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Distributed automated deduction is concerned with the design and realization of strategies

where multiple deductive processes work concurrently towards the solution of theorem-proving

problems. These strategies are usually implemented in distributed environments, such as a net-

work of computers, or a loosely coupled, asynchronous multiprocessor, where each deductive

process runs on a node of the system. While this area has emerged in automated deduction only

in the past few years, a complete survey of the work done so far is beyond the scope of this

document. Two surveys are available in [4] and [11], and most approaches proposed since those

surveys were written may be found in [6] or [7]. In the following we give first some motivation

and introduction, then we focuse on a fundamental problem for future research, the design of

techniques to partition the search space among cooperating concurrent processes.

Motivation The aim of distributed automated deduction is to design distributed strategies that

may improve the performance of theorem proving by employing in parallel more than one machine.

Higher performance means obtaining proofs in shorter time, and possibly proving theorems that

are beyond the reach of contemporary sequential methods. In addition, distributed theorem

proving poses a number of new problems, both theoretical and practical, arising from having

multiple processes performing logical inferences in parallel and cooperating to prove theorems.

These problems are relevant to automated reasoning at large, and some are significant instances

of general problems in distributed computing.

Coarse-grain parallelism Some of the most successful theorem-proving programs existing to-

day implement either subgoal-reduction strategies (e.g., [3, 10]) or contraction-based strategies

(e.g., [2, 8, 9]). The former are backward-reasoning strategies that work on a stack of goals, and

counter the combinatorial explosion of the search space by using depth-first search with iterative

deepening, so that only one path needs to be kept in memory at any given time. The latter
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are forward-reasoning strategies that work on a database of clauses, and counter the combinato-

rial explosion of the search space by the ability of detecting and eliminating redundant clauses.

Contraction-based strategies proved to be more powerful than forward-reasoning strategies with-

out contraction on significant classes of problems, and are the strategies of choice for equational

reasoning. In [4], we analyzed the parallelizability of strategies in these categories with respect to

the granularity of parallelism. We defined three types of parallelism for deduction: fine-grain pa-

rallelism, or parallelism at the term level (each parallel process performs a subtask of the inference

steps), medium-grain parallelism, or parallelism at the clause level (each parallel process performs

one or relatively few inference steps with a common premise), and coarse-grain parallelism, or

parallelism at the search level (each parallel process generates a derivation). Based on a qualita-

tive analysis of the operations of the strategies, and on the experimental work done up to then by

several authors, we discussed how coarse-grain parallelism is suitable for both subgoal-reduction

and contraction-based strategies, and appears to be the most appropriate for contraction-based

strategies, that are our primary interest.

Parallelism at the search level Concurrent, asynchronous deductive processes search in pa-

rallel for a solution of the given theorem-proving problem. In contrast with fine-grain parallelism,

each process may be given a large portion of the data, (e.g., a fairly large set of clauses), and the

data sets of the processes do not need to be shared. Each process develops its own derivation,

while communicating with the other processes. As soon as one of them succeeds, the whole

distributed strategy succeeds. The key concept in parallelism at the search level is to partition the

search space among the concurrent deductive processes, so that each of them faces a smaller search

task than the sequential process. The effect of partitioning the search space and of asynchronous

communication is that the deductive processes generate portions of the search space which may

be radically different from those generated sequentially. On one hand, this is an advantage and

a reason for the interest in parallelism at the seach level. Since the portions of the search space

can be different, the distributed strategy may find a much faster proof than the sequential one.

On the other hand, it is a challenge. First, if the search space is not partitioned properly, the

distributed prover may generate a proof similar to the sequential one from fragments of the

search space seen by the sequential prover, so that it may be at a disadvantage. Second, like

in all approaches to distributed deduction, one needs to preserve completeness, while keeping

redundancy and communication in check.

Impact Parallelism at the search level does not consist solely in parallelizing the operations of

the sequential strategy, but in a new mode of search. Therefore, it may have an impact in different

ways, within the field of deduction and outside. In terms of performances, many applications of

deduction may benefit from high-performance distributed theorem provers. This is especially

true if good results can be achieved by employing as distributed environment local networks of

workstations, since such networks are commonly available. Some of the experiences reported

in the literature (e.g., [1, 5, 12]) are encouraging in this respect. In terms of understanding of

search problems and design of search mechanisms, the techniques and search plans developed for

distributed theorem proving may be used towards distributed solutions of other search problems.
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This includes problems in distributed artificial intelligence and multi-agent systems.
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