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A B S T R A C T

The effectiveness of reachability analysis often depends on choosing appropriate values for a set
of tool-specific properties which need to be manually tailored to the specific system involved
and the reachable set to be evolved. Such property tuning is a time-consuming task, especially
when dealing with nonlinear systems. In this paper, we propose, instead, a methodology to
automatically and dynamically choose property values for reachability analysis along the system
evolution, based on the actual verification objective, i.e., the verification or falsification of a
set of constraints. By leveraging an initial solution to the reachable set, we estimate bounds
on the numerical accuracy required from each integration step to provide a definite answer to
the satisfaction of the constraints. Based on these accuracy bounds, we design a cost function
which we use, after mapping the property space to an integer space, to search for locally optimal
property values that yield the desired accuracy. Results from the application of our methodology
to the nonlinear reachability analysis tool Ariadne show that the frequency of correct answers
to constraint satisfaction problems increases significantly with respect to a manual approach.

. Introduction

Reachability analysis is concerned with the computation of the reachable set, i.e., the set of points reached by an initial set that
volves under a system’s dynamics. The reachable set of a dynamical system allows reasoning about its behaviors, and determining
hether the system satisfies a specification, represented as geometric constraints on the reached points.

For linear systems, tools like SpaceEx [1] and HyPro [2] allow an efficient representation of the system evolution. Computing
he reachable set becomes particularly challenging for nonlinear systems. Different approaches are used in the literature; see, for
xample, the tools KeYmaera X [3], HSolver [4], CORA [5], ARIADNE [6], JuliaReach [7], and Flow* [8]. In this paper, we focus
n a numerical approach based on computing over-approximations of the reachable set.

Regardless of the tool, automation can play a critical role toward improving the quality of the representation of the approximate
eachable set. Typically, the user needs to provide sensible values for a set of tool properties, such as the integration step size or
he polynomial order of a set representation. These properties usually affect the quality of the numerical approximation, or toggle
pecific features, ultimately controlling the over-approximation error. Unfortunately, however, optimal values for these properties
re difficult to find until the system under analysis is understood. The user ends up iteratively refining the property values until
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an acceptable result is obtained, a task that becomes time-consuming, when done manually with a trial-and-error approach. The
situation is exacerbated for systems with nonlinear dynamics, since symbolic approaches are more difficult to pursue, and evaluating
the reachable set can be computationally intensive. The overhead due to user interactions with the tool becomes non-negligible, in
the worst case requiring to spend hours while observing the behavior of the system, also due to the lack of intuition on the complex
interactions among the tool properties. Finally, user interactions may not be feasible in the case of online (dynamic) verification [9]
or model predictive monitoring [10] and control [11], since real-time requirements make efficiency more critical than in the offline
(static) case.

In this paper, we propose a methodology for the automated choice of the values of a set of tool properties for computing
onstrained reachability problems in nonlinear systems. Differently from approaches that compute a sequence of converging
pproximations to the exact result [12], the methodology aims to solve the problem

1. ideally within a single run of execution,
2. with minimal sufficient accuracy, and
3. with no manual tuning by the user.

We use the term property in place of the common term parameter [13,14] to avoid confusion with the case of parametric systems,
here the dynamical system model (not the analysis tool) is partially unspecified and includes time-invariant quantities defined in a

ange [15]. In our methodology, the goal is to provide a definite answer (positive or negative) to the satisfaction of a set of constraints
ver a time interval. This objective allows identifying the required accuracy of the reachable set. We then search the property space
t each integration step and choose the values that yield the minimum accuracy necessary to prove that each constraint is either
atisfied or not. Our approach is adaptive, since optimal property values are selected at each integration step and allowed to change,
cross different reachability problems and different integration steps of the same problem, to accommodate different dynamical
esponses.

To the best of our knowledge, this is the first approach addressing tool property tuning in a general way for nonlinear systems.
pproaches to bound the computation error by a single user-defined value were developed [16] for linear systems, where sets can
e represented very efficiently. Recent efforts in CORA [17–19] have been able to identify analytical expressions to control the
alues of multiple internal numerical properties. For close-to-linear systems, accuracy can still be sufficiently controlled due to the
artial ability to maintain a symbolic representation of the error [20]. For systems exhibiting strong nonlinearity, the error has
complex dependency on the dynamics, and set representations are less efficient in space and time, making automated tuning

ighly desirable. Unfortunately, however, the current tools in this category tend to mostly focus on the automated refinement of
he integration step size [21] or support the tuning of multiple properties [22], but not the systematic search of optimal properties
uided by cost criteria.

Recently, a methodology to identify multiple properties automatically has been proposed for nonlinear systems [14,23],
everaging analytical formulae for the numerical over-approximation error. However, the approach is tailored to a specific set of
roperties of interest. Moreover, while aiming to guarantee rigorous bounds on the error, worst-case analytical formulae may result
n overly conservative property values and excessive accuracy, as is the case for a lower integration step than is actually necessary.

hile we use an analytical formula for estimating the error, we propose to numerically validate the conservatism across a range of
roperty values and choose the best ones based on the numerical validation. In doing so, we adopt a heuristic approach, rather than
iming to generate invariants from a formal analysis of the dynamics [24]. Still, our methodology is generic, in that it is agnostic of

the impact of a given property on the error. Different properties can be appropriately tuned based on the tool or the system. Our
approach is therefore extensible: it can accommodate new tool features and can be used to assess their impact on system analysis.

We support both positive and negative answers to constraint satisfaction, by leveraging state-of-the-art methods to compute inner
approximations [25]. Conversely, an abstraction-based approach using a constraint solver [4] would avoid reachability calculation,
but at the same time it would only be able to return a positive answer. We remain numerically rigorous with respect to constraint
satisfaction: heuristics are only applied to automatically choose property values, as an alternative to manual selection. To summarize,
the main contribution of the paper is a practical methodology for automated reachability calculation for constraint checking.
Cornerstones are the identification of an approximate error bound function and a strategy to select results from different valuations
of tool properties.

The rest of the paper is organized as follows. We start in Section 2 with the preliminary concepts and definitions. The problem
formulation is presented in Section 3, followed by an overview of the algorithm in Section 4. Sections 5 and 6 provide the bulk
of the methodology, with Section 7 dedicated to the resulting algorithm. Section 8 discusses property space exploration. Section 9
analyzes some nonlinear systems to illustrate the benefits of the approach. Conclusions are drawn in Section 10.

2. Preliminaries

Let us consider a nonlinear time-variant system

𝐱̇ = 𝑓 (𝐱, 𝑡), 𝑓 ∶ R𝑁 × R → R𝑁 (1)

with 𝑓 (locally) Lipschitz.
We define 𝑅(𝑡) as the evolved set of the system, i.e., the set of points reached, starting from an initial set 𝐼 and an initial time
2

𝑇𝐼 , at a specific time 𝑡 ≥ 𝑇𝐼 under differential dynamics given by 𝑓 . Instead we call reached set 𝑅(𝑡1, 𝑡2) or flow tube the set of points
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reached between 𝑡1 and 𝑡2. Therefore 𝑅(𝑡) can also be referred to as the section of the flow tube. If we identify a finite time interval
𝛥𝑇 =

[

𝑇𝐼 , 𝑇𝐹
]

, then we use 𝑅 with no arguments to refer to the reachable set (also called reachability) of the system in 𝛥𝑇 implicitly.
Since the exact value of 𝑅(𝑡) is not computable in general for nonlinear systems, we are interested in computing approximations

to it. Let us define the three approximations of interest:

• 𝑅(𝑡): an outer-approximation of 𝑅(𝑡), i.e., 𝑅(𝑡) ⊂ 𝑅(𝑡);
• 𝑅(𝑡): an inner-approximation of 𝑅(𝑡), i.e., 𝑅(𝑡) ⊂ 𝑅(𝑡);
• 𝑅̃(𝑡): an approximation of 𝑅(𝑡), such that 𝑅̃(𝑡) ⊂ 𝑅(𝑡).

In the following we will also refer to 𝑅̃ as the approximate reachability and 𝑅 as the rigorous (over-approximated) reachability.
oreover, an uncontrolled reachability is a reachability obtained using a fixed valuation of the properties, while a controlled
eachability is the result of our methodology, able to control the over-approximation error along the evolution time in 𝛥𝑇 .

Such approximations will be used to check the satisfiability of a set of 𝑀 nonlinear time-varying constraints

 =
{

𝑐𝑚(𝐱, 𝑡) ≥ 0, 𝑚 = 0,… ,𝑀 − 1
}

. (2)

The outcome of satisfiability checking of the 𝑚th constraint for a given 𝐱̂, 𝑡 pair is a logical value in the {⊤, ⊥, ?} set, with a
ositive answer ⊤ when the 𝑐𝑚(𝐱̂, 𝑡 ) ≥ 0 predicate is satisfied, a negative answer ⊥ when it is not satisfied, and an indeterminate answer

‘‘?’’ when it is not possible to obtain either ⊤ or ⊥. We say that we provide a definite answer when it is not indeterminate.
Moving to sets, with some abuse of notation, we introduce the constraint evaluation 𝑐𝑚 at a given 𝑡 using a generic set 𝑆(𝑡) as the

following interval in the reals:

𝑐𝑚(𝑆(𝑡), 𝑡) = 𝑐𝑚([𝑆(𝑡)], [𝑡]) =
[

𝑐𝑚(𝑆(𝑡), 𝑡), 𝑐𝑚(𝑆(𝑡), 𝑡)
]

where we use square brackets to refer to the bounding box over-approximation of a set, i.e., a tight coordinate-aligned box enclosing
the set. Here we assume that time may also be represented as an interval in rigorous calculations.

The evaluation of constraints during reachability computation represents a constrained Initial Value Problem (IVP). In particular,
one where we compute approximations to the reachable set that are the least accurate (i.e., fastest to compute) while providing a
definite answer to the satisfiability of the constraints. In the following Section we will provide a formal definition of such a problem.

3. Problem formulation

Our assumptions for the computation of a solution to the constrained IVP can be stated as follows:

• We rely on a reachability tool in which we iteratively perform an integration step from a time 𝑡𝑘 to a time 𝑡𝑘+1, 𝑘 = 0,… , 𝐾
across the whole 𝛥𝑇 interval;

• Rigorous evolution is performed to compute 𝑅(𝑡), while 𝑅(𝑡) can be derived from 𝑅(𝑡) [25] if necessary.

We also identify a set of 𝑄 independent tool properties  =
{

𝑃𝑞
}

that a designer can tune when computing reachable sets.
Conventionally, one would adopt a user-defined valuation 𝐩̂ ∈ dom() valid for all 𝑡 ∈ 𝛥𝑇 . Our goal is, instead, to automatically
tune the property values across integration steps based on the constraints.

Constraint evaluation can be performed using interval arithmetic, which returns an over-approximation of the result. In
particular, interval arithmetic can be directly used for [𝑅(𝑡)], since the input is already an over-approximation. For 𝑅(𝑡), instead,

e need to guarantee that a negative evaluation is not the result of a spurious point caused by over-approximation. Therefore,
(𝑅(𝑡), 𝑡) is evaluated point-wise, by progressively splitting the domain of 𝑅(𝑡) down to a user-defined maximum splitting depth, and

evaluating the midpoint of the set resulting from the midpoint of each subdomain. While an evaluation
[

𝑐𝑚(𝑅(𝑡), 𝑡), 𝑐𝑚(𝑅(𝑡), 𝑡)
]

can be
uilt using this procedure, we are typically interested only in checking that 𝑐𝑚(𝑅(𝑡), 𝑡) < 0 holds. This can be performed via splitting

until a subdomain is found that satisfies the constraint, the constraint is found infeasible for all points of all the subdomains, or the
maximum splitting depth is reached. Remarkably, computing 𝑅(𝑡) is generally expensive, with an exponential cost in the typical
mplementation, and the result may still be a very small or empty inner approximation, which would not be effective for our
valuation purposes. Due to these limits in state-of-the-art inner approximation methods, instead of treating the maximum splitting
epth as another optimizable property, we rather chose a fixed value of 1. We define the satisfaction of 𝑐𝑚 in 𝛥𝑇 with

𝜎𝑚(𝛥𝑇 ) =

⎧

⎪

⎨

⎪

⎩

⊤, ∀𝑡 ∈ 𝛥𝑇 ∶ 𝑐𝑚(𝑅(𝑡), 𝑡) ≥ 0
⊥, ∃𝑡 ∈ 𝛥𝑇 ∶ 𝑐𝑚(𝑅(𝑡), 𝑡) < 0
?, otherwise.

(3)

We use bars above and below 𝜎𝑚 to denote that satisfaction is assessed on rigorous approximations of 𝑅(𝑡). While (3) is sound,
ased on the above considerations on inner approximations, the condition 𝑐𝑚(𝑅(𝑡), 𝑡) < 0 may not be effective for falsification, and
s often inefficient to compute. Hence, we expand our options for falsification as follows:

𝜎𝑚(𝛥𝑇 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⊤, ∀𝑡 ∈ 𝛥𝑇 ∶ 𝑐𝑚(𝑅(𝑡), 𝑡) ≥ 0
⊥𝐴, ∃𝑡 ∈ 𝛥𝑇 ∶ 𝑐𝑚(𝑅(𝑡), 𝑡) < 0
⊥𝑆 , ∃𝑡 ∈ 𝛥𝑇 ∶ 𝑐𝑚(𝑅(𝑡), 𝑡) < 0
?, otherwise,

(4)
3

⎩
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Fig. 1. Representation of different constraint satisfaction scenarios for sets, corresponding to the ⊤, ⊥𝐴, and ⊥𝑆 conditions.

i.e., we can falsify a constraint using 𝑅(𝑡) if all points do not satisfy the constraint. ⊥𝐴 stands for false for all points while ⊥𝑆 stands for
false for some points. For effectiveness and efficiency, we will give priority to ⊥𝐴 over ⊥𝑆 if the condition for the former is satisfied.
In the following, we will use ⊥ with no subscript when referring to both cases. As an example, Fig. 1 shows a generic reachable
flow tube 𝑆(𝑡) and three constraints 𝑐0, 𝑐1, and 𝑐2. The three outcomes for 𝜎𝑚(𝛥𝑇 ) are shown, where sections at times 𝑡′, 𝑡′′, and 𝑡′′′,
respectively, represent cases for ⊤ on 𝑐0, ⊥𝐴 on 𝑐1, and ⊥𝑆 on 𝑐2.

We measure the size of the sets and relate them to computation errors by relying on the normalization of the volume of the
bounding box of a set

𝛽(𝑡) = 𝑁

√

√

√

√

𝑁−1
∏

𝑖=0
|[𝑅(𝑡)]𝑖|, (5)

i.e., the normalized product of the widths over each dimension 𝑖 of the box. We correspondingly use the notation 𝛽(𝑡) for 𝑅̃(𝑡), 𝛽(𝑡)
for 𝑅(𝑡), and 𝛽(𝑡) for 𝑅(𝑡).

We further define 𝜒
𝑚
(𝑡) as the expansion or contraction factor from 𝑅(𝑡) or 𝑅(𝑡), respectively, to the boundary of the 𝑚th constraint

that still gives the same constraint satisfaction condition:

𝜒
𝑚
(𝑡) = max𝛾≥1 𝛾 s.t.

⎧

⎪

⎨

⎪

⎩

𝑐𝑚(𝛾[𝑅(𝑡)], 𝑡) ≥ 0, 𝑐𝑚(𝑅(𝑡), 𝑡) ≥ 0
𝑐𝑚(𝛾[𝑅(𝑡)], 𝑡) < 0, 𝑐𝑚(𝑅(𝑡), 𝑡) < 0
𝑐𝑚(

1
𝛾 [𝑅(𝑡)], 𝑡) < 0, 𝑐𝑚(𝑅(𝑡), 𝑡) < 0

(6)

with 𝛾[𝑆(𝑡)] denoting the bounding box, where each width is scaled by a factor of 𝛾, i.e., the actual volume becomes 𝜒𝑁
𝑚
(𝑡)𝛽

𝑁
(𝑡) or

𝛽(𝑡)𝑁∕𝜒𝑁
𝑚
(𝑡). Then, 𝜒𝑚(𝑡) would be the expansion or contraction factor from 𝑅(𝑡): in practice it represents how much a set can be

enlarged or shrinked while still be useful for constraint satisfaction.

We can finally introduce the local robustness for constraint satisfaction as the available normalized volume with respect to any
additional error in the evolved set:

𝜌
𝑚
(𝑡) =

{

𝜒
𝑚
(𝑡)𝛽(𝑡) − 𝛽(𝑡), 𝜎𝑚(𝛥𝑇 ) = {⊤,⊥𝐴}

𝛽(𝑡) − 𝛽(𝑡)∕𝜒
𝑚
(𝑡), 𝜎𝑚(𝛥𝑇 ) = ⊥𝑆

(7)

where the condition for 𝜎𝑚(𝛥𝑇 ) is fixed for all 𝑡; we set 𝜌
𝑚
(𝑡) = 0 whenever the corresponding condition is not satisfied. Then,

𝜌𝑚(𝑡) represents the robustness with respect to 𝑅(𝑡), as a function of 𝛽(𝑡) and 𝜒𝑚(𝑡). The robustness can be related to the distance
(maximum for ⊥, minimum for ⊤) between the constraint boundary and the set. The global robustness becomes

𝜌
𝑚
(𝛥𝑇 ) =

{

min𝑡∈𝛥𝑇 𝜌
𝑚
(𝑡), 𝜎𝑚(𝛥𝑇 ) = ⊤

(8)
4

max𝑡∈𝛥𝑇 𝜌
𝑚
(𝑡), 𝜎𝑚(𝛥𝑇 ) = ⊥
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i.e., we pick the worst-case margin for ⊤. For ⊥ it is sufficient to find one 𝑡 for which a negative value is identified, hence we can
focus on controlling the error with respect to the largest margin available. Our problem is finally formalized as follows:

Constraint-Driven Tool Property Tuning. Given the system in (1), the constraints in (2), and a set of 𝑄 tool properties  =
{

𝑃𝑞
}

,
= 1,… , 𝑄, we want to solve the constrained IVP in a time interval 𝛥𝑇 by looking for

argmin
𝐩(𝑡)∈ dom()

{

𝜌
𝑚
(𝛥𝑇 )

}

s.t. 𝜎𝑚(𝛥𝑇 ) ≠ ? ∀ 𝑚 = 0,… ,𝑀 − 1 (9)

The rationale is that the fastest solution to the IVP is obtained by minimizing the robustness that achieves a definite answer to all
constraints, since that translates into selecting property values that result in larger errors, hence less computationally demanding
operations.

4. Overview of the algorithm

We summarize the steps of the algorithm resulting from our methodology, which is fully described in Section 7. For each step,
we provide the Section in which the step is discussed in square brackets.

1. Identify a random set of property valuations 𝛱 [Section 8];
2. Pre-analyze the system on one element of 𝛱 by computing the approximate and rigorous reachabilities and using them to:

(a) remove constraints for which an answer is already identified during the rigorous case [Section 6];
(b) identify the expected answer for each remaining constraint [Section 5];
(c) construct expressions for the bounds on the growth of the computation error [Section 5];

3. From 𝑇𝐼 to 𝑇𝐹 , perform the 𝑘th step of controlled reachability:

(a) ∀ 𝐩 ∈ 𝛱 concurrently:

i. Compute one rigorous integration step [Section 9.3];
ii. Evaluate the satisfaction of the bounds on the error growth [Section 5];

(b) Adopt the values providing the minimum accuracy that satisfies the bounds [Section 5];
(c) Check answers to constraint satisfiability [Section 6];
(d) Update the 𝛱 population as a function of the points that satisfy the bounds with minimal margin [Section 8];

4. If new answers are found, remove the corresponding constraints and repeat from (2), otherwise
5. Return the reached set and the answers for the satisfaction of each constraint.

Computing reachabilities depends on the reachability tool, and consequently, is not the focus of this paper. We still provide
details about the integration step in Section 9.3 to understand the role of the chosen properties. In the following, we detail the
proposed solution strategy for problem (9).

5. Derivation of the criteria for robustness minimization

Solving (9) requires us to predict the answer to constraint satisfiability in advance, in order to be able to minimize the robustness
margin with respect to constraint satisfaction. To make the prediction, we can compute 𝑅̃(𝐩̂, 𝑡) and 𝑅(𝐩̂, 𝑡) and perform a difference
analysis, where 𝐩̂ ∈ dom() is a random point fixed for all times. We privilege a random point over a ‘‘default’’ valuation of the tool
properties (or even the midpoint of dom()) to make no assumptions on the initial property valuations. When using a Taylor model
approximation to the flow tube, 𝑅̃(𝑡) can be obtained by discarding error terms at all integration steps. We have that 𝑅̃(𝑡) ⊄ 𝑅(𝑡)
nd 𝑅̃(𝑡) ⊅ 𝑅(𝑡), while 𝑅̃(𝑡) ⊂ 𝑅(𝑡) is guaranteed by construction. By comparing 𝑅̃(𝑡) and 𝑅(𝑡), we can estimate the growth of the
ver-approximation error along evolution and control it to yield the minimum robustness allowed by property valuations.

If the approximate reachability 𝑅̃(𝐩̂, 𝑡) is used, computing the satisfaction as in (4) translates into a prescription of a given
atisfaction outcome as follows:

𝜎̃𝑚(𝛥𝑇 ) =

⎧

⎪

⎨

⎪

⎩

⊤, ∀𝑡 ∈ 𝛥𝑇 ∶ 𝑐𝑚(𝑅̃(𝐩̂, 𝑡), 𝑡) ≥ 0
⊥𝐴, ∃𝑡 ∈ 𝛥𝑇 ∶ 𝑐𝑚(𝑅̃(𝐩̂, 𝑡), 𝑡) < 0
⊥𝑆 , ∃𝑡 ∈ 𝛥𝑇 ∶ 𝑐𝑚(𝑅̃(𝐩̂, 𝑡), 𝑡) < 0

(10)

Notably, when prescribing ⊥𝐴 for the 𝑚th constraint, we can avoid the computation of 𝑅(𝑡′) for that constraint whenever
𝑚(𝑅(𝑡

′), 𝑡′) < 0 is expected to hold for any 𝑡′ ∈ 𝛥𝑇 . Due to the cost of inner approximations, this is a decisive performance advantage
brought by pre-analysis. Equivalent expressions using 𝑅̃(𝐩̂, 𝑡) are obtained for 𝜒𝑚(𝑡) from (6) and for 𝜌̃𝑚(𝑡) from (7).

In the following Subsections, we progressively refine the approximate formulation for controlling the error from a basic version
5

o the complete one.
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Fig. 2. Robustness of the trajectory in Fig. 1 with respect to each of the three constraints.

5.1. Bounding the over-approximation error

First, we introduce the notion of approximate upper bound on the maximum time for checking a constraint:

𝑇̃ ∗
𝑚 =

{

𝑇𝐹 , 𝜎̃𝑚(𝛥𝑇 ) = ⊤
argmax

𝑡∈𝛥𝑇
𝜌̃𝑚(𝑡), 𝜎̃𝑚(𝛥𝑇 ) = ⊥ (11)

i.e., while we need to check ⊤ for all times, for ⊥ we assume that a success after the time of the maximum robustness is unlikely if
not already obtained earlier. Fig. 2 shows 𝑇̃ ∗ as well as the local and global 𝜌̃ from the trajectory and constraints of Fig. 1, where
𝑆(𝑡) = 𝑅̃(𝑡).

Since we compute the evolution using outer-approximations to 𝑅(𝑡), let us consider the accumulated over-approximation error
at time 𝑡 as the quantity

𝑒(𝑡) = 𝛽(𝑡) − 𝛽(𝑡) (12)

where 𝛽(𝑡) is the unknown exact normalized volume. Turning to evolution by discrete integration steps, and making explicit the fact
that we choose a specific point 𝐩 ∈ dom() at each 𝑡𝑘, we want to guarantee that

𝑒(𝐩(𝑡𝑘), 𝑡𝑘) ≤ 𝜌𝑚(𝑡𝑘)
{

∀𝑡𝑘 ∈ 𝛥𝑇 , 𝜎̃𝑚(𝛥𝑇 ) = ⊤
𝑡𝑘 = 𝑇̃ ∗

𝑚 , 𝜎̃𝑚(𝛥𝑇 ) = ⊥
(13)

However, since the error tends to increase over time, we also want to control its growth to ultimately satisfy (13). To predict the
growth with respect to time, we perform a difference analysis using an uncontrolled rigorous reachability 𝑅(𝐩̂, 𝑡) under the same 𝐩̂
used for 𝑅̃(𝐩̂, 𝑡). This result is different from the controlled rigorous reachability 𝑅(𝑡), where the property values may change with
time. By using approximate results instead of exact ones, we find

𝑒(𝐩̂, 𝑡𝑎) = 𝛽(𝐩̂, 𝑡𝑎) − 𝛽(𝐩̂, 𝑡𝑎) (14)

where we use 𝑎 in place of 𝑘 since time points between controlled rigorous reachability and uncontrolled approximate reachability
may differ. For similar reasons, we introduce 𝑡𝑎 as the time closest to 𝑡𝑎 in the uncontrolled rigorous reachability, since even with
the same tool properties, time points between uncontrolled approximate and rigorous reachabilities may differ, i.e., the integration
step size may be adaptive as a function of other properties.

By dividing both sides of (13) by 𝑒(𝐩̂, 𝑡𝑘), with 𝑡𝑘 the closest time point to 𝑡𝑘 in the 𝑡𝑎 series, and approximating 𝜌𝑚(𝑡𝑘) with
𝜌̃𝑚(𝐩̂, 𝑡𝑘), we obtain

𝑒(𝐩(𝑡𝑘), 𝑡𝑘)
𝑒(𝐩̂, 𝑡𝑘)

≤
𝜌̃𝑚(𝐩̂, 𝑡𝑘)
𝑒(𝐩̂, 𝑡𝑘)

(15)

From the right hand side of (15) we can identify a strictly positive upper bound on the error ratio:

𝛼𝑚 = min
𝜌̃𝑚(𝐩̂, 𝑡𝑎)
𝑒(𝐩̂, 𝑡𝑎)

{

∀𝑡𝑎 ∈ 𝛥𝑇 , 𝜎̃𝑚(𝛥𝑇 ) = ⊤
𝑡𝑎 = 𝑇̃ ∗

𝑚 , 𝜎̃𝑚(𝛥𝑇 ) = ⊥
(16)

Using 𝛼𝑚 in place of the right hand side of (15), substituting (14) and (12) with 𝛽(𝐩̂, 𝑡𝑘) in place of the exact normalized volume,
we obtain

𝛽(𝐩(𝑡𝑘), 𝑡𝑘) − 𝛽(𝐩̂, 𝑡𝑘) ≤ 𝛼𝑚
(

𝛽(𝐩̂, 𝑡𝑘) − 𝛽(𝐩̂, 𝑡𝑘)
)

(17)

and consequently, the following constraint for optimization:
(

𝛼𝑚 + 1
)

𝛽(𝐩̂, 𝑡𝑘) − 𝛼𝑚𝛽(𝐩̂, 𝑡𝑘) − 𝛽(𝐩(𝑡𝑘), 𝑡𝑘) ≥ 0 (18)

which for compactness we refer to as 𝑠′𝑚(𝐩, 𝑡𝑘) ≥ 0, leaving the dependency of 𝐩 from 𝑡𝑘 implicit from now on.
Fig. 3, related to Fig. 2, visually represents the error under a given 𝑅(𝑡), assuming that 𝑆(𝑡) = 𝑅̃(𝑡) in Fig. 1. For visualization

purposes, the 𝑦 axis is magnified with respect to Fig. 2. The figure shows the 𝛼 scaling of 𝑒(𝑡) which bounds the error of controlled
6

𝑚
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Fig. 3. Example of error 𝑒 and its modulation with 𝛼𝑚 for all constraints in Fig. 1.

reachability by 𝜌̃𝑚(𝑡). We observe that 𝑐2 is the constraint that gives the stricter bound on the error growth. Moreover, 𝛼0 is not
determined by 𝜌̃0(𝛥𝑇 ) according to the example curve derived from 𝑒.

Given a selection of points 𝛱 ⊂ dom() that represent the explored valuations of tool properties, the minimization in problem
(9) can be performed approximately by finding at each step 𝑘

argmin
𝐩∈𝛱

𝑀−1
∑

𝑚=0
𝑠′𝑚(𝐩, 𝑡𝑘) s.t. 𝑠′𝑚(𝐩, 𝑡𝑘) ≥ 0 ∀ 𝑚 = 0,… ,𝑀 − 1 (19)

5.2. Relaxing the error bounds

Since 𝛱 is finite, there may not be a solution to (19) at any given step 𝑘. However, a failure for step 𝑘 may still be compensated
on the following steps by a success with higher than necessary accuracy. Therefore, we do not want our search to fail due to any
violated constraints. We then accept some soft failures, i.e., 𝑠′𝑚(𝐩, 𝑡𝑘) < 0 for some 𝑚. To do so, we relax the error constraints in (19)
and modify the cost function so that the minimum is taken over a pair of objectives. First, we aim to minimize the number of soft
failures in (19). Then, we minimize our robustness objective. More formally, we rewrite (19) as an unconstrained multi-objective
optimization problem

argmin
𝐩∈𝛱

(

#{𝑠′𝑚(𝐩, 𝑡𝑘) < 0},
𝑀−1
∑

𝑚=0
|𝑠′𝑚(𝐩, 𝑡𝑘)|

)

(20)

where priority is given on the left component of the cost function. We use # to denote the cardinality of a set. Moreover, we use
absolute values in the summation on the right, since some of the addends may be negative.

5.3. Controlling offsets in the robustness estimates

An offset 𝑠′𝑚(𝐩, 𝑡𝑘) ≠ 0 in any of the estimates in (20), which is usually observed in practice, may produce a drift in the cost
function. A negative drift leads to failure in providing a definite answer to constraint satisfaction. A positive drift leads to overly
accurate computation of rigorous approximations. We therefore aim to compensate the offsets along the remaining time to 𝑇 ∗

𝑚, by
redefining the soft constraint function as follows

𝑠𝑚(𝐩, 𝑡𝑘) = 𝑠′𝑚(𝐩, 𝑡𝑘) +
(

𝑡𝑘 − 𝑡𝑘−1
)

𝑘−1
∑

𝑗=0

𝑠𝑚(𝐩, 𝑡𝑗 )
𝑇 ∗
𝑚 − 𝑡𝑗

(21)

with 𝑠𝑚(𝐩, 𝑡0) = 0, which distributes the 𝑘th offset across the remaining time, proportionally to the time step performed.
In (21) we shift the minimum for the objective value, favoring solutions that perform in the opposite direction to the offset.

While the compensation converges to a negative offset from below, preventing it from reaching positive values, this control strategy
is still acceptable numerically. In fact, relaxing robustness constraints into soft constraints tends to produce an overall positive drift.
Additionally, the 𝛽 measure, being obtained from the bounding box, is an over-approximation that encourages operating with more
accurate sets than necessary. Based on these considerations, we rewrite our robustness minimization problem as follows

argmin
𝐩∈𝛱

(

#{𝑠𝑚(𝐩, 𝑡𝑘) < 0},
𝑀−1
∑

𝑚=0
|𝑠𝑚(𝐩, 𝑡𝑘)|

)

(22)

5.4. Pruning constraints that are not satisfiable

While we prescribe a definite satisfaction result, over time some 𝑐𝑚 may not be satisfiable anymore, leading to an indeterminate
result. We define the disjoint subsets ̃⊤

𝑘 , ̃⊥𝐴
𝑘 and ̃⊥𝑆

𝑘 of constraints based on the expected satisfaction outcome. These sets shrink
as 𝑘 increases. Equivalently, if  is the union of the constraint indexes, then  also shrinks. We instead denote by ⊤ and ⊥ the
7

𝑘 𝑘
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(increasing) sets of constraints for which an answer to the satisfaction problem is available. For ⊤, an answer can only be obtained
after 𝑇𝐹 .

We define a hard constraint function related to the 𝑚th constraint for point 𝐩 at step 𝑘 as

ℎ𝑚(𝐩, 𝑡𝑘) =
{

𝑐𝑚(𝑅(𝑡𝑘−1, 𝑡𝑘), 𝑡𝑘), 𝜎̃𝑚(𝛥𝑇 ) = ⊤
𝑇 ∗
𝑚 − 𝑡𝑘, 𝜎̃𝑚(𝛥𝑇 ) = ⊥

(23)

where if ℎ𝑚(𝐩, 𝑡𝑘) < 0, then the constraint is removed from 𝑘. Note that the reached set in the whole integration time interval
𝑅(𝑡𝑘−1, 𝑡𝑘) must be used for rigorousness. Due to the approximations adopted in formulating our robustness objective, some property
assignments may give a better objective value (and lower failed soft constraints) while failing more hard constraints. We account
for this effect by reformulating the optimization problem as follows

argmin
𝐩∈𝛱

⎛

⎜

⎜

⎜

⎝

#𝑚∈𝑘
{ℎ𝑚(𝐩, 𝑡𝑘) < 0},

#𝑚∈𝑘
{𝑠𝑚(𝐩, 𝑡𝑘) < 0},
∑

𝑚∈𝑘

|𝑠𝑚(𝐩, 𝑡𝑘)|

⎞

⎟

⎟

⎟

⎠

(24)

where we prioritize, from top to bottom, the number of constraint violations (hard failures) versus the number of violation of the
error bounds (soft failures), and the minimization of the overall robustness objective. The three components of the new cost function
represent the satisfiability (i.e, not having to discard the constraint from now on), effectiveness (i.e., having respected the error bound),
and efficiency (i.e., having respected the error bound with minimum accuracy) criteria, respectively. Clearly, a natural priority exists
in satisfiability against effectiveness on one side, and in effectiveness against efficiency on the other.

In our problem formulation, we continue reachability even if all points in 𝛱 lead to one (or more) hard failures. Only when
𝑘 = ∅ we terminate reachability early since the cost function is no longer defined and there are no constraints on the accuracy of
the result.

6. Rigorous constraint checking

While (24) provides an approximate rule to exclude constraints that are no longer satisfiable, to solve problem (9) we still need
to rigorously verify or falsify the constraints. Success in satisfying the prescription given by 𝜎̃𝑚(𝛥𝑇 ) is determined by the following
checks:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑡𝑘 = 𝑇𝐹 ∶ 𝑐𝑚 ∈ ̃⊤
𝑘 , 𝜎̃𝑚(𝛥𝑇 ) = ⊤

∀𝑡𝑘 ∶ 𝑐𝑚(𝑅(𝑡𝑘), 𝑡𝑘) < 0, 𝜎̃𝑚(𝛥𝑇 ) = ⊥𝐴
∀𝑡𝑘 ∶ 𝑐𝑚(𝑅(𝑡𝑘), 𝑡𝑘) < 0 ∧ 𝜎̃𝑚(𝛥𝑇 ) = ⊥𝑆

𝑐𝑚(𝑅(𝑡𝑘), 𝑡𝑘) < 0,

(25)

Success for 𝜎̃𝑚(𝛥𝑇 ) = ⊤ is already a result of ℎ𝑚 not failing at all times, and can be deduced trivially after 𝑇𝐹 if the constraint is still
in ̃⊤

𝑘 . For 𝜎̃𝑚(𝛥𝑇 ) = ⊥𝐴, the condition for falsification is checked at each time, since it is inexpensive. For 𝜎̃𝑚(𝛥𝑇 ) = ⊥𝑆 , instead, we
irst perform a fast check on 𝑅 to identify whether an inner approximation with negative constraint satisfaction is possible. If the

preliminary check passes, then we perform the expensive construction of 𝑅 and check against it.
Finally, by recognizing that uncontrolled rigorous reachability can already give answers to the satisfaction of some constraints,

e introduce simplified checks to possibly remove those constraints. During pre-analysis, as we generate the constraint prescription,
e do not rely on 𝑅(𝑡𝑘) for efficiency. Still, we can already identify ⊤ and ⊥𝐴 answers:

{

∀𝑡𝑘 ∶ 𝑐𝑚(𝑅(𝑡𝑘), 𝑡𝑘) > 0 → 𝑐𝑚 ∈ ⊤

∃𝑡𝑘 ∶ 𝑐𝑚(𝑅(𝑡𝑘), 𝑡𝑘) < 0 → 𝑐𝑚 ∈ ⊥ (26)

consequently reducing 0 for controlled reachability.

7. Algorithm

The complete constraint-driven reachability analysis flow is given in Alg. 1. It is a loop that terminates when a determinate
answer to all the constraints is found or the number of indeterminates could not be reduced further during the last iteration. While
Sections 3 to 6 dealt with only one round of iteration, we recognize that under a finite exploration of the search space, and given
the approximate nature of the pre-analysis, multiple rounds are usually beneficial. We start by initializing the satisfaction results to
all indeterminates (line 1). Each iteration computes uncontrolled reachabilities, both approximate 𝑅̃𝑢 and rigorous 𝑅𝑢 (lines 7 and
9). The latter in particular is terminated early if the radius of the set (i.e., half of the infinite norm of the bounding box of the set)
is larger than half of the radius of the bounding box 𝐵 of 𝑅̃. This check is necessary since we have no guarantee that the property
aluations chosen are sufficient to avoid blowup of the error. In line 9, we obtain 𝑆𝑢 using the simplified checks of (26). The two
eachability analyses are run using a random but common property assignment 𝑝. The results are analyzed (line 10) according to
he formulae in Section 5 to obtain the vectors of values for 𝜎 and 𝛼 (one per constraint) and the one for 𝛽 (one per integration step
ith respect to 𝑅̃𝑢).

Controlled reachability is performed in line 19 using the ℎ and 𝑠 constraints, where an early termination of 𝑅𝑢 (rigorous
8

uncontrolled reachability), identified by 𝑇𝐸 < 𝑇𝐹 , prevents the ⊤ case from being used both for error control and constraint checking.
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For 𝑅 the ideal result from all rounds would be the intersection of all reachable sets found. Unfortunately, the intersection of
onconvex nonlinear sets, depending on the representation, may be expensive to compute. Instead we focus on the most accurate
eachable set computed, by replacing in line 20 the original reachable set if the ending time is higher or if the ending time is the
ame but the number of steps is higher (under the assumption that smaller steps yield better results). Satisfaction results are merged
y setting any definite answer over the previously indeterminate ones (line 21). Finally, the constraints 𝐶 are reduced each time
e update the satisfaction answers, maintaining only those with an indeterminate answer (line 22).

Algorithm 1 Constraint-Driven Reachability Analysis
Given the system 𝑠𝑦𝑠, initial set 𝐼 , initial time 𝑇𝐼 , final time 𝑇𝐹 and constraints 𝐶:
1: 𝑆 = initialize_satisfaction(𝐶)
2: 𝑅 = ∅
3: 𝑀𝑖 = |𝐶| + 1
4: while num_indeterminates(𝑆) < 𝑀𝑖 do
5: 𝑀𝑖 = num_indeterminates(𝑆)
6: 𝑝 = random_search_point()
7: 𝑅̃𝑢 = approximate_reach(𝑠𝑦𝑠, 𝐼, 𝑇𝐼 , 𝑇𝐹 , 𝑝)
8: 𝐵 = bounding_box(𝑅̃𝑢)
9: [𝑆𝑢, 𝑅𝑢] = uncontrolled_reach(𝑠𝑦𝑠, 𝐼, 𝑇𝐼 , 𝑇𝐹 , 𝐶, 𝐵, 𝑝)
0: [𝜎, 𝛽, 𝛼] = preanalyze(𝑅̃𝑢, 𝑅𝑢, 𝐶)
1: 𝑅 = choose(𝑅,𝑅𝑢)
2: 𝑆 = merge(𝑆, 𝑆𝑢)
3: 𝐶 = reduce_f rom(𝐶, 𝑆)
4: if num_indeterminates(𝑆) = 0 then break
5: end if
6: 𝑀𝑖 = num_indeterminates(𝑆)
7: 𝑇𝐸 = ending_time(𝑅𝑢)
8: [ℎ, 𝑠] = build_control_constraints(𝐶, 𝜎, 𝛽, 𝛼, 𝑇𝐼 , 𝑇𝐹 , 𝑇𝐸 )

19: [𝑆𝑐 , 𝑅𝑐 ] = controlled_reach(𝑠𝑦𝑠, 𝐼, 𝑇𝐼 , 𝑇𝐹 , 𝐶, 𝐵, 𝑝, ℎ, 𝑠)
20: 𝑅 = choose(𝑅,𝑅𝑐 )
1: 𝑆 = merge(𝑆, 𝑆𝑐 )
2: 𝐶 = reduce_f rom(𝐶, 𝑆)
3: if num_indeterminates(𝑆) = 0 then break
4: end if
5: end while
6: return [𝑆,𝑅]

In Alg. 2 we describe the controlled_reach procedure. Starting from a search point 𝑝, we generate an initial family of points 𝛱
(line 3). For each step, we perform a concurrent evaluation of all points in 𝛱 . For each point we set the algorithm to use the
corresponding property values (line 9), compute in line 10 the evolved set 𝐸𝑗 (previously referred to as 𝑅(𝑡𝑗 )) and the reached set
𝑅𝑗 (previously referred to as 𝑅(𝑡𝑗−1, 𝑡𝑗 )). Hard and soft constraints are evaluated on 𝐸𝑗 in line 11 and the tuple of the results is
adjoined to an 𝑒𝑝 vector (line 12). The 𝛱 set is updated in line 14 according to Section 8. However, no particular update strategy
is essential to the methodology. The best point for the vector is used to update the satisfaction answer for the original constraints
using (25) in line 16, to adjoin to 𝑅 and to set the next 𝐸 and 𝑡 (lines 17 to 19). If the radius of 𝐸 is larger than the maximum
llowed, then we terminate early (line 20). On this matter, we chose half the radius of 𝐵 as a maximum value since under a higher
alue an evolved set would cover most of the domain and therefore be useless for constraint satisfaction. Conversely, too small a
alue may cause termination too early, preventing a potential definite answer to satisfaction.

. Exploring the property space

In this Section, we discuss how to specify the tool properties for Alg. 1, followed by how to generate a population of points for
earching the optimum and how to evolve it across integration steps. While this heuristic is an important part of the methodology,
he specific algorithm can be replaced with any other search algorithm. This is the reason why we present this Section after the
ain algorithm of our methodology. It also gives us the opportunity to provide a concluding discussion on convergence aspects.

To perform a search in Z𝑄 across step, we rely on temporal locality of the optima, i.e., the optimal valuation of properties does
ot change significantly between steps 𝑘 and 𝑘 + 1. Temporal locality holds for IVPs as long as the time step is reasonably small
ith respect to the dynamics. Under this assumption, we can direct the search at step 𝑘 + 1 by using the results obtained at step 𝑘.

Each property in our framework is defined by the tuple

{label, type, is_metric, 𝛤→, 𝛤←}

• label: a name, unique for the specific object, required for lookup within the property tree;
• type: the basic type used (e.g., Boolean, double, integer) or an enumerated type of symbols or objects;
• is_metric: whether there is a notion of distance between points, typically true for all non-enumerated types;
• 𝛤→: only for non-enumerated types, a function that converts the basic type to Z; defaults to the identity rounded to the closest
9

integer value;
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Algorithm 2 Controlled Reach
Given the system 𝑠𝑦𝑠, initial set 𝐼 , initial time 𝑇𝐼 , final time 𝑇𝐹 , constraints 𝐶, bounding box 𝐵, search point 𝑝, hard constraint
unctions ℎ and soft constraint functions 𝑠:
1: 𝑆 = initialize_satisfaction(𝐶)
2: 𝑅 = ∅
3: 𝛱 = generate_points_f rom(𝑝)
4: 𝑡 = 𝑇𝐼
5: 𝐸 = 𝐼
6: while 𝑡 < 𝑇𝐹 do
7: 𝑒𝑝 = [ ]
8: for 𝑝𝑗 in 𝛱 concurrently do
9: use_property_point(𝑝𝑗 )
0: [𝐸𝑗 , 𝑅𝑗 , 𝑡𝑗 ] = integration_step(𝑠𝑦𝑠, 𝐸, 𝑡)
1: 𝑒𝑣𝑗 = evaluate_constraints(𝐸𝑗 , ℎ, 𝑠)

12: 𝑒𝑝 = adjoin(𝑒𝑝, [𝑝𝑗 , 𝐸𝑗 , 𝑅𝑗 , 𝑡𝑗 , 𝑒𝑣𝑗 ])
13: end for
14: 𝛱 = update_points(𝑒𝑝)
15: 𝑏𝑝 = best(𝑒𝑝)
16: 𝑆 = update_satisfaction(𝑆, 𝑏𝑝, 𝐶)
17: 𝑅 = adjoin_best_result(𝑅, 𝑏𝑝)
8: 𝐸 = next_set(𝑏𝑝)
9: 𝑡 = next_time(𝑏𝑝)
0: if radius(𝐸) ≥ radius(𝐵)∕2 then break
1: end if
2: end while
3: return [𝑆,𝑅]

• 𝛤←: only for non-enumerated types, a function that converts from Z to the basic type; defaults to the identity.

The choice of 𝛤 defines the discretization of the search space. This is determined when the property is defined for the tool, to be
consistent with the conventions followed by the users when manually tuning the property. For example, the value of the step size
is typically explored following a log2 progression.

Since the domain is bounded, we can generate 𝑍 initial points in the search space randomly with uniform probability across all
properties. Each generated point can be evaluated and ranked according to (24). In our approach, exploration is based on adjacency.
Two points 𝐳𝑞 and 𝐳′𝑞 are adjacent if they differ in one and only one property value, with a value distance of 1. Values for non-metric
properties are assumed to have distance 1 between each other. At the 𝑘th step of integration we discard the worst ⌊𝑍∕2⌋ points
and, for each of the remaining ⌈𝑍∕2⌉ points 𝐳𝑞 we generate one new adjacent point 𝐳′𝑞 . The list of points for the (𝑘 + 1)-th step is
given by the union of the best ⌈𝑍∕2⌉ points with the adjacent ⌊𝑍∕2⌋ points. In this way, we progressively explore the search space
along 𝑘 without deviating from the best points too quickly.

The value of 𝑍 should reflect the number of performance cores in the CPU and consequently the number of concurrent runners
available. Increasing 𝑍 obviously implies that we evaluate more points, although that does not necessarily cause a speedup in the
overall procedure. In fact, while we are able to look for more diverse points, the deviation of the execution times for the parallelized
algorithm under such collection of points also tends to increase. Since we need to wait for all runs to finish before we can rank
the corresponding points, completion is bound by the slowest case. This inefficiency can be addressed by reducing the radius of
exploration over time, or by designing a scheduler that dynamically estimates the execution time and makes better allocations of
points to runners, so that more points can be searched within the same maximum execution time per step.

In general, the property valuation space is non-convex and our method only explores a bounded discretization of this space.
Moreover, there are no guarantees that there exists a point in such space that satisfies the accuracy requirements for constraint
satisfaction. Therefore, the proposed heuristic to explore the property valuation space cannot provide convergence guarantees by
itself. In our problem setting, guaranteeing the convergence of the nonlinear ordinary differential equation solver to the desired
tolerance, even with optimal properties, is also non-trivial. While numerical convergence to a given accuracy is easily achievable
across a single integration step, it is difficult to guarantee a sufficiently low over-approximation error for the solver over multiple
steps due to the growing complexity of the representation of the evolved set. Yet, if the properties of the reachability algorithm allow
controlling the over-approximation error, our optimization method will succeed in finding the minimum accuracy that addresses
the underlying constraint satisfaction problem.

9. Evaluation

We use a C++ implementation of our methodology to validate its effectiveness. In particular, the library for property definition
and the corresponding runtime for space exploration are written as an open-source project [26] with no external dependencies. The
reachability tool Ariadne is also open source [27].
10
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Table 1
Summary information on systems tested.
Name Alias Ref N 𝑇𝐹 Initial set bounds

Brusselator BRU [21] 2 1 [0.95, 1.05][0.93, 1.07]
Jet engine JET [21] 2 5 [0.9, 1.1][0.86, 1.14]
Higgins–Sel’kov HIG [20] 2 5 [1.99, 2.01][0.99, 1.01]
Lorenz attractor LOR [28] 3 1 [0.99, 1.01][0.99, 1.01][0.99, 1.01]
Rössler attractor ROS [28] 3 12 [−9.01, −8.99][−0.01, 0.01][0, 0.02]
Chemical reactor CHE [29] 4 5 [0, 1e−3][0, 1e−3][0, 1e−3][0, 1e−3]

For reproducibility purposes, the evaluation code is made available in the tool distribution. All the results were obtained using a
acBook Air M2 laptop, with 4 performance cores, consequently processing 4 search points per integration step. No other parallel

rocessing is involved in this evaluation.

.1. Benchmarking setup

Table 1 provides the benchmark suite, including a reference to the literature for details on the nonlinear dynamics. Testing was
imited to 4 state variables due to the substantial cost of computing inner approximations despite using the most efficient method
urrently available in the literature [25]. However, since our methodology mitigates the need for the expensive ⊥𝑆 check, as 𝑁

increases, we expect to scale favorably with respect to avoiding the pre-analysis step.
For all the original systems with time-varying inputs, we transform those inputs into constants at their midpoint value. Further,

we focus on time independent differential systems, with 𝑇𝐼 = 0, and time-invariant constraints, which are more common in the
literature. However, our methodology supports time dependence in the dynamics and the constraints, with no practical impact on
the algorithm and its performance, and therefore, no impact on our evaluation plan.

Based on these considerations, we design a simple and practical constraint generator as follows:

𝜆𝑁 + 4
𝑁−1
∑

𝑖=0
𝜆𝑖

(

𝑥𝑖 − 𝐵̂𝑖
𝜔𝑖|𝐵𝑖|

)2

≥ 0

s.t. ∀𝑖 = 0,… , 𝑁, 𝜆𝑖 ∈ {−1, 1}
𝑁
∑

𝑖=0
𝜆𝑖 ≠ {−𝑁 − 1, 𝑁 + 1}

∀𝑖 = 0,… , 𝑁 − 1, 𝜔𝑖 ∈ [0.5, 1] ∨
∀𝑖 = 0,… , 𝑁 − 1, 𝜔𝑖 ∈ [1, 1.5]

(27)

This generator produces axes-aligned ellipsoids and hyperboloids, centered in 𝐵̂ with reference semi-widths given by |𝐵𝑖|∕2
alues. If 𝐵 is a bounding box of the reachable set, calculated using approximate reachability, then the reference ellipsoid and
yperboloid is internally or externally tangent to 𝐵, respectively. The 𝜆𝑖 coefficients, uniformly chosen, shuffle through all possible
ombinations, from which we exclude all positive or all negative coefficients since the resulting constraint would be trivial. The 𝜔𝑖
oefficient values instead are chosen uniformly from the same range (uniformly between [0.5, 1] or [1, 1.5]) for all 𝑖, to produce small

or large distances, and consequently, produce ellipsoids that may be enclosed by a cyclic trajectory or my enclose such a trajectory,
and hyperboloids that may graze or cross a non-cyclic trajectory.

9.2. Benchmarking algorithm

The benchmarking algorithm compares the proposed constraint-driven methodology with a random unconstrained one, as shown
in Alg. 3. We evaluate the number of constraints with indeterminate satisfiability answer under an equal real-time budget 𝑇𝑥. The
time budget is set by the constraint-driven method, where we terminate as soon as no improvement over the previous internal
iteration is detected. In the unconstrained case, we perform multiple runs of rigorous evolution by picking a random property
assignment in the search space each time and tracking, across the runs, the constraints whose satisfiability has been decided. Once
the time limit is passed, we report the comparison over the strict [0, 𝑇𝑥] window. Similarly to the constraint-driven approach, we
compute and use a bounding box also for the unconstrained methodology. If this were not the case, the unconstrained methodology
would get stuck for a significant time whenever a blowup of the error is present, or it may not even terminate. All the partial
constraint satisfiability results are retained as usual.

For comparison between the two methodologies we use two metrics. The first one is the final percentage of constraints with
indeterminate satisfaction, called %?. However, this does not capture the speed of convergence, which can be different under the
same final value. The second metric is then the integral of the percentage across the iterations, called ∫ ?.

Constraints are generated by first evaluating 𝐵 from the approximate evolution of the system, by constructing 500 instances,
and finally by running rigorous evolutions where ⊤ and ⊥𝐴 are checked. All the constraints whose satisfaction is trivially identified
by this run are removed; since assessing ⊥𝑆 is not trivial, in general, and inefficient to check, we do not consider it. We observed a
typical 60 − 70% of constraints being discarded in this way. From the remaining constraints, 100 candidates are randomly selected.
11

We run approximate evolutions once again on this set to provide a summary estimate of the frequency of the given prescriptions
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Algorithm 3 Single run of benchmarking
Given the system 𝑠𝑦𝑠, initial set 𝐼 and final time 𝑇𝐹 :

1: 𝐶 = generate_constraints(𝑠𝑦𝑠, 𝐼, 𝑇𝐹 )
2: 𝜎̃ = identify_prescriptions(𝑠𝑦𝑠, 𝐼, 𝑇𝐹 , 𝐶)
3: [%?

𝑐 , ∫
?
𝑐 , 𝑆𝑐 , 𝑇𝑥] = constrained_check(𝑠𝑦𝑠, 𝐼, 𝑇𝐹 , 𝐶)

4: [%?
𝑢, ∫

?
𝑢 , 𝑆𝑢] = unconstrained_check(𝑠𝑦𝑠, 𝐼, 𝑇𝐹 , 𝐶, 𝑇𝑥)

5: return [𝜎̃, 𝑇𝑥,%?
𝑐 , ∫

?
𝑐 , 𝑆𝑐 ,%?

𝑢, ∫
?
𝑢 , 𝑆𝑢]

̃ . The constrained_check method then runs Alg. 1 against the constraints and collects the required metrics, including a vector 𝑆𝑐
with the frequencies of satisfaction for each ⊤, ⊥𝐴, and ⊥𝑆 possible outcome. The corresponding unconstrained_check mirrors the
onstraint-driven version, with no prescription of outcome and no control of the error. Only one approximate evolution is initially
erformed to identify a bounding box for early termination. Regular termination happens when 𝑇𝑥 is hit.

.3. Integration step

Before we introduce the properties to be chosen, we summarize how we perform the integration step. We use a Picard integration
cheme [21], under which the reached set 𝑅𝑘 between steps 𝑘 − 1 and 𝑘 and the evolved set 𝐸𝑘 at step 𝑘 are computed from 𝐸𝑘−1
s follows:

1. Given the bounds of 𝐸𝑘−1, hereby referred to as
[

𝐸𝑘−1
]

, evaluate an approximation of the upper bound on the integration
step size to use, hereby called 𝛿𝑙𝑖𝑝;

2. Find an over-approximation of the bounds of the reach set
[

𝑅𝑘
]

by starting with an approximation computed using Euler’s
method and checking if it is a contraction according to Picard–Lindelöf theorem [30]; in this case, use the contracted box as
[

𝑅𝑘
]

, otherwise halve the step size 𝛿𝑏𝑛𝑑 and repeat the procedure; hence it holds that 𝛿𝑏𝑛𝑑 ≤ 𝛿𝑙𝑖𝑝;
3. Using Picard’s method, starting from

[

𝑅𝑘
]

find a contraction of the flow function 𝛷𝑘 with a given maximum error,
progressively increasing the temporal order; if the error is too large, then the step size is halved and the procedure repeated,
hence it holds that 𝛿𝑘 ≤ 𝛿𝑏𝑛𝑑 ;

4. 𝑅𝑘 = 𝛷𝑘(𝐸𝑘−1, [0, 𝛿𝑘]) and 𝐸𝑘 = 𝛷𝑘(𝐸𝑘−1, 𝛿𝑘).

No global fixed value of the integration step size is suggested: the first approximate estimate 𝛿𝑙𝑖𝑝 (called ‘‘Lipschitz step’’) is
roportional to the inverse of the Lipschitz constant:

𝛿𝑙𝑖𝑝 =
𝐾𝑙𝑖𝑝

|

|

|

𝐽𝑓 ([𝑅𝑘−1] × [0, 𝛿𝑘−1])
|

|

|

(28)

here the Lipschitz constant is defined as the norm of the Jacobian of the vector field 𝑓 of the dynamics, applied to the product
of the previous evolve bounds and the time interval identified by the previous integration step size (zero, initially). The tolerance
constant 𝐾𝑙𝑖𝑝 < 1 is a parameter used to obtain a contraction on the first attempt.

.4. Properties under tuning

The properties that generate the search space can be organized in a property hierarchy tree, where their (alphabetical) position
s identified by a path, in a similar way as with a file system, where the evolver object represents the root. For each property we
pecify the basic type for the value domain, whether this is a metric property (Y/N), and the optional conversion rule 𝛤←(𝑧) of a
alue 𝑧 from the search domain back to the value domain. When 𝛤←(𝑧) is the identity, which is always true for an enumeration
ype, we do not specify it. The conversion forward is also implicit from 𝛤←(𝑧) in our cases and it is not mentioned.

• enable_reconditioning [Boolean, N]: states whether reconditioning of the set is allowed, pending the error being lower than the
maximum spacial error. Reconditioning transforms the uniform error terms into additional parameters of the set, thus allowing
to control the error better at the cost of additional complexity of the set.

• integrator/bounder/lipschitz_tolerance [double, Y, 𝛤← = 2𝑧]: the 𝐾𝑙𝑖𝑝 constant in the previous Subsection.
• integrator/maximum_temporal_order [unsigned integer, Y]: the maximum order in the time variable for the polynomial expansion.
• integrator/minimum_temporal_order [unsigned integer, Y]: the minimum order in the time variable for the polynomial expansion.
• integrator/step_maximum_error [double, Y, 𝛤← = 10𝑧]: the maximum error (i.e., remainder) of the flow tube polynomial function;

the lower the value, the higher the temporal order used;
• integrator/sweeper/threshold [double, Y, 𝛤← = 10𝑧]: the minimum value that a coefficient of a term in the polynomial

representation of the flow function is allowed to have; terms with smaller coefficients are ‘‘swept’’ as addends into the
uniform error term, in order to reduce the complexity of the polynomial representation without affecting the bounds of the
12

corresponding set;
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Table 2
Range of property values chosen for all experiments, with corresponding integer search space
values.
Property 𝐷 Z

[ ] [ ]

enable_reconditioning False True 0 1
integrator/bounder/lipschitz_tolerance 0.0675 0.5 −4 −1
integrator/maximum_temporal_order 5 10 5 10
integrator/minimum_temporal_order 0 5 0 5
integrator/step_maximum_error 1e−6 1e−4 −6 −4
integrator/sweeper/threshold 1e−8 1e−6 −8 −6
maximum_spacial_error 1e−8 1e−5 −8 −5

Table 3
Comparison of unresolved constraints between the constrained and unconstrained methodologies,
showing average and standard deviation of their final number %? and integral number along
optimization ∫ ?.

Sys Constrained Unconstrained

𝑇𝑥 (s) %? ∫ ? %? ∫ ?

avg std avg std avg std avg std avg std

BRU 11 7 8 4 5 4 39 15 6 3
JET 162 120 9 3 52 31 39 12 96 55
HIG 359 375 6 2 108 161 44 13 180 132
LOR 155 153 3 2 42 54 62 27 117 72
ROS 59 59 12 21 22 36 48 26 56 38
CHE 2117 1648 12 5 836 729 28 13 757 583

• maximum_spacial_error [double, Y, 𝛤← = 10𝑧]: the maximum error in the set, over which reconditioning is performed if allowed.

he seven properties described are only a subset of the properties available to the user for continuous evolution (or at other layers
f the tool), although arguably the most important ones. From their role it is already apparent that the interaction between them is
on-trivial in terms of the resulting quality of the set. Aside from enable_reconditioning, which has 2 values, all properties are metric,

hence the search moves by adjacency across all dimensions. Some other properties, however, would be inherently non-metric, such
as enumerations of method objects conforming to an interface (e.g., different implementations of the inner approximator).

Table 2 provides the ranges chosen for each property, along with the corresponding ranges in the integer search space according
to 𝛤→, resulting from our general experience with the tool. The resulting search space size is given by 2×4×6×6×3×3×4 = 10368
points, more than enough to call for a directed search rather than sampling, even when high concurrency is available. Notably,
all the combinations of these values are reasonable, i.e., from prior knowledge about the tool there are no search points for which
an integration failure is expected. Even if a step failed for a property assignment, a secondary advantage of our multiple-point
approach is that it is possible to progress using the successful ones and restore the population size at the following step. Overall,
the domain chosen is general enough that we may manually choose any point. However, we will show how poorly a random fixed
choice (representative of manual tuning) performs in terms of constraint satisfaction resolution.

9.5. Results

Tables 3 and 4 provide the results related to unresolved constraints and the success rate based on the expected outcome,
respectively. Results are obtained from 20 independent runs, where both average and standard deviation are provided.

We can see from Table 3 that there is a definite efficiency advantage in the constraint-driven case: the ⊥𝐴 case can be detected and
acted upon, avoiding inner approximations altogether for all times. On the other hand, for the unconstrained case, if the conditions
for ⊥𝐴 are not satisfied but those for ⊥𝑆 are, then the inner approximation needs to computed. Once it is computed for one constraint,
the inner approximation can be used, whenever necessary, for any other constraints on that specific integration step.

Being driven toward higher accuracy, constraint-driven instances are slower, in general. Conversely, unconstrained instances
rarely improve in terms of number of correct satisfaction answers over the first iterations. For example, on the CHE instance that
took 𝑇𝑥 = 4387 s, the constraint-driven methodology needed only 4 iterations before settling to a value of %? = 6. Using the same time
budget, the unconstrained methodology was able to perform 1198 iterations but remained stuck at 14% of constraints unresolved
from iteration 58 onward. The integral value ∫ ? turns out to be favorable for the unconstrained methodology because it takes more
time for the constraint-driven approach to perform its first iterations and resolve the majority of the constraints. We remark that
constraint evaluation takes a negligible time as opposed to integration, therefore the slowdown in controlled reachability is largely
independent of the number of constraints used.

Table 4 shows the success rates for each prescription. The 𝜎̃ results provide the average and standard deviation of the distribution
13

of the expected prescription across all three values, which is obtained during constraints construction. The actual prescription changes
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Table 4
Expected prescription distribution and success rate for all systems, where values are expressed
as percentages.
Sys Expected 𝜎̃ Success rate

⊤ ⊥𝐴 ⊥𝑆 ⊤ ⊥𝐴 ⊥𝑆

avg std avg std avg std avg std avg std avg std

BRU 9 6 66 6 25 5 70 33 98 2 80 10
JET 7 12 65 9 28 6 42 49 98 2 76 8
HIG 8 9 83 8 9 2 56 38 99 1 61 19
LOR 18 20 81 20 2 1 72 34 95 22 9 27
ROS 30 27 70 27 1 1 55 49 100 0 29 49
CHE 20 10 52 9 28 3 71 24 100 1 70 14

Fig. 4. Reachable set 𝑅 of BRU along with elliptical (𝑐0, 𝑐1 and 𝑐2) and hyperbolic (𝑐3, 𝑐4 and 𝑐5) constraints each yielding the ⊤, ⊥𝑆 and ⊥𝐴 results respectively.

at each iteration of each run based on the point used for pre-analysis, so it can be slightly different, although we see from the Table
that the deviation across runs is often small. The success rate columns give the percentage of providing the prescribed answer
with respect to the actual prescription. Scenarios leading to ⊥𝐴 are the easiest to generate and verify, while ⊤ and ⊥𝑆 are less
numerous. While both ⊤ and ⊥𝑆 are more difficult to be identified, ⊤ also has a high variance, i.e., it is more sensitive to the
instance and consequently to the over-approximation error induced by property values. This can be mainly ascribed to the fact that
an excessive growth of the over-approximation error during pre-analysis causes early termination, which prevents from checking ⊤
during controlled reachability.

Finally, let us focus on a concrete case using BRU, whose reachable set as obtained by Ariadne is shown in Fig. 4. Here 𝑅 is
given by a sequence of nonlinear sets converted into affine sets, starting at 𝑇𝐼 from the top right corner and ending at 𝑇𝐹 at the
bottom left corner. In addition, the boundaries of the six tailored constraints used to run this instance of BRU are displayed. Due to
rendering limitations in Ariadne when displaying multiple constraints, those have all been drawn manually as accurately as possible
using ellipses; the side of the boundary where ⊥ is obtained is shaded.

Table 5 supplies all the information on the constraint definition, according to the formula described in (27), along with analysis
data on their impact on optimization: the satisfaction result 𝜎, the maximum time for checking the constraint 𝑇̃ ∗ and the maximum
growth rate 𝛼. The values |𝐵| = (1.86, 1.28) and 𝐵̂ = (0.12, 0.64) hold for the widths and center of the reachable set obtained. The
values of 𝜎 as obtained by our verification flow show that we purposely chose elliptical and hyperbolic constraints that stress the
14
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Table 5
Summary information on constraints for the BRU run.
Name 𝜆0,1,2 𝜔0 𝜔1 𝜎 𝑇̃ ∗ 𝛼

𝑐0 1, 1, −1 0.50 0.54 ⊤ 1.00 73
𝑐1 1, 1, −1 0.65 0.70 ⊥𝑆 0.74 62
𝑐2 1, 1, −1 0.83 0.89 ⊥𝐴 0.78 21
𝑐3 −1, 1, 1 0.86 0.89 ⊤ 1.00 33
𝑐4 −1, 1, 1 0.74 0.75 ⊥𝑆 0.25 1553
𝑐5 −1, 1, 1 0.59 0.62 ⊥𝐴 0.27 2758

Fig. 5. Values of the properties along integration steps for the BRU run.

methodology by being relatively close to tangency. For the BRU system, this happens for 0.5 ≤ 𝜔 ≤ 1.0 in both elliptical (𝜆0𝜆1 = 1)
and hyperbolic (𝜆0𝜆1 = −1) constraints. We can identify such stress for the single constraint by looking at the value of 𝛼, which
according to (16) is an upper bound on the error growth. Consequently, the lower the value of 𝛼, the more the satisfaction of the
constraint requires a higher accuracy: 𝑐2 effectively is the most critical constraint since its boundary is close to the trajectory and
that situation occurs at later times, since 𝑇̃ ∗

2 = 0.78. A similar tangency with 𝑐0 (to yield ⊤) is less critical since it occurs earlier,
where accumulated error is lower. Therefore the least demanding constraints are 𝑐4 and 𝑐5, since there is ample margin for error
and the ⊥ condition needs to be checked for up to around 0.27 s only. Please note that while 𝑇̃ ∗ for constraints yielding ⊥ matches
the critical time, for constraints yielding ⊤ it is always the final time since the whole reachable set is required.

Fig. 5 instead shows the evolution of the optimal Z values of the properties listed in Table 2 across the evolution time. For
completeness, the verification task took 11 s and terminated after 137 integration steps within a single run of the loop in Alg. 1.
The first optimized point is (0,−4, 9, 4,−4,−7,−8) and the final point is (0,−4, 5, 0,−6,−8,−8). We can see that for most properties the
value stabilizes within the first 20 steps. For others, such as the minimum temporal order, an oscillation in [0, 2] is present, against
the [0, 5] range allowed. Around step 70 there is a significant variation in the values, due to the critical region where a satisfaction
of 𝑐1 and 𝑐2 is obtained: since those constraints are not needed anymore, the conditions for optimization change.

10. Conclusions

We addressed the problem of calculating the reachable set of a generic nonlinear system in the most efficient way that can
return a definite answer to the satisfaction of a set of constraints. We introduced a method to identify bounds for the growth of
15
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the computation error along the system evolution. We then proposed to automatically search for appropriate choices of values of
the reachability tool properties that can achieve the desired bounds. In our prototype implementation, the property value space is
discretized and the search is performed by evolving a population of candidate property assignments based on adjacency relations.
Results from our benchmark suite show that a random choice of property values cannot provide definite answers to a significant
percentage of the constraints, even after a large number of trials. Conversely, our method can resolve almost all the constraints and
it converges generally faster. By avoiding manual tuning of tool properties, it can make a significant leap in the effectiveness and
automation of verification using reachability analysis.

Future plans include extending the theory to support time-varying inputs and hybrid systems. Moreover, we plan to extend the
roperty definition and exploration framework to support unbounded spaces with constraints between properties, and implement
ore sophisticated search algorithms. Last but not least, we intend to interface the pExplore runtime to finite-time reachability tools

ther than Ariadne, in order to assess the efficiency of our methodology in different scenarios.
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