in the search spaces of theorem-proving
strategies. The full version of this paper, with the proofs and more references,
can be found in [7].

2 Parallel theorem-proving strategies

In the inference system of a theorem-proving strategy, expansion rules (e.g., reso-
lution) generate clauses, while contraction rules (e.g., subsumption and simplifi-
cation) delete or reduce clauses according to a well-founded ordering ≻ (e.g., the

multiset extension of a complete simplification ordering on atoms). An inference
rule can be seen as a function which takes a tuple of premises and returns a set
of clauses to be added and a set of clauses to be deleted:

Definition 21 Let Θ be a signature, LΘ the language of clauses on Θ, and
P(LΘ) its powerset. An inference rule fn of arity n is a function fn:Ln

Θ →
P(LΘ) × P(LΘ). (If fn does not apply to x̄, fn(x̄) = (∅, ∅).)

Given x̄ = (ϕ1 . . . ϕn), let X be the multiset {ϕ1 . . . ϕn}, and π1(x, y) = x and
π2(x, y) = y the projection functions:

Definition 22 Given a well-founded ordering (LΘ,≻), fn is an expansion rule
if ∀x̄ ∈ Ln

Θ, π2(f
n(x̄)) = ∅. It is a contraction rule w. r. t. ≻ if either π1(f

n(x̄)) =
π2(f

n(x̄)) = ∅, or π2(f
n(x̄)) 6= ∅ and X−π2(f

n(x̄))∪π1(f
n(x̄))≺mul π2(f

n(x̄)).

The closure of a set of clauses S with respect to an inference system I is the
set S∗

I =
⋃

k≥0
Ik(S), where I0(S) = S, Ik(S) = I(Ik−1(S)) for k ≥ 1 and

I(S) = S ∪ {ϕ| ϕ ∈ π1(f(ϕ1 . . . ϕn)), f ∈ I, ϕ1 . . . ϕn ∈ S}.
Clauses deleted by contraction are redundant, and inferences that use redun-

dant clauses (without deleting them) are also redundant (e.g., [9, 4]). Using the
notion of redundancy criterion [3], R(S) denotes the set of clauses redundant
with respect to S according to R. A redundancy criterion R and a set of con-
traction rules IR correspond if whatever is deleted by IR is redundant according
to R (π2(f

n(x̄)) ⊆ R(X − π2(f
n(x̄)) ∪ π1(f

n(x̄)))), and if ϕ ∈ R(S)∩ S, IR can
delete ϕ without adding other clauses to make it redundant (π1(f

n(x̄)) = ∅ and
π2(f

n(x̄)) = {ϕ}). IR and R are based on the same ordering. Let I = IE ∪ IR,
distinguishing expansion and contraction rules in I.

Next, a parallel strategy has a system M of communication operators, such
as receive:L∗

Θ → P(LΘ) × P(LΘ), and send:L∗
Θ → P(LΘ) × P(LΘ), where

receive(x̄) = (x̄, ∅) (adds received clauses to the database of the receiver), and
send(x̄) = (∅, ∅) (sending something does not modify the database of the sender).

The other component of a strategy is the search plan, which chooses inference
rule and premises at each stage of a derivation S0 ⊢ . . . Si ⊢ . . ., where Si is the
state of the derivation after i steps, usually the multiset of existing clauses. We
use States for the set of states and States∗ for sequences of states. In distributed
search, the search plan also controls communication and subdivision. Since S∗

I is
infinite and unknown, the subdivision is built dynamically: at stage i the search
plan subdivides the inferences that can be done in Si. For each process pk, an
inference is either allowed (assigned to pk), or forbidden (assigned to others):

Definition 23 A parallel search plan is a 4-tuple Σ = 〈ζ, ξ, α, ω〉:

1. The rule-selecting function ζ:States∗ × IN× IN → I ∪M takes as arguments
the partial history of the derivation, the number of processes and the identifier
of the process executing the selection, and returns an inference rule or a
communication operator.

2. The premise-selecting function ξ:States∗ × IN × IN × (I ∪M) → L∗
Θ also

takes in input the selection of ζ, and satisfies ξ((S0 . . . Si), n, k, f
m) ∈ Sm

i .

3. The subdivision function α:States∗ × IN × IN × (I ∪M) × L∗
Θ → Bool also

takes as argument the selection of ξ, and returns true (process allowed to
perform the step), or false (forbidden), or ⊥ (undefined).

4. The termination-detecting function ω:States → Bool returns true if and
only if the given state contains the empty clause.

Definition 24 Given a theorem-proving problem S, the parallel derivation gen-
erated by a strategy C = 〈I,M,Σ〉, with Σ = 〈ζ, ξ, α, ω〉, for processes p0 . . . pn−1

is made of n asynchronous local derivations S = Sk
0 ⊢C . . . S

k
i ⊢C . . ., s. t. ∀k,

0 ≤ k ≤ n − 1, ∀i ≥ 0, if ω(Sk
i) = false, ζ((Sk

0 . . . S
k
i), n, k) = f , either

f = receive and x̄ is received, or f 6= receive and ξ((Sk
0 . . . S

k
i), n, k, f) = x̄,

and α((Sk
0 . . . S

k
i), n, k, f, x̄) = true, then Sk

i+1 = Sk
i ∪ π1(f(x̄)) − π2(f(x̄)).

A sequential search plan Σ = 〈ζ, ξ, ω〉 has ζ:States∗ → I, ξ:States∗ ×
I → L∗

Θ and ω. A parallel search plan Σ′ = 〈ζ′, ξ′, α, ω〉 is a parallelization
by subdivision of Σ, if: whenever ζ′((S0 . . . Si), n, k) ∈ I, ζ′((S0 . . . Si), n, k) =
ζ(S0 . . . Si); and ξ′((S0 . . . Si), n, k, f) = ξ((S0 . . . Si), f). C′ = 〈I,M,Σ′〉 is a
parallelization of C = 〈I,Σ〉, if Σ′ is a parallelization of Σ.

3 Monotonicity, fairness and eager contraction

If ζ and ξ can select a certain f and x̄, α needs to be defined on their selection,
and it should not “forget” its decisions when clauses are deleted:

Definition 31 A subdivision function α is total on generated clauses if for all
S0 ⊢ . . . Si ⊢ . . ., k, n, fm and x̄ ∈ (

⋃i

j=0
Sj)

m, α((S0 . . . Si), n, k, f
m, x̄) 6=⊥.

Since it is undesirable that permission changes after it has been decided, α
is required to be monotonic w. r. t. ⊥< false and ⊥< true:

Definition 32 A subdivision function α is monotonic if for all S0 ⊢ . . . Si ⊢ . . .,
n, k, f , x̄, and i ≥ 0, α((S0 . . . Si), n, k, f, x̄) ≤ α((S0 . . . Si+1), n, k, f, x̄).

A strategy is complete if it succeeds whenever S0 is inconsistent. Complete-
ness is made of refutational completeness of the inference system, and fairness
of the search plan [9]. A sufficient condition for fairness is (e.g., [3]):

Definition 33 A derivation S0 ⊢ . . . Si ⊢ . . . is uniformly fair w. r. t. I and R
if I(S∞ −R(S∞)) ⊆

⋃

j≥0
Sj, where S∞ =

⋃

j≥0

⋂

i≥j Si (persistent clauses).

In distributed search a process only needs to be fair with respect to what is
allowed. Since α is monotonic, allowed (∃j α((Sk

0 . . . S
k
j), n, k, f, x̄) = true) is

equivalent to persistently allowed (∃i ∀j ≥ i α((Sk
0 . . . S

k
j), n, k, f, x̄) = true).

Definition 34 A local derivation Sk
0 ⊢ . . . Sk

i ⊢ . . . is uniformly fair w.r.t.
I, R and α, if ϕ ∈ π1(f

m(x̄)), x̄ ∈ (Sk
∞ − R(Sk

∞))m and ∃i ≥ 0 ∀j ≥ i
α((Sk

0 . . . S
k
j), n, k, fm, x̄) = true imply ϕ ∈

⋃

j≥0
Sk

j .

The search plan needs to ensure that for every inference from a tuple of persis-
tent (in S∞ =

⋃n−1

k=0
Sk
∞) non-redundant premises, there is a pk which is allowed

(fairness of subdivision) and has all the premises (fairness of communication):

Definition 35 A parallel derivation Sk
0 ⊢C . . . S

k
i ⊢C . . ., for k ∈ [0, n − 1], by

Σ = 〈ζ, ξ, α, ω〉, is uniformly fair w. r. t. I and R, if:

1. ∀pk, S
k
0 ⊢C . . . S

k
i ⊢C . . . is uniformly fair w. r. t. I, R and α (local fairness).

2. ∀fm ∈ I, ∀x̄ ∈ (S∞ − R(S∞))m, s. t. π1(f
m(x̄)) 6= ∅, ∃ pk s. t. x̄ ∈

(Sk
∞ − R(S∞))m (fairness of communication), and ∃i ≥ 0, s. t. ∀j ≥ i,

α((Sk
0 . . . S

k
j), n, k, fm, x̄) = true (fairness of subdivision).

If Σ is uniformly fair, its parallelization Σ′ inherits local fairness from Σ.

Theorem 31 If a parallel derivation Sk
0 ⊢C . . .⊢C S

k
i ⊢C . . ., for k ∈ [0, n− 1], is

uniformly fair with respect to I and R, then I(S∞ −R(S∞)) ⊆
⋃n−1

k=0

⋃

j≥0
Sk

j .

A sequential strategy is contraction-based if it features contraction rules and
an eager-contraction search plan:

Definition 36 A derivation S0 ⊢I . . . Si ⊢I . . . has eager contraction, if for all
i ≥ 0 and ϕ ∈ Si, if there are fm ∈ IR and x̄ ∈ Sm

i , such that π2(f
m(x̄)) = {ϕ},

then ∃l ≥ i such that Sl ⊢ Sl+1 deletes ϕ, and ∀j, i ≤ j ≤ l, Sj ⊢ Sj+1 is not an
expansion inference, unless the derivation succeeds sooner.

The parallelization of eager contraction is difficult. First, each local deriva-
tion needs to have local eager contraction, which is defined as in Def. 36 with
expansion replaced by expansion or communication. Second, the strategy should
ensure that pk delete eagerly a clause reducible by a premise generated by ph.
This depends on communication:

Definition 37 Let ϕ ∈ S∞−R(S∞) and i be the first stage s. t. ϕ ∈
⋃n−1

h=0
Sh

i . A
parallel derivation has propagation of clauses up to redundancy if ∀ph ∃j ϕ ∈ Sh

j ,

instantaneous propagation of clauses up to redundancy if ∀ph ϕ ∈ Sh
i .

Definition 38 A parallel derivation has distributed global contraction, if for
all pk, i ≥ 0, and ϕ ∈ Sk

i , if there are fm ∈ IR and x̄ ∈ (
⋃n−1

h=0
Sh

i)m such that
π2(f

m(x̄)) = {ϕ}, then ∃l ≥ i such that Sk
l ⊢ Sk

l+1
deletes ϕ, unless pk halts

sooner. It has global eager contraction if, in addition, ∀j, i ≤ j ≤ l, Sk
j ⊢ Sk

j+1

is neither an expansion nor a communication step.

Global eager contraction generalizes eager contraction to parallel derivations,
while distributed global contraction is a weaker requirement which guarantees
contraction, but not priority over expansion. In the presence of communication
delays, pk may use as expansion premise a clause which is reducible with respect
to

⋃n−1

h=0
Sh before it becomes reducible with respect to Sk. Thus, we have:

Lemma 31 Local eager contraction and propagation of clauses up to redun-
dancy (instantaneous propagation of clauses) imply distributed global contraction
(global eager contraction, respectively).

A parallel strategy is contraction-based if it has contraction rules and its
search plan has local eager contraction and distributed global contraction.

Theorem 32 Let C = 〈I,Σ〉 be a contraction-based strategy and C′ with Σ′ =
〈ζ′, ξ′, α, ω′〉 a parallelization by subdivision of C. If Σ′ propagates clauses up to
redundancy, and for all f ∈ IR, i, n, k and x̄, α((Sk

0 . . . S
k
i), n, k, f, x̄) = true,

C′ is also contraction-based.

The requirement that all contractions are allowed to all is strong, especially if
contraction is not only deletion but also deduction (e.g., simplification). Assume
that α forbids contractions, e.g., f(x̄) = ({ψ1, . . . , ψm}, {ϕ1, . . . , ϕp}). Consider
a strategy that lets a process delete the ϕj , but not generate the ψi, when ζ
selects f , ξ selects x̄, and α forbids the step. It is sufficient that at least one
process generates and propagates the ψi to preserve completeness:

Theorem 33 Let C and C′ be as in Theorem 32. If Σ′ propagates clauses up to
redundancy, and whenever ζ((Sk

0 . . . S
k
i), n, k) = f ∈ IR, ξ((Sk

0 . . . S
k
i), n, k, f) =

x̄, α((Sk
0 . . . S

k
i), n, k, f, x̄) = false, it is Sk

i+1 = Sk
i − π2(f(x̄)), C′ is also

contraction-based.

4 Search graphs for parallel search

Given a theorem-proving problem S and an inference system I, the search space
induced by S and I is represented by the hypergraph G(S∗

I) = (V,E, l, h), where
V is the set of vertices, l is a vertex-labelling function l:V → LΘ/

•

= (from
vertices to equivalence classes of variants, so that all variants are associated to a
unique vertex), h is an arc-labelling function h:E → I, and if fm(ϕ1, . . . , ϕm) =
({ψ1, . . . , ψs}, {γ1, . . . , γp}) for fm ∈ I, E contains a hyperarc e = (v1 . . . vn;w1

. . . wp;u1 . . . us) where h(e) = fm, n+ p = m, and

– ∀j 1 ≤ j ≤ n l(vj) = ϕj and ϕj 6∈ {γ1, . . . , γp} (premises not deleted),

– ∀j 1 ≤ j ≤ p l(wj) = γj (deleted premises), and ∀j 1 ≤ j ≤ s l(uj) = ψj

(generated clauses).

W.l.o.g. we consider hyperarcs in the form (v1 . . . vn;w;u). Contraction infer-
ences that purely delete clauses are represented as replacement by true (a dummy
clause such that ∀ϕ ϕ ≻ true), and a special vertex T is labelled by true.

The search graph G(S∗
I) = (V,E, l, h) represents the static structure of the

search space. The dynamics of the search during a derivation is described by
marking functions for vertices and arcs:

Definition 41 A parallel marked search-graph (V,E, l, h, s̄, c̄) for p0, . . . pn−1

has an n-tuple s̄ of vertex-marking functions sk:V → Z such that

sk(v) =







m if m variants (m > 0) of l(v) are present for process pk,

−1 if all variants of l(v) have been deleted by process pk,

0 otherwise;

and an n-tuple c̄ of arc-marking functions ck:E → IN×Bool such that π1(c
k(e))

is the number of times pk executed e or received a clause generated by e, and
π2(c

k(e)) = true/false if pk is allowed/forbidden to execute e.

Hyperarc e = (v1 . . . vn;w;u) is enabled for pk if sk(vj) > 0 for 1 ≤ j ≤ n,
sk(w) > 0, and π2(c

k(e)) = true.

Definition 42 A parallel derivation induces n successions of vertex-marking
functions {sk

i }i≥0, one per process. For all v ∈ V , sk
0(v) = 0, and ∀i ≥ 0:

– If at stage i pk executes an enabled hyperarc e = (v1, . . . , vn;w;u):

sk
i+1(v) =







sk
i (v) − 1 if v = w (−1 if sk

i (v) = 1),

sk
i (v) + 1 if v = u (+1 if sk

i (v) = −1),

sk
i (v) otherwise.

– If at stage i pk receives x̄ = (ϕ1, . . . ϕn), where ϕj = l(vj) for 1 ≤ j ≤ n:

sk
i+1(v) =

{

sk
i (v) + 1 if v ∈ {v1, . . . vn} (+1 if sk

i (v) = −1),

sk
i (v) otherwise.

– If at stage i pk sends x̄, sk
i+1(v) = sk

i (v).

Note that sk
0(v) = 0 also for input clauses: the steps of reading or receiving input

clauses are included in the derivation (read steps can be modelled as expansion
steps), because the subdivision function applies to input clauses.

Definition 43 A parallel derivation induces n successions of arc-marking func-
tions {cki }i≥0: ∀a ∈ E, π1(c

k
0(a)) = 0 and π2(c

k
0(a)) = true, and ∀i ≥ 0:

π1(c
k
i+1(a)) =

{

π1(c
k
i (a)) + 1 if pk executes a or receives a clause generated by a,

π1(c
k
i (a)) otherwise;

π2(c
k
i+1(a)) =

{

α((S0 . . . Si+1), n, k, f, x̄) if α((S0 . . . Si+1), n, k, f, x̄) 6=⊥,

true otherwise (arcs allowed by default),

where h(a) = f and x̄ is the tuple of premises of hyperarc a.

5 Measures of search complexity

Let G = (V,E, l, h) be a search graph. For all v ∈ V , if v has no incoming
hyperarcs, the ancestor-graph of v is the graph made of v itself; if e = (v1 . . . vn; v)
is a hyperarc and t1 . . . tn are ancestor-graphs of v1 . . . vn, the graph with root v
connected by e to t1 . . . tn is an ancestor-graph of v, denoted by (v; e; (t1, . . . , tn)).
(To simplify the notation, we include the deleted premise in v1 . . . vn.) The set of
the ancestor-graphs of v inG is denoted by atG(v) (or atG(ϕ)). From now on,G =
(V,E, l, h, s̄, c̄) is the parallel marked search graph searched by p0, . . . pn−1, G

k =
(V,E, l, h, sk, ck) is the marked search graph for pk and Gk

i = (V,E, l, h, sk
i , c

k
i)

is the marked search graph for pk at stage i of a derivation.
If a relevant ancestor of ϕ in t ∈ atG(ϕ) is deleted by contraction, it becomes

impossible to reach ϕ by traversing t:

Definition 51 Let t = (v; e; (t1 . . . tn)) ∈ atG(v) with e = (v1 . . . vn; v). A vertex
w ∈ t, w 6= v, is relevant to v in t for pk (w ∈ RevGk(t)) if either w ∈ {v1 . . . vn}
and π1(c

k(e)) = 0, or ∃i 1 ≤ i ≤ n s. t. w is relevant to vi in ti for pk.

If π1(c
k(e)) 6= 0 because pk executed e, deleting ψ is irrelevant for ϕ, since ψ has

been already used to generate ϕ. If π1(c
k(e)) 6= 0 because pk received a variant

of ϕ generated by e, deleting ψ is irrelevant for ϕ, since ϕ came from the outside.
Given t ∈ atG(ϕ), the p(ast)-distance measures the portion of t that pk has

visited; the f(uture)-distance measures the portion of t that pk needs to visit to
reach ϕ by traversing t; the g(lobal)-distance is their sum:

Definition 52 For all clauses ϕ, ancestor-graphs t ∈ atG(ϕ) and processes pk:

– The p-distance of ϕ on t for pk is pdistGk(t) = | {w | w ∈ t, sk(w) 6= 0} |.
– The f-distance of ϕ on t for pk is

fdistGk(t) =







∞ if sk(ϕ) < 0, or

∃w ∈ RevGk(t), sk(w) < 0,

| {w | w ∈ t, sk(w) = 0} | otherwise.

– The g-distance of ϕ on t for pk is gdistGk(t) = pdistGk(t) + fdistGk(t).

The f-distance of ϕ in G for pk is fdistGk(ϕ) = min{fdistGk(t) | t ∈ atG(ϕ)}.
The g-distance of ϕ in G for pk is gdistGk(ϕ) = min{gdistGk(t) | t ∈ atG(ϕ)}.

While infinite distance captures the effect of contraction, we consider next
subdivision:

Definition 53 An ancestor-graph t is forbidden for process pk if there exists an
arc e in t such that π1(c

k(e)) = 0 and π2(c
k(e)) = false. It is allowed otherwise.

If pk receives the clause that e generates, it is π1(c
k(e)) 6= 0, and t is no

longer forbidden, because it is no longer true that forbidding e prevents pk from
exploring t. This may happen only as a consequence of communication, because

e cannot be executed. Thus, subdivision forbids ancestor-graphs, reducing the
search effort of each process, but communication may undo it. Indeed, a strategy
employs communication to preserve fairness in presence of a subdivision. For
fairness, it is sufficient that every non-redundant path is allowed to one process.
If more than one process is allowed, their searches may overlap:

Definition 54 pk and ph overlap on ancestor-graph t if t is allowed for both.

An overlap represents a potential duplication of search effort, hence a waste. A
goal of a parallel search plan is to preserve fairness while minimizing the overlap.

Definition 55 The bounded search space within distance j for pk is the multiset
of clauses space(Gk, j) =

∑

v∈V,v 6=T
mulGk(v, j) · l(v), where each l(v) has mul-

tiplicity mulGk(v, j) = |{t | t ∈ atG(v), t allowed for pk, 0 < gdistGk(t) ≤ j}|.

The sequential bounded search spaces space(G, j) are defined in the same
way, with multiplicity mulG(v, j) = |{t | t ∈ atG(v), 0 < gdistG(t) ≤ j}|.

Definition 56 The parallel bounded search space within distance j is the mul-
tiset of clauses pspace(G, j) =

∑

v∈V,v 6=T
pmulG(v, j) · l(v), where l(v) has mul-

tiplicity pmulG(v, j) = ⌊gmulG(v, j)/n⌋ with gmulG(v, j) =
∑n−1

k=0
mulGk(v, j).

If ph and pk overlap on an ancestor-graph t, t is counted in both mulGh(v, j)
and mulGk(v, j) and twice in gmulG(v, j), reflecting the overlap.

Theorem 51 If α is the constant function true (no subdivision), and no com-
munication occurs, then for all pk, i ≥ 0 and j > 0, space(Gk

i , j) = space(Gi, j),
and pspace(Gi, j) = space(Gi, j).

6 The analysis

In a sequential derivation, if a clause ϕ is deleted at stage i and regenerated
via another ancestor-graph at some stage j > i, a contraction-based strategy
will delete it again, and will do so before using ϕ to generate other clauses [10].
It follows that when ϕ is re-deleted, it is still relevant on all ancestor-graphs
where it was relevant at stage i. Therefore, it is possible to make the following
approximation: if fdistGk

i
(t) is infinite, fdistGk

j
(t) can be regarded as infinite for

all j > i. In a parallel derivation, the situation is more complex. First, we need
to consider not only the possibility that a process pk regenerates ϕ via another
ancestor-graph, but also the possibility that pk receives another variant of ϕ from
another process, which may not be aware that ϕ is redundant. Second, we need
to consider not only deleted clauses, but also clauses such that fdistGk

i
(ϕ) = ∞

because a relevant ancestor has been deleted on every t ∈ atG(ϕ). In a sequential
derivation, it is impossible for ϕ to appear at some j > i, because it cannot be
generated, but in a parallel derivation, ϕ may still be received from another
process at some j > i. Thus, we prove a more general result:

Lemma 61 In a derivation with local eager contraction, for all pk, i, and ϕ, if
fdistGk

i
(ϕ) = ∞ (regardless of whether ϕ is deleted or made unreachable) and

sk
j (ϕ) > 0 for some j > i (regardless of whether ϕ is received or regenerated),

there exists a q > j, such that sk
q(ϕ) < 0 (hence fdistGk

q
(ϕ) = ∞), and pk does

not use ϕ to generate other clauses at any stage l, j ≤ l < q.

Therefore, we can make the approximation that fdistGk
i
(ϕ) = ∞ implies

∀j > i fdistGk
j
(ϕ) = ∞. This takes care of clauses that the strategy finds

redundant. Consider a non-redundant clause ϕ and an ancestor-graph t of ϕ
such that fdistGk

i
(t) = ∞ because sk

i (ψ) = −1 for a relevant ancestor ψ in t.
For simplicity, let ψ be a parent of ϕ, with arc e from ψ to ϕ. Assume that ph has
not deleted ψ, executes e, and sends to pk a ϕ generated by e. The arrival of ϕ
at some stage r > i makes ψ irrelevant (π1(c

k
r (e) = 1), so that fdistGk

r
(t) 6= ∞.

There is irrelevance of contraction at ph, because the clause(s) that contract ψ do
not arrive at ph fast enough to delete ψ before it is used to generate ϕ. When ph

finally deletes ψ, this deletion is irrelevant to t, because ph has already executed
e: we call this phenomenon late contraction. There is irrelevance of contraction
at pk, because the arrival of ϕ from ph makes the deletion of ψ irrelevant: we call
this phenomenon contraction undone. Distributed global contraction guarantees
that ph will delete ψ eventually, so that sh

j (ψ) = −1 for some j > i. It is sufficient
that ph executes e and generates ϕ at a stage l < j, and ϕ arrives at pk at a
stage r > i, for this situation to occur. Thus, distributed global contraction is
not sufficient to prevent late contraction and contraction undone.

The following theorems integrate all our observations on subdivision, con-
traction and communication:

1. If Sk
i ⊢ Sk

i+1 generates ψ, then ∀j > 0, space(Gk
i+1, j)�mul space(G

k
i , j).

When ψ is generated, the subdivision function α may become defined on a
tuple of premises x̄ including ψ. If α decides that an arc e with premises
x̄ is forbidden, ancestor-graphs including e become forbidden, so that the
bounded search spaces become smaller.

2. If Sk
i ⊢ Sk

i+1 replaces ψ by ψ′, then ∀j > 0, space(Gk
i+1, j)�mul space(G

k
i , j).

A contraction step replacing ψ by ψ′ prunes those ancestor-graphs whose
distance becomes infinite because of the deletion of ψ, and those ancestor-
graphs which become forbidden as a consequence of the generation of ψ′.

3. If Sk
i ⊢ Sk

i+1 sends ψ, then ∀j > 0, space(Gk
i+1, j) = space(Gk

i , j). If
Sk

i ⊢ Sk
i+1 receives ψ, ∀j > 0, ∃ l ≤ i, space(Gk

i+1, j)�mul space(G
k
l , j).

When pk receives ψ, there may be three kinds of consequences: allowed
ancestor-graphs may become forbidden (subdivision), reducing the multi-
plicity of some clauses; forbidden ancestor-graphs may become allowed (sub-
division undone) and relevant deleted ancestors may become irrelevant (con-
traction undone), increasing the multiplicity of some clauses. However, since
communication cannot expand the bounded search spaces, but only undo
previous reductions, the resulting bounded search spaces are limited by the
bounded search spaces at some previous stage.

These theorems show that the bounded search spaces capture all relevant phe-
nomena: pruning by contraction, subdivision and cost of communication. While
in a sequential derivation the bounded search spaces may either remain the same
(expansion) or decrease (contraction), in a parallel derivation the bounded search
spaces of a process may oscillate non-monotonically because of communication.
The faster is communication, however, the lesser is the incidence of late con-
traction and contraction undone; at the limit, if the strategy has instantaneous
propagation of clauses up to redundancy, they disappear:

Lemma 62 In a derivation with local eager contraction and instantaneous prop-
agation of clauses up to redundancy, let e be an arc of t ∈ atG(ϕ) which uses ψ
and generates ψ′ ∈ S∞ −R(S∞). If sk

i (ψ) = −1 and ψ ∈ RevGk
i
(t) for some pk:

1. ∀ph, ∀j, sh
j (ψ) = −1 implies ψ ∈ RevGh

j
(t) (what is relevant to one process

is relevant to all: no late contraction).
2. ∀j ≥ i, ψ ∈ RevGk

j
(t) (what is relevant at a stage remains relevant at all

following stages: no contraction undone).

The approximation fdistGk
i
(t) = ∞ ⇒ ∀j > i fdistGk

j
(t) = ∞ can be made:

Theorem 61 In a derivation with local eager contraction and instantaneous
propagation of clauses up to redundancy, if fdistGk

i
(t) = ∞ and fdistGk

j
(t) 6= ∞

for some 0 < i < j, there exists a q > j such that fdistGk
q
(t) = ∞.

Next, we turn our attention to the overlap. We observe that two overlap-
ping processes may generate variants of the same clause. The following property
prevents different processes from generating variants of the same clause:

Definition 61 A subdivision function α has no clause-duplication if for all ver-
tices u 6= T, for any two hyperarcs into u, e1 with inference rule f and premises x̄,
and e2 with inference rule g and premises ȳ, ∀i ≥ 0, if α((S0, . . . Si), n, k, f, x̄) =
true and α((S0, . . . Si), n, h, g, ȳ) = true, then k = h.

This property is compatible with fairness, for which one allowed process is
sufficient. We show next that the combination of no clause-duplication and local
eager contraction minimizes the overlap. There are two kinds of overlap: one
caused by the subdivision function itself when it allows the same arc to more
than one process, and one caused by communication (e.g., π2(c

k(e)) = true and
π2(c

h(e)) = false but π1(c
h(e)) 6= 0). No clause-duplication avoids the first

kind of overlap by definition. For the second one, assume that pk is the only
process authorized to generate all variants of ϕ. By local eager contraction, if pk

generates more than one variant of ϕ, all but one are deleted before being sent
to any other process. Thus, pk may send to another process only one variant,
and the same variant to all processes, so that:

Lemma 63 In a derivation with local eager contraction and no clause-duplica-
tion, for any clause ϕ, if ph is the only process allowed to generate ϕ, ∃r such
that ∀k 6= h, ∀i ≥ r, ∀j > 0, mulGk

i
(ϕ, j) ≤ 1 (i.e, communication may make at

most one forbidden ancestor-graph allowed).

We have all the elements to compare a contraction-based, uniformly fair
strategy C = 〈I,Σ〉 with a parallelization by subdivision C′ = 〈I,M,Σ′〉, which
is uniformly fair and contraction-based. Since C and C′ have the same inference
system, the initial search space is the same (i.e., Gk

0 = G0 and space(Gk
0 , j) =

space(G0, j) for all k and j). We compare first the behaviour on redundant
clauses, next on ancestor-graphs including redundant inferences, and then on
the remaining ancestor-graphs. We begin by proving three preliminary lemmas:

1. If ϕ ∈ Si for some i, then ∃pk ∃j such that either ϕ ∈ Sk
j or ϕ ∈ R(Sk

j).

2. If ϕ ∈ R(Si) for some i, then ∀pk ∃j such that ϕ ∈ R(Sk
j).

3. If fdistGi
(ϕ) = ∞ for some i, then ∀pk ∃j s. t. ∀l ≥ j, either fdistGk

l
(ϕ) =

∞, or all t ∈ atG(ϕ) are forbidden for pk at stage l.

These allow us to show that all redundant clauses eliminated by C will be ex-
cluded by C′ as well:

Theorem 62 If fdistGi
(ϕ) = ∞ for some i, then there exists an r such that

for all i ≥ r and j > 0, pmulGi
(ϕ, j) = 0.

To show that all ancestor-graphs pruned by C are pruned by C′, we need to
use Lemma 62 to prevent late contraction and contraction undone, and this can
be done only under the hypothesis of instantaneous propagation of clauses:

Lemma 64 Assume that C′ has instantaneous propagation of clauses up to re-
dundancy. If fdistGi

(t) = ∞ for some i, then for all pk there exists a j such
that for all l ≥ j, either fdistGk

l
(t) = ∞, or t is forbidden for pk at stage l.

The final lemma covers ancestor-graphs that are not pruned. Thus, we need
a hypothesis on subdivision, and we assume that C′ has no clause-duplication:

Lemma 65 Assume that C′ has instantaneous propagation of clauses up to re-
dundancy and no clause-duplication. If fdistGi

(ϕ) 6= ∞ for all i, there exists an
r such that for all i ≥ r and j > 0, pmulGi

(ϕ, j) ≤ mulGi
(ϕ, j).

Theorem 63 If C′ has instantaneous propagation of clauses up to redundancy
and no clause-duplication, ∀j ∃m s. t. ∀i ≥ m pspace(Gi, j)�mul space(Gi, j).

Intuitively, a value j of the bound may represent the search depth required to
find a proof. If the problem is hard enough that the sequential strategy does
not succeed before stage m, the parallel strategy faces a smaller bounded search
space beyond m, and therefore may succeed sooner.

Theorem 63 is a limit theorem, in a sense similar to other theoretical results
obtained under an ideal assumption. On one hand, it explains the nature of
the problem, by indicating in the overlap and the communication-contraction
node its essential aspects. On the other hand, it represents a limit that concrete
strategies may approximate by improving overlap control and communication.

7 Discussion

If it had been possible to prove that a contraction-based parallelization has
smaller bounded search spaces without assuming instantaneous communication,
there would have been a ground to expect a generalized success of distributed
search, at least to the extent to which smaller bounded search search spaces
mean shorter search. However, we found that this type of result does not hold.
Therefore, a distributed-search contraction-based strategy may do better than its
sequential counterpart, but it is not guaranteed to. When adopting distributed
search, one expects that communication will have a cost, and contraction may
be delayed. The trade-off is to accept these disadvantages in order to avoid
synchronization (a method where parallel processes have to synchronize on every
inference in order to enforce eager contraction would be hopeless). Also, one may
conjecture that the advantage of subdivision will offset the cost of communication
in terms of delayed contraction. Our analysis showed that this conjecture does
not hold on the bounded search spaces. In summary, this analysis contributes to
explain why the parallelization of efficient forward-reasoning strategies has been
an elusive target. Furthermore, the explanation is analytical, rather than based
solely on empirical observations.

So little is known about complexity in theorem proving, and strategy analysis,
however, that these findings should be regarded as a beginning, not a conclusion.
In this paper we have tried essentially to determine whether distributed search
may make the search space smaller by doing at least as much contraction as
the sequential process and adding the effect of the subdivision. Accordingly, we
have compared bounded search spaces by comparing the multiplicities of each
clause. It remains the question of whether distributed search may take advan-
tage by performing steps in different order, especially contraction steps, hence
producing different search spaces. Thus, a first direction for further research
may be to find other ways to compare the bounded search spaces, which may
shed light on other aspects, and possibly other advantages, of distributed search.
Another direction for future work is to apply the bounded search spaces to an-
alyze multi-search contraction-based strategies. These issues may be connected
to, or even require, the continuation of the analysis of sequential contraction-
based strategies. In [10], we compared strategies with the same search plan and
inference systems different in contraction power. The complementary problem
of analyzing sequential strategies with the same inference system but different
search plans still needs to be addressed. Finally, we have considered only forward-
reasoning strategies; another line of research is to extend our methodology to
subgoal-reduction strategies, such as those based on model elimination.

References

1. S. Anantharaman and M. P. Bonacina. An application of automated equational
reasoning to many-valued logic. In M. Okada and S. Kaplan, editors, CTRS-90,
volume 516 of LNCS, pages 156–161. Springer Verlag, 1990.

2. S. Anantharaman and J. Hsiang. Automated proofs of the Moufang identities in
alternative rings. J. of Automated Reasoning, 6(1):76–109, 1990.

3. L. Bachmair and H. Ganzinger. Non-clausal resolution and superposition with
selection and redundancy criteria. In A. Voronkov, editor, LPAR-92, volume 624
of LNAI, pages 273–284. Springer Verlag, 1992.

4. L. Bachmair and H. Ganzinger. A theory of resolution. Technical Report MPI-I-
97-2-005, Max Planck Institut für Informatik, 1997.

5. M. P. Bonacina. On the reconstruction of proofs in distributed theorem proving: a
modified Clause-Diffusion method. J. of Symbolic Computation, 21:507–522, 1996.

6. M. P. Bonacina. Experiments with subdivision of search in distributed theorem
proving. In M. Hitz and E. Kaltofen, editors, PASCO-97, pages 88–100. ACM
Press, 1997.

7. M. P. Bonacina. Distributed contraction-based strategies: model and analysis.
Technical Report 98-02, Dept. of Computer Science, University of Iowa, 1998.

8. M. P. Bonacina and J. Hsiang. Parallelization of deduction strategies: an analytical
study. J. of Automated Reasoning, 13:1–33, 1994.

9. M. P. Bonacina and J. Hsiang. Towards a foundation of completion procedures as
semidecision procedures. Theoretical Computer Science, 146:199–242, 1995.

10. M. P. Bonacina and J. Hsiang. On the modelling of search in theorem proving –
Towards a theory of strategy analysis. Information and Computation, forthcoming,
1998.

11. R. Bündgen, M. Göbel, and W. Küchlin. Strategy-compliant multi-threaded term
completion. J. of Symbolic Computation, 21:475–506, 1996.

12. J. Denzinger and S. Schulz. Recording and analyzing knowledge-based distributed
deduction processes. J. of Symbolic Computation, 21:523–541, 1996.

13. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 243–320. Elsevier,
Amsterdam, 1990.

14. D. Kapur and H. Zhang. An overview of RRL: rewrite rule laboratory. In N. Der-
showitz, editor, 3rd RTA, volume 355 of LNCS, pages 513–529. Springer Verlag,
1989.

15. C. Kirchner, C. Lynch, and C. Scharff. Fine-grained concurrent completion. In
H. Ganzinger, editor, 7th RTA, volume 1103 of LNCS, pages 3–17. Springer Verlag,
1996.

16. A. Leitsch. The Resolution Calculus. Springer, Berlin, 1997.
17. W. McCune. Otter 3.0 reference manual and guide. Technical Report 94/6, MCS

Div., Argonne Nat. Lab., 1994.
18. W. McCune. Solution of the Robbins problem. J. of Automated Reasoning,

19(3):263–276, 1997.
19. D. A. Plaisted. Equational reasoning and term rewriting systems. In D. Gabbay

and J. Siekmann, editors, Handbook of Logic in Artificial Intelligence and Logic
Programming, pages 273–364. Oxford University Press, New York, 1993.

20. D. A. Plaisted and Y. Zhu. The Efficiency of Theorem Proving Strategies. Friedr.
Vieweg & Sohns, 1997.

21. C. B. Suttner and J. Schumann. Parallel automated theorem proving. In L. Kanal,
V. Kumar, H. Kitano, and C. B. Suttner, editors, Parallel Processing for Artificial
Intelligence. Elsevier, Amsterdam, 1994.

22. A. Urquhart. The complexity of propositional proofs. Bulletin of Symbolic Logic,
1:425–467, 1995.

