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Abstract
We characterize axiomatically a new index of urban poverty that i) captures aspects of the
incidence and distribution of poverty across neighborhoods of a city, ii) is related to the Gini
index and iii) is consistent with empirical evidence that living in a high poverty neighbor-
hood is detrimental for many dimensions of residents’ well-being. Widely adopted measures
of urban poverty, such as the concentrated poverty index, may violate some of the desirable
properties we outline. Furthermore, we show that changes of urban poverty within the same
city are additively decomposable into the contribution of demographic, convergence, re-
ranking and spatial effects. We collect new evidence of heterogeneous patterns and trends
of urban poverty across American metro areas over the last 35 years.

Keywords Concentrated poverty · Axiomatic · Gini · Decomposition · Census · ACS ·
Spatial

1 Introduction

Much of the literature studying economic inequality has focused on the distribution of
income at national or regional level. Inequality at urban level is also important (Glaeser
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et al. 2009). In America, for instance, cities are among the most unequal places in the coun-
try (Moretti 2013; Baum-Snow and Pavan 2013). Over the last three decades, urban income
inequality has increased substantially in most of American metro areas (Watson 2009),
albeit heterogeneously across cities. Inequality within and across neighborhoods is sub-
stantial (Wheeler and La Jeunesse 2008) and increasingly related to the trends of citywide
income inequality, with low and high income households living in close spatial proximity
(Andreoli and Peluso 2018).

Poverty is a key driver of income inequality in American cities. The urban poor pop-
ulation, i.e. the individuals living in households with aggregate income below the federal
income poverty line and who reside in cities, has increased from 25.4 mln in 1980 to 31.1
mln in 2000 and up to 43.7 mln in the 2012-2016 period (estimates based on Census and
American Community Survey data). These figures correspond to about 11% of the popu-
lation before 2000, rapidly increasing to 14.9% after the Great Recession. The geography
of poverty has also evolved over the same period. The number of census tracts displaying
extreme poverty (where at least 40% of the population is poor) has almost doubled since
2000 (rising from 2,510 to 4,412 in 2013), offsetting demographic growth of about 11%
during the same period (Jargowsky 1997, 2015).

In this paper, we study the spatial distribution of poverty across neighborhoods of a
city. The goal is to establish a measurement apparatus for assessing the extent of urban
poverty displayed by a city, a concept encompassing concerns for incidence of poverty in the
city, as well as for the unequal distribution of poverty across neighborhoods. We outline an
axiomatic approach which characterizes a new parametric index, mapping the distribution
of poor and non-poor population across neighborhoods of a city into a number, which is the
level of urban poverty displayed by that city. Alternative measures of urban poverty widely
adopted in the literature and in policy analysis alike may violate some of the axioms we
outline.

One of such measures is the concentrated poverty index. The index, introduced byWilson
(1987), is the share of a metro area’s poor population (identified by an exogenous income
poverty line) that lives in neighborhoods where poverty is extremely concentrated. Accord-
ing to the American Census Bureau, these neighborhoods qualify as places where more
than 20% (or 40% in places where poverty is extremely concentrated) of the resident pop-
ulation is poor. A number of contributions (Jargowsky and Bane 1991; Massey et al. 1991;
Jargowsky 1997; Kneebone 2016; Iceland and Hernandez 2017) have documented the pat-
terns and drivers of concentrated poverty across American metro areas. After a decline of
concentrated poverty in the 1990s, the 2000s and 2010s have witnessed a re-concentration
of poverty, rising from 11% to 14.1% in the largest 100 American metro areas. Patterns are
heterogenous across metro areas and depend on differences in the size, geographic location,
income inequality alongside the degree of income and ethnic segregation in the city.

In a urban context, an uneven distribution of poverty across neighborhoods is a relevant
dimension of collective well-being. In fact, in cities where poverty is highly concentrated in few
neighborhoods, poor residents living therein are overexposed to poverty, thus likely suffering
the consequences of a double burden of poverty related to its geographic distribution. Evidence
of negative effects of poverty concentration at neighborhood level has been found on a variety
of relevant individual outcomes, such as health (Ludwig et al. 2011, 2013), labor market attach-
ment (Conley and Topa 2002), individual well-being (Ludwig et al. 2012) and the economic
opportunities of future generations (Chetty et al. 2016; Chetty and Hendren 2018).1

1See Oreopoulos (2003) for a critical assessment.
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A way to formalize the spillover effect of concentrated poverty is to assume that individ-
ual well-being depends on household characteristics (such as poverty status) alongside the
proportion of poor in the neighborhood (as in Bayer and Timmins 2005), and well-being is
decreasing in this proportion. The larger the share of population exposed to high-poverty
neighborhoods, the stronger urban poverty impacts collective well-being (all else equal).
A urban poverty measure which is consistent with this view should not register less urban
poverty when the share of poor population living in extreme poverty neighborhoods rises,
even if this increment originates from a reduction of the incidence of poverty in neigh-
borhoods where poverty is less extreme. Using simple counterexamples, we show that the
concentrated poverty index may violate this intuitive principle (see also Massey and Eggers
1990; Jargowsky 1996).

This paper addresses this measurement concern and introduces a new measure of
urban poverty, that is inspired by inequality analysis and is consistent with the intuitive
requirement outlined above. Our measure weights three components of urban poverty that
positively contribute to it: first, the incidence of poor residents in high poverty neigh-
borhoods; second, the inequality in the distribution of poverty within the cluster of high
poverty neighborhoods; third, the extent of inequality in the distribution of poor residents
across high poverty and low poverty neighborhoods. The index we characterize shares fea-
tures in common with prominent members of the class of rank-dependent poverty measures
(Bosmans 2014; Ebert 2010; Sen 1976)2 and addresses robustness concerns about the way
high and low poverty neighborhoods are defined (a related point is raised in Shorrocks 1995;
Thon 1979). We organize our results in Section 3, whereas Section 2 provides the setting.

When the focus is on the distribution of poverty across the whole city, the urban poverty
index is shown to converge to a Gini-type index. In this case, we demonstrate that the lon-
gitudinal variation in urban poverty is additively and non-parametrically decomposable into
the contribution of demographic growth, of poverty convergence across neighborhoods and
of spatial association in poverty changes (Section 4). The decomposition is relevant for
assessing whether urban poverty is mostly driven by neighborhoods that are spatially clus-
tered, unveiling local poverty traps that can potentially reinforce the double burden effects
of poverty concentration, or rather urban poverty is idiosyncratic to the neighborhoods
characteristics.

In Section 5, we employ our measurement apparatus to assess the dynamics of poverty
across all American metro areas over the last 35 years, exploiting rich data from the Cen-
sus and the American Community Survey (ACS). Our main findings are that: i) American
metro areas display strong heterogeneity in urban poverty patterns; ii) Urban poverty has
not evolved significantly over the 35 years and has been hardly affected by the Great Reces-
sion burst, contrary to the rising trends of concentrated poverty; iii) Both re-ranking and
convergence components of urban poverty changes are substantial across metro areas, indi-
cating the role of changes in neighborhood poverty composition; iv) The spatial component
of urban poverty is negligible for the large majority of cities, but very significant in largest
metro areas where clustering of high-poverty neighborhoods seems to be an issue.

Section 6 concludes with a discussion.

2Bosmans (2014) suggested a new criterion to compare poverty measures in terms of distribution-sensitivity
to income transfers among poor individuals. This distribution-sensitivity criterion is based on “lossy”
transfers and is useful to rank many of the best-known rank-dependent poverty measures.
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2 Measuring urban poverty

2.1 Setting

For any given city, we consider a partition of the urban space into n neighborhoods. In
empirical analysis, neighborhoods can coincide with an administrative division of the ter-
ritory, such as the partition of American cities into census tracts. We take the partition into
neighborhoods as given, and we study the distribution of poor and non-poor people therein.

Let i ∈ {1, . . . , n}, with n a positive natural number, denote a neighborhood of a city and
Ni ∈ R+ be the individuals living in that neighborhood, with N = ∑n

i=1 Ni .3 An individual
is poor when living in a household whose total disposable income is smaller than an exoge-
nous poverty threshold (such as the federal income poverty line provided by the American
Census Bureau), calculated in a given year for that specific type of household (for instance,
depending on the size and the age structure). The analysis of urban poverty is hence con-
ditional on the definition of poverty status, which we take as given. In our application, for
instance, residents are poor if they live in households with an equivalent income smaller
than 100% of the federal poverty line. Furthermore, let Pi denote the number of poor indi-
viduals living in neighborhood i, while P = ∑n

i=1 Pi is the number of poor individuals
in the city. A urban poverty configuration is a collection of counts of poor and non-poor
individuals distributed across neighborhoods and is denoted by A = {PA

i , NA
i }ni=1, with

average incidence PA/NA. In what follows, a configuration always represents a city in a
given year, and we use superscripts to indicate a specific urban poverty configuration only
when disambiguation is needed.

The ratio Pi

Ni
measures the incidence of poverty in neighborhood i. The ratio P

N
measures

instead the incidence of poverty in the city, and is equivalent to the average of poverty
incidences across neighborhoods, weighted by the respective population proportions, i.e.
P
N

= ∑n
i=1

Ni

N
Pi

Ni
. We use ζ ∈ [0, 1) to define a urban poverty threshold, which is a cutoff

point that allows to identify the neighborhoods where poverty is over-concentrated. The
urban poverty threshold incorporates an exogenous normative judgment about the level of
poverty concentration that can be tolerated in a given neighborhood: when Pi

Ni
≥ ζ then

poverty in neighborhood i exceeds the tolerance level and contributes to urban poverty. In
this case, neighborhood i is addressed to as a highly concentrated poverty neighborhood.
When ζ = 0, tolerance is set to a minimum, indicating that every neighborhood of the city
contributes to generate urban poverty.

For a given urban poverty threshold ζ , neighborhoods can be ranked by poverty incidence
in non-increasing order: P1

N1
≥ P2

N2
≥ . . . ≥ Pz

Nz
≥ ζ >

Pz+1
Nz+1

≥ . . . Pn

Nn
. For simplic-

ity, labels 1, 2, . . . , n are assumed to coincide with the ranks of neighborhoods, ordered
by non-increasing poverty incidence. Among all neighborhoods in the city, z identifies
the neighborhood where poverty incidence is the closest to the urban poverty thresh-
old. The neighborhood z serves as a benchmark. In fact, poverty is over-represented in
neighborhoods i ∈ {1, . . . , z}.

In this paper, the urban poverty threshold is exogenously given and represents a norma-
tive stance about the maximum level of poverty which can be tolerated in a neighborhood

3In order to simplify the exposition population aggregates are assumed to take real values. The assumption
accommodates the case where representative population counts are estimated from underlying sample data
(such as in the American Community Survey).
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Fig. 1 Urban poverty curve and concentrated poverty

without triggering poverty concentration. The Census Bureau, for instance, makes use of
the 20% and 40% thresholds to identify places where poverty is highly concentrated and
ghettoes, respectively. As a result, if a city displays higher poverty incidence on average
than another, then that city should also display larger deviations from the urban poverty
threshold, hence larger urban poverty: even if poor people are evenly spread across neigh-
borhoods, residents in the first city have larger chances to be exposed to poverty in their
neighborhoods compared to residents in the second city (for a discussion, see Ravallion and
Chen 2011).

2.2 Concentrated poverty and its critical aspects

A convenient way to represent the distribution of the poor population in the city is to plot
the cumulative proportion of the poor against the proportion of the overall population living
in the neighborhoods displaying higher incidence of poverty, i.e. ranked by decreasing Pi

Ni
.

The cumulative proportion of poor people in neighborhood j is given by
∑j

i=1
Pi

P
and

the cumulative proportion of residents therein is
∑j

i=1
Ni

N
. Consider plotting points with

coordinates
(∑j

i=1
Ni

N
,
∑j

i=1
Pi

P

)
with j = 1, . . . , n on a graph. The curve starting from

the origin and interpolating these points is a concentration curve denoted the urban poverty
curve. The urban poverty curve of an hypothetical configuration A is reported in panel (a)
of Fig. 1. Its graph is concave and always lies above the unit square diagonal, implying
that in configurationA there are neighborhoods with poverty incidence smaller than P

N
and

other neighborhoods with poverty incidence greater than P
N
.4

4This curve can be interpreted as the Lorenz curve of the distribution of poor population proportions Pi

Ni

across the city neighborhoods, each weighted by Ni

N
. The curve of a configuration in which poor people are

evenly spread across neighborhoods of the city, that is Pi

Ni
= P

N
for every neighborhood i, coincides with the

unit square diagonal. For simplicity, we assume that the city has many neighborhoods that differ in terms of
poverty shares, so that the urban poverty curve appears smooth.
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The lack of intersections of urban poverty curves is a natural criterion to rank distribu-
tions by the degree of urban poverty they display. If the urban poverty curve of configuration
B lies nowhere below and somewhere above that of A, then any proportion of the
population living in high-poverty neighborhoods in B is systematically exposed to a larger
fraction of poverty than the corresponding population proportion inA.

In our graphical analysis, we always assume that the distributions under comparison

display the same poverty incidence, i.e. PA

NA = PB

NB . In this case, the urban poverty threshold

could be expressed in relative terms as ζ = α P
N
, where α ≥ 0 is a parameter expressing

a normative view about sensitivity of urban poverty to the incidence of poverty in the city.
Larger values of α imply that urban poverty evaluations should focus on neighborhoods
where poverty is highly concentrated. The coefficient α straightforwardly relates to the

urban poverty curve. For instance, in a city with PA

NA = 0.2, one can set α = 2 to have
ζ = 0.4. On the graph, the coefficient α gives the slope of a line tangent to the urban poverty
curve, as in Fig. 1, panel (a). The tangent point identifies the neighborhood z displaying

poverty incidence of about ζ = 2 PA

NA , the urban poverty threshold.5

Urban poverty curves are also related to the measurement of concentrated poverty, which
is identified by the index CP(A) := ∑z

i=1
Pi

P
. The index coincides with the level of the

curve at abscissa
∑z

i=1
Ni

N
. Graphically, it is identified by the length of the vertical line

segment on the same figure. The index CP measures the proportion of poor people who
live in high-poverty neighborhoods, defined according to the threshold ζ . According to the
American census, concentrated poverty corresponds to the proportion of poor residents that
live in census tracts where at least 20% or 40% of inhabitants fall below the urban poverty
threshold (i.e., ζ = 0.2 or ζ = 0.4 respectively).

The concentrated poverty index misses some important aspects of the distribution of
poverty across the city neighborhoods and, as a consequence, it may rank cities inconsis-
tently with non-intersecting urban poverty curves. Panel (b) of Fig. 1 draws an example. In

the figure we consider two configurations A and B where PB

NB = PA

NA . The distribution of
poverty across the neighborhoods of city B is more uneven than that in city A, in the sense
that in B a larger fraction of the poor population is concentrated in high poverty neighbor-
hoods, compared toA. As a consequence, the urban poverty curve of the former lies always
above that of the latter. Nonetheless, CP(B) < CP(A) for α = 2.

In this paper, we introduce a new urban poverty index which is inspired by social
welfare and inequality analysis and is consistent with the ranking of configurations pre-
dicted by non-intersecting urban poverty curves. The index we study compounds, with
proper normative weights, two aspects of the spatial distribution of poverty: on the one
hand, the extent of poverty incidence in places where poverty is highly concentrated; on
the other hand, aspects of the distribution of poverty among high poverty neighborhoods
as well as across high and low poverty neighborhoods. Both components positively con-
tribute to urban poverty. While the former component has to do with the incidence of
poverty among neighborhoods 1, . . . , z, the latter component captures inequality in the

5To see this, denote with δx and δy variations in the coordinates of the urban poverty curves on the horizontal
and vertical axis. Moving along the curve from the tangency point implies δx = Nz/N and δy = Pz/P

which gives the slope of the curve δy/δx = Pz

Nz

N
P

≈ α.
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distribution of poverty proportions P1
N1

, . . . ,
Pz

Nz
and is related to the Gini coefficient G(.; ζ )

defined here:6

G(.; ζ ) := 1

2
∑z

i=1 Pi/
∑z

i=1 Ni

z∑

i=1

z∑

j=1

Ni Nj
(∑z

i=1 Ni

)2

∣
∣
∣
∣
Pi

Ni

− Pj

Nj

∣
∣
∣
∣. (1)

Our analysis relates to other contributions highlighting weaknesses of the concentrated
poverty. For instance, Massey and Eggers (1990) suggest valuing the intensity and the dis-
tribution of poverty in the city as relevant aspects generating the double burden of poverty.
The approach they propose, considers mixtures of dissimilarity and interaction indices, is
interesting and related to the urban poverty curve ordering, but it is not based on normative
grounds. In the next section, we provide a parsimonious axiomatic approach incorporating
the idea that poverty concentration gives rise to a double burden of poverty.

3 A characterization result

3.1 Axioms

Denote the set of admissible urban poverty configurations � = ⋃
n∈N �(n) with �(n) :=

{Pi,Ni}ni=1. A urban poverty index is a function UP (A; ζ ) : � × [0, 1) → R+ assigning
a non-negative real number to a configuration A ∈ �(n), interpreted as the level of urban
poverty in that configuration. We write UP(.; ζ ) to explicitly recall that the measurement
of urban poverty is conditional on the exogenous urban poverty threshold ζ . We develop an
axiomatic approach for the measurement of urban poverty.

A convenient way to incorporate concerns for the effects of a transfer of poverty oper-
ation on the measured level of urban poverty is to focus on urban poverty indices that

explicitly depend on the urban poverty shortfall
(

Pi

Ni
− ζ

)
. The shortfall is non-negative in

every neighborhood i where poverty is highly concentrated (that is, i ≤ z) and increases as
the proportion of poor residents Pi

Ni
grows.7

The first axiom introduces structure. It assumes that for any configuration A ∈ � and
urban poverty threshold ζ ∈ [0, 1), UP(A; ζ ) is a normalized (weighted) average of urban
poverty shortfalls of each highly concentrated poverty neighborhood with Pi

Ni
≥ ζ , where

each of these neighborhoods is weighted according to its position in the ordered distribution
of poor neighborhoods and on population shares N1

N
, . . . , Nn

N
. The whole measure is scaled

according to a normalization factor that depends on the aggregate statistics. The aggregate
normalization and the neighborhoods weighting function are continuous in their arguments.
Let �n denote the unit simplex in the n-dimensional space whose elements are all positive,
that is �n := {d1, d2, ..., dn : di > 0,

∑n
i=1 di = 1 f or i = 1, 2, ..., n}. To ease notation,

we also denote Nz = ∑z
i=1 Ni and P z = ∑z

i=1 Pi , while N+ is the set of positive natural
numbers.

6The index G(.; ζ ) is related to the area comprised between the urban poverty curve and the unit square
diagonal, up to a proportion

∑z
i=1

Ni

N
of the overall population. A related index adopted in income inequality

analysis is discussed in Zoli (1999) and Andreoli (2018).
7Notice that the urban poverty shortfall could never exceed zero if ζ = 1. To avoid such situation, we
maintain that ζ < 1.
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Axiom (AGG)regation. UP(.; ζ ) satisfies AGG if for any A ∈ � and ζ ∈ [0, 1) where
z ≥ 1, there exist a continuous function A : [0, 1]2 → R+ and a sequence of continuous
functions wi :�n → R for each i = 1, 2, ..., n and each n ∈ N+ such that

UP(A; ζ ) := A

(
P

N
,

P̄z

N̄z

)

·
z∑

i=1

Ni

N
·
(

Pi

Ni

− ζ

)

· wi

(
N1

N
, ...,

Ni

N
, ...,

Nn

N

)

.

Note that the AGG property holds if there exists at least a neighborhood with Pi

Ni
≥

ζ . The case where ζ > P1
N1

will be considered when normalizing the index. According

to AGG, the function A
(

P
N

,
P̄z

N̄z

)
is the aggregate normalization factor and the functions

wi

(
N1
N

, ..., Ni

N
, ..., Nn

N

)
denote the normative weights attached to the neighborhoods.

The AGG axiom imposes considerable structure, albeit it represents an encompassing
model for a variety of indicators consistent with the ranking of urban poverty curves,
stemming from choices of normalization and weighting parameters. Given the linearity
of the components considered in AGG, the concerns about the poverty distribution across
neighborhoods are formalized by the choice of the weighting functions wi(.).

Let consider evaluations that are normalized by the incidence of poverty in the city, that
isA(P/N,P z/Nz) = 1

P/N
and assume there are no concerns about the unequal distribution

of poverty across neighborhoods, that iswi(N1/N, . . . , Nn/N) = 1 for every neighborhood
i. This parametric choice retains exclusively concerns for the incidence of concentrated
poverty and can be related to the concentrated poverty index as follows:

UP(A; ζ ) = 1

P/N

z∑

i=1

Ni

N

(
Pi

Ni

− ζ

)

= P z − ζNz

P

= CP(A) − ζ
N

P

z∑

i=1

Ni

N
=: CP ∗(A; ζ ), (2)

The result (2) shows that the index CP is consistent with AGG only up to an additive
correction factor ζ N

P

∑z
i=1

Ni

N
, which gives the adjusted concentrated poverty index CP ∗.

Similarly to the concentrated poverty measure, the indexCP ∗ is related to the urban poverty
curves. Differently from CP , the index CP ∗ always ranks configurations consistently with
the ordering produced by non-intersecting urban poverty curves. This is illustrated in Fig. 2,
where we consider the special case in which ζ = α P

N
, which gives CP ∗(A; ζ ) = CP(A)−

α
Nz

N
.

In panel (a) of Fig. 2 we show the same urban poverty curves as in Fig. 1, and we
denote with bold solid lines the adjusted concentrated poverty indices CP ∗(A; ζ ) (seg-
ment AB) and CP ∗(B; ζ ) (segment CD).8 The adjusted concentrated poverty index ranks
CP ∗(B; ζ ) > CP ∗(A; ζ ), coherently with the ordering of configurations induced by
the urban poverty curves. Since every urban poverty curve is concave and lies above the
diagonal, the index CP ∗ is always positive and bounded above by CP .

While the index CP ∗ can be regarded to as a natural extension of the CP index, it is
far from being an ideal measure of urban poverty for a generic configuration, for at least
two reasons. First, the index measures the degree of concentration of poverty by focusing

8To see this, note that the length of the line segments starting from points A and C and intersecting the

horizontal axis is α
N

A
z

N
and α

N
B
z

N
, respectively.
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Fig. 2 Urban poverty curve and adjusted concentrated poverty

on a particular point of the urban poverty curve. Hence, there are cases in which the index
may not be able to rank configurations even if they are unambiguously ordered by the urban
poverty curves. Panel (b) in Fig. 2 reports one of such cases.9

The second critical aspect of CP ∗ is that the index does not address heterogeneity in the
concentration of poor individuals across the city’s neighborhoods. There are two potential
sources of heterogeneity. The first source is due to heterogeneity in Pi

Ni
ratios for neighbor-

hoods i ≤ z. When these ratios are homogenous across neighborhoods where poverty is
concentrated, i.e., P1

N1
= . . . = Pz

Nz
≥ ζ , the index CP ∗ is a sufficient statistic for urban

poverty. If they are not, the index CP ∗ may rank as indifferent configurations that can
be unambiguously ranked according to the urban poverty curve (see Fig. 3).10 The second
source of heterogeneity is due to the distribution of demographic sizes of the neighborhoods,
Ni

N
. The indexCP ∗ is insensitive to marginal changes in the poverty threshold that are due to

changes in the demographic size of the neighborhoods. Panel (b) of Fig. 3 reports an exam-
ple of a city with many small neighborhoods, with an aggregate population share of N1/N ,
and one large neighborhood of size N2/N with a proportion of poor people equal to that in
the population as a whole (i.e., P/N ). The adjusted concentrated poverty measure is unaf-
fected by small changes in the poverty threshold from ζ to ζ ′. While this property of CP ∗
is appealing in some cases, it also implies that concentrated poverty evaluations neglect the
size effects of the population that is actually exposed to poverty in the neighborhood of res-
idence. In the figure, a large proportion of the population, (N1 + N2)/N , is concerned with
concentrated poverty when the poverty threshold is ζ = α P

N
, whereas only a minor share of

9The curve of configuration B lies above that of A almost everywhere. For α = 1, CP ∗(B;P/N) >

CP ∗(A;P/N). For ζ ′ = α′ P
N

and α′ small enough, however, CP ∗(B; ζ ′) = CP ∗(A; ζ ′) and the two
configurations become indistinguishable despite a larger fraction of the poor population of B is concentrated
in poor neighborhoods compared toA.
10The graph in panel (a), Fig. 3, provides an example where urban poverty is unambiguously larger in
configuration B than in configuration A for α = 1, but CP ∗(B;P/N) = CP ∗(A;P/N).
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Fig. 3 Adjusted concentrated poverty and neighborhood structure heterogeneity

the population seems to be exposed to high poverty when the poverty threshold marginally
reduces to ζ = α′ P

N
.11

More structure is needed in order to address distributional concerns. We consider addi-
tional axioms, characterizing the behaviour of any urban poverty measure vis-à-vis the
effects of meaningful transformations of the data that affect heterogeneity. When paired
with AGG, these axioms characterize the weighting scheme.

The next axiom introduces a form of invariance of urban poverty measures with respect
to the demographic structure of neighborhoods. To do so, we introduce a new operation,
denoted by the neighborhood splitting, which reshapes the demographic size and geographic
boundaries of any neighborhood i by splitting i into two new neighborhoods i′ and i′′ of
smaller geographic and demographic size. We postulate invariance of the urban poverty
index to any split operation or sequence thereof. This postulate owes its normative appeal
to replication invariance properties formulated in inequality (Atkinson 1970; Cowell 2000)
and segregation analysis (Andreoli and Zoli 2014).

Axiom INV-S: INVariance to neighborhood Splitting. UP(.; ζ ) satisfies INV-S if for any
A ∈ �(n) andA′ ∈ �(n + 1) such thatA′ is obtained fromA by splitting neighborhood i

into two neighborhoods i′ and i′′ with Ni = Ni′ +Ni′′ , Pi = Pi′ +Pi′′ and
Pi

Ni
= Pi′

Ni′
= Pi′′

Ni′′
,

then UP(A; ζ ) = UP(A′; ζ ).

Inequality aversion with respect to poverty incidence across the neighborhoods is for-
malized by imposing the next axiom. The axiom invokes a principle of transfers, stating
that urban poverty in configuration A should be smaller than in configuration A′ when-
ever A′ is obtained from A by a (regressive) transfer of poor people from a neighborhood
with a lower poverty incidence to a neighborhood with a higher poverty incidence which is

11For a poverty threshold with α marginally larger than 1, the adjusted concentrated poverty index is the
segment AB. For a poverty threshold with α′ marginally smaller than 1, the adjusted concentrated poverty
index, now identified by the segment CD, does not change.
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paired by a transfer in the opposite direction of the same number of non-poor people. The
population size and the ranking of each neighborhood are unaffected by the transfer.

Axiom Principle of (TRAN)sfers. UP(.; ζ ) satisfies TRAN if for A,A′ ∈ �(n) there exist
i, j ∈ {1, 2, ..., n} where i < j ≤ z, such that NA′

k = NA
k , PA′

k = PA
k for k ∈ {1, 2, ..., n},

k 	= i, j , and NA′
i = NA′

j = NA
i = NA

j , PA′
i = PA

i + ε, PA′
j = PA

j − ε, for ε > 0

such that PA′
h /NA′

h ∈ [0, 1], and PA′
h /NA′

h ≥ PA′
h+1/N

A′
h+1 for all h ∈ {1, 2, ..., n− 1}, then

UP(A; ζ ) ≤ UP(A′; ζ ).

Note that in the definition of TRAN it is assumed that both i and j are highly concen-
trated poverty neighborhoods. However, it could be the case that because of the transfer the
poverty incidence in neighborhood j falls below ζ (which is set exogenous), implying that
z′ = z − 1 (since z is endogenous). According to AGG, a similar transfer if implemented
among neighborhoods that do not display high concentrated poverty and that remain as
such, does not modify UP(.; ζ ).

An urban poverty index satisfies TRAN when it ranks distributions consistently with
non-intersecting urban poverty curves, since an operation underlying TRAN always implies
an upward shift of the curve. The concentrated poverty index may violate TRAN, insofar
a movement of poor people from a lower poverty neighborhood towards a higher poverty
neighborhood can reduce concentrated poverty. A numeric example clarifies this point.
Consider a city with n = 3 neighborhoods, where the urban poverty configuration A is
(N1, N2, N3) = (10, 10, 10) and (P1, P2, P3) = (7, 5, 3), implying P/N = 15/30 = 0.5.
For a urban poverty threshold equal to ζ = 0.4, we have that z = 2 (neighborhoods
1 and 2 have poverty incidences equal to 7/10 = 0.7 and 5/10 = 0.5, respectively)
and CP = 12/15. Suppose now that two poor residents move from neighborhood 2 to
neighborhood 1 and one poor resident switches from neighborhood 3 to neighborhood
1, and opposite transfers of non-poor people take place such that the population size of
each neighborhood is not affected. The new urban poverty configuration A′ is such that
(P ′

1, P
′
2, P

′
3) = (10, 3, 2) and (N ′

1, N
′
2, N

′
3) = (10, 10, 10). The overall poverty incidence

for A′ is still P ′/N = 15/30 = 0.5 but z′ = 1, given that only neighborhood 1 has a
poverty incidence greater than 0.4. We have that CP ′ = 10/15 < CP , i.e., concentrated
poverty has decreased, despite the urban poverty curve ofA′ lies above that ofA.

Next, we analyze the consequences of a combined transfer, generated by combining a
regressive and a progressive transfer (i.e. a transfer of opposite sign obtained by setting
ε < 0) of similar proportions of poor and non-poor individuals occurring in high poverty
neighborhoods (that is, only across neighborhoods 1, . . . , z). In our setting, any combined
transfer does not affect poverty incidence in high poverty neighborhoods, but only its dis-
tribution. For ease of exposition, we assume that combined transfers always occur on high
poverty neighborhoods that occupy adjacent positions.

Different views may prevail when analyzing the effects of combined transfers on urban
poverty. When a regressive transfer (involving neighborhoods i and i+1) takes place earlier
than a progressive transfer (involving neighborhoods j and j + 1) in the ranking of neigh-
borhoods (that is, i < j ), then the burden of concentrated poverty shifts more heavily on
extreme poverty neighborhoods, while the population in some high poverty neighborhoods
is relieved from it. Since poverty gets even more concentrated in extreme poverty neigh-
borhoods, urban poverty is not bound to decrease. Conversely, a similar argument leads to
conclude that when a progressive transfer is followed by a regressive one, urban poverty
cannot increase after the transfer. The following axiom takes a neutral stance with respect
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to the effects of a combined transfer on the distribution of poverty across high poverty
neighborhoods, and hence on urban poverty.

Axiom INV-T: (INV)ariance w.r.t. combined (T)ransfers. Let z ≥ 2, UP(.; ζ ) satisfies
INV-T if for A,A′ ∈ �(n) there exist i, j ∈ {1, 2, ..., z − 1} such that NA′

k = NA
k , PA′

k =
PA

k for k ∈ {1, 2, ..., n}, k 	= i, j, i + 1, j + 1 and NA′
i = NA′

j = NA′
i+1 = NA′

j+1 =
NA

i = NA
j = NA

i+1 = NA
j+1, PA′

i = PA
i + ε, PA′

i+1 = PA
i+1 − ε, PA′

j = PA
j − ε,

PA′
j+1 = PA

j+1 + ε for ε > 0 such that PA′
h /NA′

h ∈ [0, 1], and PA′
h /NA′

h ≥ PA′
h+1/N

A′
h+1 for

all h ∈ {1, 2, ..., n − 1}, and PA′
i+1/N

A′
i+1 ≥ ζ , then UP(A; ζ ) = UP(A′; ζ ).

Axiom INV-T postulates that the combined effect of transfers of population of poor peo-
ple across adjacent highly concentrated neighborhoods with the same population size is not
affecting urban poverty. This is the case irrespective of whether the progressive or regres-
sive transfers of population of poor people take place between neighborhood with higher or
lower poverty incidence. If i = j , INV-T is satisfied by definition because the two transfers
cancel out. In all the other cases, the implications of the transfer taking place between two
adjacent neighborhoods in the ranking based on poverty incidence, are not affected by the
position occupied by the neighborhoods in that ranking.

Next, we introduce additional properties that define the cardinal features of the urban
poverty indices. The first invariance axiom considers situations where the poverty threshold
ζ is modified. It considers different effects of combined changes in Pi and in ζ . In order to
simplify the exposition, we assume that this invariance condition holds for n = 2. Axioms
can be readily generalized.

Axiom INV-PL: (INV)ariance to (P)overty (L)ine modifications. UP(.; ζ ) satisfies INV-

PL if for configurationsA, A′ ∈ �(2) such that
PA
1

NA
1

≥ ζ the following conditions hold:

(i) let ζ ∈ [0, 1), if there exists λ > 0 such that PA′
i = λPA

i and NA′
i = NA

i for i = 1, 2
and λζ ∈ [0, 1), then UP(A; ζ ) = UP(A′; λζ ).

(ii) let ζ ∈ (0, 1), if
PA
2

NA
2

< ζ and there exists θ ∈ R such that PA′
1 /NA′

1 = PA
1 /NA

1 + θ ,

PA′
/NA′ = PA/NA and ζ + θ ∈ [0, 1) then UP(A; ζ ) = UP(A′; ζ + θ).

The two conditions in INV-PL require respectively that (i) if the number of poor indi-
viduals in each neighborhood is scaled by the same factor λ > 0 and similarly also the
threshold ζ is scaled by the same factor then UP is not affected, (ii) if one neighborhood
exhibits a high concentration of poverty while the other does not, if both the poverty inci-
dence in the first neighborhood and the poverty threshold change by the same amount and
the overall poverty incidence in the population is not affected, then UP does not change.

The two invariance conditions imply respectively that what matters are the ratios between
Pi/Ni and ζ and that the differences between Pi/Ni and ζ are informative only if non-
negative for a given level P/N of average poverty in the population.

Next property requires that if poverty increases proportionally in each neighborhood then
UP should not decrease. Along with TRAN, these two axioms incorporate the features of
transformations of the data that rise poverty in high poverty neighborhoods while unam-
biguously rising the double burden due to poverty concentration. As a consequence, urban
poverty is bound to rise.
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Axiom (MON)otonicity. UP(.; ζ ) satisfies MON if for configurationsA,A′ ∈ �(2) where
z = 2, and there exists ν > 1 such that PA′

i = νPA
i and NA′

i = NA
i for i = 1, 2 then

UP(A; ζ ) ≤ UP(A′; ζ ).

To conclude, we set an axiom that quantifies the lower bound of the UP index.

Axiom (NOR)malization. for any A ∈ � and ζ ∈ [0, 1) where ζ > P1
N1

, UP(A; ζ ) := k ∈
R where k := inf{UP(A′; ζ ) : A′ ∈ � with z ≥ 1}.

The NOR condition specifies the value of the index for configurations where the poverty
incidence in each neighborhood is below the threshold ζ . In this case the value of the index
is constant for each configuration and coincides with the infimum of all values of UP(.; ζ )

that could be obtained in any other alternative configuration in � where at least for one
neighborhood the poverty incidence is not below ζ .

When assuming AGG and considering configurations in which poverty incidence is
evenly distributed across high-poverty neighborhoods (i.e. Pi/Ni = P z/Nz for all i ≤ z),
axioms NOR and TRAN jointly imply that urban poverty evaluations should be normalized
by the average poverty incidence. This leads to the main result.

3.2 Main result and discussion

Theorem 1 Let A ∈ �, ζ ∈ [0, 1), UP(.; ζ ) satisfies AGG, INV-S, INV-T, INV-PL, MON,
TRAN and NOR if and only if there exist β, γ ≥ 0 such that:

UP(A; ζ ) :=β · P z − ζNz

P
+ γ ·

(
Nz

N

)

· P z

P
·G(A, ζ )+ γ ·

(
N − Nz

N

)

· P z − ζNz

P
(3)

if z ≥ 1, otherwise UP(A; ζ ) = 0.

The proof of the theorem is in Appendix A.1, where we also demonstrate the indepen-
dence of the axioms. Theorem 1 shows that the urban poverty axioms characterize exactly
one parametric urban poverty index. For any given poverty threshold ζ , this index depends
on three components and two parameters (besides the urban poverty threshold), capturing
respectively the incidence (β) and the aversion to dispersion (γ ) of poverty. The three com-
ponents of the index contribute positively to the measured level of urban poverty. Their
relative importance depends on the weight they receive. The first component, weighted by β,
captures the average excess of poverty (with respect to the tolerance level ζ ) in high poverty
neighborhoods and it is related to the adjusted concentrated poverty index. In fact, when
evaluations do not express distributional concerns, the index CP ∗ becomes the relevant
measure of urban poverty.

Corollary 2 LetA ∈ �, ζ ∈ [0, 1) and γ = 0, then UP(A; ζ ) = β · CP ∗(A; ζ ).

The second component, weighted by γ , captures aspects of inequality in the distribu-
tion of poverty across high poverty neighborhoods through the Gini index G(A, ζ ). The
third component captures inequality in the distribution of the poor population between high

poverty (with weight Nz

N
) and low poverty (with weight 1 − Nz

N
) neighborhoods.12 The

12The third component is the value of the absolute Gini coefficient of a counterfactual distribution of poverty
incidence shortfalls across two types of neighborhoods: high poverty neighborhoods receive the average
shortfall, whereas shortfall realizations in low poverty neighborhoods are (ζ − ζ ) = 0. As such, this
component captures segregation of poverty across high and low poverty neighborhoods.
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inequality component of urban poverty measures the relative extent of dissimilarity between
the actual distribution of poor residents across neighborhoods of the city and the distribu-
tion of the population of poor and non-poor residents across the same neighborhoods (see
Andreoli and Zoli 2014).

Each component of urban poverty captures a specific feature of changes in urban poverty
distribution. For instance, a regressive transfer of poor population occurring between neigh-
borhoods where poverty is highly concentrated does only affect the distribution of poverty
in those neighborhoods. This effect is reflected on the component G(.; ζ ). Consider instead

a situation where poverty is evenly distributed in high poverty neighborhoods (i.e. Pi

Ni
= P z

Nz

for each i ≤ z, implying G(.; ζ ) = 0) and assume that some poor individuals in z are
evenly redistributed across neighborhoods 1, . . . , z − 1, so that poverty rises uniformly
across these neighborhoods. This change rises both the first component (poverty incidence
rises) and the third component (poverty is more unevenly distributed across high and low
poverty neighborhoods) of the index when such movement shifts z towards z′ = z − 1.
Extending the weighting scheme over {1, . . . , n}, as postulated in axiom AGG, guarantees
that urban poverty evaluations are robust with respect to marginal changes in the distribution
of poverty around the (exogenous) urban poverty threshold ζ which may nonetheless affect
the (endogenous) threshold neighborhood z. Finally, consider again a situation in which
poverty is evenly distributed and new non-poor individuals flew in low poverty neighbor-
hoods. While this change does not affect P z, Nz, P and z, it increases N and therefore it
increases the segregation of poverty in high poverty neighborhoods by rising the number
N − Nz of residents that are least exposed to high poverty concentration. Arguably, this
change rises inequalities between neighborhoods and rises measured urban poverty through
the third component of the index.

Evaluations of urban poverty are conditional on the poverty threshold. When the toler-
ance threshold approaches zero, concerns for even small levels of poverty concentration
rise. This allows to take into account the fact that increments of poverty in those neighbor-
hoods where poverty is more concentrated prevents other people living in neighborhoods
where the poor are under-represented to be exposed to the double burden of poverty. By
setting the urban poverty threshold at ζ = 0, concerns about the distribution of poverty are
extended to all neighborhoods of the city. Notice that if ζ = 0, then z = n, N̄z = N and
P̄z = P , it follows that:

Corollary 3 LetA ∈ � and ζ = 0, then UP(A; 0) = β + γ · G(A; 0) with β, γ ≥ 0.

When the urban poverty threshold is inclusive of all neighborhoods of the city, the first
component of urban poverty, measuring incidence, reaches its maximum level, whereas the
urban poverty index becomes ordinal equivalent to the Gini inequality index G(A; 0).

We explore the decomposition properties of the Gini index to address some key mea-
surement issues in urban poverty. A first issue is that urban poverty may be insensitive to
the depth of poverty, insofar Pi is identified on the basis of an exogenous poverty threshold.
In the American case, for instance, urban poverty patterns of extremely poor families (with
equivalent income below 75% of the federal income poverty line) may differ from urban
poverty of the average family in need (comprising all families with income below 200%
of the federal income poverty line). The factor income decomposition in Shorrocks (1982)
can be used to linearly decompose the urban poverty index into the contribution of differ-
ent subgroups identified by varying the poverty threshold, such as for families in extreme
(below 75%), severe (between 75% and 100%) or mild (between 100% and 200%) poverty.
Such a decomposition may be useful in drawing empirical robustness checks.
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A second issue concerns the possibility of factorizing longitudinal variations in urban
poverty within the same city between two periods t and t ′ into the contribution of demo-
graphic growth, poverty growth and poverty relocation across neighborhoods. Based on
Corollary 3, the focus should be on the quantity �UP = UP(A′)−UP(A) = G(A′; 0)−
G(A; 0) for the arbitrary selection γ = 1 and β = 0. The following section provides two
relevant decomposition results.

4 Decomposing changes in urban poverty

This section builds on Corollary 3 and provides two additional corollaries to the main result,
showing that changes in urban poverty can be decomposed linearly into convergence, re-
ranking and poverty growth components, as well as into the contribution of changes taking
place within or across spatial clusters of neighborhoods. Both decompositions are relevant
for describing the dynamics of urban poverty.13

4.1 Convergence, re-ranking and growth components of urban poverty

Consider a city, where each neighborhood i is observed in both periods t and t ′. The overall
population and the number of poor residents in i are denoted by NA

i and PA
i in period t

and NA′
i and PA′

i in period t ′, respectively. Let c stand for the change in poverty incidence
in the whole city, so that:

c :=
(

PA′

NA′ − PA

NA

)

/
PA

NA .

The next corollary shows that changes in urban poverty can be linearly decomposed into the
contribution of demographic (W ), re-ranking (R) and convergence (C · E) components.

Corollary 4 Let A, A′ ∈ �(n) represent respectively configurations in time t and in time
t ′, then �UP = G(A′; 0) − G(A; 0) = W + R + C · E, where C = 1/ (1 + c).

Proof See Appendix A.2.

The first component captures the effect of changes in the demographic weights of neigh-
borhoods, and is denoted by W . In empirical applications, it is generally the case that
NA

i

NA 	= NA′
i

NA′ for some neighborhoods. The changes in demographic weights may have non-
trivial effects on the accountancy of urban poverty changes. The demographic component
contributes positively to changes in urban poverty (W > 0) if the demographic weights of
the neighborhoods that are more dissimilar in terms of poverty incidence increase, whereas
the weights of neighborhoods that are less dissimilar decrease. The component W isolates
the effect of population changes from those of changes in the distribution of poverty across
neighborhoods.

Component C captures the effect of the change in poverty incidence in the city. It
measures the implication of a citywide expansion (or reduction) of poverty incidence on
urban poverty, thus allowing to separate the contribution of a change in poverty incidence

13The proofs of the Corollaries draw on Silber (1989), Mussini and Grossi (2015), Mussini (2017), and
Mussini (2020).
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in the same proportion c for all neighborhoods14 from the contribution of neighborhood-
specific changes in poverty incidence (occurring when poverty incidence changes across
neighborhoods in a disproportionate way).

Components R and E measure different distributional effects due to disproportionate
changes in neighborhood poverty rates. The component R measures the effect of re-ranking
of neighborhoods, based on poverty incidence, from t to t ′. The component E measures
the effect of convergence (or divergence) in poverty incidence among neighborhoods. Neigh-
borhoods diverge when the poverty rates of neighborhoods with high (low) poverty incidence
in t increase (decrease) faster than the poverty rates in low (high) poverty neighborhoods.
In this case, E > 0 and urban poverty level increases by C · E. Otherwise, E < 0.

The implications of convergence in poverty incidence on changes in urban poverty can
be more complex. For instance, a strong convergence of poverty rates across neighborhoods
may induce a re-ranking of neighborhoods in terms of poverty incidence, implying that
the reduction in urban poverty due to convergence (i.e., C · E) can be partially offset by
the re-ranking effect measured by R, which is always non-negative. Component R is null
when there is no re-ranking, and is positive when at least two neighborhoods exchange their
positions in the ranking of neighborhoods by poverty rate from t to t ′.15

The result in Corollary 4 is useful for decomposing additively the contribution of
poverty incidence and demographic changes at neighborhood and city level on the dynam-
ics of urban poverty. The decomposition displays advantages over other methods. First,
the decomposition allows to factor out the effect of demographic changes (W ) on urban
poverty, thus disentangling the effect of changes in poverty from the effect of demo-
graphic shifts and growth across neighborhoods. Second, components R and C · E pick up
specific aspects of changes in poverty concentration that cannot be inferred just by look-
ing at �UP . For instance, consider two cities A and B displaying no changes in urban
poverty (�UPA = �UPB = 0), with RA = CA · EA = 0 for the first city, while
RB = −CB · EB > 0 for the second city. While the poor population is immobile in the
first cityA, poverty deconcentrate in some neighborhoods and reconcentrate in others in the
second city B, despite the change does not imply a neat form of convergence in the degree
of poverty concentration, but rather a shift of poverty across the neighborhoods of the city
(large RB).

4.2 Spatial components of urban poverty

The index UP , �UP and their components are, by construction, invariant to changes in
the spatial configuration of poverty within the city, and hence unaffected by the implicit
degree of spatial association of poverty incidence across neighborhoods. Building on the
Rey and Smith (2013) spatial decomposition of the Gini index, we obtain a two-term addi-
tive decomposition of the urban poverty index, in which a “neighborhood component”
measures distributional changes originating from neighborhoods that are spatially close and

14For each neighborhood i,
PA′

i

NA′
i

= (1 + c)
PA

i

NA
i

.

15We borrow the terminology from the analysis of panel income growth (Jenkins and Van Kerm 2016).
Component E is computed by comparing the relative disparities between the neighborhood poverty rates in
t and those in t ′, under the assumption that the ranking of neighborhoods remains constant over time to that
observed in t . The effect of E can be either magnified or mitigated by C, since the latter component reflects
the change in citywide poverty incidence. For instance, the potential effect of a convergence in poverty
incidence among neighborhoods (E < 0) is reduced when changes in neighborhoods poverty rates lead to
increasing the citywide poverty incidence (C < 1).
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a “non-neighborhood component” measures changes concerning neighborhoods that are not
in spatial proximity. The two components reveal the contribution of spatial association to
measured urban poverty. The spatial decomposition is conditional on the knowledge of a
proximity matrix N, whose generic binary element nij ∈ [0, 1] indicates whether neighbor-
hoods i and j are neighbors according to a given criterion. The matrix N can be constructed
from the data and is assumed fixed throughout the comparisons (in our setting, the spatial
structure of a city does not change across time), but is specific to the city.

Corollary 5 Let A, A′ ∈ �(n) represent respectively configurations in time t and
in time t ′, then �UP = G(A′; 0) − G(A; 0) = (

GN(A′; 0) + GnN(A′; 0)) −
(GN(A; 0) + GnN(A; 0)) = (WN + WnN) + (RN + RnN) + C · (EN + EnN).

Proof See Appendix A.3.

Corollary 5 delivers two important results. First, it shows that UP can be exactly decom-
posed into neighborhood N and non-neighborhood nN components. When GN is large
relative to GnN , most of inequality in urban poverty occurs in neighborhoods that are
located in spatial proximity. In this case, high and low poverty neighborhoods tend to belong
to the same spatial cluster. The converse holds when GN is small compared to GnN , in
which case there is a positive spatial autocorrelation in the distribution of poverty among
neighborhoods.

The clustering dimension of urban poverty is relevant for policy analysis for at least two
reasons. First, spatial clustering of high poverty neighborhoods may decrease the likelihood
of access to transportation, to the job market, to high-quality supply of public goods and
definitely to economic and social opportunities for the residents, thus amplifying the double
burden from poverty already experienced by neighborhood residents. Second, when clusters
of high poverty neighborhoods overlap with administrative divisions of the territory, such
as counties or school districts, more economically vulnerable residents might face poverty
traps that extend their effects both on long-term poverty status of the residents as well as on
inter-generational mobility prospects of the children living therein.

The second important result of Corollary 5 is that changes over time in urban poverty can
be also linearly decomposed along the spatial dimension. In this way, we can disentangle
the contribution of changes in poverty within clusters from that of changes across clusters,
which are more relevant for understanding spatial drivers of urban poverty.

5 Patterns, trends and components of urban poverty in American
cities: 1980-2014

5.1 Data

We use data from the U.S. Census Bureau to study patterns and trends of urban poverty
in American cities. Data for 1980, 1990 and 2000 are from the decennial census Summary
Tape File (STF) 3A. The STF 3A data come in the form of poverty counts at the census
tract level. After 2000, the STF 3A files have been replaced with survey-based estimates of
the income tables from the American Community Survey (ACS), which runs annually since
2001 on representative samples of the U.S. resident population. We focus on three waves
of the 5-years ACS module: 2006-2010, 2010-2014 and 2012-2016. We interpret data from
each wave as representative for the mid-interval year, i.e. 2008, 2012 and 2014 respectively.
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These years roughly correspond to the onset, the striking and the early aftermath of the
Great Recession period (Jenkins et al. 2013; Thompson and Smeeding 2013).

Poverty incidence at the census tract level is measured by the number of individuals
in families with total income below the poverty threshold, which varies by family size,
number of children, and age of the family members.16 Poverty status is determined for all
families (and, by implication, all family members).17 The census reports poverty counts
at census tract level for various poverty thresholds. In this paper, we consider as poor all
individuals living in households with income below the 100% federal income poverty line.
In the supplemental Appendix, we provide robustness checks for poverty status determined
by equivalent family income below 75%, 100% (baseline) and 200% of the federal poverty
line.

Following Andreoli and Peluso (2018), we consider the 2016 Census Bureau definition
of American Metropolitan Statistical Areas (MSA) to group census tracts into cities. The
number and geographic size of the census tracts vary substantially across time within the
same MSA. Some census tracts experience demographic growth and are split into smaller
tracts. Some other census tracts are consolidated to account for demographic shifts. While
raw data allow to estimate urban poverty at the city level, they cannot be used to perform the
decomposition exercise, insofar the definition of neighborhood is not constant over time.
We resort on the Longitudinal Tract Data Base (LTDB), which provides crosswalk files to
estimate population counts statistics within 2010 tract boundaries for any tract-level data
that are available for prior years as well as in ACS for the period after 2010 (Logan et al.
2014).18 We calculate poverty incidence in each census tract/year and then construct mea-
sures of urban poverty and concentrated poverty in high (i.e. where poverty incidence is
above 20% of the resident population) and extreme (i.e. where poverty incidence is above
40% of the resident population) poverty neighborhoods.

The balanced panel enables us to further decompose changes in urban poverty in
its underlying components for 395 American MSAs.19 Census tracts are geo-localized,
implying that measures of proximity of these tracts can be further produced and used to dis-
entangle the neighborhood and non-neighborhood components of urban poverty across all
years and all MSAs.

16Both Census 1990 and 2000 and ACS determine a family poverty threshold by multiplying the base-year
poverty thresholds (1982) by the average of the monthly inflation factors for the 12 months preceding the data
collection. The poverty thresholds in 1982, by size of family and number of related children under 18 years
can be found on the Census Bureau web-site: https://www.census.gov/data/tables/time-series/demo/income-
poverty/historical-poverty-thresholds.html. For a four persons household with two underage children, the
1982 threshold is $9,783. Using the inflation factor of 2.35795 gives a poverty threshold for this family in
2013 of $23,067. If the disposable household income is below this threshold, then all four members of the
household are recorded as poor in the census tract of residence, and included in the 2014 wave of ACS.
17Poverty status is also determined for persons not in families, except for inmates of institutions, members of
the Armed Forces living in barracks, college students living in dormitories, and unrelated individuals under
15 years old.
18These files make use of re-weighting methods to assign each census and ACS year population to the exact
census tract boundary defined in 2010 census. We obtain a balanced longitudinal dataset of census tracts for
395 American Metropolitan Areas (those with at least 10 census tracts according to 2010 census) for years
1980, 1990, 2000, 2008, 2012 and 2014.
19Figure 6 in the Appendix B displays urban poverty calculated on balanced longitudinal data against urban
poverty calculated on raw data. Estimates of urban poverty based on the two methods largely coincide. Urban
poverty estimates are also unrelated to the incidence of poverty in the city, as shown in Fig. 7.

616



Urban poverty: Measurement theory and evidence from American cities

Fig. 4 Urban poverty distribution among American MSAs, from 1980 to 2014

5.2 Results

Panel (a) of Fig. 4 describes the levels and trends of urban poverty and concentrated
poverty in American MSAs over 1980-2014. In line with the literature, we find that con-
centrated poverty is high in American cities, ranging from 26% to 51% on average over the
period. Concentrated poverty has increased since the onset of the Great Recession, and it
has remained stable in the aftermath. Conversely, the distribution of urban poverty among
MSAs reveals a more stable pattern over the last 35 years we consider. Small changes in
urban poverty may however be the outcome of the offsetting contributions of re-ranking and
changes in disparities between census tract poverty rates. The decomposition in Corollary 4
is useful to separate these effects.

Panels (b) and (c) of Fig. 4 display the extent of heterogeneity in the distribution of con-
centrated poverty and urban poverty over the whole period considered. Data suggest that
concentrated poverty and urban poverty indices capture uncorrelated aspects of the urban
distribution of poor. Larger metro areas, denoted by circles of larger size on the graph,
display proportionally more concentrated poverty than urban poverty. Urban poverty is per-
sistent over the period, with most MSAs grouped along the figure bisector. Panel (d) of
Fig. 4 breaks down heterogeneity of year-to-year variation in urban poverty into its com-
ponents, computed separately for each MSA.20 The little variability in urban poverty can
be explained by the trends in its components R and D := C · E. The component D is
negative for a majority of MSAs in each sub-period, indicating that relative disparities in
poverty incidence across census tracts have decreased over time. Such a pattern suggests
convergence in neighborhood poverty and decreasing urban poverty. This equalizing effect
is partially offset by the re-ranking component R, which indicates that initially low poverty

20Summary statistics for the distribution of year-by-year variations in concentrated poverty, in urban poverty
and in its components across American MSA, are reported in Table 2 in Appendix B.
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Table 1 Proportion of acceptances (p-values > 0.1) and weak (p-values < 0.1) and strong (p-values < 0.01)
rejections of spatial independence assumption, based on Moran-I tests with order-1 nearest neighborhood
spatial weighting matrices

Spatial independence, 1980 Spatial independence, 2014 Population (mln) CT

Reject 1% Reject 10% Accept Reject 1% Reject 10% Accept Avg. Avg.

Q1 0.08 0.17 0.83 0.05 0.18 0.82 0.08 19

Q2 0.11 0.23 0.77 0.16 0.39 0.61 0.15 36

Q3 0.24 0.43 0.57 0.37 0.56 0.44 0.33 74

Q4 0.69 0.80 0.20 0.79 0.82 0.18 2.02 455

All 0.28 0.41 0.59 0.34 0.48 0.52 0.64 145

census tracts catch up high poverty census tracts, indicating substantial re-ranking which
contributes to increase urban poverty. The contribution of W is negligible.

Overall, the analysis of urban poverty suggests a major trend of convergence in poverty
across American MSA neighborhoods. Poverty has grown everywhere in American MSAs
after the Great Recession, but less so in high poverty neighborhoods, while concentrating
into historically middle-class, low poverty neighborhoods.

We examine the decomposition of urban poverty into neighborhood and non-
neighborhood components. A proximity matrix describing the spatial relations between
census tracts is obtained for each city resorting on the notion of critical cut-off neighbor-
hood, according to which two census tracts are neighbors if their distance is equal or less
than a given cut-off distance.21

We use the Moran-I index to test for spatial dependence in urban poverty rates (setting
spatial independence at the null) and register for each MSA the p-value of the test, com-
puted separately in 1980 and 2014. In Table 1 we report proportions of cases of weak (at
10% significance level) and strong (at 1% significance level) rejections of the null hypoth-
esis, alongside the proportion of acceptances (with p-value larger than 0.1). The Moran-I
statistics can be highly influenced by the population size of the city and the number of
neighborhoods. We hence report rejection and acceptance rates by quartiles (Q1,...,Q4) of
MSAs ranked by population size.

Results support the hypothesis of spatial independence for the Q1 and Q2 cities (with
average population size smaller than 0.15mln). Patterns is less clear for the Q3 cities, where
rates of rejection and acceptance of spatial independence in the occurrence of poverty are
mixed, with weak rejection rates ranging from 43% in 1980 to 56% in 2014. For large
MSAs (with about 2mln residents on average) included in Q4, data weakly reject the null
hypothesis of spatial independence in about 80% of the cases (in both years alike) in favor
of positive spatial autocorrelation. In these cities, neighboring census tracts tend to have
similar poverty rates, thus rising the risk of presence of spatial poverty traps.

In Fig. 5, we separately analyze the patterns of urban poverty in the largest five American
MSAs and further decompose the changes of urban poverty into neighborhood and non-
neighborhood components. Overall, we find that urban poverty has increased from 1980 to
1990, with largest MSAs in the top of urban poverty distribution. Urban poverty in largest

21We use the minimum cut-off distance criterion (Espa et al. 2014), that defines the cut-off distance for a
city as the minimum distance for which every census tract in the city has at least one neighbor. A minimum
cut-off distance is set for each MSA in the sample, with the threshold varying across MSAs.
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Fig. 5 Urban poverty across American MSAs, 1980 to 2014
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cites has declined after 2000, slowly converging towards the rest of the MSAs we consider.
This change is mostly driven by the non-neighborhood component of urban poverty (panel
(c) of Fig. 5), which is generally high and explains most of urban poverty in these cities.
The minor role of the neighborhood component in large MSAs confirms that census tract
poverty rates are more similar among neighboring tracts than among non-neighboring tracts.

6 Concluding remarks and extensions

This paper introduces a parsimonious axiomatic approach to characterize a new paramet-
ric urban poverty measure. This measure weights the contributions of poverty incidence
and inequality in poverty distribution across neighborhoods of a city. The latter component
depends on the way poverty is unequally distributed across high poverty neighborhoods and
on the way the poor population is split across clusters of high and low poverty. The approach
builds on the idea that concentration of poverty across neighborhoods can produce welfare
losses for those exposed to it. The concentrated poverty index, the official measure of urban
poverty adopted by the Census Bureau to assess urban poverty, may fail to satisfy this basic
requirement.

We use our urban poverty measure to highlight patterns, trends and components of urban
poverty using census and ACS data for the largest 395 American MSAs over the last 35
years. While there is evidence that concentrated poverty has increased after the onset of
the Great Recession, we find no systematic trends in the evolution of urban poverty. This
apparent steadiness masks the implications of ongoing changes in the geography of poverty
within MSAs, with poverty rising and falling heterogeneously across census tracts. The data
we use do not allow to distinguish whether trends in urban poverty are driven by relocation
of chronically poor individuals across census tracts, or rather by the fact that the likelihood
of occurrence of poverty spells is unevenly distributed across census tracts, possibly affected
by unobservable factors that are also relevant for the way rich and poor households sort in
space. Distinguishing the two effects would require knowledge of individual-level incidence
of poverty spells alongside residential decisions.

The urban poverty index we characterize focuses on the incidence and distributional
inequality of poverty among neighborhoods where poverty is highly concentrated, as iden-
tified by an exogenously given urban poverty threshold (for instance above 20% or 40%
of resident population). When the threshold is set to zero, urban poverty evaluations are
based on all neighborhoods of the city. In this case, urban poverty evaluations depend only
on the distribution of poverty across all neighborhoods of the city and the index converges
to the Gini coefficient. Building on this result, we investigate a spatial decomposition of
the implied urban poverty index, which is additive in the contribution to urban poverty of
high-poverty clusters and the contribution of distant neighborhoods. This decomposition is
relevant for analyzing the spatial dynamics of urban poverty, which may vary across simi-
lar cities on the basis of the quality of housing stock, the distribution of public goods and
the extent of affordability of neighborhoods. We find that in the largest MSAs, the non-
neighborhood component of urban poverty is dominating. Trends are less clearcut for the
rest of the MSAs.

The results presented in this paper can be extended in a variety of directions which are
useful to study the incidence of covariates on urban poverty.

First, notice that the urban poverty index takes the poverty status identification as given,
while it evaluates the distribution of poverty across neighborhoods. Different criteria can be
used to identify the poor, for instance using different poverty thresholds. As a robustness
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check, we assess urban poverty looking at different populations with income below 75%,
100% (baseline) and 200% of the poverty line. Results reported in the Appendix (Fig. 8)
show that urban poverty grows as the severity of poverty rises (panel a)), albeit uniformly
across MSAs (panels b), c), d)). The ranking of MSAs based on different measures of
poverty depth is robust (the indices obtained with different poverty groups display a rank
correlation larger than 89% in 2014) and uncorrelated with concentrated poverty. While
heterogeneity in distribution of poverty across neighborhoods is substantial, it is unlikely
driven by the severity of poverty status.

Second, the urban poverty index obtained when setting the urban poverty threshold to
zero, i.e. G, can be decomposed along the lines of the factor income decomposition by
Shorrocks (1982) to analyze the contribution of various groups identified by varying degrees
of poverty depth, as well as to analyze the contribution to urban poverty of different social
groups in which the poor and non-poor populations can be further partitioned into, for
instance along the lines of race, human capital or income. Furthermore, the urban poverty
index G can be weakly (additively) decomposed as in Ebert (2010) into two components.
A component captures the incidence of urban poverty among neighborhoods identified by
some common trait, such as quality of housing stock, affordability, supply of local public
goods. Another component measures instead the average contribution to urban poverty of
differences between poverty incidence in any given neighborhood and poverty incidence in
neighborhoods displaying different characteristics.

Finally, we acknowledge that poverty may be multidimensional, insofar individuals can
be deprived in dimensions other than income and these dimensions are relevant to explain
the urban distribution (Decancq et al. 2019). Borrowing on the relation with the Gini index,
the urban poverty index can be generalized to the multidimensional setting following the
approach in Koshevoy and Mosler (1997), based on a multivariate extension of the Gini
index. As motivated in Andreoli and Zoli (2020), such approach consists in measuring the
extent of dissimilarity between the distribution of the population across the city neighbor-
hoods and the distributions of people that are poor in any given dimension, such as income
(as we do here), housing or education. These extensions are left for future investigations.

Appendix A: Proofs

A.1 Proof of Theorem 1

We will prove the theorem making use of a sequence of lemmas that will highlight the role
of the different axioms in the derivation of the final result.

Lemma 1 Let A ∈ �, ζ ∈ [0, 1), and z ≥ 1, UP(.; ζ ) satisfies AGG and INV-S if and
only if there exist a continuous function A : [0, 1]2 → R+ and a function h : [0, 1] → R

continuous in (0, 1) with h(0) = 0 such that:

UP(A; ζ ) := A

(
P

N
,

P̄z

N̄z

) z∑

i=1

(
Pi

Ni

− ζ

)

·
[

h

(
N̄i

N

)

− h

(
N̄i−1

N

)]

(4)

with N̄0 := 0.

Proof The proof combines the effect of AGG with INV-S by deriving a functional restric-

tion on the class of weighting functions wi

(
N1
N

, . . . ,
Ni

N
, . . . , Nn

N

)
that appear in the
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definition of AGG. We leave to the reader to verify that the index in Eq. 4 satisfies AGG
and INV-S, here we focus on the proof of the (only if) part of the statement in the lemma.

First recall that, given AGG, we can write

UP(A; ζ ) := A

(
P

N
,

P̄z

N̄z

) z∑

i=1

Ni

N
·
(

Pi

Ni

− ζ

)

· wi

(
N1

N
, . . . ,

Ni

N
, . . . ,

Nn

N

)

(5)

where A : [0, 1]2 → R+ and wi : �n → R satisfy the conditions specified in AGG.
Let z ≥ 1, we apply INV-S. Note that because of the definition of INV-S, the scaling

component A
(

P
N

,
P̄z

N̄z

)
of Eq. 5 is not affected by splitting operations. Thus INV-S only

affects the component
∑z

i=1
Ni

N
·
(

Pi

Ni
− ζ

)
· wi

(
N1
N

, . . . ,
Ni

N
, . . . , Nn

N

)
.

We construct the proof in two steps. We first derive the restrictions on the function w1(.)
and then in a recursive manner we derive also the restrictions on all the other functions wi(.)
for i = 2, 3, . . . , n.

We first note that the function wi(.) does not depend on ζ , and then we set ζ such that
for a givenA ∈ � we have that n = z. Note that for anyA ∈ � there exist values of ζ such
that n = z, for instance this is the case if we let ζ = 0.

Step 1. Suppose that n = z = 2, and assume that P1
N1

> ζ , while P2
N2

= ζ . Apply
repeatedly the splitting operations over the neighborhood indexed by i = 2. Because of the
invariance requirement in INV-S and the specification in Eq. 5, if we denote by n̂i := Ni

N

we obtain that n̂1
(

P1
N1

− ζ
)

· w1(n̂1, 1 − n̂1) = n̂1

(
P1
N1

− ζ
)

· w1(n̂1, n̂2, n̂3, . . . , n̂z) with

n̂2 + n̂3 + . . . + n̂z = 1− n̂1, this result holds for all z = n ≥ 2. Recalling that P1
N1

− ζ > 0,
we then obtain

n̂1w1(n̂1, 1 − n̂1) = n̂1w1(n̂1, n̂2, n̂3, . . . , n̂z)

with n̂2 + n̂3 + . . .+ n̂z = 1− n̂1, for all z = n ≥ 2 and n̂1 ∈ (0, 1). We can thus define the
function h : [0, 1] → R such that h(n̂) := n̂w1(n̂, 1 − n̂). It then follows that by definition

n̂1w1(n̂1, n̂2, n̂3, . . . , n̂z) = h(n̂1)

for all z = n ≥ 2 and n̂1 ∈ (0, 1). Given that by AGG n̂1w1(n̂1, 1 − n̂1) is continuous for
n̂1 ∈ (0, 1) then h(.) is continuous on (0, 1).

Step 2. Let z = n = 1, and assume to split into two neighborhoods the neighborhood
1 where P1

N1
− ζ > 0, then one obtains two neighborhoods of relative sizes n̂1 and 1 − n̂1.

INV-S then implies that w1(1) = n̂w1(n̂, 1− n̂) + (1− n̂)w2(n̂, 1− n̂). Let h(1) := w1(1),
then one obtains for z = n = 2, (1 − n̂)w2(n̂, 1 − n̂) = w1(1) − n̂w1(n̂, 1 − n̂), that is
(1−n̂)w2(n̂, 1−n̂) = h(1)−h(n̂), in other words (1−n̂)w2(n̂, 1−n̂) = h(n̂+(1−n̂))−h(n̂).
This gives the definition of w2(.) for z = n = 2.

The argument could be further generalized. Let z = n = 2, assume that P1
N1

> ζ , while
P2
N2

= ζ . Then split neighborhood 1 of relative size n̂ into two neighborhoods of relative
sizes respectively n̂1 and n̂2 such that n̂1 + n̂2 = n̂, and, either leave neighborhood 2

unaffected, or split it into many others. According to INV-S it follows that n̂
(

P1
N1

− ζ
)

·
w1(n̂, 1−n̂) = n̂1

(
P1
N1

− ζ
)

w1(n̂1, n̂2, n̂3, . . . , n̂z′)+n̂2

(
P1
N1

− ζ
)

w2(n̂1, n̂2, n̂3, . . . , n̂z′)

where z′ = n ≥ 3 and n̂3 + . . . + n̂z′ = 1 − n̂ = 1 − n̂1 − n̂2.
That is, (n̂1 + n̂2) · w1(n̂1 + n̂2, 1 − n̂1 − n̂2) = n̂1w1(n̂1, n̂2, n̂3, . . . , n̂z′) +

n̂2w2(n̂1, n̂2, n̂3, . . . , n̂z′). Recalling that n̂1w1(n̂1, n̂2, n̂3, . . . , n̂z) = h(n̂1) for all z = n ≥
2 and n̂1 ∈ (0, 1), one obtains

n̂2w2(n̂1, n̂2, n̂3, . . . , n̂z′) = h(n̂1 + n̂2) − h(n̂1)
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for all z′ = n ≥ 2 and n̂1 + n̂2 ∈ (0, 1], n̂1, n̂2 ∈ (0, 1).
By replicating the same logic and splitting into three neighborhoods the first one, then

one can derive the definition of w3(.) from

n̂3w3(n̂1, n̂2, n̂3, . . . , n̂z′) = h(n̂1 + n̂2 + n̂3) − h(n̂1 + n̂2)

for all z′ = n ≥ 3 and n̂1 + n̂2 + n̂3 ∈ (0, 1], n̂1, n̂2, n̂3 ∈ (0, 1).

We can then obtain in general that Ni

N̄z
· wi

(
N1
N̄z

, . . . ,
Ni

N̄z
, . . . ,

Nz

N̄z

)
= h

(
N̄i

N̄z

)
− h

(
N̄i−1

N̄z

)

for i = 1, 2, . . . , z and z = n where N̄0
N̄z

:= 0 and h(0) := 0. If z = n then we have that

N̄z = N , leading to

Ni

N
· wi

(
N1

N
, . . . ,

Ni

N
, . . . ,

Nn

N

)

= h

(
N̄i

N

)

− h

(
N̄i−1

N

)

for i = 1, 2, . . . , n where N̄0
N

:= 0 and h(0) := 0.
As pointed out the function wi(.) does not depend on ζ , therefore even if it is derived

under the assumption that ζ is such that z = n, the specification also holds for any ζ ∈
[0, 1), and therefore for any z ≤ n, provided that z ≥ 1 as required in the definition of
AGG.

Lemma 2 Let A ∈ �, ζ ∈ [0, 1), and z ≥ 1, UP (.; ζ ) satisfies AGG, INV-S, INV-T if and
only if there exist a continuous functions A : [0, 1]2 → R+ and β0, γ0 ∈ R such that:

UP(A; ζ ) := A

(
P

N
,

P̄z

N̄z

) z∑

i=1

Ni

N

(
Pi

Ni

− ζ

)

·
[

β0 + γ0

2

(
(N − N̄i) − N̄i−1

N

)]

(6)

with N̄0 := 0.

Proof We take the result from Lemma 1 and investigate the implications on the specification
of UP(.; ζ ) generated by further imposing INV-T. We leave to the reader to check that the
obtained specification of UP(.; ζ ) satisfies all axioms, here we focus on the “only if” part
of the lemma.

For z = 1, INV-T does not hold. Note that when z = 1 the specification of UP(.; ζ ) in
the lemma is consistent with the one derived in Lemma 1 where h(1) = β0 if z = n = 1.
While the specification in the lemma for h(.) that is valid also when z = 1 < n, will be
obtained in the next general part of the proof.

We set z ≥ 2 and consider the transfers involved in the definition of INV-T. Note that
with z = 2, the axiom is satisfied by construction given that it involves two transfers of
population taking place in opposite directions and therefore their effects cancel out leading
to the initial configurationA.

Without loss of generality we assume that there are z ≥ 2 neighborhoods with highly
concentrated poverty with Pi

Ni
≥ ζ and such that their population size is equal, that is

Ni = N0 for i = 1, 2, . . . , z. It follows that their relative population size within this set of

neighborhoods is Ni

N̄z
= 1

z
, with N̄i

N̄z
= i

z
.

Moreover, we consider first the case where ζ ∈ [0, 1) is such that for a given A ∈ � we
have z = n ≥ 2.

Consider the effect of the combined transfers of population in INV-T, and apply
them to the specification derived in Lemma 1. Note that these transfers take place

among neighborhoods in {1, 2, . . . , z} and do not affect the components A
(

P
N

,
P̄z

N̄z

)
and
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[
h
(

N̄i

N

)
− h

(
N̄i−1
N

)]
but only the distributions of

(
Pi

Ni
− ζ

)
. The application of the

transfers in INV-T leads to the following condition
[

h

(
i

z

)

− h

(
i − 1

z

)]

ε −
[

h

(
i + 1

z

)

− h

(
i

z

)]

ε

−
[

h

(
j

z

)

− h

(
j − 1

z

)]

ε +
[

h

(
j + 1

z

)

− h

(
j

z

)]

ε = 0 (7)

for ε > 0, satisfying the conditions specified in INV-T for all i, j ∈ {1, 2, . . . , z − 1} with
z = n ≥ 2.

It then follows that
[
h
(

j+1
z

)
− h

(
j
z

)]
−
[
h
(

j
z

)
− h

(
j−1

z

)]
=

[
h
(

i+1
z

)
− h

(
i
z

)]
−

[
h
(

i
z

)
− h

(
i−1
z

)]
for all i, j ∈ {1, 2, . . . , z − 1}, and for all z = n ≥ 2. Thus, we have

that
[
h
(

i+1
z

)
− h

(
i
z

)]
−

[
h
(

i
z

)
− h

(
i−1
z

)]
does not depend on i but eventually only on

1/z. In general, there exists a function g(1/z) such that
[

h

(
i + 1

z

)

− h

(
i

z

)]

−
[

h

(
i

z

)

− h

(
i − 1

z

)]

= g

(
1

z

)

for all i ∈ {1, 2, . . . , z − 1}, all z = n ≥ 2.
To simplify the exposition, denote 1

z
= σ and let f (i) := h(iσ ) for a fixed σ . We then

have
[f (i + 1) − f (i)] − [f (i) − f (i − 1)] = g(σ )

for all i ∈ {1, 2, . . . , z − 1}, all z = n ≥ 2.
Let d(i) := f (i)−f (i−1) for i ∈ {1, 2, . . . , z−1} with by construction f (0) = h(0) =

0. Thus, d(1) + d(2) + . . . + d(i) = f (i) − f (0) = f (i). We then have

d(i + 1) − d(i) = g(σ )

for i ∈ {1, 2, . . . , z − 1}, that leads to d(j) = d(1) + (j − 1)g(σ ) for i ∈ {1, 2, . . . , z} and
all z = n ≥ 2.

Thus, f (i) = ∑i
j=1d(j) = ∑i

j=1d(1)+ (j − 1)g(σ ), with f (1) = d(1). It follows that

f (i) = if (1) + i(i − 1)

2
g(σ )

for i ∈ {1, 2, . . . , z}, z = n ≥ 2. Recalling that f (i) := h(i/z) we have

h

(
i

z

)

= ih

(
1

z

)

+ i(i − 1)

2
g(1/z)

for i ∈ {1, 2, . . . , z}, z = n ≥ 2. Given that i and z can take any pair of natural number
values such that i ≤ z = n, and that h(0) = 0 by construction, then the above formula
is a functional equation that allows to specify the value of the function h(.) for all rational
numbers in [0, 1].

Let i = z, we then obtain

h(1) = zh

(
1

z

)

+ z(z − 1)

2
g

(
1

z

)

,

note that the value of h(1) is constant and therefore independent from z, rearranging it then
follows that for any z = n ≥ 2 it holds that

h

(
1

z

)

= h(1)

z
− (z − 1)

2
g

(
1

z

)

.
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Recalling the derivation of h
(

i
z

)
and inserting h

(
1
z

)
one obtains

h

(
i

z

)

= h(1)
i

z
− i(z − i)

2
g

(
1

z

)

for i ∈ {1, 2, . . . , z}, z = n ≥ 2.
Note that i

z
are unaffected if both i and z = n are replicated r times for r ∈

{1, 2, 3, 4, . . .}, we then obtain h
(

i
z

)
= h

(
ri
rz

)
= h(1) ri

rz
− ri(rz−ri)

2 g
(

1
rz

)
= h(1) i

z
−

r2
i(z−i)

2 g
(

1
rz

)
for all r . As a result it should hold that

r2g

(
1

rz

)

= g

(
1

z

)

for all r, z ∈ {2, 3, 4, . . .} with z = n, thus, g
(

1
rz

)
= 1

r2
g
(
1
z

)
. By switching z with r

one obtains g
(

1
rz

)
= 1

z2
g
(
1
r

)
. As a result 1

r2
g
(
1
z

)
= 1

z2
g
(
1
r

)
for all r, z ∈ {2, 3, 4, . . .},

that is, z2g
(
1
z

)
= r2g

(
1
r

)
for all r, z. Thus, there exists a constant γ0 ∈ R such that

z2g
(
1
z

)
= −γ0, leading to g

(
1
z

)
= − γ0

z2
for all z ∈ {2, 3, 4, . . .}. By substituting into the

definition of h
(

i
z

)
and letting h(1) = β0 ∈ R it follows that h

(
i
z

)
= β0

i
z

+ γ0
2

i
z

(z−i)
z

.

Note that we have derived the specification of h(.) under the assumption that z = n ≥ 2,
then replacing z with n we obtain

h

(
i

n

)

= β
i

n
+ γ0

2

i

n

(n − i)

n
.

Recall that i
n
by construction could be any rational number in (0, 1], with h(0) = 0 already

set in Lemma 1. Given that the set of rational numbers is dense in (0, 1] and that h(.) is
continuous in that interval the result could be extended to all real numbers in [0, 1], with
h(0) = 0. Recalling that N̄i

N
= i

n
we can then write more generally

h

(
N̄i

N

)

= β0
N̄i

N
+ γ0

2

N̄i

N

(N − N̄i)

N
.

Consider the weighting function
[
h
(

N̄i

N

)
− h

(
N̄i−1
N

)]
from Lemma 1, it can then be

specified as:

h

(
N̄i

N

)

−h

(
N̄i−1

N

)

=
(
β0 + γ0

2

) N̄i

N
− γ0

2

(
N̄i

N

)2

−
(
β0 + γ0

2

) N̄i−1

N
+ γ0

2

(
N̄i−1

N

)2

=
(
β0 + γ0

2

) Ni

N
− γ0

2

(
N̄i − N̄i−1

N

)(
N̄i + N̄i−1

N

)

=
(
β0 + γ0

2

) Ni

N
− γ0

2

Ni

N

(
N̄i + N̄i−1

N

)

= β0
Ni

N
− γ0

2

Ni

N

(
N̄i + N̄i−1

N
− 1

)

= β0
Ni

N
+ γ0

2

Ni

N

(
(N − N̄i) − N̄i−1

N

)

.
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By substituting into the specification of UP(A; ζ ) in Lemma 1, one obtains the results
presented in this lemma.

Recall that we have derived the result under the assumption that for ζ ∈ [0, 1) we have
z = n ≥ 2 and note that the function h(.) does not depend on ζ . In order to extend the result
to all cases where n ≥ z ≥ 2 it needs to be checked that the obtained functional form for
h(.) allows to satisfy INV-T also when z < n. Note that, as in Eq. 7, the application of the
transfers in INV-T when n > z ≥ 2 requires that the following condition

[

h

(
i

n

)

− h

(
i − 1

n

)]

ε −
[

h

(
i + 1

n

)

− h

(
i

n

)]

ε

−
[

h

(
j

n

)

− h

(
j − 1

n

)]

ε +
[

h

(
j + 1

n

)

− h

(
j

n

)]

ε = 0

has to be satisfied for all i, j ∈ {1, 2, . . . , z − 1}, for n > z ≥ 2, for ε > 0. That is, after

substituting for the derived specification of h
(

N̄i

N

)
− h

(
N̄i−1
N

)
, it should be verified that

[

h

(
N̄i

N

)

− h

(
N̄i−1

N

)]

−
[

h

(
N̄i+1

N

)

− h

(
N̄i

N

)]

=
[

h

(
N̄j

N

)

− h

(
N̄j−1

N

)]

−
[

h

(
N̄j+1

N

)

− h

(
N̄j

N

)]

.

Note that
[
h
(

N̄i

N

)
−h

(
N̄i−1
N

)]
−
[
h
(

N̄i+1
N

)
−h

(
N̄i

N

)]
equals β0

Ni

N
+ γ0

2
Ni

N

(
(N−N̄i )−N̄i−1

N

)
−

β0
Ni+1
N

− γ0
2

Ni+1
N

(
(N−N̄i+1)−N̄i

N

)
, and recall that according to INV-T Ni = Nj = Ni+1 =

Nj+1 it then follows that
[

h

(
N̄i

N

)

− h

(
N̄i−1

N

)]

−
[

h

(
N̄i+1

N

)

− h

(
N̄i

N

)]

= 0.

This is similarly the case if we consider the neighborhood with index j . As a result INV-T
holds also for n > z ≥ 2.

To complete the exposition we consider the case where n > z = 1. In this case INV-T
cannot be applied, however we have already derived the required specifications for function
h(.) from the previous steps of the proof.

Lemma 3 Let A ∈ �, ζ ∈ [0, 1), UP(.; ζ ) satisfies AGG, INV-S, INV-T, INV-PL, MON,
TRAN and NOR if and only if there exist β, γ ≥ 0 such that:

UP(A; ζ ) := β · P̄z − ζ N̄z

P
+ γ · N̄z

N
·

z∑

i=1

Pi

P
·
(

(N̄z − N̄i) − N̄i−1

N̄z

)

+γ ·
(

N − N̄z

N

)

· P̄z − ζ N̄z

P
(8)

with N̄0 := 0, if z ≥ 1, otherwise UP(A; ζ ) = 0.

Proof We consider the result from Lemma 2 and investigate the implications on the spec-
ification of UP(.; ζ ) generated by further imposing INV-PL, MON, TRAN and NOR. We
leave to the reader to check that the obtained specification of UP(.; ζ ) satisfies all axioms,
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here we focus on the “only if” part of the lemma. Recall that, if z ≥ 1, then according to
Lemma 2 it is possible to write

UP(A; ζ ) := A

(
P

N
,

P̄z

N̄z

) z∑

i=1

Ni

N

(
Pi

Ni

− ζ

)

·
[

β0 + γ0

2

(
(N − N̄i) − N̄i−1

N

)]

.

We first consider INV-PL(i). By applying the scale component λ > 0 one obtains that from

A to A′ the values
(

P
N

,
P̄z

N̄z
,

Pi

Ni
, ζ

)
are scaled to

(
λ P

N
, λ

P̄z

N̄z
, λ

Pi

Ni
, λζ

)
, it then follows that

UP(A; ζ ) = UP(A′; λζ ) if and only if A
(

P
N

,
P̄z

N̄z

)
= λA

(
λ P

N
, λ

P̄z

N̄z

)
≥ 0.

We take into account two cases, first when ζ = 0 and then when ζ ∈ (0, 1).

Case 1: ζ = 0. In this case holds only INV-PL(i). If ζ = 0 then P
N

= P̄z

N̄z
. By applying

INV-PL(i) it then follows that A
(

P
N

, P
N

) = λA
(
λ P

N
, λ P

N

)
for λ > 0. Let λ P

N
= 1, we

obtain A
(

P
N

, P
N

) = A(1,1)
P
N

, letting A(1, 1) := K ≥ 0, then A
(

P
N

, P
N

) = K
P
N

.

Case 2: ζ ∈ (0, 1]. In this case P
N

≤ ζ ≤ P̄z

N̄z
≤ 1. INV-PL(i) holds if and only if

A
(

P
N

,
P̄z

N̄z

)
= λA

(
λ P

N
, λ

P̄z

N̄z

)
≥ 0 for λ > 0. Moreover, according to INV-PL(ii) one

obtains A
(

P
N

,
P̄z

N̄z

)
= A

(
P
N

,
P̄z

N̄z
+ θ

)
where P

N
< ζ ≤ P̄z

N̄z
. By INV-PL(ii) it follows that

there exists a continuous function H(.) such that A
(

P
N

,
P̄z

N̄z

)
:= H

(
P
N

)
whenever P

N
< ζ ≤

P̄z

N̄z
. Note that P

N
= P̄z

N̄z

N̄z

N
+

(
1 − N̄z

N

)
ζ ′ for ζ ′ < ζ , where ζ ′ denotes the average poverty

incidence of the neighborhood with incidence below ζ . By letting N̄z → 0 and ζ ′ → ζ one

obtains the case where P
N

→ ζ . We then have that A
(

P
N

,
P̄z

N̄z

)
= H

(
P
N

)
for P

N
<

P̄z

N̄z
. Thus,

by INV-PL(i) we have λA
(
λ P

N
, λ

P̄z

N̄z

)
= λH

(
λ P

N

) = H
(

P
N

) = A
(

P
N

,
P̄z

N̄z

)
for P

N
<

P̄z

N̄z

and for λ > 0 such that λ
P̄z

N̄z
≤ 1. Suppose that there exists c̄ such that λ P

N
= c̄, then

λH
(
λ P

N

) = H
(

P
N

)
implies that c̄H(c̄)

P
N

= H
(

P
N

)
. By letting c̄H(c̄) := K ≥ 0 one obtains

that A
(

P
N

,
P̄z

N̄z

)
= H

(
P
N

) = K
P
N

for P
N

<
P̄z

N̄z
.

Thus, we have that both

A

(
P

N
,

P̄z

N̄z

)

= K

P
N

for P
N

<
P̄z

N̄z
≤ 1 and for P

N
= P̄z

N̄z
≤ 1 that identify all possible ranges of values of the

arguments of A(.).
By applying the result to the specification in Lemma 2, and letting β := β0K and γ :=

γ0K/2 one obtains

UP(A; ζ ) := 1
P
N

·
z∑

i=1

Ni

N

(
Pi

Ni

− ζ

)

·
[

β + γ

(
(N − N̄i) − N̄i−1

N

)]

=
z∑

i=1

(
Pi

P
− ζ

Ni

P

)

·
[

β + γ

(
(N − N̄i) − N̄i−1

N

)]

. (9)
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We now investigate the effects of MON and TRAN. According to MON considering that

UP(A′; ζ ) = ∑z
i=1

(
νPi

νP
− ζ

Ni

νP

)
·
[
β + γ

(
(N−N̄i )−N̄i−1

N

)]
for ν > 1, it should hold

UP(A′; ζ ) − UP(A; ζ ) ≥ 0, this requires that

z∑

i=1

[(

−ζ
Ni

νP

)

−
(

−ζ
Ni

P

)]

·
[

β + γ

(
(N − N̄i) − N̄i−1

N

)]

≥ 0

for all ν > 1, all ζ ∈ [0, 1), allA ∈ �. Rearranging the condition, it implies that

ζ

P/N

(

−1

ν
+ 1

) z∑

i=1

Ni

N
·
[

β + γ

(
(N − N̄i) − N̄i−1

N

)]

≥ 0

for all ν > 1, all ζ ∈ [0, 1), allA ∈ �.

This is the case if and only if
∑z

i=1
Ni

N
·
[
β + γ

(
(N−N̄i )−N̄i−1

N

)]
≥ 0 for allA ∈ �. This

condition depends on the value of z ≥ 1, and in particular, because of the construction of the

weighting function wi(.) that satisfies INV-S, the condition depends only on N̄z

N
. In fact, in

this case, because of INV-S, without loss of generality, one can consider distributions with
two neighborhoods and z = 1. In this case N1 = N̄1 = N̄z and recall that N̄0 = 0. After
substituting, one obtains the condition

N̄z

N
·
[

β + γ

(
N − N̄z

N

)]

≥ 0 (10)

for all N̄z

N
∈ (0, 1]. Letting N̄z

N
= 1, that is if z = n, it follows that a necessary condition

for MON to hold is β ≥ 0. Moreover, letting N̄z

N
→ 0, the additional derived necessary

condition is β + γ ≥ 0, because otherwise, if γ < −β for sufficiently small values of N̄z

N
is

possible to violate the condition in Eq. 10. Both necessary conditions β ≥ 0 and β + γ ≥ 0

turn out to be sufficient for Eq. 10 to hold for all N̄z

N
∈ (0, 1].

We consider now the restrictions required by axiom TRAN. First we consider the case
where, because of the transfer, the poverty incidence in neighborhood j does not fall below
ζ , that is PA′

j /NA′
j ≥ ζ .

Recall moreover, that according to TRAN the considered transfer does not affect the
ranking of the neighborhoods. Consider Eq. 9 and note that according to TRAN, only Pi

and Pj are modified by the transfer, it should then be verified that

UP(A′; ζ ) − UP(A; ζ ) = ε

P

[

β + γ

(
(N − N̄i) − N̄i−1

N

)]

− ε

P

[

β + γ

(
(N − N̄j ) − N̄j−1

N

)]

≥ 0

for j > i, with j ≤ z, and ε > 0. Thus

γ
ε

P

[
N̄j − N̄i + N̄j−1 − N̄i−1

N

]

≥ 0
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with N̄j − N̄i > 0 and N̄j−1 − N̄i−1 > 0, which implies

(
(N − N̄i) − N̄i−1

N

)

−
(

(N − N̄j ) − N̄j−1

N

)

= N̄j − N̄i + N̄j−1 − N̄i−1

N
> 0,

as a result should hold γ ≥ 0.
Note that the condition should hold for all i < j ≤ z with z ≤ 2 and therefore letting

z = n, should hold for all i < j ≤ n.
We consider now the case where PA′

j /NA′
j < ζ , with j = z, by applying TRAN, it

follows that

UP(A′; ζ ) − UP(A; ζ ) = ε

P

[

β + γ

(
(N − N̄i) − N̄i−1

N

)]

− ε′

P

[

β + γ

(
(N − N̄j ) − N̄j−1

N

)]

≥ 0

where 0 ≤ ε′ ≤ ε with ε′ = min{ε, Pj − ζNj }. The condition can then be simplified as

(
ε − ε′)β + γ

[

ε

(
(N − N̄i) − N̄i−1

N

)

− ε′
(

(N − N̄j ) − N̄j−1

N

)]

≥ 0.

Recalling that (N−N̄i )−N̄i−1
N

>
(N−N̄j )−N̄j−1

N
for j > i, that ε′ ≤ ε, and that β ≥ 0, then

γ ≥ 0 is sufficient to verify that UP(A′; ζ ) ≥ UP(A; ζ ).
Thus, γ ≥ 0 is necessary and sufficient for TRAN to hold. By combining with the

parametric restrictions derived by applying MON one obtains β ≥ 0, and γ ≥ 0.
All derivations illustrated so far consider the case where z ≥ 1. Note that forA ∈ � and

given ζ ∈ (0, 1) it is possible to take into account also configurations where Pi

Ni
< ζ for all

neighborhoods i. In this case the value of the index is derived by considering axiom NOR.
For all these configurations the value of the index coincides with the infimum of the index
taken over all the other possible configurations in A where z ≥ 1. Consider the obtained
derivation of UP for z ≥ 1, where

UP(A; ζ ) =
z∑

i=1

(
Pi − ζNi

P

)

·
[

β + γ

(
(N − N̄i) − N̄i−1

N

)]

(11)

with β, γ ≥ 0, note that the first term in the summation Pi−ζNi

P
≥ 0 is non-increasing

in i, and that the term (N−N̄i )−N̄i−1
N

is also non-increasing in i. It follows that, given that

β, γ ≥ 0 also β +γ
(

(N−N̄i )−N̄i−1
N

)
is non-increasing in i. The summation in Eq. 11 is then

minimized, for each z ≥ 1 if the terms Pi−ζNi

P
are equalized. Given that Pi−ζNi

P
≥ 0 then
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the minimum for each z ≥ 1 is obtained for Pi − ζNi = 0 for all i ≤ z. It follows that in
this case UP = 0.

Thus, by NOR the value of the index is 0 when Pi

Ni
< ζ for all i.

To complete the proof we rearrange the specification of UP(.; ζ ) in Eq. 11. We can
rewrite:

UP(A; ζ ) :=
z∑

i=1

(
Pi − ζNi

P

)

·
[

β + γ

(
(N − N̄i) − N̄i−1

N

)]

= β

z∑

i=1

(
Pi −ζNi

P

)

+γ

z∑

i=1

(
Pi −ζNi

P

)

·
(

(N−N̄i)−N̄i−1+N̄z−N̄z

N

)

= β · P̄z − ζ N̄z

P
+ γ

N̄z

N

z∑

i=1

(
Pi − ζNi

P

)

·
(

(N̄z − N̄i)

N̄z

− N̄i−1

N̄z

+ N − N̄z

N̄z

)

= β · P̄z − ζ N̄z

P
+ γ

N̄z

N

z∑

i=1

(
Pi − ζNi

P

)

·
(

(N̄z − N̄i) − N̄i−1

N̄z

)

+γ

(
N−N̄z

N

)
P̄z − ζ N̄z

P
.

Note that

z∑

i=1

Ni

(
N̄z − N̄i − N̄i−1

) = 0,

in fact
∑z

i=1Ni

(
N̄z − N̄i − N̄i−1

) = ∑z
i=1NiN̄z − ∑z

i=1Ni(N̄i + N̄i−1) = (N̄z)
2 −

∑z
i=1(N̄i − N̄i−1)(N̄i + N̄i−1) where

∑z
i=1(N̄i − N̄i−1)(N̄i + N̄i−1) = ∑z

i=1(N̄i)
2 −

(N̄i−1)
2 = (N̄z)

2. It then follows that the term
∑z

i=1

(
Pi−ζNi

P

)
·
(

(N̄z−N̄i )−N̄i−1

N̄z

)
simplifies

to
∑z

i=1
Pi

P
·
(

(N̄z−N̄i )−N̄i−1

N̄z

)
. Thus, we obtain:

UP(A; ζ ) = β · P̄z − ζ N̄z

P
+ γ · N̄z

N
·

z∑

i=1

(
Pi

P

)

·
(

(N̄z − N̄i) − N̄i−1

N̄z

)

+ γ ·
(

N − N̄z

N

)

· P̄z − ζ N̄z

P
.

In order to complete the proof of the Theorem one has to link the result in Lemma 3 with
the Gini index formula G(A; ζ ). Next lemma provides this link.

Lemma 4 LetA ∈ �, ζ ∈ [0, 1), and z ≥ 1, then

P̄z

P
G(A; ζ ) =

z∑

i=1

Pi

P

(
N̄z − N̄i

N̄z

− N̄i−1

N̄z

)

.
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Proof The Gini index G(.; ζ ) can be written as follows:

G(A; ζ ) = 1

2 P̄z

N̄z

z∑

i=1

z∑

j=1

Ni

N̄z

Nj

N̄z

∣
∣
∣
∣
Pi

Ni

− Pj

Nj

∣
∣
∣
∣

= N̄z

2P̄z

z∑

i=1

z∑

j=1

Ni

N̄z

Nj

N̄z

[

2max

{
Pi

Ni

,
Pj

Nj

}

− Pi

Ni

− Pj

Nj

]

= N̄z

2P̄z

⎡

⎣
z∑

i=1

z∑

j=1

Ni

N̄z

Nj

N̄z

2max

{
Pi

Ni

,
Pj

Nj

}

− 2
z∑

i=1

Ni

N̄z

z∑

i=1

Ni

N̄z

Pi

Ni

⎤

⎦ . (12)

Thus
P̄z

N̄z

G(A; ζ ) =
z∑

i=1

z∑

j=1

Ni

N̄z

Nj

N̄z

max

{
Pi

Ni

,
Pj

Nj

}

−
z∑

i=1

Ni

N̄z

Pi

Ni

. (13)

We now develop the first term appearing in squared brackets in Eq. 12, denoted max in
short-hand notation, to show that it can written as a function of the rank weights. First, let
develop the double summations term as follows:

max :=
z∑

i=1

z∑

j=1

Ni

N̄z

Nj

N̄z

max

{
Pi

Ni

,
Pj

Nj

}

= N1

N̄z

P1

N1

⎛

⎝
z∑

j=1

Nj

N̄z

+
z∑

j=2

Nj

N̄z

⎞

⎠ + N2

N̄z

P2

N2

⎛

⎝
z∑

j=2

Nj

N̄z

+
z∑

j=3

Nj

N̄z

⎞

⎠

+ . . . + Nz−1

N̄z

Pz−1

Nz−1

⎛

⎝
z∑

j=z−1

Nj

N̄z

+ Nz

N̄z

⎞

⎠ + Nz

N̄z

Pz

Nz

Nz

N̄z

=
z∑

i=1

Ni

N̄z

Pi

Ni

⎛

⎝Ni

N̄z

+ 2
z∑

j=i+1

Nj

N̄z

⎞

⎠ . (14)

After subtracting
∑z

i=1
Ni

N̄z

Pi

Ni
we obtain

P̄z

N̄z

G(A; ζ ) =
z∑

i=1

Ni

N̄z

Pi

Ni

⎛

⎝Ni

N̄z

+ 2
z∑

j=i+1

Nj

N̄z

⎞

⎠ −
z∑

i=1

Ni

N̄z

Pi

Ni

(15)

=
z∑

i=1

Ni

N̄z

Pi

Ni

⎛

⎝Ni

N̄z

+ 2
z∑

j=i+1

Nj

N̄z

− 1

⎞

⎠ (16)

=
z∑

i=1

Ni

N̄z

Pi

Ni

⎛

⎝Ni

N̄z

+
z∑

j=i+1

Nj

N̄z

− 1 +
z∑

j=i+1

Nj

N̄z

⎞

⎠ (17)

=
z∑

i=1

Ni

N̄z

Pi

Ni

(
N̄z − N̄i

N̄z

− N̄i−1

N̄z

)

. (18)

As a result P̄zG(A; ζ ) = ∑z
i=1Pi

(
N̄z−N̄i

N̄z
− N̄i−1

N̄z

)
, after dividing both sides by P we

obtain the result in the lemma.
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By substituting from Lemma 4 into the specification of Lemma 3 in Eq. 8 for z ≥ 1, we
obtain the specification of UP(.; ζ ) in the Theorem for z ≥ 1 :

UP(A; ζ ) = β · P̄z − ζ N̄z

P
+ γ · P̄z

P
· N̄z

N
· G(A; ζ ) + γ

(
N − N̄z

N

)
P̄z − ζ N̄z

P
.

To complete the proof we show that all axioms are independent, meaning that it is pos-
sible to derive alternative functional forms for UP(.; ζ ) by dropping one of the axioms and
considering all the others.

Drop NOR: consider Eq. 3 for z ≥ 1 and set UP(.; ζ ) = k < 0 in all other cases.
Drop TRAN: consider Eq. 3 with γ = −1 and β = 0 for z ≥ 1, and set UP(.; ζ ) =

− sup{ N̄z

N
P̄z

P
· G(A; ζ ) + N−N̄z

N
P̄z−ζ N̄z

P
: A ∈ � with z ≥ 1} in all other cases.

Drop MON: consider Eq. 3 with γ = 0 and β = −1 for z ≥ 1, and set UP(.; ζ ) = −1
in all other cases.

Drop INV-PL: consider Eq. 3 multiplied by P/N for z ≥ 1, and set UP(.; ζ ) = 0 in all
other cases.

Drop INV-T: consider

UP(A; ζ ) := 1
P
N

z∑

i=1

(
Pi

Ni

− ζ

)

·
[(

N̄i

N

(N − N̄i)

N

)2

−
(

N̄i−1

N

(N − N̄i−1)

N

)2]

with N̄0 := 0 for z ≥ 1, and set UP(.; ζ ) = 0 in all other cases.
Drop INV-S: consider

UP(A; ζ ) := 1
P
N

z∑

i=1

(
Ni

N

)2

·
(

Pi

Ni

− ζ

)

=
z∑

i=1

Ni

N
·
(

Pi − ζNi

P

)

for z ≥ 1, and set UP(.; ζ ) = 0 in all other cases.
Drop AGG: consider

UP(A; ζ ) := 1
P
N

z∑

i=1

Ni

N̄z

·
(

Pi

Ni

− ζ

)

= 1
P
N

z∑

i=1

Pi − ζNi

N̄z

=
P̄z

N̄z
− ζ

P
N

for z ≥ 1, and set UP(.; ζ ) = 0 in all other cases. QED.

A.2 Proof of Corollary 4

Proof Let pi = Pi

Ni
and si = Ni

N
denote the poverty incidence and population share of

neighborhood i, respectively.
Let p = (p1, . . . , pn)

T be the n × 1 vector of neighborhood poverty rates sorted in
decreasing order and s = (s1, . . . , sn)

T be the n × 1 vector of the corresponding popula-
tion shares. A urban poverty configuration is fully identified by the pair (s,p), and is used
interchangeably. Let 1n being the n × 1 vector with each element equal to 1, P is the n × n

skew-symmetric matrix:

P = 1

p̄

(
1npT − p1T

n

)
=

⎡

⎢
⎢
⎣

p1−p1
p̄

· · · pn−p1
p̄

...
. . .

...
p1−pn

p̄
· · · pn−pn

p̄

⎤

⎥
⎥
⎦ , (19)
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where p̄ is the overall poverty rate in the city. The elements of P are the n2 relative pairwise
differences between the neighborhood poverty incidences as ordered in p. Let S = diag {s}
be the n×n diagonal matrix with diagonal elements equal to the population shares in s, and
G be a n × n G-matrix (a skew-symmetric matrix whose diagonal elements are equal to 0,
with upper diagonal elements equal to −1 and lower diagonal elements equal to 1) (Silber
1989). The Gini index of urban poverty is expressed in matrix form:

G(s,p) = 1

2
tr(G̃PT ), (20)

where the matrix G̃ = SGS is the weighting G-matrix, a generalization of the G-matrix
introduced by Mussini and Grossi (2015) to add weights in the calculation of the Gini index.
The change in urban poverty from t to t ′ is measured by the difference between the Gini
index in t ′ and the Gini index in t :

�UP = G (st ′ ,pt ′) − G (st ,pt ) = 1

2
tr

(
G̃t ′P

T
t ′
)

− 1

2
tr

(
G̃tPT

t

)
. (21)

Equation 21 can be broken down into three components by applying the matrix approach
used in Mussini and Grossi (2015) and in Mussini (2017). The three components separate
the contributions of changes in neighborhood population shares, ranking of neighborhoods
and disparities between neighborhood poverty rates. Let st |t ′ stand for the n×1 vector of the
t population shares arranged by the decreasing order of the corresponding t ′ poverty rates.
Let λ = p̄t ′/p̄t ′|t be the ratio of the actual t ′ overall poverty rate to the fictitious t ′ overall
poverty rate which is the weighted average of t ′ poverty rates where the weights are the
corresponding population shares in t . After defining St |t ′ = diag

{
st |t ′

}
, the Gini index of t ′

neighborhood poverty rates calculated by using the t neighborhood population shares is

G
(
st |t ′ ,pt ′

) = 1

2
tr

(
St |t ′GSt |t ′λPT

t ′
)

= 1

2
tr

(
G̃t |t ′λPT

t ′
)

(22)

where G̃t |t ′ = St |t ′GSt |t ′ is the weighting G-matrix obtained by using the neighborhood
population shares in t instead of those in t ′. In Eq. 22, the multiplication of PT

t ′ by λ ensures
that the pairwise differences between the t ′ neighborhood poverty incidences are divided
by p̄t ′|t instead of p̄t ′ . By adding and subtracting G

(
st |t ′ ,pt ′

)
in Eq. 21, the contribution

to �UP due to changes in neighborhood population shares can be separated from that
attributable to changes in disparities between neighborhood poverty rates:

�UP =
[
1

2
tr

(
G̃t ′P

T
t ′
)

− 1

2
tr

(
G̃t |t ′λPT

t ′
)]

+
[
1

2
tr

(
G̃t |t ′λPT

t ′
)

− 1

2
tr

(
G̃tPT

t

)]

= 1

2
tr

(
WPT

t ′
)

+
[
1

2
tr

(
G̃t |t ′λPT

t ′
)

− 1

2
tr

(
G̃tPT

t

)]

= W +
[
1

2
tr

(
G̃t |t ′λPT

t ′
)

− 1

2
tr

(
G̃tPT

t

)]

, (23)

where W = G̃t ′ − λG̃t |t ′ . Component W measures the effect of changes in neighborhood
population shares. A positive value ofW indicates that the weights assigned to more unequal
pairs of neighborhoods are larger in t ′ than in t , increasing urban poverty from t to t ′. A neg-
ative value of W indicates that the weights assigned to more unequal pairs of neighborhoods
are smaller in t ′ than in t , reducing urban poverty.
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The difference enclosed within square brackets on the right-hand side of Eq. 23 can be
additively split into two components: one component measuring the re-ranking of neigh-
borhoods, a second component measuring the change in disparities between neighborhood
poverty rates. Let pt ′|t be the n × 1 vector of t ′ neighborhood poverty rates sorted in
decreasing order of the respective t neighborhood poverty rates, and B be the n × n per-
mutation matrix re-arranging the elements of pt ′ to obtain pt ′|t , that is pt ′|t = Bpt ′ . Matrix

Pt ′|t = (
1/p̄t ′|t

) (
1npT

t ′|t − pt ′|t1T
n

)
contains the n2 relative pairwise differences between

the neighborhood poverty rates as arranged in pt ′|t . The concentration index of the t ′ neigh-
borhood poverty rates sorted by the t neighborhood poverty rates, calculated by using the t

population shares, is defined as follows:

C
(
st ,pt ′|t

) = 1

2
tr

(
G̃tPT

t ′|t
)
. (24)

By using permutation matrix B, the concentration index C
(
st , pt ′|t

)
can be re-written as a

function of Pt ′ instead of Pt ′|t . Since Pt ′|t = BλPt ′BT , the concentration index C
(
st , pt ′|t

)

expressed as a function of Pt ′ becomes

C
(
st , pt ′|t

) = 1

2
tr

(
G̃tBλPT

t ′B
T
)

= 1

2
tr

(
BT G̃tBλPT

t ′
)
. (25)

By adding C
(
st ,pt ′|t

)
as expressed in Eq. 24 and subtracting it as expressed in Eq. 25 to

the difference enclosed within square brackets on the right-hand side of Eq. 23, we obtain

1

2
tr

(
G̃t |t ′λPT

t ′
)

− 1

2
tr

(
G̃tPT

t

)
=

[
1

2
tr

(
G̃t |t ′λPT

t ′
)

− 1

2
tr

(
BT G̃tBλPT

t ′
)]

+
[
1

2
tr

(
G̃tPT

t ′|t
)

− 1

2
tr

(
G̃tPT

t

)]

= 1

2
tr

[(
G̃t |t ′ − BT G̃tB

)
λPT

t ′
]

+1

2
tr

[
G̃t

(
PT

t ′|t − PT
t

)]

= 1

2
tr

(
RλPT

t ′
)

+ 1

2
tr

(
G̃tDT

)

= R + D, (26)

where R = G̃t |t ′ − BT G̃tB and D = Pt ′|t − Pt . Component R measures the effect of re-
ranking of neighborhoods from t to t ′ and its contribution to the change in urban poverty is
always non-negative. The nonzero elements of R indicate the pairs of neighborhoods which
have re-ranked from t to t ′.

Component D measures the effect of disproportionate changes in neighborhood poverty
rates. The generic (i, j)-th element of D compares the relative difference between the t

poverty rates of the neighborhoods in positions j and i in pt with the relative difference
between the t ′ poverty rates of the same two neighborhoods in pt ′|t . A positive (negative)
value of D indicates that relative disparities in neighborhood poverty rates have increased
(decreased) from t to t ′, increasing (reducing) urban poverty. If all neighborhood poverty
rates have changed in the same proportion from t to t ′, then D = 0.
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Given Eqs. 23 and 26, a three-term decomposition of �UP is obtained:

�UP = 1

2
tr

(
WPT

t ′
)

+ 1

2
tr

(
RλPT

t ′
)

+ 1

2
tr

(
G̃tDT

)
= W + R + D. (27)

Since component D would not reveal changes in neighborhood poverty rates if all neighbor-
hood poverty rates changed in the same proportion, this component is split into two further
terms: one measuring the change in the city poverty rate, the second measuring the changes
in disparities between neighborhood poverty rates by assuming that the city poverty rate
remains the same from t to t ′. Let c stand for the change in the city poverty rate by assuming
that neighborhood population shares are unchanged from t to t ′:

c = p̄t ′|t − p̄t

p̄t

. (28)

Let pc
t ′|t = pt + cpt be the vector of neighborhood poverty rates we would observe in t ′ if

every neighborhood poverty rate changed by proportion c. This implies that p̄c
t ′|t = p̄t ′|t .

Vector pt ′|t can be expressed as

pt ′|t = pc
t ′|t + pδ

t ′|t ,

where the elements of vector pδ
t ′|t are the element-by-element differences between vectors

pt ′|t and pc
t ′|t . Since p

c
t ′|t = pt + cpt , pt ′|t can be re-written as

pt ′|t = pt + pδ
t ′|t

︸ ︷︷ ︸
pe

t ′ |t

+cpt

= pe
t ′|t + cpt , (29)

where the elements of pe
t ′|t account for disproportionate changes in neighborhood poverty

rates from t to t ′, as pe
t ′|t would equal pt if there were no disproportionate changes in

neighborhood poverty rates. Given equations above, matrix Pt ′|t can be written as

Pt ′|t = (1/p̄t ′|t )(1npT
t ′|t − pt ′|t1T

n )

= 1

1 + c

⎡

⎢
⎢
⎢
⎣

pe
1,t ′ |t−pe

1,t ′ |t
p̄t

· · · pe
n,t ′ |t−pe

1,t ′ |t
p̄t

...
. . .

...
pe
1,t ′ |t−pe

n,t ′ |t
p̄t

· · · pe
n,t ′ |t−pe

n,t ′ |t
p̄t

⎤

⎥
⎥
⎥
⎦

+ c

1 + c

⎡

⎢
⎢
⎣

p1,t−p1,t
p̄t

· · · pn,t−p1,t
p̄t

...
. . .

...
p1,t−pn,t

p̄t
· · · pn,t−pn,t

p̄t

⎤

⎥
⎥
⎦

= 1

1 + c
Pe

t ′|t + c

1 + c
Pt . (30)

Since matrix D in Eq. 27 is obtained by subtracting Pt from Pt ′|t , D can be re-written as

D = Pt ′|t − Pt

= 1

1 + c
Pe

t ′|t + c

1 + c
Pt − Pt

=
(

1

1 + c

)

︸ ︷︷ ︸
C

(
Pe

t ′|t − Pt

)

︸ ︷︷ ︸
E

= C · E (31)

635



F. Andreoli et al.

By replacing D in Eq. 27 with its expression in Eq. 31, the decomposition of the change in
urban poverty becomes

�UP = 1

2
tr

(
WPT

t ′
)

+ 1

2
tr

(
RλPT

t ′
)

+ C · 1
2
tr

(
G̃tET

)
= W + R + C · E. (32)

A.3 Proof of Corollary 5

Proof Building on the Rey and Smith (2013) spatial decomposition of the Gini index and
the spatial decomposition of the change in inequality in Mussini (2020), �UP , W , R and
E can be broken down into spatial components. Let Nt be the n × n spatial weights matrix
having its (i, j)-th entry equal to 1 if and only if the (i, j)-th element of Pt is the relative dif-
ference between the poverty rates of two neighborhoods that are spatially close, otherwise
the (i, j)-th element of Nt is 0. Using the Hadamard product,22 the relative pairwise differ-
ences between the poverty rates of neighborhoods that are spatially close can be selected
from Pt :

PN,t = Nt 
 Pt . (33)

For each pair of neighborhoods, the relative difference between their t ′ poverty rates in
Pe

t ′|t has the same position as the relative difference between their t poverty rates in Pt .
Thus, Nt also selects the relative pairwise differences between neighbors from Pe

t ′|t :

Pe
N,t ′|t = Nt 
 Pe

t ′|t . (34)

Since E = Pe
t ′|t − Pt , the Hadamard product between Nt and E is a matrix with nonzero

elements equal to the elements of E pertaining to neighborhoods that are spatially close:

EN = Pe
N,t ′|t − PN,t = Nt 


(
Pe

t ′|t − Pt

)
= Nt 
 E. (35)

Let Nt ′ be the n × n spatial weights matrix having its (i, j)-th entry equal to 1 if and
only if the (i, j)-th element of Pt ′ is the relative difference between the poverty rates of
two neighborhoods that are spatially close, otherwise the (i, j)-th element of Nt ′ is 0. The
Hadamard product of Nt ′ and Pt ′ is the matrix

PN,t ′ = Nt ′ 
 Pt ′ . (36)

The nonzero elements of PN,t ′ are the relative pairwise differences between the t ′ poverty
rates of neighborhoods that are in spatial proximity.

The decomposition of the change in the neighborhood component of urban poverty is
obtained by replacing Pt ′ and E in Eq. 32 with PN,t ′ and EN , respectively:

�UPN = 1

2
tr

(
WPT

N,t ′
)
+ 1

2
tr

(
RλPT

N,t ′
)
+C · 1

2
tr

(
G̃tET

N

)
= WN +RN +C ·EN . (37)

Let Jn be the matrix with diagonal elements equal to 0 and extra-diagonal elements equal to
1, the matrix with nonzero elements equal to the relative pairwise differences between the
t ′ poverty rates of neighborhoods that are not in spatial proximity is

PnN,t ′ = (Jn − Nt ′) 
 Pt ′ . (38)

22Let X and Y be k × k matrices. The Hadamard product X 
 Y is defined as the k × k matrix with the
(i, j)-th element equal to xij yij .
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The matrix selecting the elements of E pertaining to the pairs of neighborhoods that are not
spatially close is

EnN = (Jn − Nt ) 
 E. (39)

The decomposition of the change in the non-neighborhood component of urban poverty is
obtained by replacing Pt ′ and E in Eq. 32 with PnN,t ′ and EnN , respectively:

�UPnN = 1

2
tr

(
WPT

nN,t ′
)
+ 1

2
tr

(
RλPT

nN,t ′
)
+C · 1

2
tr

(
G̃tET

nN

)
= WnN +RnN +C ·EnN .

(40)
Given Eqs. 40 and 37, the spatial decomposition of the change in urban poverty is

�UP = WN + WnN + RN + RnN + C · (EN + EnN). (41)

Appendix B: Additional results

Table 2 Summary statistics of changes in urban poverty concentration, all 395 American MSA

Variable Statistics 1980–1990 1990–2000 2000–2008 2008–2012 2012–2014

�UP Mean .0314 − .0038 .0153 − .016 − .0016

pc(25) .0026 − .0258 − .0109 − .0337 − .0135

pc(75) .0592 .015 .0401 .0009 .0097

�CP(20) Mean .0958 − .0474 .104 .0491 − .0153

pc(25) .0089 − .1 .0305 − .0028 − .0487

pc(75) .1722 .0105 .1697 .0997 .0123

�CP(40) Mean .0578 − .0393 .0461 .021 − .0118

pc(25) 0 − .0736 0 − .0013 − .0325

pc(75) .0954 0 .0841 .0535 .0055

W Mean .0041 .0008 .003 .0006 .0004

pc(25) − .0043 − .005 − .0018 − .0015 − .0007

pc(75) .0138 .0062 .0069 .0028 .0016

R Mean .0525 .0462 .0664 .0556 .0277

pc(25) .0357 .0318 .0463 .0391 .0192

pc(75) .0628 .0567 .0808 .0663 .0325

E Mean − .0328 − .0507 − .0682 − .082 − .0291

pc(25) − .0612 − .0733 − .1017 − .107 − .0411

pc(75) .0046 − .0275 − .034 − .0562 − .0157

C Mean .8869 1.044 .8257 .8923 1.0289

pc(25) .7709 .9462 .7387 .8437 .9955

pc(75) 1.0091 1.1325 .9054 .9308 1.0556
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Table 2 (continued)

Variable Statistics 1980–1990 1990–2000 2000–2008 2008–2012 2012–2014

D = C · E Mean − .0252 − .0508 − .054 − .0722 − .0297

pc(25) − .0527 − .0727 − .0808 − .0925 − .0419

pc(75) .0042 − .028 − .0276 − .0515 − .016

β (log-log) Mean − .1306 − .1935 − .1694 − .2666 − .1228

pc(25) − .2477 − .2679 − .2492 − .3386 − .1712

pc(75) − .0247 − .1094 − .0802 − .1892 − .067

Fig. 6 Urban poverty calculated by using balanced longitudinal data and raw data on census tracts in
American MSAs, from 1980 to 2014
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Fig. 7 Urban poverty and poverty incidence in the city, from 1980 to 2014
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Fig. 8 Urban poverty estimates based on poverty thresholds at 75%, 100% and 200% of the official poverty
line, years 1980 and 2014
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