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Abstract

Over the past decade, the landscape of precision medicine has experienced a notable transformation,
driven by the intersection of omics sciences and computational methodologies. This convergence has em-
powered researchers to explore individual-specific biological markers more deeply, offering the potential
for tailored treatments. Central to this shift are genetic variants, which can profoundly influence the
genomic environment by modifying regulatory elements. However, fully leveraging the potential of ge-
netic variants in precision medicine necessitates accurate computational tools capable of deciphering their
impact on cellular mechanisms. In response to this need, this PhD thesis introduces two innovative com-
putational methods: GRAFIMO and MotifRaptor. GRAFIMO utilizes genome graph data structures to
identify potential transcription factor binding sites while considering individual- and population-specific
genetic variants. By accounting for various genetic events, from single nucleotide variants to complex
structural variants, GRAFIMO provides a comprehensive analysis of transcription factor binding. Sim-
ilarly, MotifRaptor adopts a Transcription Factor-centric approach to annotate the potential functional
impact of non-coding variants, enhancing our understanding of regulatory mechanisms underlying com-
plex traits and diseases. CRISPR genome editing holds promise for programmable editing of genomic
sequences in therapeutic settings. However, its application hinges on two critical factors: accurately
quantifying editing outcomes, and predicting and mitigating off-target effects. Addressing the former
challenge, we benchmarked different methods used to assess genome editing outcomes across various cel-
lular contexts, providing valuable insights into their efficacy and reliability. CRISPRme, on the other
hand, represents a pioneering tool for variant- and haplotype-aware CRISPR off-target nomination. By
considering genetic diversity across populations, CRISPRme facilitates thorough off-target analysis, po-
tentially enabling safer and more precise genome editing interventions. These computational methods
offer significant insights into exploiting genetic diversity for potential individual-oriented therapies, po-
tentially contributing to the development of precision medicine-oriented approaches and therapies.
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Introduction

During the last decade, omics sciences have swiftly emerged as fundamental tools for informing medi-
cal decisions, serving as the foundational pillars supporting precision medicine (Ginsburg and Willard,
2009). Precision medicine is a rapidly progressing healthcare approach using individual-specific clini-
cal, genetic, genomic, environmental and social information (Ginsburg and Willard, 2009) to develop
individual-tailored treatments. Although precision medicine encompasses a multidisciplinary approach,
it largely relies on omics sciences to guide and enhance medical strategies and therapies. This techno-
logical progress had a profound impact, drastically reducing the costs associated with analyses involving
omics data. Furthermore it empowered the accumulation of large datasets, even for individual patients
(Voelkerding et al., 2009). Indeed, understanding the genetic basis of diseases is generally expected to
lead to better characterized and tailored therapies (Ashley, 2016). The evolution and enhancements in
sequencing technologies brought about a profound transformation, substantially improving both the quan-
tity and quality of available omics data. This facilitated the discovery of previously unknown causative
genes (Ng et al., 2009) and wider usage of omics data in medical decision-making processes (Ashley et al.,
2010; Worthey et al., 2011). Collecting individual-specific omics data serves as a priceless asset for cap-
turing the distinctive biological attributes, or biomarkers, that define individuals and even offer insights
into potential medical conditions, including diseases. The discovery of individual-specific biomarkers po-
tentially causing medical conditions is the cornerstone of precision medicine. Among these biomarkers,
genetic variants hold a pivotal position (Raphael et al., 2014). Genetic variants are differences in the
DNA sequence when compared to a standard or reference sequence. They can occur naturally as muta-
tions or alterations in the DNA sequence. They arise due to errors during different biological processes,
such as DNA replication, mitosis or meiosis, or due to other DNA damages. The resulting mutations
may undergo error-prone repair processes, particularly microhomology-mediated end joining (Sinha et al.,
2017; Seol et al., 2018), leading to errors during other repair or replication mechanisms (Rodgers and
McVey, 2016). Moreover, mutations in DNA sequences can even occur through the insertion or deletion
of short DNA segments (indels), or large fragments consisting of thousands of nucleotides (structural
variants). Genetic variants are common and fundamental aspects characterizing genetic diversity among
individuals and populations (Siva, 2008). Some variants may have no noticeable effect on an individual’s
traits or health, while others can contribute to differences in susceptibility to diseases, response to med-
ications, or various physical characteristics (Bodmer and Bonilla, 2008; Ingelman-Sundberg et al., 2018;
Mitchell-Olds et al., 2007). Genetic variants may be located either within genes (coding regions), or in
other genomic regions (non-coding regions). Historically, before the molecular causes were known, human
genetics and clinical genetics studies focused on analyzing family pedigrees and inheritance descriptions
to understand the occurrence of certain traits between single or groups of individuals. The advent of
sequencing technologies allowed researchers to study and discover the molecular mechanisms underlying
the occurrence of traits or diseases in single individuals or populations. Furthermore, the recent advances
in sequencing technologies significantly increased the throughput of sequencing experiments, providing
a huge amount of data. In this context, many international efforts, such as the 1000 Genomes Project
(Siva, 2008; Consortium et al., 2015) and the Human Genetic Diversity Project (Cavalli-Sforza, 2005;
Bergström et al., 2020), emerged to better study and understand the genetic diversity between human
subjects and populations. Similarly, other consortia (Sherry et al., 2001; Landrum et al., 2020) collected
variants data to discover potential associations between variants and traits or diseases. Simultaneously,
several computational methods, such as variant calling (McKenna et al., 2010) pipelines or genome-wide
association studies (GWAS) (Uffelmann et al., 2021) to analyze and interpret variants-related data were
proposed within the scientific community. However, the huge amount of data proved itself difficult to be
fully exploited by using the common reference genome sequences. Reference genomes are commonly rep-
resented as strings, reporting the DNA sequence reconstructed from raw sequencing data. However, such
representation cannot include the genetic variability and diversity present in genomes. Recently, the in-
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troduction of advanced data structures known as genome graphs (Paten et al., 2017; Garrison et al., 2018)
has revolutionized the representation of genomes and genetic diversity across individuals and populations.
Genome graphs, essentially, are graph-based data structures, that employ nodes to represent DNA se-
quences and edges to represent links between successive sequences. Paths within genome graphs, often
labeled (e.g., in reference genomes), denote haplotypes associated with different genomes (Sirén et al.,
2020). This data structure not only integrates reference genome sequences with variants but also over-
comes limitations inherent in traditional methods working on linear reference genomes. In fact, genome
graphs can accommodate both simple variant events, such as SNVs and indels, across multiple individuals,
and complex events, such as SNVs-indels combinations and large structural variants. Despite the several
methods and frameworks for constructing and representing genome graphs (Andreace et al., 2023), these
structures have proven immensely beneficial in enhancing various genetic data analysis pipelines. For
instance, they improve read mapping accuracy (Sibbesen et al., 2023), enable more precise variant calling
incorporating SNPs, indels, and structural variants (Garrison et al., 2018; Ebler et al., 2022), and facil-
itate the capture of genome-wide epigenetic marks within genomic regulatory elements (GREs) (Groza
et al., 2020; Liao et al., 2023). Of particular note is the recent release of the first draft of the human
pangenome (Liao et al., 2023), which holds great promise for the widespread adoption of genome graph
frameworks to explore and represent the intricacies of genetic variability. Consequently, the development
of additional software and pipelines to exploit the potential of genome graphs in genetic data analysis
offers significant promise in advancing precision medicine-oriented approaches (Yu and Chen, 2023). As
mentioned, genome graphs have emerged as powerful tools for analyzing epigenetic marks within GREs,
offering a comprehensive representation of genetic diversity introduced by non-coding variants. Genetic
variants within non-coding regions, notably within GREs, are key players in shaping gene expression
and are linked to various traits and disease susceptibilities (Weinhold et al., 2014; Wienert et al., 2015).
These variants have the potential to perturb the intricate networks governing gene expression by altering
GRE sequences and functions. Gene expression is finely regulated by sequence-specific protein inter-
actions, mediated by histones and transcription factors (TFs) (Lambert et al., 2018), which modulate
chromatin accessibility and compaction. Histone modifications and DNA methylation further regulate
gene expression by influencing DNA-histone interactions and recruiting chromatin remodeling complexes.
TFs specifically target cis-regulatory sequences within GREs, such as enhancers and silencers, exerting
their effects on gene expression even when distal from gene promoters (Lambert et al., 2018). Notably,
enhancers collaborate closely with TFs to fine-tune gene expression. Understanding how genetic variants
impact these genomic elements, in particular TF binding sites within GREs, is crucial for deciphering the
implications of individual and population-specific genetic diversity in cellular environments. CRISPR
genome editing (Cong et al., 2013) offers promising avenues for the development of innovative thera-
peutics by precisely modifying genetic or epigenetic elements, including GREs, within specific genomic
regions. In particular, CRISPR genome editing holds great promises precision medicine applications,
through a precise and accurate personalized editing of potentially malignant genome sequence segments.
Accurate design of guide RNAs (gRNAs) to target intended sequences (referred to as on-targets) is crucial
to prevent unintended and potentially harmful edits in non-targeted sequences, known as off-targets (Pat-
tanayak et al., 2013; Cho et al., 2014). Off-target prediction is essential for guiding CRISPR experiment
design, considering various sequence characteristics and the influence of genetic diversity on potential
off-target site creation (Scott and Zhang, 2017). In fact, genetic variants can enhance the affinity of pre-
viously unbound sequences by the gRNA and may introduce novel Protospacer Adjacent Motifs (PAMs),
potentially posing risks to the cellular environment. While computational methods have been exten-
sively developed to predict off-target sites during gRNA design (Hanna and Doench, 2020), most operate
exclusively on the reference genome. Alternative approaches have been proposed to analyze off-target
potential while accounting for genetic diversity. However, these methods often face limitations, such as
inefficient handling of large datasets or accommodating alternative haplotypes and indels. Additionally,
they may require advanced computational skills, restricting their accessibility to a broader audience.
The adoption of precision medicine-oriented approaches in experimental and clinical settings faces sig-
nificant hurdles, particularly in accurately predicting and accommodating the impact of individual- and
population-specific genetic diversity. In this PhD thesis, we address two specific challenges critical to
realizing the shift toward precision medicine-oriented approaches (Figure 1.1): (i) understanding the
influence of genetic diversity on transcription factor binding landscapes, and (ii) assessing the effects
of genetic variants on CRISPR genome editing outcomes (Table 1.1). To tackle the first challenge,
GRAFIMO (Tognon et al., 2021) and MotifRaptor (Yao et al., 2021) offer innovative solutions (Figure
1.1 (B-C)). GRAFIMO, a novel Transcription Factor Binding Site scanning tool, leverages genome
graph data structures to identify potential binding sites with remarkable accuracy (Figure 1.1 (C)).
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Figure 1.1. Overview of challenges and topics discussed throughout the PhD thesis. (A) Genetic variants
may alter transcription factor binding affinity, necessitating consideration of individual haplotypes for accurate assessment.
(B) MotifRaptor (Chapter 6) introduces a novel Transcription Factor-centric approach for annotating non-coding variants
from GWAS analyses. It evaluates tissue-specific effects on transcription factor binding, providing insights into regulatory
mechanisms. (C) GRAFIMO (Chapter 5) utilizes genome graph data structures to identify Transcription Factor Binding
Sites, accounting for simple and complex genetic events and offering a comprehensive analysis of binding. (D) Genetic
variants can also impact CRISPR genome editing outcomes by altering on-targets and introducing novel off-targets. (E)
Benchmarking widely-used genome editing tools (Chapter 8) aims to assess their accuracy across different cellular contexts.
(F) CRISPRme (Chapter 9) introduces a novel variant- and haplotype-aware, and user-friendly tool for evaluating CRISPR
off-target potential, considering genetic diversity across populations.
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Challenge Proposal Aim

Predict genetic variants impact on
genomic regulatory elements to guide experimental
analyses

GRAFIMO

A novel Transcription Factor Binding Site scanning tool that takes advantage
of genome graph data structures. GRAFIMO effectively identifies potential
binding sites while accounting for both simple (SNVs and indels) and complex
(structural
variants) genetic events. By considering individual and
population-specific genetic landscapes, it provides a more comprehensive
analysis of transcription factor binding.

MotifRaptor

A novel Transcription Factor-centric approach designed to annotate non-coding variants
identified through GWAS analyses. This approach evaluates the tissue-
and cell type-specific effects of genetic diversity on the landscape of transcription
factor binding. By scrutinizing whether genetic variants enhance, disrupt, or
exhibit dual effects on the binding potential of investigated transcription factors,
it provides a nuanced understanding of regulatory mechanisms underlying
complex traits and diseases.

Predict the impact of genetic variants in
genome editing therapeutic settings

WGS Editing
quantification

Assessement and quantification of genome editing outcomes comparing four
extensively used tools: CRISPResso, Mutect2, Strelka2, and Varscan2. This
comparison utilizes three guide RNAs with potential future therapeutic
applications across various cell lines. The aim is to determine whether these
tools may over- or under-estimate editing outcomes. By examining
these tools across different cellular contexts, we gain valuable insights into
their efficacy and reliability in predicting and analyzing genome editing results.

CRISPRme

A novel variant- and haplotype-aware CRISPR off-target nomination tool.
Designed to be user-friendly, CRISPRme offers a comprehensive framework
for evaluating the off-target potential of user-defined guide RNAs (gRNAs).
By considering genetic diversity across individuals and populations, CRISPRme
ensures thorough off-target analysis across the genome.

Table 1.1. Novel tools for variant- and haplotype-aware genomic regulatory element analysis and genome
editing assessment. Overview of proposed tools addressing challenges in genomic regulatory element analysis and genome
editing assessment. GRAFIMO and MotifRaptor provide solutions for predicting genetic variants’ impact on transcription
factor binding sites, while WGS Editing Quantification and CRISPRme offer approaches for evaluating genome editing
outcomes and off-target effects, respectively.

By accounting for both simple (SNVs and indels) and complex (structural variants) genetic events and
considering individual and population-specific genetic landscapes, GRAFIMO provides a comprehensive
analysis of transcription factor binding. Similarly, MotifRaptor introduces a Transcription Factor-centric
approach, enabling the annotation of non-coding variants identified through GWAS analyses (Figure 1.1
(B)). By assessing tissue- and cell type-specific effects of genetic diversity on transcription factor binding,
MotifRaptor enhances our understanding of regulatory mechanisms underlying complex traits and dis-
eases. To tackle the second challenge, we propose two studies aimed at evaluating widely used methods to
quantify CRISPR genome editing outcomes on whole genome sequencing data, and to introduce a novel
haplotype- and variant-aware computational method to nominate potential CRISPR off-targets (Figure
1.1 (E-F)). Our benchmark on methods to quantify CRISPR genome editing outcomes compares four
widely adopted tools on high-depth whole genome sequencing data: CRISPResso (Clement et al., 2019),
Mutect2 (McKenna et al., 2010), Strelka2 (Kim et al., 2018), and Varscan2 (Koboldt et al., 2012) (Figure
1.1 (E)). This comparison, conducted across various cell lines using three guide RNAs with potential
therapeutic applications, aims to determine whether these tools may under- or over-estimate editing out-
come with a genome-wide focus. By examining these tools’ performance across different cellular contexts,
valuable insights are gained into their efficacy and reliability in predicting and analyzing genome editing
results. Notably, the correct quantification and estimation of editing outcome is a key aspect to enable po-
tential applications of CRISPR genome editing in precision medicine contexts. Furthermore, CRISPRme
(Cancellieri et al., 2023) proposes a novel variant- and haplotype-aware CRISPR off-target nomination
tool (Figure 1.1 (F)). Designed to be user-friendly, CRISPRme offers a comprehensive framework for
evaluating the off-target potential of user-defined guide RNAs. By considering genetic diversity across
individuals and populations, CRISPRme ensures thorough off-target analysis across the genome, thus
facilitating safer and more precise genome editing interventions. The subsequent chapters offer a com-
prehensive view of the biological challenges we addressed and our proposals to solve them. In Chapter
2, we delve into the fundamental concept of genetic variants, elucidating their molecular mechanisms
and nomenclature. Chapter 3 expands upon the genome graph data structure, showcasing its pivotal
role in representing population-wide genetic diversities. Moving forward to Chapter 4, we shine a spot-
light on genomic regulatory elements (GREs), particularly focusing on Transcription Factors and their
binding mechanisms. Additionally, this chapter discusses existing methods for analyzing transcription
factor-related data. Chapter 5 introduces GRAFIMO, a powerful tool designed to analyze transcription
factor binding sites, providing insights into its functionality and significance. Building upon this, Chap-
ter 6 unveils MotifRaptor, offering a deeper dive into its algorithms, recent applications in studies, and
potential future enhancements. Chapter 7 shifts gears to explore the molecular principles underlying
CRISPR genome editing, along with the current computational analyses applicable to CRISPR genome
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editing data. In Chapter 8, we provide insights into the WGS editing quantification project, outlining
ongoing analyses and preliminary results. Chapter 9 brings forth CRISPRme, a groundbreaking tool
characterized by its computational innovations and experimental findings derived from its application.
Lastly, Chapter 10 ties everything together, offering conclusions and discussions regarding the results
and tools presented throughout the PhD thesis.
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Genetic Variants

Genetic variants are modifications occurring in the DNA sequence within the genome of an organism.
Mutations may result from errors during DNA replication processes, mitosis, meiosis, or other forms of
DNA damage (such as the formation of pyrimidine dimers induced by exposure to ultraviolet radiation).
In this discussion, we treat genetic variants and mutations as synonymous terms. Mutations may undergo
error-prone repair processes, such as microhomology-mediated end joining (MEMJ) (Sinha et al., 2017;
Seol et al., 2018), resulting in errors during repair and replication of the original DNA sequence (Rodgers
and McVey, 2016). Mutations may consist in substitutions of single nucleotide in the sequence, as well
as in insertions or deletions of DNA segments. The different versions of the same variant are referred
to as alleles. We define the variant observed in the reference (original) DNA sequence reference allele,
and any other distinct version from the reference is called alternative allele. The impact of mutations
on the phenotype depends on several factors, ranging from the organism’s genomic environment to the
social environment in which the organism is located. While some genetic variants may not impact the
phenotype, others may introduce differences in the organism’s susceptibility to disease, response to drugs
and treatments, or physical characteristics (Bodmer and Bonilla, 2008; Ingelman-Sundberg et al., 2018;
Mitchell-Olds et al., 2007). Furthermore, mutations furnish the raw material upon which evolutionary
forces, such as natural selection, can act (Akey et al., 2004; Teotónio et al., 2009). Genetic variants may
occur either within gene sequences (coding regions), or outside genes (non-coding regions). Mutations
occurring in coding regions may have either advantageous or deleterious consequences on the organism’s
phenotype, by altering the gene product. Although variants in non-coding regions do not alter gene
sequences, they still may impact gene products and the organism’s phenotype (Zhang and Lupski, 2015).

2.1 Genetic Variants Genesis

DNA may undergo naturally occurring or artificially induced modifications resulting in mutations. Muta-
tions can occur spontaneously in nature, as a result of exposure to chemical or physical agents increasing
the mutation rate in DNA sequences called mutagens, or induced experimentally using laboratory pro-
tocols (e.g. CRISPR genome editing (Cong et al., 2013)). Variants can be categorized into four classes
depending on the process that induced the emergence of the mutations: (i) spontaneous mutations, (ii)
error-prone translesion synthesis, (iii) errors introduced during DNA repair processes, and (iv) induced
mutations resulting from exposure to mutagens. Spontaneous mutations occur randomly across the
genome sequence even in healthy cells. Spontaneous mutations are caused by different random events,
such as incorrect base pairing during DNA replication caused by tautomerism (Podolyan et al., 2003),
slipped-strand mispairing during replication (Levinson and Gutman, 1987), deamination (Duncan and
Miller, 1980), or depurination (Kunkel, 1984). Some spontaneous mutations are induced by error-prone
replication mechanisms (translesion synthesis), acting on damaged DNA. While naturally occurring dam-
ages to the DNA sequence, such as double-strand breaks, exhibit low frequency, their repair processes
often introduce mutations. A prominent pathway for repairing double-strand breaks is non-homologous
end joining (NHEJ) (Weterings and Chen, 2008). In NHEJ, a few nucleotides are removed to facili-
tate the imprecise alignment alignment of the broken ends for rejoining, and subsequently, additional
nucleotides are added to fill the remaining gaps. However, as consequence NHEJ introduces insertions
or deletions into the original DNA sequence (Weterings and Chen, 2008). Finally, mutations may be
induced by the exposure of DNA sequences to mutagens, such as chemical (nitrous acid, hydroxylamine,
alkylating agents, etc.) or radiation (UV light, ionizing radiation) agents. Importantly, some mutagens
are commonly found in the environment, and organisms are normally exposed to their action.
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2.2 Classifying Genetic Variants
Over the years, various methods have been proposed to classify genetic variants based on their inheritance
patterns, the modifications they induce in the DNA structure, their location within the genome, and their
impact on gene products.

2.2.1 Classifying Genetic Variants by their inheritance
In multicellular organisms, variants can be categorized in germline mutations, which can be inherited
by descendants, and somatic mutations, which generally are not transmitted to descendants. Diploid
organisms, such as human, possess two copies of each chromosome, one inherited from the father, the
other from the mother. Depending on the occurrence of mutations on each chromosome, variants can
be classified in three types: (i) heterozygous mutations, when only one copy of the chromosomes carries
the alternative allele, (ii) homozygous mutations, when both copies carry the same alternative allele, and
(iii) compound mutations, when the two copies carry different alternative alleles. Germline mutations
occurring in the reproductive cells of an individual result in constitutional mutations in the offspring,
spread in every organism’s cell. Importantly, germline mutations have the potential to be transmitted
through successive generations. A newly occurring germline mutation, not inherited from parents is
defined de novo mutation. Somatic mutations do not affect the germline and are generally not transmitted
to descendants. However, they are inherited by all the progeny derived from a mutated cell within the
same organism during mitosis. Somatic mutations are often linked to deleterious consequences for the
cell, such as cancer (Martincorena and Campbell, 2015).

2.2.2 Classifying Genetic Variants by their impact on DNA sequence struc-
ture

Genetic variants can be classified into three classes based on the structural modification they induce to
the DNA sequence: (i) single nucleotide variants (SNVs), (ii) insertions and deletions (indels), and (iii)
structural variants.

Single Nucleotide Variants

A single nucleotide variant (SNV) denotes a germline substitution involving a single base at a precise
position within the genome. For example a G occurring at a specific genome location may be replaced
by an A. In this example the two alleles (nucleotide variations) are G (reference allele) and A (alternative
allele). SNVs exhibits an allele frequency < 1%. When single nucleotide substitutions show a frequency
≥ 1% in the general population they are defined Single Nucleotide Polymorphisms (SNPs). The human
genome within the global population has revealed the presence of over 600 million SNPs, which occur
more frequently in non-coding regions than in coding. Human populations exhibit variations, leading to
the prevalence of certain SNP alleles in specific geographic or ethnic groups while being comparatively
rare in others. However, this variation is not frequent on a global scale (Bergström et al., 2020). Within
a population, SNPs can be characterized by their minor allele frequency (MAF). MAF is defined as the
lowest frequency of an allele at a locus observed in a particular population. This frequency represents
the lesser of the two allele frequencies for single-nucleotide polymorphisms.

Indels

Indel denote the insertion or deletion of nucleotides within a genome. Indels with length ≥ 50 bp are often
referred to as structural variants. Indels are used as genetic markers in natural populations, particularly
in phylogenetic studies (Väli et al., 2008). Between 16% and 25% of all sequence polymorphisms in
humans are likely to be represented by indels (Mills et al., 2006). In most deeply studied genomes, as
the human genome, indels frequency is notably lower compared to that of SNPs, except in the vicinity
of highly repetitive regions, such as homopolymers and microsatellites.

Structural Variants

Structural variants refer to diverse alterations in the chromosome structure of an organism. Historically,
structural variants were defined to affect sequences of length between ∼1 Kb to 3 Mb (Feuk et al.,
2006). However, recently their range has been expanded to consider events affecting sequences > 50 bp
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Figure 2.2. Structural variants: large alterations in the chromosomal structure. (A) Insertions insert large DNA
segments within the genome sequence. (B) Large deletions remove large genomic segments from the DNA. (C) Duplications
duplicate large portions of DNA sequences, potentially duplicating genes and regulatory elements. (D) Inversions flip large
segments of DNA, potentially flipping or even break genes or regulatory elements sequences.

(Alkan et al., 2011). Approximately 13% of the human genome is structurally variant in the normal
population (Sudmant et al., 2015). Furthermore, there are several evidences suggesting that structural
variants can encompass millions of nucleotides of heterogeneity within each genome, potentially playing
a pivotal role in human diversity and susceptibility to diseases. Many structural variants are linked
to diseases (Lakich et al., 1993). Structural variants encompass several types of variations, such as
inversions, copy-number variants (CNVs), translocations, deletions, insertions, and duplications (Figure
2.2). Insertions, deletions, and duplications are particular cases of CNVs (Figure 2.2 (A-C)). Inversions
are chromosomal rearrangements wherein a chromosomal segment undergoes an inversion, flipping its
original position (Figure 2.2 (D)). Inversions occur when a chromosome experiences two breaks along
its arm, and the DNA segment between the breakpoints inserts itself in the opposite direction, within the
same chromosome arm. Generally, breakpoints occur in regions rich of repetitive nucleotides. Importantly,
inversions may flip or even break genes or regulatory elements sequences (Puig et al., 2015). Inversions can
occur through different mechanisms, such as chromosomal breakage and repair, or non-homologous end
joining. There are two types of inversions: paracentric inversions, which do not involve chromosome’s
centromere, and pericentric, which span the centromere and have breakpoints in each chromosome’s
arm. In CNVs sections of an organism’s genome are duplicated or deleted, resulting in variations in the
number of repeated nucleotide sequences among individuals (McCarroll and Altshuler, 2007; Alkan et al.,
2011). Therefore, this structural variant involves insertions or deletions >50 bp in the genome. CNVs
represent a fundamental aspect of genomic diversity, encompassing 4.8 − 9.5% of the genome in human
(Zarrei et al., 2015). Translocations, instead, are structural variants leading to atypical rearrangements
of chromosomes. There exist two types of translocations: reciprocal and Robertsonian translocations.
The former occurs when non-homologous chromosomes exchange DNA fragments between each other.
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Robertsonian translocations, instead, occur when two non-homologous chromosomes become attached.
Importantly, translocations can result in the fusion of two genes(gene fusion) or regulatory elements,
otherwise separate. Translocations may be balanced, when the exchange of genetic material is even, or
unbalanced. The latter may result in extra or missing genes or regulatory elements on the donor/receiver
chromosome.

2.2.3 Classifying Genetic Variants by their location
Another method to distinguish genetic variants is based on their location across the genome. Coding
genetic variants occur within the coding sequence of genes (exons), while non-coding variants occur in
non-coding sequences of genes (introns) or intergenic regions. While coding variants may directly impact
the gene product, non-coding variants may still affect gene splicing, gene expression levels, or the gene
regulatory mechanisms perturbing the cell environment Li et al. (2016); Maurano et al. (2015). In
particular, non-coding variants occurring within large and small regulatory elements, such as enhancers
or transcription factor binding sites, have been shown to significantly impact gene expression levels and
regulation (De Gobbi et al., 2006; Wienert et al., 2015), and have been linked to increased susceptibility
to some diseases, such as cancer (Weinhold et al., 2014). Coding variants may affect the gene product,
potentially modifying the sequence of the resulting protein. The impact that such mutations may have
on the gene product provides another method to classify genetic variants.

2.2.4 Classifying Genetic Variants by their impact on gene product
Coding variants may or may not impact the gene product. Considering SNVs, in the former case variants
are defined synonymous substitutions, in the latter nonsynonymous substitutions. Despite the different
nucleotide, synonymous substitutions do not change the amino acid encoded by the affected codon.
Nonsynonymous substitutions, instead, alter the gene product either changing the amino acid encoded
by the affected codon (missense), or inserting a premature stop codon (nonsense). Indels, in contrast,
if their length is a multiple of 3, they can either eliminate or add one or more amino acids to the gene
product. However, if their length is not a multiple of 3, they may induce a reading frame shift, potentially
leading to the disruption of the gene product or the introduction of a premature stop. Structural variants
are excluded from this classification.

2.2.5 Combining variants: the concept of Haplotype
In organisms that inherit genetic material from both parents, the genetic material is typically organized
into two sets of paired chromosomes, with one set coming from each parent. Haplotypes are clusters of
alleles inherited together from a single parent. A diploid set encompasses pairs of chromosomes, whereas a
haploid set comprises only one half of each pair. The haploid genotype focuses on individual chromosomes
rather than pairs, encompassing either all chromosomes from one parent or even a specific segment. The
term haplotype has multiple applications. It refers to a collection of specific alleles clustered within tightly
linked genes on a chromosome, likely to be inherited together and preserved across generations. It also
indicates sets of linked SNP alleles statistically associated and likely to occur together. Identifying these
associations, along with a few alleles of a specific haplotype sequence, is often used to locate other nearby
polymorphic sites on the chromosome. Importantly, haplotypes are crucial to investigate the genetics
of common diseases and traits, and their occurrence across different human groups or populations. The
crucial importance of haplotypes is highlighted by international efforts such as the International HapMap
Project (Gibbs et al., 2003), whose aim was to develop a haplotype map of the human genome, describing
common patterns of human genetic variation and diversity.

2.3 Interpreting and understanding Genetic Variants impact
Advancements in sequencing technologies have revolutionized the accumulation of extensive data on ge-
netic variants and genomic diversity, with a primary focus on the human genome. Notably, international
initiatives like the 1000 Genomes Project (Siva, 2008; Consortium et al., 2015) and the Human Genome
Diversity Project (Bergström et al., 2020) have diligently worked towards capturing the spectrum of ge-
netic diversity across individuals and populations. A wealth of experimentally validated data is stored
in various databases, such as dbSNP (Sherry et al., 2001), ClinVar (Landrum et al., 2020) or COS-
MIC (Bamford et al., 2004), linking known variants to genetic traits or diseases. These resources are
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fundamental tools to understand and interpret the potential impact of genetic variants on the genetic
landscape. Given the intricate nature of sequencing data, several computational pipelines have emerged
to sift through this vast information, identifying variants from raw sequencing data. Variant calling
tools, such as the Genome Analysis Toolkit (GATK) (McKenna et al., 2010), Strelka (Kim et al., 2018),
Varscan (Koboldt et al., 2012) or FreeBayes (Garrison and Marth, 2012), analyze sequencing data to
unveil the variants present within an individual’s genome, for example. Simultaneously, methodologies
and pipelines have been developed to explore potential associations between specific variants and dis-
eases, such as genome-wide association studies (GWAS) (Uffelmann et al., 2021), or to predict their
functional impact on the molecular mechanisms governing the cell (McLaren et al., 2016). These studies
and achievements unraveled the intricate complexity and diversity inherent in the human genome. How-
ever, representing such intricacy using the conventional reference genome sequences becomes challenging.
To address this limitation, complex data structures known as genome graphs (Paten et al., 2017) have
been recently introduced. These graphs offer a comprehensive framework to embed the genetic diversity
within individuals and populations, presenting a novel, graph-based data structure. This innovative ap-
proach is poised to provide a more nuanced understanding of the intricate tapestry of the human genome.
Genome graphs also provide a comprehensive and efficient framework to consider individual- and popula-
tion specific mutations, supporting the shift towards precision medicine-oriented approaches. Moreover,
the recent release of the first draft of the human pangenome reference (Liao et al., 2023) testifies how the
shift towards the use of frameworks embedding genetic variation are more and more supported by the
scientific community.

2.3.1 Identifying Genetic Variants
Identifying and interpreting the consequences of variants occurrence is crucial to unveil the molecular
mechanisms underlying several common and rare traits and diseases. Historically, variants and in partic-
ular SNVs were identified employing techniques such as mass spectrometry, or single-strand conformation
polymorphism (Orita et al., 1989). However, this methods allowed to analyze a few variants. DNA se-
quencing technologies almost completely replaced these protocols. In fact, sequencing technologies allow
to recover and study the entire variation of genomes at lower costs. To analyze sequencing data and
call variants, during the last decades have been developed several variant calling pipelines and methods.
Variant calling pipelines encompass three main steps: (i) genome sequencing, (ii) sequence alignment to
a reference genome, and (iii) variants identification. During genome sequencing the DNA is sequenced by
sequencer machines, which reconstruct the genomic sequences splitting it in short or long overlapping and
redundant sequences, called short or long reads, respectively. The resulting reads are stored in FASTQ
files (Appendix A.2). The generated reads are then mapped to a reference genome. Aligning reads
helps identify the genomic locations of these reads within the genome, allowing to reconstruct the original
genomic sequence and enables the identification of genetic variations, such as SNPs, indels, and structural
variations, during the variant identification. The accurate alignment of reads is essential for downstream
analyses like variant calling and understanding the functional implications of genetic variations in the
context of the reference genome. Aligned reads are stored in BAM or CRAM files (Appendix A.4 and
A.5). Various algorithms and tools, like Bowtie (Langmead and Salzberg, 2012), BWA (Li and Durbin,
2009), and HISAT (Kim et al., 2019), are commonly used for efficient and accurate sequence alignment.
The last step focuses on identifying and characterizing genetic variants in the sequenced genome. Once
the reads are aligned, variant calling algorithms are employed to detect differences between the sample
and the reference. These algorithms analyze the aligned reads to identify positions where the sample’s
sequence differs from the reference genome. Variant calling algorithms may apply filters on the iden-
tified variants to remove false positives and improve the accuracy of variant calls. Moreover, they can
annotate the identified variants, adding information such as their genomic location, functional impact,
and population frequency. Variant callers can also call determines the specific genetic makeup (genotype)
of an individual at each variant position. The identified variants are generally stored in VCF (Variant
Calling Format) files. Variant calling is crucial for understanding the genetic differences between individ-
uals, populations, or disease states. Multiple tools, including GATK (McKenna et al., 2010), SAMtools
(Li et al., 2009a), Strelka (Kim et al., 2018) and VarScan (Koboldt et al., 2012), are commonly used
for variant calling. Accurate and reliable variant calling is essential for studies focused on identifying
disease-causing mutations, understanding genetic diversity, and uncovering associations between genetic
variants and specific traits or diseases. Furthermore, variant calling constitutes a fundamental tool to
recover individual and population-specific genetic diversity, playing a pivotal role in defining precision
medicine oriented computational methods.
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The Variant Calling Format (VCF)

The Variant Call Format (VCF) is a standard file format used for storing information about genetic
variants identified through variant calling analyses. VCFs are plain text file providing several and different
information organized in fields regarding the reported variants. Due to their dimensions, VCFs are often
compressed. VCFs have two main components: (i) a header and (ii) a body. The header contains
metadata and information about the reference genome, describes the sample information, file creation
date, the tools used for variant calling, and specifies the version of the VCF format. The body comprises
rows of variant records, each representing a genetic variant. Variants records consist of eight mandatory
tab-separated fields, along with an unlimited number of optional columns (Table 2.2). The fields in
a variant record provide detailed information about the variant. The VCF file format is versatile and
supports the representation of a wide range of genetic variants, including SNPs, indels, and structural
variants. It has become a standard for exchanging variant information across different bioinformatics
tools and databases, facilitating the sharing and integration of genomic data in research and clinical
settings.

Field Field name Description Type
1 CHROM The identifier of the sequence on which the

variant has been called, commonly denoting
the chromosome name

Mandatory

2 POS The variant’s position relative to the reference
sequence

Mandatory

3 ID Variant’s identifier Mandatory
4 REF Reference allele Mandatory
5 ALT Altrenative allele Mandatory
6 QUAL The assigned quality score for the inference of

the called allele
Mandatory

7 FILTER A flag value indicating whether the variant has
successfully passed the filtering steps

Mandatory

8 INFO An expandable list of key-value pairs de-
scribing the variant, following the syntax
<key>=<data>[,data]

Mandatory

9 FORMAT Sample’s related fields Optional
+ SAMPLE Values are provided for the FORMAT fields

for each described sample
Optional

Table 2.2. Variant Calling Format (VCF) fields. The table outlines the eight mandatory fields of a VCF file along
with two frequently used optional fields (FORMAT and SAMPLE)

2.3.2 Genetic Variants Databases
The recent strides in sequencing technologies have substantially augmented the throughput of sequencing
experiments, generating vast datasets. In response to this, numerous global initiatives, exemplified by the
International HapMap Project (Gibbs et al., 2003; Consortium, 2005), the 1000 Genomes Project (1KGP)
(Siva, 2008; Consortium et al., 2015) and the Human Genetic Diversity Project (HGDP) (Cavalli-Sforza,
2005), have surfaced. These endeavors aim to delve deeper into the genetic diversity among human
individuals and populations. Similarly, consortia like dbSNP (Sherry et al., 2001) and ClinVar (Landrum
et al., 2020) have aggregated variant data to explore potential associations between genetic variants
and various traits or diseases. The HapMap project was among the first initiative to perform large
scale experiments to uncover human genetic diversity. Their goal was to construct a haplotype map
of the human genome, elucidating potential prevalent variants patterns among populations. In fact,
while generally shared across populations, haplotypes can exhibit significant variations in frequency. The
primary objective of 1KGP was to identify common genetic variants with frequencies of at least 1%
within the studied populations (SNPs). Leveraging advancements in sequencing technology, the project
pioneered large-scale sequencing of genomes from a diverse group of individuals, creating a comprehensive
database on human genetic variation (Fairley et al., 2020). While the cost of deep sequencing for the
extensive number of samples was still prohibitive, the genome’s specific regions typically harbor a limited
number of haplotypes. By aggregating data across samples, the project efficiently detected the majority
of variants in a region. The initial plan aimed to achieve 4x genomic coverage for each sample, recognizing
that this depth might not unveil all variants in each sample but could detect most variants with frequencies
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as low as 1%. In the project’s final phase, data from 2,504 samples from 26 populations were amalgamated,
enabling accurate genotyping at all discovered variant sites. The multi-sample strategy, coupled with
genotype imputation (Li et al., 2009b), facilitated determining samples’ genotype, even for variants not
covered by sequencing reads. However, 1KGP dataset does not cover all human populations. To fill this
gap the 1KGP data have been extended performing further experiments as well as including data produced
by other consortia, such as HGDP (Bergström et al., 2020). Similarly to 1KGP, HGDP aim was to identify
and map the genetic variation and diversity among human populations. 1KGP and HGDP could be
considered complementary datasets. In the meantime, other consortia focused on collecting the variants
experimentally identified in databases. dbSNP (Sherry et al., 2001) is a publicly accessible repository
providing comprehensive information on genetic variation. It functions as a unified database containing all
identified genetic variations, facilitating the investigation of a broad range of genetically influenced natural
phenomena. Despite its name suggests a focus solely on SNPs, dbSNP encompasses a broader spectrum
of molecular variations (Sherry et al., 1999), including SNPs and short indels for example. dbSNP plays
a crucial role in guiding applied research in fields such as exploring variants-trait associations (Kitts
and Sherry, 2002). While dbSNP reports broader information about genetic variants, ClinVar (Landrum
et al., 2020) details variants-traits association focusing on the clinical significance of such associtions.
ClinVar main purpose is to streamline access to information and facilitate communication regarding
the relationships posited between human genetic variations and observed health conditions, along with
the historical context of these interpretations. These repositories provide valuable resources providing
several data to analyse the potential impact of genetic variation on the cell environment. By providing raw
data and functional details, these databases are significant resources, fundamental to develop precision
medicine-oriented methods that consider genetic variants.

2.3.3 Discovering Variants - Trait associations
Once identified, a key question is to discover whether our variants are linked to a particular trait, or to
predict their potential impact on the cellular environment. Genome-wide association studies (GWAS)
(Uffelmann et al., 2021) provide answers to the first question. GWAS is an observational investigation
of a comprehensive set of genetic variants across different individuals to identify potential associations
with a particular trait or disease. These studies predominantly focus on relationships between SNPs
and major human diseases, although they are equally applicable to other genetic variants, such as indels
for example. GWAS typically involve large cohorts of individuals, comparing the genomes of those
with a particular trait or disease to those without. Case-control designs are common, where individuals
with a specific trait or disease (cases) are compared to those without (controls). To collect GWAS
data high-throughput genotyping technologies, such as SNP arrays, are employed to assay hundreds of
thousands to millions of SNPs across the genome. To identify between genetic variants and traits, GWAS
employ statistical methods. Correction for multiple testing is crucial to minimize false-positive results.
Linkage Disequilibrium analysis helps identify blocks of correlated genetic variants, providing insights
into the genomic regions associated with the trait of interest. Importantly, population stratification must
be carefully addressed to avoid spurious associations due to differences in genetic ancestry. Different
computational tools, such as PLINK (Purcell et al., 2007) or SNPTEST (Marchini et al., 2007), have
been developed to carry out GWAS. While other methods focus on a limited number of predefined
genetic regions, GWAS explores the entire genome. Consequently, GWAS adopts a non-candidate-driven
approach, in contrast to gene-specific candidate-driven studies. However, while GWAS identifies SNPs
and other DNA variants associated with a disease, it does not independently determine which impact the
variants have on the cell environment and which gene/genomic element is causative of the investigated
trait/disease. Functional annotation annotates and interprets the functional significance of variants
identified during GWAS. Several databases and tools have been developed for this task. For example
PROVEAN (Choi and Chan, 2015) and VEP (McLaren et al., 2016) predict the impact of variants on
gene products, while RegulomeDB (Boyle et al., 2012) investigates the impact of genetic variants on
genomic regulatory elements.

2.3.4 Limitations of current analysis methods
As described throughout this chapter, various methods and computational tools have been proposed
over the last few decades to analyze, assess, and predict the impact of genetic variants on the cellular
environment. However, these methods may have limitations and may not fully exploit the information
of the analyzed variants data. Methods employing variants to enrich the reference genome sequence
may lose or not consider simultaneously SNVs and indels, because the latter may break the sequence
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coordinate system. Moreover, these methods generally are not able to consider large variant events,
such as structural variants, and complex SNVs-indels combinations in their analyses. Most methods
ignores haplotypes and may introduce recombinant sequences not observed in the data. Furthermore,
most methods are not scalable when analyzing large set of individual-specific data and do not perform
population-based analyses. These limitations may impact the shift towards the development of precision
medicine-oriented methods. The recent advent of genome graphs (Paten et al., 2017) presents a powerful
framework for representing genomes alongside their complete genetic variation and diversity. Importantly,
genome graphs may enhance precision medicine-oriented analyses by encapsulating the genetic diversity
of numerous samples, ranging from several to thousands, within a unified data structure (Yu and Chen,
2023). The subsequent chapter delves into the details of the genome graphs data structure, shedding
light on recent advancements and exploring the prospective enhancements this data structure could bring
to the forefront of developing novel methods for analyzing the impact of genetic variants on cellular
processes.
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Genome Graphs

The use of the human reference genome as a basis for studying genetic variations in other human genomes
introduces a significant challenge known as reference allele bias. This bias, stemming from mapping
errors during sequencing experiments, tends to underreport data that deviates from the reference allele
(Degner et al., 2009; Brandt et al., 2015). Structural variations pose a particular challenge, requiring
distinct algorithms for their detection, due to their absence from the reference (Sudmant et al., 2015).
To address these limitations, the field of genome inference is moving towards unbiased de novo assembly
for individual samples and developing richer reference structures that more comprehensively represent
population variations, such as graph-based reference structures. This transition towards graph-based
reference structures is particularly evident in human genomics, signaling a shift in the approach to
variant calling and genome analysis. Genome graphs (Paten et al., 2017) offer a revolutionary approach
to address the limitations of traditional linear genome representations (Figure 3.3). Stemming from
the concept of sequence graphs (Paten et al., 2017), genome graphs provide a versatile framework to
encapsulate the genetic diversity inherent in multiple individual genomes within a unified data structure.
A sequence graph (Figure 3.3 (A)) is essentially a bidirectional graph where nodes correspond to
DNA fragments, and edges signify the adjacency between different segments in a sequence. These edges
connect the terminus of one DNA segment to the inception of another, bearing a label denoting a string
of DNA (which can be empty). Consequently, traversing the graph through adjacent nodes linked by
edges allows for the retrieval of genetic sequences. Originally conceived to succinctly represent multiple
sequences sharing variations, sequence graphs have found extensive applications. Mainly, sequence graphs
serve as efficient data structures for storing diverse genetic information and have been instrumental
in tasks such as the succint representation of multiple sequence alignments (Lee et al., 2002; Paten
et al., 2014). Therefore, genome graphs can be perceived as an evolution of bidirectional sequence
graphs. Notably, genome graphs offer a comprehensive representation enriched with a collection of paths
encapsulating genome sequences across a population of individuals (Figure 3.3 (B)). These graphs
serve as a compact yet robust depiction of genetic variation within a population, encompassing structural
variants, such as inversions and duplications (Paten et al., 2017). Formally, a genome graph is defined
as G = (N,E, P ), where N = {n1, n2, . . . , nk} denotes the set of nodes representing DNA segments,
E = e1, e2, . . . , ew denotes the set of edges connecting nodes, and P = p1, p2, . . . , pq comprises the set of
paths embedded in G. Each path p ∈ P represents one of the embedded sequences or genomes within the
genome graph. Each node in the graph corresponds to a DNA segment constructed from the alphabet
Σ = {A, C, G, T, N}. Therefore, by incorporating a multitude of paths, genome graphs offer a holistic view
of genomic diversity within a population of individuals, enabling the representation of complex genetic
structures and facilitating comprehensive genetic analyses. Traversal through the graph is facilitated in
both forward and reverse directions, presenting two distinct ”entry points” for each node n ∈ N (Figure
3.4 (A)). When traversing a node in the reverse direction, the DNA fragment associated with the node
is read as its reverse complement (Figure 3.4 (B)). Edges within the genome graph signify adjacency
between the DNA fragments of the nodes they connect. Consequently, long sequences are implicitly
encoded by concatenating the fragments of adjacent nodes. Similar to nodes, edges can be traversed
in the reverse direction, enabling comprehensive exploration of genetic sequences. Moreover, to increase
graph’s compactness, genome graphs are capable of accommodating cycles to represent repetitive segments
across the embedded sequences (Figure 3.4 (C)). Genome graphs usually accommodate different types
of cycles: regular cycles where a node ni can be reached from ni, reversing cycles, where nr

i is reachable
from ni, and instances of non-cyclic reversal (Figure 3.4 (D)), where both ni and nr

i are accessible from
another node nj . In the context of representing genomes for a population of individuals, paths within
genome graphs correspond to the genomic sequences of each subject. Variants manifest as bubbles in the
graph, creating diverging paths anchored by a common start and end sequence on the reference (Paten
et al., 2018) or a shared DNA segment. Genome graphs provide an efficient and compact framework to
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Figure 3.3. The genome graph and sequence graph data structures. (A) A sequence graph, denoted as S,
is constructed from three sequences: s1 = TCGTAGAAATAACGCGGC, s2 = TCGTAGAAAACGGC, and s3 = TCGTAGCGTACGACGGC. By
tracing the purple path within the graph, the original sequence s1 can be reconstructed, while following the yellow path yields
the reconstructed sequence s2. It’s noteworthy that in sequence graph S, the edges are not labeled, although in general,
they could carry labels for additional information. (B) Visualization of Genome Graphs data structure, with each color
representing a distinct path within the graph. Each path delineates the genomic sequence of an individual genome encoded
within the Genome Graph structure. This comprehensive representation facilitates the simultaneous depiction of multiple
genetic sequences, enabling the exploration of genetic diversity and complexity across individuals within a population.

represent and encode the genetic diversity observed within populations of individuals. Notably, genome
graphs offer a groundbreaking framework that expands classical omics analysis to encompass not only
simple variations like SNPs and indels, but also more complex genetic alterations such as large indels,
SNP-indel combinations, and structural variants. This versatility makes genome graphs a powerful tool for
capturing the intricate genetic landscape present in diverse populations. In recent years, there has been a
noticeable shift towards adopting genome graph-based representations of genomes over traditional genome
assemblies for genetic data analysis (Hurgobin and Edwards, 2017). This transition has been further
accelerated by the emergence of several consortia dedicated to constructing and releasing population-
based (Gao et al., 2023) or comprehensive pangenomes (Wang et al., 2022c), with these pangenomes being
represented as genome graphs. Notably, a significant milestone was reached with the release of the first
draft of a genome-graph-based human reference genome, known as the pangenome reference (Liao et al.,
2023). This landmark achievement underscores the growing recognition and adoption of genome graph
technology in genomic research, promising a more comprehensive and accurate understanding of genetic
variation and its implications. Furthermore, genome graphs hold great promise in facilitating the shift
towards the adoption of precision medicine-oriented approaches to analyse genetic data accounting for
genetic diversity across individuals and populations (Yu and Chen, 2023). However, scaling pangenomes’
genome graph data structures to accommodate hundreds of genomes poses a significant computational
challenge. In recent years, numerous software tools have been developed to construct and analyze genome
graph-based pangenomes (Andreace et al., 2023). While construction procedures and implementations
may vary, they collectively underscore how genome graphs significantly enhance a wide array of genomic
analyses. These improvements are evident in various areas, including high-quality short read mapping
(Sirén et al., 2021), accurate genotyping of SNPs, indels, and structural variants (SVs) (Ebler et al., 2022),
RNA-seq mapping (Liao et al., 2023), and de novo variant calling (Garrison et al., 2018). The following
sections delve into some of the prominent methods for constructing genome graph-based pangenomes and
elucidate their potential to enhance genetic data analysis.
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Figure 3.4. Traversing the genome graph along the embedded paths. (A) A genome graph provides mul-
tiple traversal possibilities based on its nodes, edges, and paths. (B) By following the red path, the forward sequence
ATATTCCAACTCTCTG can be reconstructed, while tracing the green path yields its reverse complement. (C) Genome graphs
accommodate ordinary cycles and reversing cycles. The red path reveals an ordinary cycle at node 12, while the green path
highlights a reversing cycle at node 14, where an edge exits and re-enters the node, necessitating consideration of the DNA
label as its reverse complement. Such intricate graph structures efficiently represent complex genomic rearrangements, such
as sequence duplications (as seen in the red path case) or inversions (as observed in the green path case). (D) Genome
graphs may also exhibit non-cyclic instances of reversal; for instance, node 13 can access both the forward DNA fragment
of node 15 (via the red path) and its reverse complement (via the green path).

3.1 Methods to Construct Genome Graphs
In recent years, we have witnessed a dynamic landscape of research endeavors aimed at developing meth-
ods and data structures tailored to construct and represent pangenomes as genome graphs (Consortium,
2018; Andreace et al., 2023). This surge in activity reflects the growing recognition of genome graphs as
powerful tools for capturing the complexity and diversity inherent in genomic data. Among the diverse
array of approaches currently available, several notable methods have garnered attention for their effi-
cacy in handling large datasets and facilitating efficient representation of genome graphs. The Variation
Graph Toolkit (Garrison et al., 2018), for instance, has emerged as a foundational tool in the field, offering
robust capabilities for constructing genome graphs that encompass intricate genetic variations. Notably,
the Variation Graph Toolkit provides a comprehensive suite of tools for analyzing genomic sequence data
utilizing the genome graph data structure. The resulting variation graphs (VGs) can be constructed
either from user-provided data or from precomputed graphs in a variety of supported graph formats.
With the Variation Graph Toolkit, users can manipulate and visualize VGs, enabling detailed explo-
ration and analysis of genomic variations. The introduction of VGs represents a significant advancement
in genomic data representation. By encapsulating the complexity introduced by genetic variations in a
compact and efficient manner, VGs provide a powerful framework for understanding genomic diversity.
Unlike traditional reference genomes, VGs can succinctly summarize the complexity of genetic informa-
tion within a population of individuals in a single structure. This capability enhances the accuracy of
describing genetic changes and variations, offering insights that linear reference genomes cannot convey.
Pantools (Sheikhizadeh et al., 2016) and Bifrost (Holley and Melsted, 2020) have also gained prominence
for their adeptness in generating pangenomes from extensive collections of genomes, particularly in the
context of phylogenetics and bacterial genomics. However, Pantools have also been used to build a human
pangenome encompassing seven genomes (Sheikhizadeh et al., 2016). Bifrost specializes in constructing
dynamic, colored compacted de Bruijn Graphs (Muggli et al., 2017). Its approach involves first generating
a standard de Bruijn Graph using an efficient variant of Bloom Filters (Tarkoma et al., 2011), followed
by the computation of the compacted de Bruijn Graph. In this process, colors—identifiers represent the
sample of origin of each k-mer and are incorporated into the data structure by storing an array for each
k-mer. A noteworthy characteristic of the colored de Bruijn Graph constructed by Bifrost is its single
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large connected component when representing human genomes. This occurrence arises from the sharing
of common k-mers among chromosomes. Consequently, this pangenome representation encapsulates all
the variants present in the input sequences, providing a comprehensive view of genetic diversity across
individuals. Minigraph (Li et al., 2020), Minigraph-Cactus, and PGGB (Garrison et al., 2023) stand out
for their versatility and efficiency in constructing genome graphs capable of representing complex genetic
structures. These methods leverage sophisticated data structures and algorithms to handle large-scale
genomic datasets while providing detailed insights into genetic variations and structural complexities.
Notably, these three approaches have been employed to assemble and release the first draft of the human
pangenome reference (Liao et al., 2023). Minigraph constructs a VG in a directed, bidirected, and acyclic
manner through an iterative process. It achieves this by iteratively mapping new haplotypes combining
minimap2 (Li, 2018) and a graph wavefront alignment algorithm (Li et al., 2020). Minigraph focuses
on capturing variations longer than 50 base pairs, making it particularly suited to handle larger-scale
genetic alterations. However, it does not consider isolated SNPs and small indels, as its resolution is not
at the base level. While Minigraph provides base-level alignment for contigs, the resulting graphs offer
a higher-level resolution. Furthermore, the resulting graph is partitioned into connected components,
each corresponding to the chromosomes present in the initial input genome. This organization facilitates
the analysis and interpretation of genomic data within the context of chromosome-level structures. The
Minigraph-Cactus pipeline is a sophisticated tool for constructing VGs, which integrates the capabilities
of Minigraph (Li et al., 2020) and the Cactus (Armstrong et al., 2020) base aligner. This pipeline is
designed to generate a structural VG using Minigraph and then leverage Cactus to produce base-level
pangenome graphs from a set of input assemblies, incorporating haplotypes as paths within the graph.
Importantly, Cactus ensures the resulting VG remains acyclic by considering the reference sequence em-
ployed by Minigraph. Additionally, the resulting pangenome graph undergoes further processing using
GFAffix. This versatile pipeline offers the flexibility to generate multiple graphs, each corresponding
to a specific chromosome, or to produce a single graph that encompasses inter-chromosomal variants.
By combining Minigraph and Cactus, the Minigraph-Cactus pipeline provides a robust framework for
constructing comprehensive variation graphs suitable for diverse genomic analyses. PGGB, instead, en-
compasses different tools to create a pipeline dedicated to constructing directed acyclic VGs. Firstly,
it conducts pairwise base-level alignment of haplotypes using wfmash (Garrison and Guarracino, 2023).
Subsequently, it constructs the graph from these alignments using seqwish (Garrison and Guarracino,
2023). Lastly, the pipeline employs two more tools, smoothxg and GFAffix, to sort and normalize the
graph. The resulting variation graph comprehensively represents variations of all lengths present in the
input sequences. This approach ensures that the constructed graph encapsulates the full spectrum of
genetic variations, making it a powerful resource for genomic analyses. However, many of these tools and
pipelines for constructing genome graphs come with certain limitations. They often demand computa-
tional expertise from users and may require substantial computational resources to operate effectively. As
the field progresses, there is a pressing need to enhance the scalability, accuracy, and user-friendliness of
genome graph-based approaches. Future research endeavors are poised to concentrate on refining existing
methods, investigating innovative algorithms, and developing more user-friendly tools to facilitate wider
adoption of genome graphs in genomic research and analysis. Nevertheless, genome graphs have already
found applications in various biological analyses, offering notable enhancements compared to analyses
conducted using classical linear reference genomes.

3.2 Improving genome analysis pipelines
One immediate application of genome graphs lies in enhancing reference-based genetic data analysis work-
flows. In such workflows, genome graphs seamlessly replace existing linear references subsequent process-
ing analyses. For instance, the consortium that released the human pangenome draft demonstrated as
pangenome improves sequence mapping workflows. By projecting reads mapping from the pangenome
space back to the linear reference, they improved variant calling workflows combining Giraffe mapper
(Sirén et al., 2021) and the DeepVariant variant caller (Poplin et al., 2018). In the Giraffe–DeepVariant
workflow, DeepVariant remains unaware of the intricacies of the pangenome, yet the workflow gains from
a mapping step that accommodates sequences absent from the linear reference. Notably, transitioning
to pangenome mapping does not entail significantly higher computational costs and has yielded a signif-
icant reduction in false-positive and false-negative calls compared to standard reference-based methods.
Moreover, the authors showed that these improvements are particularly pronounced at complex loci.
Pangenomes not only enhance variant calling accuracy but have also been shown to improve transcript
mapping (Sibbesen et al., 2023) and facilitate detection of ChIP-seq peaks (Groza et al., 2020). For
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example, Liao et al. (2023) demonstrated how pangenome-based transcriptome mapping pipeline us-
ing vg mpmap (Sibbesen et al., 2023) significantly decreased false mapping rates compared to a linear
reference-based pipeline employing either vg mpmap or STAR (Dobin et al., 2013). Furthermore, the
pangenome-based pipeline exhibited reduced allelic bias and enhanced mapped coverage on heterozygous
variants. Additionally, they observed an increase in peak called analyzing ChIP-seq (Section 4.2.1)
targeting two hystones (H3K4me1 and H3K27ac) and ATAC-seq data (Section 4.2.1), compared to the
linear reference-based analyses. Moreover, they identified regulaory features specific to structural variant
alleles not detected in the linear reference genome. Therefore, genome graphs serve as invaluable frame-
works, enabling the comprehensive capture and representation of genetic diversity among individuals.
Additionally, they offer a robust framework for effectively capturing and representing genomic regulatory
elements, including their variability across subjects and populations.
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Genomic Regulatory Elements

Genetic variants located outside coding regions can significantly influence cellular environments. Specifi-
cally, non-coding variants within genomic regulatory elements (GREs) have been identified as key players
in altering gene expression (De Gobbi et al., 2006; Wienert et al., 2015), linking them to the emergence of
certain traits and increased disease susceptibility (Weinhold et al., 2014). Mutations within GREs have
the potential to disrupt the intricate regulatory networks governing gene expression by modifying GRE
sequences and functions. Gene expression unfolds during RNA biosynthesis, and its orchestration relies
on sequence-specific protein binding, such as histones or transcription factors (TFs). Histones, forming
nucleosomes (DNA-histone complexes), govern gene expression by controlling chromatin accessibility and
compactness. Alterations in chromatin compactness directly impact gene expression by, for instance, re-
ducing DNA accessibility to the RNA polymerase complex. Histone modifications, including acetylation,
methylation, and phosphorylation, can either promote or inhibit gene expression by modulating DNA-
histone interactions. Moreover, histones contribute to the three-dimensional organization of chromatin,
shaping higher-order structures and influencing the physical arrangement of genomic elements. TFs reg-
ulate gene expression by binding to short target sequences known as transcription factor binding sites,
often located within GREs called cis-regulatory sequences. These sequences, encompassing enhancers,
silencers, and insulators (Kolovos et al., 2012), can significantly impact gene expression rates, even when
distant from gene promoters (Wittkopp and Kalay, 2012). Enhancers, in particular, play a pivotal role
in gene expression regulation by collaborating with TFs (Spitz and Furlong, 2012). Furthermore, DNA
methylation, another critical mechanism, can enhance or inhibit gene expression by adding methyl groups
to GRE sequences, such as gene promoters. Interacting with methyl-binding domain (MBD) proteins,
DNA methylation influences the recruitment of protein complexes with chromatin remodeling and histone
modifying activity to methylated CpG islands (Du et al., 2015). MBD proteins, with a strong affinity for
highly methylated CpG islands, primarily function to repress local chromatin through mechanisms like
inducing repressive histone marks or establishing an overall repressive chromatin environment via nucle-
osome remodeling and chromatin reorganization (Du et al., 2015). Understanding how genetic variants
impact these fundamental genomic elements is crucial for interpreting the consequences of individual-
and population-specific genetic variations on the cellular environment. The next sections will delve into
enhancers, silencers, insulators, and the essential proteins regulating gene expression by interacting with
GREs: transcription factors.

4.1 Enhancers, Silencers and Insulators: a molecular regulatory
symphony

The genome harbors a diverse array of genes, each encoding one or more products. The precise regulation
of gene expression is crucial. The most efficient regulatory mechanism occurs at the transcriptional level,
where cis-regulatory elements (CREs) play a pivotal role in controlling transcription (Wittkopp and Kalay,
2012). Enhancers and promoters are well-characterized CREs regulating gene expression. Cis-regulatory
modules (CRMs), a subset of CREs, serve as functional regulatory elements by harboring transcription
factor binding sites. Briefly, CRMs are DNA sequences with clustered transcription factor binding sites,
encompassing diverse modular structures like locus control regions, promoters, enhancers, silencers, and
boundary control elements. These modules are classified into four main classes: (i) promoters, (ii)
enhancers, (iii) silencers, and (iv) insulators. Promoters are relatively short sequences encompassing the
site where transcription initiates and the surrounding region ∼35 base pairs upstream or downstream from
the initiation site (Butler and Kadonaga, 2002). Importantly, a single gene may harbor multiple promoter
sites. To start the expression of the downstream gene, a series of TFs bind sequentially the promoter.
Only upon the binding of the appropriate set of TFs in the correct order, the RNA polymerase attach
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to the promoter and begins the transcriptional process. Enhancers positively regulate (enhance) gene
expression. They can be situated upstream, downstream, within introns, or far from the controlled gene.
Coordination among multiple enhancers is common in the regulation of gene transcription. Insulators
indirectly interact with neighboring CRMs. Silencers, instead, possess the ability to turn off (silence)
gene transcription through the binding of transcriptional regulatory proteins, known as repressors.

4.1.1 Enhancers
Enhancers are short DNA region, typically ranging from 50 to 1500 bp, where activators proteins, known
as transcription factors, can bind. TFs binding increases the likelihood of transcription initiation for
the controlled gene or genes set. In the human genome there exist >100,000 enhancers (Pennacchio
et al., 2013). Enhancers exhibit a remarkable ability to influence transcription even when located at
considerable distances from the transcription initiation site, with some identified enhancers are located
>100 Kb upstream or downstream of the start site (Pennacchio et al., 2013). Enhancers exert their
control on gene expression through the binding of activator proteins rather than directly on the promoter
sequence. In fact, the activator proteins engage with the mediator complex, recruiting RNA polymerase
and TFs, which subsequently start the transcription process. Enhancers interact with far controlled
genes by forming loops that reduce the physical distance from the targets (Schoenfelder and Fraser,
2019). Enhancers are not confined to specific locations within the gene structure. They can be located
within introns, and their orientation or even their physical location in the chromosome can be altered
without compromising their functionality. Furthermore, enhancers may be located within exonic region
of unrelated genes and they may act on genes situated on different chromosomes (Spilianakis et al., 2005).

4.1.2 Silencers
Silencers are specific sequences with the capacity to bind transcriptional regulatory factors, known as
repressors. However, unlike enhancers, when repressor proteins interact with silencers, they block the
RNA polymerase, preventing and “silencing” gene expression (Pang et al., 2023). Similarly to enhancers,
silencers may be located Kbs either upstream or downstream of the target gene start site. There can
be identified two categories of silencers: classical silencer and non-classical negative regulatory element
(NRE). Classical silencers actively suppress gene expression by directly impeding the assembly of TFs,
predominantly interfering with their proper functioning (Ogbourne and Antalis, 1998). On the other
hand, NREs exert passive repression on genes, generally by hindering elements upstream of the gene.
In classical silencers repressors target the TFs assembly initiating gene transcription, which are typically
located upstream of the gene and can exhibit varying distances, ranging from short to long. In the case
of long-range silencers, they form DNA loops to facilitate the physical proximity of silencer-promoter
pairs (Maston et al., 2006). Additionally, NREs may induce bends in the promoter region, obstructing
TF-RNA polymerase interactions. If silencers are located within introns, two types of repressions may
occur: physical blockage of a splice site and a bent DNA structure inhibiting RNA processing.

4.1.3 Insulators
Unlike enhancers and silencers, insulators act only as a long-range regulatory element, by controlling
target genes located at considerable distances. Typically spanning 300-2000 bp, insulators feature clus-
tered binding sites for sequence-specific DNA-binding proteins, facilitating intra- and inter-chromosomal
interactions (Valenzuela and Kamakaka, 2006). The functional roles of insulators encompass acting as
enhancer-blockers, barriers, or a combination of both. These functions are orchestrated through mech-
anisms involving loop formation and nucleosome modifications (Gaszner and Felsenfeld, 2006). Various
examples of insulators exist, such as the CTCF insulator (Ishihara et al., 2006). Insulators with an
enhancer-blocking function form chromatin loop domains that physically separate the enhancer from the
promoter of the target gene. The creation of loop domains occurs through interactions between enhancer-
blocking elements, either by engaging with each other or by anchoring the chromatin to structural ele-
ments, such as nucleosome (Gaszner and Felsenfeld, 2006). The effectiveness of these insulators relies on
their location between the promoter of the target gene and the adjacent enhancer. If enhancers directly
engage with their target promoters through looping (direct-contact model), insulators disrupt this inter-
action by establishing a loop domain spatially dividing the enhancer and promoter sites, thus preventing
the formation of the promoter-enhancer loop (Gaszner and Felsenfeld, 2006). Alternatively, when an en-
hancer influences a promoter through a signal, following the tracking model of enhancer action, insulators
can impede this signal by targeting a nucleoprotein complex at the base of the loop formation (Gaszner
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and Felsenfeld, 2006). On the other hand, barrier insulators alter the nucleosomal substrate in the reac-
tion cycle crucial to heterochromatin formation (Gaszner and Felsenfeld, 2006). Different mechanisms are
employed for these modifications, encompassing nucleosome removal and silencing (chromatin-mediated
silencing). Additionally, modification can occur through the recruitment of histone acetyltransferase(s)
and ATP-dependent nucleosome remodeling complexes (Gaszner and Felsenfeld, 2006).

4.2 Transcription Factors
Transcription factors (TFs) (Figure 4.5 (A)) are essential regulatory proteins that play a pivotal role
in governing the transcriptional state, cellular differentiation, and developmental status of cells (Lambert
et al., 2018; Reimold et al., 2001; Whyte et al., 2013). In humans, around 1,600 proteins are identified as
TFs (Babu et al., 2004), constituting approximately 8% of all human genes. This highlights the crucial
function of TFs in orchestrating genetic regulation. TFs demonstrate their regulatory capabilities by
frequently collaborating in a coordinated manner, exerting a collective influence on gene expression. This
collaborative orchestration is essential for finely tuning and precisely controlling cellular processes. This
collective coordination is indispensable for finely adjusting and accurately regulating cellular processes.
Additionally, transcription factors (TFs) demonstrate remarkable versatility by overseeing the activity of
numerous genes across different cell types (Lambert et al., 2018). TFs exhibit a modular structure, which
is categorized into three distinct domains (Latchman, 1997) (Figure 4.5 (B)): (i) the DNA binding
domain, (ii) the activation domain, and (iii) the signal sensing domain. The DNA binding domain serves
as the navigational guide for the transcription factor (TF), directing it to its specific target site on
the genome. By precisely recognizing DNA sequences, this domain empowers the TF to anchor onto
regulatory regions dispersed throughout the genome. This targeted interaction allows the TF to exert its
regulatory influence on gene expression within those specific genomic locations. The activation domain
of a transcription factor serves a pivotal role in facilitating interactions between the TF and various
transcriptional regulators. Through engagements with diverse co-factors and regulatory proteins, the
activation domain acts as a key modulator of gene expression. Its function often involves serving as a
bridge between the transcription factor and the intricate machinery involved in transcription, thereby
influencing the regulatory processes that govern gene activity. The signal sensing domain of a transcription
factor captures external signals and relays them to the broader transcriptional complex. These signals
originate from different sources, encompassing cellular cues and environmental stimuli. The signal sensing
domain acts as a sophisticated sensing mechanism that allows TFs to finely adjust their regulatory
activity in response to dynamic and changing conditions within the cellular and environmental milieu.
This adaptive responsiveness ensures a nuanced and context-specific modulation of gene expression. The
intricate interplay between these three domains empowers TFs to operate as highly versatile and adaptable
components within the gene regulation machinery. By effectively coordinating the DNA binding domain,
activation domain, and signal sensing domain, TFs can respond to a spectrum of internal and external
cues. This enables them to exert precise control over gene expression in a dynamic, context-dependent
manner. TFs exert their function through different strategies (Figure 4.5 (B)): (i) promoting or blocking
RNA polymerase recruitment, (ii) shaping chromatin landscape, (iii) catalyzing histone deacetylation,
and (iv) enhancing DNA-histone interactions. Transcription factors (TFs) wield the ability to either
enhance the recruitment of RNA polymerase to gene promoter regions, thereby promoting the initiation of
transcription, or act as inhibitors by impeding RNA polymerase access (Fuda et al., 2009). TFs shape the
chromatin landscape by actively modulating DNA-histone interactions. This regulatory action includes
the capacity to weaken these interactions, thereby enhancing DNA accessibility. Certain TFs actively
participate in histone deacetylation processes (Liu et al., 2016). This involvement manifests as the removal
of acetyl groups from histones, resulting in the promotion of a more compact chromatin structure. This
compacted chromatin configuration contributes to the downregulation of gene transcription and acts as
a mechanism suppressing gene expression. TFs exert their functions through the recognition and binding
of short DNA sequences, typically spanning ∼6-20 nucleotides (Stewart et al., 2012). These specific
binding sites, referred to as transcription factor binding sites (TFBSs), serve as the molecular targets
where TFs interact with the genome to regulate gene expression. The precise binding of TFs to these
sites is a crucial step in initiating the regulatory processes that govern various cellular activities and
responses. TFBSs are situated in crucial genomic regions, including gene promoters (Whitfield et al.,
2012), as well as more distal regulatory elements such as enhancers, silencers, or insulators (Gotea et al.,
2010; Lemon and Tjian, 2000; Nolis et al., 2009). Although TFBSs frequently feature recurring sequence
patterns, known as motifs, TFs exhibit a remarkable capacity to bind to sequences that are similar but
not identical. This ability allows TFs to recognize and interact with a range of target sequences, often

37



differing by just a few nucleotides. The precise configuration of TFBS, along with the local chromatin
structure, plays a pivotal role in finely tuning the regulatory functions of TFs within cells (Mendenhall
et al., 2013; Maurano et al., 2015). During the DNA binding process, TFs utilize a combination of
electrostatic and Van der Waals forces. While TFs demonstrate high specificity in binding to their target
sequences, not every nucleotide within the binding site directly interacts with the TF. These interactions
exhibit varying strengths, leading TFs to bind not to a single specific sequence but to a closely related
subset of targets. However, the sequence composition of the TFBS decisively influences the strength
of the TF-DNA interaction, known as binding affinity. Numerous studies have established connections
between various diseases, cancer types, and genetic variants occurring within TFBS (Docquier et al., 2005;
Katainen et al., 2015; Yu et al., 2019). Additionally, variants within TFBS have the potential to disrupt
the precise regulation of gene expression by TFs, exerting an impact on the entire cellular environment
and possibly propagating effects to neighboring cells. The misregulation of gene expression governed
by TFs, resulting from variants occurring in TFBS, could influence the broader cell environment and
extend its effects to neighboring cells. Therefore, the identification of such regulatory motifs holds the
key to fundamental insights into the intricate mechanisms that govern gene expression and the cellular
environment. Several experimental techniques have been devised to identify TF binding site sequences,
either within living cells or organisms (in vivo) or in controlled environments like test tubes using synthetic
or purified components (in vitro) (Jolma and Taipale, 2011) (Figure 4.6). Early methods, such as
electrophoretic mobility shift assay (EMSA) (Garner and Revzin, 1981) or footprinting (Hampshire et al.,
2007), typically focus on a limited number of target sequences for TFBS identification, resulting in small
datasets of bound sequences. In vitro and in vivo high-throughput protocols like PBM, SELEX, or ChIP
methods (Berger et al., 2006; Jolma et al., 2010; Collas and Dahl, 2008) have revolutionized the analysis
of target sites for specific factors, yielding extensive datasets of bound sequences. This abundance of
data offers an unprecedented opportunity to explore and characterize TF binding landscapes. Despite
their capability to recover TF-bound sequences and their relative or absolute binding affinities, these
experimental assays may mistakenly identify unbound sequences as binding sites. Moreover, they often
capture additional nucleotides within target sites, compromising data resolution and presenting challenges
for manual analysis. Computational frameworks, such as motif discovery algorithms, offer a means to
analyze extensive datasets produced by experimental assays, unveiling sequences potentially bound by
TFs and predicting their affinities (Pavesi et al., 2004a; Tompa et al., 2005; D’haeseleer, 2006; Das and Dai,
2007; Zambelli et al., 2013; Tognon et al., 2023). When provided with a sequence dataset, these algorithms
usually identify sets of short and similar sequence elements. Subsequently, these prioritized sequence
elements are employed to build a motif model, which summarizes the different configurations of binding
sites observed in the prioritized sequences. The motif model encodes recurring patterns and similarities,
summarizing the diversity of binding site configurations (Figure 4.6). Several methods and models
have been proposed for the discovery and representation of TFBS motifs, with Position Weight Matrices
(PWMs) (Stormo, 2000) emerging as the most prevalent models. PWMs, recognized for their simplicity,
effectiveness, and interpretability, encode the likelihood of encountering a specific nucleotide at each TFBS
position. Nevertheless, PWMs come with limitations, such as assuming independence among binding site
positions. Hence, alternative motif models have been proposed (Siddharthan, 2010; Gorkin et al., 2012;
He et al., 2021). The derived motif models find application in diverse downstream analyses, including
the exploration of potential binding site occurrences in regulatory genomic sequences, forecasting the
sets of genes regulated by the scrutinized TFs, or evaluating how genetic variants might impact their
binding landscape. In the subsequent sections, we provide an overview of the current landscape in motif
discovery, encompassing both traditional and contemporary experimental and computational approaches
for the discovery and representation of TFBS motifs within DNA sequences. Our exploration delves
into the innovations introduced by each algorithm and model, elucidating their respective merits and
limitations. We also examine how researchers have addressed these limitations over time. We also delve
into common downstream analyses utilizing motif models. Finally, we discuss current challenges and
potential avenues for future research in the realm of developing innovative motif discovery algorithms
and downstream analysis methods. In particular we focus on the future perspective of applicability in
the precision medicine domain, highlighting our contributions in this context.

4.2.1 Experimental methods to discover Transcription Factor Binding Sites
Over the past few decades, different techniques have been introduced to experimentally identify and eval-
uate TF binding sites along with their binding preferences (Jolma and Taipale, 2011) (Figure 4.6 and
Table 4.3). Initial investigations into TF binding primarily concentrated on gene promoters (Stormo,
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Figure 4.5. The human transcription Factors. (A) Graphical representation of a human transcription factor (CTCF)
binding its target sequence across the genome. (B) The human transcription factor domains and the interactions with other
elements in the within the cell environment (adapted from Lambert et al. (2018))

2000) and employed in vitro methods, including the Electro-Mobility Shift Assay (EMSA) (Garner and
Revzin, 1981) and DNase footprinting (Galas and Schmitz, 1978). EMSA leverages the properties of
non-denatured polyacrylamide gel to separate DNA sequences into bound and unbound fractions. DNase
footprinting integrates EMSA with DNase I cleavage, identifying protected regions (footprints) due to
the presence of the bound TF. Typically, these assays generate datasets comprising a few hundred bound
sequences, providing a constrained view of the TFs’ binding landscape. Additionally, technical limita-
tions in EMSA and DNase footprinting may introduce inaccuracies in the reported sequences and binding
preferences (Jolma and Taipale, 2011). The advent of Next-Generation Sequencing (NGS) technologies
has transformed the exploration of TFBS identification, prompting researchers to devise approaches that
harness the capabilities of massively parallel sequencing (Figure 4.6). These methods offer two ma-
jor advantages: (i) they operate without requiring prior knowledge of the binding site sequence (Jolma
and Taipale, 2011; Zia and Moses, 2012) and (ii) generate datasets comprising thousands of bound se-
quences, enabling more comprehensive characterization of TF binding preferences (Stormo and Zhao,
2010). Protein binding microarrays (PBMs) (Berger et al., 2006; Berger and Bulyk, 2009) recover short
TFBS sequences (∼10 base pairs) and assess TF binding preferences in vitro. In PBMs, a labeled TF is
applied to a glass slide containing numerous spots, each filled with short, immobilized DNA sequences.
Subsequently, the labeled TFs are incubated with fluorescent antibodies targeting the label, followed by
washing to eliminate weakly bound factors. The fluorescence and DNA sequence enrichment are then
utilized to quantify TF-DNA binding strength and capture the bound sequences. Generally, the recov-
ered sequences lack nucleotides flanking the investigated binding sites, yielding high-resolution datasets.
However, as the number of possible sequences grows with the target length, PBMs can assess only a
limited number of target sequences (Jolma and Taipale, 2011; Zia and Moses, 2012). PBM analysis is
typically restricted to binding sites ∼10–12 bp long. HT-SELEX, a widely employed in vitro technique,
seamlessly integrates SELEX with high-throughput sequencing (Jolma and Taipale, 2011; Jolma et al.,
2010). This method involves releasing a TF onto a pool of randomized DNA sequences, allowing the
factor to selectively pick its target sites. Subsequently, TF–DNA complexes are isolated from unbound
sequences through affinity capture, followed by polymerase chain reaction (PCR) amplification and se-
quencing. The resulting DNA library, enriched in binding sites for the studied TF, serves as the initial
pool for another SELEX run (Jolma and Taipale, 2011; Jolma et al., 2010). Notably, SELEX does not
necessitate prior knowledge of the target sites for the investigated factor (Jolma et al., 2013). As the
SELEX reaction is typically conducted in a liquid phase, free from physical constraints, the sequence
space covered by HT-SELEX often surpasses that of PBMs. Additionally, through the integration of
sequencing with DNA barcode indexing, HT-SELEX enables the parallel analysis of hundreds of TFs. It
yields datasets comprising thousands of high-resolution bound sequences, letting only a few nucleotides
surrounding the binding sites. However, since the starting DNA library consists of randomized sequences,
HT-SELEX cannot pinpoint the genomic binding locations of the investigated factor. The advent of chro-
matin immunoprecipitation (ChIP) technologies (Collas and Dahl, 2008) has revolutionized the study of
TFBS binding, allowing for the genome-wide identification of regions bound by TFs in vivo. In the ChIP
method, TF–DNA complexes undergo cross-linking using formaldehyde. The DNA is then fragmented
into ∼100–1000 bp long fragments and subsequently immunoprecipitated using antibodies specific to the
investigated TF. To recover the bound sequences, the cross-links are reversed. The resulting fragments
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Figure 4.6. Experimental and computational methods to discover TFBS and popular models to represent
binding site motifs. Protein binding microarray (PBM), HT-SELEX and ChIP-seq have become the most popular assays
to determine TF binding preferences and identify their target sites (TFBS) in recent years. Computational motif discovery
methods can be grouped into five classes, based on the algorithms employed to discover TFBS: enumerative, alignment-
based, probabilistic graphical model-based, SVM-based and DNN-based methods. TFBS sequences prioritized by motif
discovery algorithms are encoded in computational models representing the binding preferences of the investigated TFs.

can be amplified through either microarray hybridization (ChIP-on-Chip (Collas and Dahl, 2008; Pillai
and Chellappan, 2015)) or sequencing (ChIP-seq (Johnson et al., 2007; Mardis, 2007)). To locate binding
regions, the recovered DNA fragments are mapped onto the genome. After mapping ChIP-seq reads,
peak calling algorithms (Thomas et al., 2017; Guo et al., 2012; Zhang et al., 2008) are employed to pre-
dict the genomic binding locations of the investigated factor. These algorithms identify genomic regions
with higher enrichment in mapped DNA probes compared to a control experiment and designate those
regions as binding locations or peaks (Pepke et al., 2009). ChIP methods yield large datasets containing
thousands of genomic regions, ranging from a few hundred to thousands of nucleotides, allowing the
identification of potential TFBS for the studied factor. Despite ChIP technologies, especially ChIP-seq,
being considered the current ’golden standard,’ they have some limitations. ChIP can detect indirect
binding, identifying other TFBS not belonging to the investigated factor (Worsley Hunt and Wasserman,
2014). ChIP-seq peaks may be false positives, arising from poor antibody quality (Pickrell et al., 2011).
Finally, ChIP-seq returns low-resolution datasets, including several nucleotides flanking the target TFBS.
To address the latter issue, ChIP-exo (Rhee and Pugh, 2011) utilizes lambda exonuclease to trim ChIP
sequences, removing some of the nucleotides flanking the target sites. Alternatively, experimental assays
targeting open chromatin regions, such as ATAC-seq (Buenrostro et al., 2013) or DNase-seq (John et al.,
2011), can be employed to recover in vivo genomic locations likely to contain TFBS, as most TFs bind
their target sequences in open chromatin regions. ATAC-seq and DNase-seq are generally used when
the factors binding the target regions are not known. In summary, the current high-throughput in vivo
and in vitro assays generate datasets comprising thousands of sequences potentially containing various
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Experimental assay Description Output
De novo motif
discovery
capability

Type
Identification of
genomic binding
locations

Throughput

Competition EMSA

Bound DNA sequences are identified
by observing changes in the electrophoretic
migration of DNA sequences through
non-denatured polyacrylamide gel

Bound DNA sequences No. Used to validate
known binding sites in vitro No Low

DNase footprinting

Pools of DNA sequences are incubated with
the TF of interest; then, the DNA is degraded
using DNase I. The unbound fragments are
cut in all positions, while the bound DNA is
protected by the TF

Bound DNA sequences No. Used to validate
known binding sites in vitro No Low

Protein Binding
Microarrays

Arrays of ∼40 000 spots with short, immobilized
DNA sequences are incubated with a tagged TF,
and then washed to remove weakly bound
proteins. The bound sequences are identified
through fluorescence-based detection & Continuous
values describing fluorescence intensity on each array
spot

Continuous values
describing fluorescence
intensity on each array
spot

Yes. Limited to short
motifs in vitro No High

HT-SELEX

The TF is added to a pool of randomized DNA
fragments. The bound sequences are selected and
constitute the starting pool for the next experimental
round. The procedure is repeated for several rounds.
Sequencing is employed to recover the sequence of
the bound DNA fragments

DNA sequences Yes in vitro No High

ChIP-based
technologies

TF–DNA complexes are cross-linked with
formaldehyde and immunoprecipitated
employing TF-specific antibodies. The bound
sequences are then prioritized employing qPCR
microarrays (ChIP-on-Chip) or through sequencing
(ChIP-seq). ChIP-exo integrates exonuclease
treatment to enhance sequence resolution

Genomic binding
location coordinates

Yes. Limited by the
inability to distinguish
direct and indirect
binding

in vivo Yes Low

Table 4.3. In vivo and in vitro experimental assays to identify and validate transcription factor binding
sites. Traditional techniques like EMSA or DNase footprinting are employed for validating established TFBS, whereas
modern methods such as PBMs, HT-SELEX, and ChIP-based approaches are favored for uncovering new binding sites.
Among these, ChIP-based assays stand out as the sole methods capable of retrieving the genomic locations where TFs bind.
The ”throughput” designation denotes the number of samples each method can process simultaneously (high: hundreds of
samples; low: a few samples) (Adapted from Tognon et al. (2023)).

possible binding configurations of TFBS, thereby enabling more comprehensive characterizations of TFs
binding landscapes.

4.2.2 Computational methods and models to discover and represent Tran-
scription Factor Binding Sites

As described in the previous section, experimental assays recover large binding site sequence datasets.
However, the reported sequences often include unbound sequences and contain additional nucleotides
flanking the target sites. These limitations add a layer of complexity and make manual analyses and cu-
rations challenging and often unfeasible. Motif discovery algorithms address this challenges, by providing
a computational framework to analyse the datasets produced by experimental assays. Motif discovery al-
gorithms discover potential binding sites in the analyzed sequence datasets and construct computational
models representing TFBS. The problem of TFBS motif discovery can be formalized as follows. Given a
set of positive DNA sequences S, obtained from an experimental assay targeting a specific TF, and a set
of negative sequences B, the objective is to identify one or more recurrent, short, and similar subsequences
in S that maximize the discriminatory power between S and B (Tognon et al., 2023). These identified
subsequences are referred to as patterns or motifs and are likely to be bound by the investigated TF. The
negative set B may consist of randomly generated or carefully selected genomic sequences with similar
nucleotide content and length to those in S. The patterns identified are then employed to construct and
train a computational model M (motif model) that represents the discovered motif. These models can
then be employed to identify potential new binding sites and predict the strength of the TF–DNA binding
when presented with a new set of sequences. Motif discovery can be viewed as either a classification or
a regression problem, depending on the type of data used for training (Tognon et al., 2023). Datasets
from experimental assays, such as ChIP-seq or HT-SELEX, offer hundreds or thousands of sequences
containing binding sites, transforming motif discovery into a classification problem. In this scenario,
the objective is to differentiate between bound and unbound sites in the input sequences and train the
motif model with the identified binding sites. On the other hand, datasets from other experimental
technologies like PBMs provide relative binding strength for large sets of sequences of equal length. In
this case, rather than distinguishing between bound and unbound sequences, M learns the relative bind-
ing affinities associated with each target site in the input dataset, making motif discovery a regression
problem. In both settings, the ultimate goal is to derive a computational model M that characterizes
the recovered TFBS and can predict new binding events, along with their affinity, in sequences not used
during model training. Motif discovery algorithms can be classified into enumerative, alignment-based,
probabilistic graphical models, support vector machine (SVM)-based, and deep neural network-based
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methods (Figure 4.6 and Appendix B.2). Alternative approaches for identifying TFBS motifs in ge-
nomic sequences involve phylogenetic footprinting (McCue et al., 2001; Blanchette and Tompa, 2002).
The fundamental principle of phylogenetic footprinting posits that functional elements, such as TFBS, are
more likely to be conserved across evolutionarily related species, while non-functional elements are more
susceptible to mutations. Despite being one of the earliest techniques suggested for TFBS identification,
phylogenetic footprinting remains widely used for assessing TFBS conservation across different organisms
(Balazadeh et al., 2011; Xu et al., 2012; Katara et al., 2012). In a recent study (Glenwinkel et al., 2014),
the authors proposed a novel method that employs phylogenetic footprinting to discover TFBS. Before
delving into the algorithms, we provide an overview about the models used to describe TFBS motifs.
The prevalent models for representing TFBS include consensus sequences (Day and McMorris, 1992),
PWMs (Stormo, 2000, 2013), high-order PWMs (Siddharthan, 2010; Korhonen et al., 2017), SVM-based
(Gorkin et al., 2012), and deep neural network-based (He et al., 2021) models. Consensus sequences
succinctly characterize identified TFBS by indicating the most frequently observed nucleotide at each
motif position within a prioritized sequence set. While TFBS possess conserved positions intolerant
to mutations (Li and Ovcharenko, 2015), other TFBS locations admit alternative nucleotides. Degen-
erate consensus accommodates ambiguous motif positions using IUPAC symbols. However, consensus
sequences are unable to capture the contribution of each nucleotide at every motif position to TF–DNA
binding. PWMs address this limitation by offering an additive model that considers the contribution
of each motif position to the binding site. PWMs construct an ungapped alignment between candidate
motif sequences and tally the frequency of each nucleotide at each position. The statistical significance
of PWMs is often assessed using relative entropy (RE) (Stormo, 1998). RE measures the difference be-
tween computed nucleotide frequencies and those derived from aligning random sequences. PWMs are
visualized as logos (Schneider and Stephens, 1990), where the height of each nucleotide is proportional
to its RE. Despite their widespread success, PWMs still assume independence between motif positions.
To address this limitation, probabilistic graphical models model dependencies between motif nucleotides.
These models encompass high-order PWMs such as dinucleotide weight matrices (DWMs), Bayesian net-
works (BNs), Markov models (MMs), or hidden Markov models (HMMs) (Siddharthan, 2010; Korhonen
et al., 2017; Barash et al., 2003; Siebert and Söding, 2016). DWMs and high-order PWMs are commonly
visualized as logos with q-mers replacing single nucleotides, where q represents the dependency order
between adjacent nucleotides. Notably, probabilistic graphical models can accommodate variable spacing
between half-sites of two box motifs (Mathelier and Wasserman, 2013). However, the number of model
parameters and their complexity increase exponentially with q, often leading to models overfitting the
input dataset. SVM-based models use an SVM kernel to learn the binding site structure from the input
sequence dataset. TFBS is represented either by a list of k-mers with associated weights or support
vectors used to discriminate between bound and unbound sequences, depending on the employed ker-
nel (Boeva, 2016). In the former case, the weights reflect the k-mer contribution to the motif sequence.
SVM-based models can accommodate variable spacing between the half-sites of two box motifs, similar to
probabilistic graphical models. Importantly, k-mers indirectly capture k-th order dependencies between
neighboring nucleotides. However, simple SVM-based models are restricted to considering short (∼10
bp) and cannot effectively represent longer motifs. Gapped k-mers (Ghandi et al., 2014b) addressed this
limitation by handling longer TFBS and accounting for sequence degeneration in non-informative motif
positions. To visualize the discovered motifs, SVM-based models are often simplified to PWMs by align-
ing the informative k-mers. Deep neural network (DNN)-based models integrate the diverse, complex,
and hierarchical patterns governing TF–DNA binding events in input nucleotide sequences. Despite their
accuracy and power, a major limitation of DNN-based models is their ’black box’ nature (Park et al.,
2020). Many frameworks visualize the discovered motifs as PWMs, computed by aligning the sequences
activating the convolutional kernels of the DNN (Koo and Ploenzke, 2020). However, DNNs often learn
distributed representations where multiple neurons cooperate to describe single patterns. Consequently,
motifs learned by single kernels and the resulting PWMs tend to be redundant with each other. DeepLIFT
(Shrikumar et al., 2017) introduced a method to assign importance scores to the kernels. By comparing
the activation of each neuron to a reference value, DeepLIFT identifies which kernels contribute most
to defining the TFBS, thereby reducing motif redundancy. TF-MoDISco (Avsec et al., 2021a) extended
this idea by clustering and aggregating the discovered motifs, using the importance scores assigned to
the kernels. However, generating interpretable models without sacrificing some information learned by
the DNN remains an open challenge.
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Enumerative methods

Enumerative algorithms for motif discovery (Figure 4.6) assume that motifs are patterns overrepre-
sented in the input dataset S, compared to a background set of genomic sequences B . Enumerative
algorithms typically assume that the motif length |M | is known a priori. The fundamental idea involves
collecting the approximate occurrences of all potential 4k k-mers within the sequences of S and evalu-
ating the statistical significance by comparing the observed matches in S with those expected from a
background model. Subsequently, a PWM is derived by constructing an ungapped alignment from the
statistically significant k-mers. However, the exhaustive search for approximate occurrences of all k-mers
quickly becomes impractical, particularly for larger S. Early methods incorporated heuristics to address
this challenge, such as limiting the search to patterns occurring at least once in each sequence s ∈ S (Li
et al., 1999) or restricting mismatching locations to specific motif positions (Califano, 2000). Nonetheless,
allowing mismatches at any motif position is crucial. To address this, Weeder (Pavesi et al., 2001, 2004b)
and SMILE (Marsan and Sagot, 2000) proposed using suffix trees (STs) (Weiner, 1973) to efficiently
navigate the entire motif search space. Leveraging the indexing capabilities of STs enables the algorithms
to conduct approximate pattern matching without imposing restrictions on mismatching positions. This
approach ensures high accuracy in motif discovery while mitigating computational costs. For assessing
the statistical significance of motif candidates, SMILE and Weeder compare motif frequencies in S with
those in a set of randomly generated genomic sequences or the promoters of the same organism, respec-
tively (Appendix B.1.1). However, these strategies often prove computationally demanding and lack
scalability when applied to the extensive datasets produced by PBMs, HT-SELEX, or ChIP assays (Liu
et al., 2018). As a result, more efficient methods tailored for large datasets have been proposed. MDscan
(Liu et al., 2002) and Amadeus (Linhart et al., 2008) employ word enumeration to identify potential
motifs in sequence datasets (Appendix B.1.1). MDscan leverages the shape of ChIP peaks to iden-
tify non-redundant patterns that are abundant in the most enriched sequences, employing a third-order
Markov background model to gauge the statistical significance of motifs. Amadeus assesses all k-mers in
S and organizes similar patterns into lists, which are then grouped into motifs and statistically evaluated
using a hypergeometric test. However, word enumeration may still be computationally demanding. In
response to this, DREME (Bailey, 2011) introduced the use of regular expressions to approximate motif
frequencies in S and B . To evaluate motifs’ statistical significance, DREME employs Fisher’s exact test,
comparing the number of motif occurrences detected in S and B. Nevertheless, regular expressions can
be computationally expensive for large S, potentially leading to false positives or missing motifs. Trawler
(Ettwiller et al., 2007), HOMER (Heinz et al., 2010), and STREME (Bailey, 2021) reintroduced STs and
proposed different optimizations to enhance scalability for large datasets (Appendix B.1.1). Trawler
and HOMER improved the statistical significance assessment step using z-scores derived from the nor-
mal approximation to the binomial distribution and the hypergeometric distribution, respectively. In
contrast, STREME reduces the motif search space by initially identifying overrepresented seed words of
different lengths on the ST. Subsequently, STREME counts the number of approximate matches for the
most significant words on the ST. By identifying seeds of varying lengths, STREME can discover motifs
of different lengths in a single tree visit.

Alignment-based methods

Alignment-based motif discovery algorithms generate alignment profiles to characterize motifs’ binding
preferences (Figure 4.6), avoiding the exhaustive enumeration of k-mers. In this approach, an align-
ment is constructed by selecting motif candidate sequences from the input dataset S and evaluating
the resulting profile using various metrics, such as nucleotide conservation, information content, or the
statistical significance of the profile. The motif’s statistical significance is assessed by computing the
probability of obtaining the same alignment from a background dataset B or random sequences. Typi-
cally, alignment-based motif discovery algorithms assume that the motif length |M | is known in advance.
Formally, for alignment-based algorithms, motif discovery can be viewed as a combinatorial problem.
Given |M | = k, the goal is to identify the optimal alignment profile by combining k-mers from S, ac-
cording to a scoring criterion. The best alignments are then used to generate the corresponding PWMs.
Most alignment-based algorithms assume that each sequence in S contains either zero or one binding
site, resulting in (

∑
s∈S |s| − |M |+ 1)|S| possible profiles built combining k-mers in all possible ways.

However, enumerating all potential solutions is computationally impractical, even for small datasets. As
a solution, alignment-based algorithms employ heuristics such as greedy strategies (Hertz and Stormo,
1999), expectation–maximization (EM) (Bailey et al., 1994), stochastic methods (e.g., Gibbs sampling)
(Lawrence et al., 1993), or genetic algorithms (Lee et al., 2018) (Appendix B.1.2). CONSENSUS
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(Hertz and Stormo, 1999) introduced a greedy strategy to incrementally construct alignment profiles.
It initially solves the problem for two sequences and gradually expands by incorporating the remaining
sequences one by one. CONSENSUS stores the best partial alignments with the hope of identifying the
highest-scoring profiles. However, in cases where motifs lack conservation, CONSENSUS might discard
potentially highest-scoring solutions. The MEME algorithm (Bailey et al., 1994; Bailey and Elkan, 1995;
Bailey et al., 2006) adopts a distinct strategy based on Expectation-Maximization (EM). It iteratively
refines an initial profile by substituting some k-mers in the profile with others more likely to yield im-
proved solutions. MEME evaluates the fit of each k-mer in the dataset to the current profile, bypassing
the need for a background model. MEME identifies motifs occurring multiple times in each sequence and
calculates their statistical significance without relying on TFBS conservation. However, the algorithm
may prematurely converge to local maxima, and convergence heavily relies on the initial conditions of
the algorithm. In contrast to MEME, Gibbs sampling (Lawrence and Reilly, 1990) employs a stochastic
approach to add k-mers to the alignment rather than a deterministic one based on profile fit. Gibbs
sampling replaces k-mers in the profile with others selected with a probability proportional to their like-
lihood score (Appendix B.1.2). The stochastic nature of the Gibbs sampling algorithm reduces the
likelihood of converging to local maxima, but achieving reliable results may necessitate multiple runs.
Despite this, several methods employing Gibbs sampling and its extensions have been proposed (Neuwald
et al., 1995; Hughes et al., 2000; Workman and Stormo, 1999; Liu et al., 2000; Thijs et al., 2001; Frith
et al., 2004b, 2008) (Appendix B.1.2). Genetic algorithms offer an alternative approach to address the
limitations of EM and stochastic methods. GADEM (Li, 2009) combines EM local search with genetic
algorithms to refine profiles, preventing convergence to local maxima and mitigating the stochastic nature
of Gibbs sampling. However, due to their computational complexity, genetic algorithms pose challenges
when analyzing datasets containing thousands of sequences. Since the solution space for algorithms
using alignment profiles grows exponentially with the size of S, and even with the use of heuristics, an-
alyzing thousands of sequences becomes computationally impractical (Zambelli et al., 2013). Therefore,
researchers have directed their efforts toward developing algorithms specifically tailored to analyze the
large datasets produced by high-throughput assays (Appendix B.1.2). MEME-ChIP (Machanick and
Bailey, 2011) and STEME (Reid and Wernisch, 2011) enhance the MEME algorithm for ChIP datasets.
While MEME-ChIP focuses the analysis on a random subset of sequences, STEME accelerates EM steps
by indexing the sequences in a suffix tree. However, using random subsets of S may lead to missing critical
motif instances, and constructing a suffix tree from thousands of sequences may be computationally de-
manding. ChIPMunk (Kulakovskiy et al., 2010) introduces a greedy profile optimization, similar to EM,
designed to discover motifs in large ChIP-seq datasets, while accounting for ChIP peak shapes. XXmotif
(Hartmann et al., 2013) and ProSampler (Li et al., 2019b) propose methods that combine enumerative
motif discovery with iterative and stochastic profile refinement, respectively.

Probabilistic graphical model-based methods

Including dependencies between nucleotides within TFBS has been a topic of discussion within the com-
munity (Tomovic and Oakeley, 2007; Morris et al., 2011; Zhao and Stormo, 2011). Some studies have
demonstrated the existence of dependencies between both neighboring and non-neighboring nucleotides
in TFBS (Slattery et al., 2014; Rohs et al., 2010). Enumerative and alignment-based algorithms typi-
cally represent motifs as PWMs, which do not inherently incorporate dependencies between binding site
positions. Although PWMs can be extended to account for di- or trinucleotide frequencies (high-order
PWMs), such as DWMs (Siddharthan, 2010), methods like Dimont (Grau et al., 2013) and diChIPMunk
(Kulakovskiy et al., 2013a) have proposed extensions to alignment-based approaches, representing motifs
as DWMs to capture dependencies, albeit primarily focusing on neighboring nucleotides (Appendix
B.1.3). Probabilistic graphical models (Figure 4.6), including Bayesian Networks (BNs), Markov Mod-
els (MMs), or Hidden Markov Models (HMMs), offer robust frameworks for capturing dependencies
between nucleotides within TFBS. A study (Barash et al., 2003) suggested using BNs trained through
Expectation-Maximization (EM) to model TFBS, capturing dependencies between both neighboring and
non-neighboring positions. However, this method assumes a consistent order of dependence throughout
the entire motif. Another approach, Variable Order Bayesian Networks (VOBNs) (Ben-Gal et al., 2005),
utilizes BNs considering variable orders of dependencies between positions. Nonetheless, training BNs
can be computationally challenging when dealing with thousands of sequences, and these models may
be prone to overfitting even when trained on hundreds of sequences. MMs and HMMs offer more effi-
cient and scalable frameworks compared to BNs for incorporating dependencies between motif positions.
Consequently, recent algorithmic developments have leaned towards models like TFFMs (Mathelier and
Wasserman, 2013) and Discrover (Maaskola and Rajewsky, 2014), proposing HMM-based models learning
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dinucleotide dependencies between neighboring motif positions in extensive sequence datasets. TFFMs,
for instance, also learn characteristics of the sequences flanking the TFBS. MMs have been extended
to capture various orders of dependencies between neighboring nucleotides, as demonstrated in a study
(Eggeling et al., 2014) focusing on discovering CTCF (Bell et al., 1999) motifs using variable-order MMs.
Similarly, Slim (Keilwagen and Grau, 2015) has extended MMs to capture dependencies between non-
neighboring nucleotides. However, MMs and HMMs typically only capture low-order dependencies. In
contrast, BaMMotif (Siebert and Söding, 2016; Ge et al., 2021) has proposed a motif discovery algorithm
using a Bayesian approach to efficiently train Markov models with dependencies up to the fifth order,
even on large datasets comprising thousands of sequences.

SVM-based methods

Support Vector Machines (SVMs) (Boser et al., 1992) have proven successful in various computational
biology problems, including the discovery of transcription factor binding site (TFBS) motifs (Figure
4.6). This is achieved by decomposing bound sequences (foreground dataset S) and unbound sequences
(background dataset B) into k-mers, using their frequencies as features to train a sequence similarity
kernel (Ben-Hur et al., 2008). Typically, each k-mer is assigned a weight proportional to its contribution
to defining positive or negative training sets or its likelihood of being a motif candidate. While earlier
methods were designed for protein sequence homology (Leslie et al., 2001; Eskin et al., 2002; Kuang
et al., 2005), recent SVM-based algorithms are designed specifically for TFBS motif discovery. SVMs
demonstrate efficiency in analyzing datasets comprising thousands of sequences. Kmer-SVM (Lee et al.,
2011; Fletez-Brant et al., 2013) proposed a method for discovering TFBS motifs in sequence datasets
employing the spectrum kernel. By counting exact matches for all contiguous k-mers in S and B, Kmer-
SVM constructs the k-mers feature space (Appendix B.1.4). The introduction of mismatch (Kuang
et al., 2005) and wildcard (Leslie and Kuang, 2003) kernels allowed counting k-mer frequencies while
allowing a fixed number of mismatching positions for each k-mer. This concept was later expanded
to enable less restrictive k-mer frequency estimation, providing flexibility in motif structure without
compromising scalability on large datasets. Agius and colleagues (Agius et al., 2010) further extended
this concept by developing the di-mismatch kernel, a first-order Markov mismatch kernel based on the
dinucleotide alphabet. This kernel addresses sequence variability and considers dependencies between
neighboring nucleotides (Appendix B.1.4). To ensure scalability on large datasets, a small k (k = 4) is
employed, which enables the discovery of short motifs. However, TFBS lengths typically range between 6
to 20 base pairs, making it challenging to fully characterize longer motifs with short k-mers. Additionally,
increasing k often leads to sparse feature vectors overfitting to the training dataset. Gapped k-mers
(Ghandi et al., 2014b) proposed representing longer motifs as k-mers with gaps in non-informative or
degenerate TFBS positions, accounting for motif variability in sequence and length. Gkm-SVM (Ghandi
et al., 2014a, 2016) extends Kmer-SVM to train SVM kernels employing gapped k-mers as features.
The algorithm considers larger k, preventing model overfitting and reducing dependency on parameter
choice. LS-GKM (Lee, 2016) optimizes the algorithm for scalable SVM training with gapped-k-mers on
large-scale sequence datasets and provides various kernels for SVM training (Appendix B.1.4).

Deep Neural Networks-based methods

DNNs have gained significant popularity in computational biology (Talukder et al., 2021; Zeng et al.,
2020b; Singh et al., 2016, 2019; Zeng et al., 2018; Kelley et al., 2018; Li et al., 2019a; Yin et al., 2019;
Manzanarez-Ozuna et al., 2018) owing to their ability to discern complex patterns (Park and Kellis,
2015) from large omics datasets (Zhang et al., 2019). Originally designed for image classification (LeCun
et al., 2015; Sainath et al., 2013; Vu et al., 2017), Convolutional Neural Networks (CNNs) (LeCun
et al., 2015) have proven successful in analyzing in vivo TF–DNA interactions (Alipanahi et al., 2015;
Zhou and Troyanskaya, 2015; Kelley et al., 2016; Zeng et al., 2016a) (Figure 4.6). By applying non-
linear transformations to input data, CNNs learn and represent complex patterns in a high-dimensional
space (Bengio et al., 2013), simplifying classification tasks and enabling accurate prediction of TFBS in
genomic sequences. Genomic sequences are often represented as 1D or 2D images with four associated
channels (A, C, G, T) (Zeng et al., 2016a), transforming TFBS classification into a two-class image
classification problem. Typically, CNN architectures for motif discovery and classification consist of sets
of four layers: the convolutional layer, max-pooling layer, fully connected NN layer, and the output layer
(Zeng et al., 2016a) (Appendix B.1.5). DeepBind (Alipanahi et al., 2015) and Basset (Kelley et al.,
2016) introduced two CNN architectures for motif discovery across different datasets, including ChIP-seq,
HT-SELEX, PBM, and DNase-seq (Appendix B.1.5). The motifs discovered by DeepBind and Basset
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are visualized as PWMs, computed by aligning and grouping sequences that activate the convolutional
layer. While DeepBind and Basset have shown promising results, their performance may be constrained
by the quality of training data and the significant computational resources and time required for model
training. These challenges have spurred the development of novel methods like BPNet (Avsec et al.,
2021a), which address some of these issues by incorporating additional features into the model and using
more efficient training processes. BPNet proposed a dilated CNN architecture that enables the model
to learn and integrate diverse complex features without sacrificing the spatial and base resolution of the
input data (Appendix B.1.5). However, TF–DNA interactions involve not only direct binding but also
interactions between multiple binding subregions (long-term interactions) and nucleotides with high-order
structures of TFs (short-term interactions). Long Short-Term Memory networks (LSTMs) (Hochreiter
and Schmidhuber, 1997) and Bidirectional LSTMs (BLSTMs) efficiently capture long-term and short-
term dependencies in sequential signals. Given that genomic sequences can be viewed as sequential
signals with long-term and short-term dependencies, LSTMs and BLSTMs are well-suited for modeling
TF–DNA interactions (Appendix B.1.5). DeeperBind (Hassanzadeh and Wang, 2016) introduced a
hybrid CNN–LSTM architecture by removing the pooling layer to maintain positional information of
potential motif instances. Similarly, DanQ (Quang and Xie, 2016) proposed a hybrid CNN–BLSTM
architecture to capture the positional dynamics of genomic sequences for TFBS motif discovery. The
BLSTM replaces the fully connected NN. Factornet (Quang and Xie, 2019) extended DanQ’s framework
by incorporating additional features and employing a Siamese BLSTM architecture to enhance model
training.

4.2.3 Transcription Factor Databases
With the recent advancements in experimental technologies, an extensive amount of transcription factor-
related data has been generated and has been stored in different databases (Table 4.4). The ENCODE
project (Consortium et al., 2012) stands out as a valuable resource, offering a multitude of data on func-
tional elements within the human genome, gathered across different tissues and cell types. ENCODE
stores several TF-related genomic data encompassing ChIP-seq data targeting various TFs and DNase-
seq information. Similarly, Cistrome (Zheng et al., 2019) and GTRD (Kolmykov et al., 2021) contribute
to the landscape by providing TF-related genomic data from different organisms and spanning various
species, cell types, and tissues. GTRD, in particular, provides extensive collections of curated ChIP-
seq, ChIP-exo, and ChIP-nexus datasets. HOCOMOCO (Kulakovskiy et al., 2013b, 2018) and JASPAR
(Sandelin et al., 2004; Fornes et al., 2020) provide large collections of curated and experimentally derived
TFBS motifs. These databases store Position Weight Matrices (PWMs) and Dinucleotide Weight Matri-
ces (DWMs) obtained through the analysis of ChIP-seq and SELEX datasets. Notably, HOCOMOCO
models integrate sequence datasets with evolutionary conservation and DNA shape. Similarly, Cis-BP
(Weirauch et al., 2014) incorporates experimentally derived and computationally predicted PWMs from
various sources, including published literature, other databases, and experimental datasets. TRANSFAC
(Wingender et al., 1996, 2000) emerges as a comprehensive repository, collecting experimentally vali-
dated and manually curated PWMs for different TFs from diverse eukaryotic organisms. It includes data
on TF-associated proteins, DNA binding domains, and regulatory elements. FactorBook (Pratt et al.,
2022) provides computationally predicted PWMs generated by analyzing ENCODE data, coupled with
TF expression data across tissues and cell types. Unibind (Puig et al., 2015) collects experimentally
validated and curated PWMs from different organisms. It provides insights on the structural properties
and conformation of TF–DNA complexes, along with their genomic binding locations across various cell
types and tissues. UniPROBE (Newburger and Bulyk, 2009) stores curated PWMs for several eukaryotic
TFs, generated by analyzing Protein Binding Microarray datasets. HTRIdb (Bovolenta et al., 2012)
focuses on data pertaining to TF–target gene interactions in humans. This information, derived from
published literature and other databases, spans different cell types, experimental methods, and disease
states. The database also provides functional annotations for the target genes. Similarly, DoRothEA
(Garcia-Alonso et al., 2019) offers a comprehensive resource of regulatory TF–target interactions by in-
tegrating diverse datasets and assigning confidence scores based on experimental evidence. DoRothEA
includes TF–target interactions from literature-curated databases, top interactions identified from ChIP-
seq experiments, motif scans, and regulons inferred from both normal tissues and cancer types. The
normal tissue collection comprises 1 million interactions between 1,402 TFs and 26,984 targets, while
the pancancer collection includes 636,753 interactions between 1,412 TFs and 26,939 targets. DoRothEA
assigns confidence scores to the inferred TF–target interactions, with the most reliable interactions being
supported by multiple sources. TFcancer (Huang et al., 2021b) collects TF–gene interactions across 33
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Type Name Reference Data type Model Organisms TFs

Sequence database ENCODE Consortium et al. (2012)
ChIP-seq
DNase-seq
ATAC-seq

C. elegans
D. melanogaster
H. sapiens
M. musculus

>1,500

Cistrome Zheng et al. (2019) ChIP-seq
DNase-seq

H. sapiens
M. musculus 1,773 (ChIP-seq)

GTRD Kolmykov et al. (2021)

ChIP-seq
ChIP-exo
ChIP-nexus
DNase-seq

A. thaliana
C. elegans
D. rerio
D. melanogaster
H. sapiens
M. musculus
R. norvegicus
S. cerevisiae
S. pombe

3,988 (ChIP-seq)
1,708 (ChIP-exo + ChIP-nexus)

Motif models database HOCOMOCO Kulakovskiy et al. (2013b, 2018) PWMs
DWMs

H.sapiens
M. musculus 680 (human)

453 (mouse)

JASPAR Sandelin et al. (2004); Fornes et al. (2020) PWMs
DWMs

53 species >1,500

Cis-BP Weirauch et al. (2014) PWMs

A. thaliana
C. elegans
D. rerio
D. melanogaster
H. sapiens
M. musculus
N. crassa
R. norvegicus
S. cerevisiae
X. tropicalis

>5,000

TRANSFAC Wingender et al. (1996, 2000) PWMs >300 species >10,000

FactorBook Pratt et al. (2022) PWMs
H. sapiens
M. musculus 881 (human)

49 (mouse)

UniPROBE Newburger and Bulyk (2009) PWMs

C. elegans
C. parvum
H. sapiens
M. musculus
P. falciparum
S. cerevisiae
V. harveyi

726

Unibind Puig et al. (2015) PWMs

A. thaliana
C. elegans
D. rerio
D. melanogaster
H. sapiens
M. musculus
R. norvegicus
S. cerevisiae
S. pombe

841

TF-target gene interaction
database HTRIdb Bovolenta et al. (2012) TF-gene interaction

networks H. sapiens 284

DoRothEA Garcia-Alonso et al. (2019) TF-gene interaction
networks

H.sapiens
M. musculus 1,402

TF-disease association
database TFcancer Huang et al. (2021b) TF-cancer associations H. sapiens 364

Table 4.4. Transcription Factor Databases. The table provides a condensed overview of the TF-related databases
discussed in Section 4.2.3. It outlines key aspects for each database, including its primary purpose (Type), the variety
of available data types (Data type), the model organisms covered by the database (Model organisms), and the total
number of included TFs (TFs).

cancer types. The database offers tools to identify TF expression alterations and elucidate their roles in
biological processes and signaling pathways associated with cancer.

4.2.4 Downstream analysis using Transcription Factor Binding Site motifs
The discovered motifs serve various purposes in downstream analyses, including motif comparison, motif
scanning, motif enrichment analysis, and evaluating the effects of genetic variants on TF–DNA binding
affinity (Tognon et al., 2023). Motif comparison measures the similarity between the discovered motifs
and annotated TFBS, facilitating the connection of known TFs to newly identified motifs (Gupta et al.,
2007). Tools such as Tomtom (Gupta et al., 2007), STAMP (Mahony and Benos, 2007), MACRO-
APE (Vorontsov et al., 2013), or MoSBAT (Lambert et al., 2016) are commonly used for this task,
searching annotated databases for motifs matching the input consensus sequence or inferred motif matrix.
Additionally, motif comparison tools have been developed to interpret and annotate potential motifs
encoded in the convolutional filters of CNN models. Motif scanning involves searching sets of genomic
regions for potential occurrences of the input motif, aiming to recover potential binding locations for the
investigated factor. Motif scanning algorithms assign scores to sequences using the input model (e.g., a
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PWM). A challenge in motif scanning is the choice of a reliable cutoff for discriminating between true
and false binding events (Boeva, 2016). Several motif scanning tools are available, such as (Korhonen
et al., 2009), FIMO (Grant et al., 2011), PWMscan (Ambrosini et al., 2018), and the HOMER suite
(Heinz et al., 2010). Recently, MOODS has been extended to search instances of motifs modeled as
high-order PWMs (Korhonen et al., 2017). However, motif scanning algorithms generally do not consider
individual- and population-specific genetic variants and haplotypes while searching for potential motif
occurrences. This may result in several potential TFBS missed and missing information which could
facilitate the interpretation of genetic variants impact within the cell. Motif enrichment analysis (MEA)
investigates over- and underrepresented motifs in gene regulatory regions, linking investigated TFs to their
functions within the cell environment. MEA involves scanning regulatory regions for motif occurrences
and statistically testing motif enrichment. There are many MEA tools available, such as Clover (Frith
et al., 2004a), Pscan (Zambelli et al., 2009), AME (McLeay and Bailey, 2010), or oPOSSUM-3 (Kwon
et al., 2012) are commonly used for MEA. The HOMER suite provides MEA functionality. Haystack
(Pinello et al., 2018) proposed an integrated MEA strategy, exploring motif enrichment in cell type-
specific regions and incorporating gene expression data to assess the transcriptional activity of studied
factors and their impact on regulated genes. ChEA (Lachmann et al., 2010; Kou et al., 2013; Keenan
et al., 2019) is a web-based MEA tool that provides high-fidelity predictions of TF-gene interactions.
To enhance prediction quality, ChEA incorporates benchmarked TF-target gene set libraries derived
from ChIP-seq experiments, RNA-seq co-expression data, TF co-occurrence, and single TF perturbation
studies.

4.2.5 Evaluating genetic variants impact on Transcription Factor Binding
Sites

Genetic variants have been demonstrated to influence TF–DNA binding events (De Gobbi et al., 2006;
Wienert et al., 2015; Weinhold et al., 2014), with implications for common diseases through their asso-
ciation with regulatory elements (Maurano et al., 2012). These variants have the potential to alter the
transcriptional state of the cell (Deplancke et al., 2016), leading to an increasing interest in developing
tools to predict the impact of variants on TFBS (Table 4.5). TRAP (Thomas-Chollier et al., 2011) and
CATO (Maurano et al., 2015) employ PWMs to predict variant impact on TFBS by comparing binding
affinity scores between reference and alternative sequences. TRAP repeats this process across a collection
of TFBS, reporting the motif with the most significant score change. CATO, on the other hand, generates
a ranked list of disrupted motifs using a logistic model trained with information content differences, TF
occupancy, and phylogenetic conservation between reference and alternative sequences. However, these
methods face scalability issues when analyzing thousands of SNPs. atSNP (Zuo et al., 2015) introduces a
scalable strategy to assess the impact of thousands of SNPs on TFBS by computing statistical significance
for the affinity score differences between reference and alternative sequences using PWMs. DeltaSVM
(Lee et al., 2015) and GkmExplain (Shrikumar et al., 2019) use SVM-based motif models to evaluate
variant impact. DeltaSVM scans DNA positions overlapping each SNP, computing the difference between
reference and alternative sequence scores using a pretrained list of k-mers with associated weights. How-
ever, it assesses the impact of individual variants without accounting for relationships between variants.
GkmExplain overcomes this limitation by considering the impact of variants not at individual positions
but on sequence features, such as entire k-mers. DeepBind (Alipanahi et al., 2015) and DeepSEA (Zhou
and Troyanskaya, 2015) employ DNN-based models to predict variant impact on TFBS. DeepBind uses
mutation maps to assess the effect of variants on binding affinities, considering the importance of each
motif position within the model. DeepSEA uses in silico saturated mutagenesis to predict the impact
of individual variants on the whole sequence context and features like TFBS. Similarly, Basset (Kelley
et al., 2016) uses in silico saturated mutagenesis by learning critical nucleotides governing chromatin
accessibility, assigning importance scores to each position in the input sequences and attempting to map
the variants’ impact to the TFBS. Basenji (Kelley et al., 2018) extends Basset’s workflow by providing
functional annotations to SNPs affecting sequence features and TFBS, and returning potential changes
in gene expression patterns. However, Basenji is limited to predicting SNP effects on distal regulatory
elements within a 20 kb range. Enformer (Avsec et al., 2021b) overcomes this limitation by employing
transformer architectures to extend the range up to 200 kb, providing a more comprehensive and accurate
assessment of the functional effects of variants on sequence elements and gene expression.
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Motif model Software Reference Original input
data type Output Year

PWM TRAP Thomas-Chollier et al. (2011) ChIP-seq
Allele-specific
score 2011

CATO score Maurano et al. (2015) DHS sites

Ranked list of
TFBS affected
by SNPs 2015

atSNP Zuo et al. (2015)
Sequences
overlapping
input SNPs

Allele-specific
score 2015

SVM-based DeltaSVM Lee et al. (2015) DNase-seq
Allele-specific
score 2015

GkmExplain Shrikumar et al. (2019) DNase-seq
SNP impact on
whole TFBS 2019

DNN-based DeepBind Alipanahi et al. (2015) ChIP-seq
HT-SELEX

Single SNP
impact 2015

DeepSEA Zhou and Troyanskaya (2015) ATAC-seq
DNase-seq

Single SNP
impact 2015

Basset Kelley et al. (2016) ChIP-seq
DNase-seq

Single SNP
impact 2016

Basenji Kelley et al. (2018) ChIP-seq
DNase-seq

Single SNP
impact 2018

Enformer Avsec et al. (2021b) DNA sequences
SNP functional
impact 2021

Table 4.5. Software to assess genetic variants impact on Transcription Factor Binding Sites The table provides
a comprehensive overview of tools for predicting the impact of variants on TFBS. For each tool, the table presents details
such as the utilized TFBS model (Motif model), the original data type used for testing in their original publication
(Original input data type), the output type (Output), the year of publication (Year), and the corresponding reference
(Reference).

4.2.6 Limitations on current Transcription Factor Binding Site Motif analysis

The exploration of TFBS motifs in DNA sequences has been an extensively studied domain over the
past few decades. In this section we delved into diverse algorithms and computational models designed
to discover and represent motifs. Moreover, we described the main downstream analysis using TFBS
motifs. However, several unresolved issues and potential avenues for further research persist in this
field. The debate around the selection between simple and complex motif discovery algorithms is still
ongoing (Tognon et al., 2023). Enumerative and alignment-based methods, despite their simplicity, have
exhibited comparable performance in terms of scalability and accuracy when juxtaposed with complex
methods (Weirauch et al., 2013). Notably, these methods offer user-friendly interfaces and typically they
do not require computational expertise. Additionally, they can be applied to any sequence dataset with-
out necessitating additional information beyond the sequences themselves. Well-established tools like
MEME (Bailey et al., 1994; Bailey and Elkan, 1995; Bailey et al., 2006), HOMER (Heinz et al., 2010),
and the newer STREME (Bailey, 2021) continue to be popular due to their user community support
and continued maintenance. In contrast, probabilistic graphical model-based algorithms often struggle
with scalability issues, particularly when analyzing thousands of sequences due to the intricate nature of
model training involving dependencies. SVM-based methods have demonstrated scalability and accuracy
in discovering TFBS motifs across different sequence dataset and predicting PBM binding affinities. One
of the pivotal advantages of SVM-based algorithms lies in their ability to learn features across the entire
sequence context. However, the performance of SVM-based methods is heavily influenced by the quality
of the background dataset, which needs careful design based on various sequence characteristics, such as
repeats and GC content. DNN-based motif discovery algorithms showcased high accuracy compared to
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other methods, albeit with increased complexity requiring expertise and fine parameter tuning. While
scalable in terms of dataset size, DNN-based methods often demand substantial computational resources
and dedicated hardware components (e.g., GPUs) for effective model training. Despite these challenges,
DNN-based methods are gaining popularity within the community. The debate revolving around the best
method is still open. While several papers benchmarked motif discovery algorithms on diverse datasets,
comprehensive benchmarks considering a wide range of datasets and methods from different algorithm
classes are imperative for robust evaluations (Tognon et al., 2023). The necessity and efficacy of motif
models that capture dependencies between positions within a TFBS have been extensively discussed over
the past few decades (Weirauch et al., 2013; Bulyk et al., 2002; Benos et al., 2002; Siggers and Gordân,
2014). While probabilistic models are expected to outperform simpler models, numerous studies showed
that simpler models like PWMs perform comparably well on both in vitro PBM and in vivo ChIP-seq
data for the majority of transcription factors (Zhao and Stormo, 2011; Weirauch et al., 2013). Weirauch
et al. (2013) suggested that these results could be attributed to the observed degeneracy in eukaryotic
TFBS. Many TFs exhibit binding to sequences with variations relative to the motif consensus, albeit
with lower affinity. Since PWMs can accommodate variations in the motif consensus, they possess the
capability to capture a broader spectrum of target sites, encompassing even those with weaker binding.
However, this advantage comes at the cost of heightened susceptibility to noise, potentially leading to
the recovery of several false positives. Probabilistic graphical models, by encoding dependencies between
TFBS positions, are expected to offer more robust models. However, due to the multiple parameters
learned by these models, there is a risk of overfitting the training data if not appropriately trained.
SVM-based motif models have demonstrated generally superior performance compared to PWMs when
predicting potential TFBS (Ghandi et al., 2014a). Nonetheless, these models are often reduced to PWMs
for visualization and interpretation, leading to a loss of the learned information. Recent studies have
observed that DNN-based models better capture the sequence specificities underlying TF–DNA interac-
tions, yielding improved predictions compared to other models (Trabelsi et al., 2019). However, for the
purpose of visualization and interpretation of the discovered motifs, DNN models are typically reduced
to PWMs computed using the sequences activating the convolutional kernels. Consequently, while com-
plex motif models provide powerful frameworks, they sacrifice interpretability, whereas simpler models
are more susceptible to noise but remain interpretable. The trade-off between model accuracy and in-
terpretability remains an open challenge in the context of motif analysis. The choice of TFBS model
influences motif downstream analyses, in particular the evaluation of genetic variants impact. As outlined
in Section 4.2.5, several methods using diverse models have been proposed to evaluate genetic variants
impact on transcription factor binding sites. Mutations affecting TFBSs can persist within population-
specific haplotypes (Kasowski et al., 2010), potentially generating novel TFBS specific to a population
of individuals. Similarly, genetic variation across cell types can generate cell type-specific binding sites.
Current tools partially address these challenges, by evaluating the impact of individual genetic variants
on TFs’ binding landscape. This poses important limitation on the usage of these methods in precision
medicine contexts. GRAFIMO (Tognon et al., 2021) addresses these challenges by introducing a variant-
and haplotype-aware motif scanning tool to search potential occurrences of known TF motifs on genome
graphs (Paten et al., 2017). By searching motifs (given as PWMs) on genome graphs rather than on
linear reference genomes, GRAFIMO finds potential binding site occurrences accounting for the effect of
genetic variants from populations of even thousands of individuals. On the other hand, tools predicting
genetic variants impact often ignore other fundamental information, such as TFs’ expression level or
chromatin accessibility. MotifRaptor (Yao et al., 2021) interpolates different omics data, such as cell
type-specific transcriptomic data and chromatin accessibility, while predicting genetic variants impact on
TFBSs. MotifRaptor is designed to annotate non-coding variants predicting their potential functional
impact. The next two chapters describe these novel approaches.
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GRAFIMO: Variant- and
Haplotype-aware Transcription
Factor Binding sites identification on
Genome Graphs

Over the past decade, significant strides have been made in the development of methods for searching
known TFBS on linear reference genomes (Tognon et al., 2023; Boeva, 2016). Notable examples include
FIMO (Grant et al., 2011) and MOODS (Korhonen et al., 2009). They scan a set of genomic sequences
searching for potential occurrences of known TFBS represented as PWMs. Other tools, such as is-
rSNP, TRAP, and atSNP (Macintyre et al., 2010; Thomas-Chollier et al., 2011; Zuo et al., 2015), were
introduced to accommodate SNPs and short indels in the sequences to scan. However, these tools fall
short in considering individual haplotypes and providing summaries of the frequency of these events in
a population, limiting their applicability to precision medicine contexts. To address these challenges,
we developed GRAFIMO (GRAph-based Finding of Infividual Motif Occurrences) (Tognon et al., 2021),
a novel tool performing variant- and haplotype aware identification of known TFBS in genome graphs.
By leveraging genome graphs, GRAFIMO accounts for population-wide and individual-specific genetic
variation while searching TFBSs. We demonstrate the utility of GRAFIMO by searching TFBS on a
genome graph encoding the haplotypes from all individuals sequenced by the 1000 Genomes Project
(1KGP) (Siva, 2008; Zheng-Bradley et al., 2017). This innovative approach provides a more nuanced
understanding of TF-DNA interaction dynamics in the context of population-wide genetic diversity.
GRAFIMO overcomes the limitations of competitor motif scanning tools, providing a computational
framework to predict the impact of genetic variation on TFs’ binding landscape in precision medicine
contexts.

5.1 Design and implementation
GRAFIMO is a command-line tool enabling an efficient variant- and haplotype-aware search of known
TFBS, within a population of individuals encoded in a genome graph. GRAFIMO provides two main
functionalities: genome graph construction from user data, and the search of one or more TFBS motifs
on input precomputed graphs. Briefly, given a TF motif PWM and a set of genomic regions, GRAFIMO
leverages genome graphs to efficiently scan and report all the TFBS candidates and their frequencies in
a single pass. Along with the motif candidates, GRAFIMO reports the predicted changes in binding
affinity mediated by the genetic variants embedded in the graph. GRAFIMO is written in Python3 and
Cython and it has been designed to interface with vg toolkit to handle genome graphs.

5.1.1 Genome variation graph construction
GRAFIMO offers an intuitive command-line interface for constructing genome graphs from user data,
when needed. Given a reference genome (FASTA format) and a set of genomic variants (VCF format),
GRAFIMO seamlessly interfaces with the vg toolkit to build the genome graphs (VG format) and its
indexes (XG (Garrison et al., 2018) and GBWT (Sirén et al., 2020; Novak et al., 2017) formats). The
two indexes are required to perform efficient graph traversal and track the haplotypes embedded in the
data structure. To minimize the footprint of the genome graph files, GRAFIMO constructs a graph per
chromosome. Moreover, this graph construction design speeds-up the TFBS motif search by allowing to
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Figure 5.7. GRAFIMO TF motif search workflow. (A) The motif PWM (in MEME or JASPAR format) is processed
and its values are scaled in the range [0, 1000]. The resulting score matrix is used to assign a score and a corresponding
P-value to each motif occurrence candidate. In the final report GRAFIMO returns the corresponding log-odds scores, which
are retrieved from the scaled values. (B) GRAFIMO slides a window of length k, where k is the motif width, along the
haplotypes (paths in the graph) of the genomes used to build the VG. The resulting sequences are scored using the motif
scoring matrix and are statistically tested assigning them the corresponding P-value and q-value. Moreover, for each entry
is assigned a flag value stating if it belongs to the reference genome sequence (”ref”) or contains genomic variants (”non.ref”)
and is computed the number of haplotypes in which the sequence appears.

scan different chromosomes in parallel. Alternatively, for systems with limited RAM, the search can be
conducted one chromosome at a time, providing flexibility in resource usage.

5.1.2 Transcription factor binding site motif search

The TFBS motif search in GRAFIMO requires a set of genomes embedded in a genome graph (XG format),
a database of known TF motif PWMs (MEME or JASPAR formats), and a set of genomic regions (BED
format). GRAFIMO reports all the potential TFBS motif occurrences found in the input regions and their
associated statistical significance (Fig.5.7). To identify potential TFBS, GRAFIMO employs a sliding
window approach with a window length of k, where k is the query motif width. The window traverses the
paths in the graphs that correspond to the genome sequences encoded in it (Fig.5.7(B)). This process
is accomplished by an extension to the vg find functionality, using the graph’s GBWT index to explore
the k-mer space, while considering the embedded haplotypes (Sirén et al., 2020). By default, GRAFIMO
focuses its search on paths corresponding to observed haplotypes, but it also provides an option to consider
all possible recombinants, even if absent in any embedded sample. The significance (log-likelihood) of
each TFBS candidate is determined by evaluating the nucleotide preferences encoded in the motif PWM,
akin to FIMO (Grant et al., 2011). Specifically, the PWM undergoes processing into a Position Specific
Scoring Matrix (PSSM) (Fig.5.7(A)). The resulting PSSM log-likelihood values are scaled within the
range [0, 1000]. The scaling allows efficient statistical significance (P -value) computations via dynamic
programming (Grant et al., 2011). Subsequently P -values undergo conversion to q-values through the
Benjamini-Hochberg procedure to correct for multiple hypothesis testing. In this procedure, all P -values
correspond to all the k-mer-paths extracted within the scanned graph’s regions. Additionally, GRAFIMO
provides insights into the number of haplotypes in which a significant motif is observed, along with its
presence in the reference genome and/or alternative genomes (Fig.5.7(B)). The subsequent sections
provide an in-depth exploration of the algorithms embedded within GRAFIMO.
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Processing of Position Weight Matrix to Position Specific Scoring Matrix

GRAFIMO utilizes Position Specific Scoring Matrices (PSSMs) to assign scores to potential motif oc-
currences. These PSSMs are generated through the processing of input PWMs provided in JASPAR
(Appendix A.8) or MEME (Appendix A.7) format. Let us assume the input motif PWM M is pro-
vided in JASPAR format and |M | = m, then GRAFIMO starts by deriving the corresponding position
probability matrix Mp:

Mp =
M [n, i]∑

n∈Σ M [n, i]

where Σ = {A,C,G, T} and 1 ≤ i ≤ m. On the other hand, if the input binding site is provided in
MEME format, GRAFIMO skips this step since the motif is already represented as a probability matrix.
After computing Mp, GRAFIMO normalizes each probability returning a normalized position probability
matrix M ′

p:

M ′
p =

Mp[n, i]∑
n∈Σ Mp[n, i]

where Σ = {A,C,G, T} and 1 ≤ i ≤ m. To account for the frequency of emission of each symbol in the
alphabet Σ = {A,C,G, T} (genomic frequency of each nucleotide), users can provide GRAFIMO with a
0-th order background model B. In the absence of a user-defined background distribution, GRAFIMO
assumes a uniform distribution. To prevent divisions by zero in subsequent processing steps and ac-
commodate the potential lack of information, each normalized probability in M ′

p is incremented by a
pseudocount. Typically, pseudocounts are small values, ranging between 0.1 and 1e−4. Next, each value
in M ′

p is adjusted by adding the pseudocount and weighting the resulting values with the background
model probability distribution:

M ′′
p =

M ′
p[n, i] ·

∑
n∈Σ M [n, i] + p ·Bn∑

n∈Σ M [n, i] + p

where Σ = {A,C,G, T} and 1 ≤ i ≤ m. Following these steps, the probabilities are transformed into
log-likelihood scores, often referred to as log-odds. Each value in M ′′

p , undergoes this transformation to
obtain the final PSSM:

PSSM[n, i] = log2

(
M ′′

p [n, i]

Bn

)
The resulting PSSM is then utilized to calculate a log-likelihood or binding affinity score for each candidate
motif occurrence.

Evaluating motif statistical significance via dynamic programming

To evaluate the significance of the score assigned to a candidate binding site occurrence, is essential to
consider the likelihood of such a log-odds value occurring by chance. This probability can be estimated
by establishing a null hypothesis model, representing the random occurrence of m nucleotides matching
the motif. Recall that |M | = m, where M is the input motif. A naïve approach to derive a null model
involves randomly shuffling nucleotides n ∈ Σ, obtaining random sequences s, where |s| = m, and score
each s using the PSSM. The resulting scores under this null model would be purely chance-driven. The
probability that a score, obtained under the null hypothesis, is at least as large as the one observed in
the real model is defined P -value in motif scanning context (Noble, 2009). Essentially, the P -value for an
observed score represents the area under the score score(s) distribution obtained after the random shuffle
of nucleotides, where x ≥ score(s). Although shuffling nucleotides to obtain would result in accurate
P -values, this procedure is not computationally feasible. To tackle this challenge efficiently, GRAFIMO
implements a dynamic programming (DP) algorithm (Griffin et al., 1994). This algorithm assumes that
the scored sequence is randomly generated with a specified frequency associated to each nucleotide. To
facilitate the implementation of the DP-algorithm, GRAFIMO scales the values stored in the log-odds
matrix PSSM, ensuring they fall within the range 0 ≤ PSSM(n, i) ≤ 1000:

PSSMscaled[n, i] =

⌊(
PSSM[n, i]− ⌊minPSSM⌋ ·

⌊
1000

maxPSSM−minPSSM

⌋)⌉
where Σ = {A,C,G, T} and 1 ≤ i ≤ m. The result is a new matrix PSSMscaled with integer values ranging
from 0 to 1000. Using integers instead of floatong-point values, enables fast computations. Subsequently,
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a null model distribution is computed for each sequence sr randomly obtained, with 1 ≤ |sr| ≤ m.
This is done following the probabilities defined in the background distribution B. A m× (1000 ·m+ 1)
matrix P is built, with entries filled using Algorithm 1. The rows of P represent sequences length, while
columns represent a score that can be obtained for a motif occurrence using PSSMscaled. At the end of the
procedure, each entry P [i, j] contains the number of sequences |Sr|, where |sr| = i and score(sr) = j, for
each sr ∈ Sr with a score j. Sequences sr, represent randomly generated strings following the background
distribution. The time complexity of this algorithm is O(n ·m), where n is the number of rows and m
is the number of columns of P . The space needed by the algorithm is O(n), as once the current row is
completely computed, the preceding one is removed and is no longer needed in subsequent steps of the
algorithm.

Algorithm 1: Dynamic programming algorithm computing null model in GRAFIMO (Griffin
et al., 1994)

Data: PSSMscaled, M , B, Σ
Result: P

1 m← |M | ; /* M is the input motif */
2 c← 1000 ·m+ 1;
3 for i in 1 to m do
4 for n ∈ Σ do
5 if i = 0 then
6 P [0,M [n, i]]← P [0,M [n, i]] + 1 ·Bn;
7 else
8 for j in 1 to c do
9 if P [i− 1, j] ̸= 0 then

10 P [i,M [n, i] + j]← P [i,M [n, i] + j] + P [i− 1, j] ·Bn;

11 return P

Searching motif occurrences on genome graphs

After computing the PSSM and its corresponding P -value matrix P from the input motif M , GRAFIMO
begins a scanning process across the input genome graph within the input genomic regions (Algorithm
2). The traversal of graph nodes is achieved performing a Breadth-First Search (BFS)-like algorithm
operating in parallel. The scanning progresses by employing a sliding window of width m, where |M | = m.
While scanning the graph, GRAFIMO recover all consecutive overlapping segments of length m. When a
node with two or more outgoing edges is encountered, indicating the presence of one or more alternative
alleles at that position, GRAFIMO visits only the haplotypes belonging to the allowed paths in the graph.
Subsequently, each sequence extracted from the genome graph is scored using the PSSM (Algorithm
3). The score for each sequence s is the sum of the values of entries PSSMscaled[n, i], where n = si and
1 ≤ i ≤ m. To speed-up the score computation, GRAFIMO utilizes the PSSM with scaled values instead
of the one with log-likelihood scores, as operations on integers are faster than those on floating-point
values. The resulting score for each sequence score(s) is then transformed back into a log-likelihood score
LL(s):

LL(s) =

(
score(s)

1000/maxPSSM−minPSSM

)
+m · ⌊minPSSM⌋

The complexity of the scoring procedure is O(n ·m), where n is the total number of sequences to score,
and m is their length. In scenarios where numerous scores are reported, such as scanning a genome
for TFBS motif occurrences, relying solely on a P -value is insufficient to assess statistical significance.
In fact, P -values are statistically valid only when computing a single score (Noble, 2009). To address
this limitation, GRAFIMO corrects P -values for multiple hypothesis tests using false discovery rate
estimation (FDR), providing a corresponding q-value. FDRs are computed directly from P -values using
the Benjamini-Hochberg procedure.

54



Algorithm 2: GRAFIMO motif scanning algorithm
Data: G, M
Result: scores, pvalues

1 PSSM← computePSSM(M) ; /* see previouse sections for details */
2 P ← computePvalueMatrix(PSSM) ; /* see Algorithm 1 for details */
3 S ← recoverSequencesBFS(G) ; /* each s ∈ S satisfies |s| = |M | */
4 scores← ∅;
5 pvalues← ∅;
6 for s ∈ S do
7 score(s),pvalue(s)← computeScorePvalue(s,PSSM, P ) ; /* details in Algorithm 3 */
8 scores[i]← score(s);
9 pvalues[i]← pvalue(s);

10 return scores, pvalues

Algorithm 3: Compute sequence score and P -value
Data: s, PSSM, P
Result: score, pvalue

1 Σ← {A,C,G, T};
2 score← 0;
3 for i in 1 to |s| do
4 n← s(i);
5 if n /∈ Σ then
6 score← 0 ; /* The sequence contains N, assign the lowest possible score */
7 break;
8 score← score + PSSM(n, i);

9 pvalue←
∑|P |

j=score
P (j)∑|P |

k=1 P (k)
;

10 return score, pvalue

5.1.3 Report generation
GRAFIMO interface has been designed with inspiration drawn from FIMO, allowing seamless integration
into pipelines and workflows originally built on FIMO. Similar to FIMO, GRAFIMO generates three
distinct reports: a tab-delimited file (TSV), an HTML report, and a GFF3 file compatible with the
UCSC Genome Browser (Lee et al., 2020). The TSV report (Fig.5.8) lists each found candidate TFBS
along with its score, genomic location (start, stop, and strand), and statistical significance (P -value and
q-value). Moreover, it reports the number of haplotypes in which each motif candidate has been observed,
with a flag value highlighting whether the occurrence was found only on alternative haplotypes or also
in the reference sequence. GRAFIMO also provides an HTML version of the TSV report (Fig.5.9), that
can be easily explored with any web browser. The GFF3 report is compatible with the UCSC Genome
Browser, allowing users to load it as a custom track (Fig.5.10). This enables the visualization and
exploration of the identified TFBS candidates alongside additional annotations available in the Genome
Browser, such as nearby genes, enhancers, promoters, or pathogenic variants sourced from the ClinVar
database (Landrum et al., 2020).

5.2 Searching motif occurrences with GRAFIMO
GRAFIMO’s main aim is to investigate the potential impact of genetic variants on the binding affinity
of putative TFBS across a set of individuals. By leveraging genome graphs, GRAFIMO may recover
additional sites that might be missed when considering linear reference genomes exclusively, without
accounting for genetic variants. To showcase its utility, we constructed a genome graph based on 2,548
individuals from 1KGP phase 3 (hg38 human genome assembly) (Zheng-Bradley et al., 2017; Lowy-Gallego
et al., 2019). The resulting graph encoded their genetic variants (∼78 millions, SNPs and indels (Table
5.6)) and phased haplotypes (total of 5,096 haplotypes). Subsequently, we searched the graph for putative
TFBS of three TF motifs retrieved from the JASPAR database (Sandelin et al., 2004; Fornes et al., 2020):
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Figure 5.8. GRAFIMO TSV summary report. The tab-delimited report shows the first 25 potential CTCF occur-
rences retrieved by GRAFIMO, searching CTCF motif in ChIP-seq peak regions on A549 cell line (ENCODE experiment
ENCFF816XLT).

Figure 5.9. GRAFIMO HTML summary report. The HTML report displays the first 25 potential CTCF occur-
rences retrieved by searching CTCF motif occurrences with GRAFIMO on ChIP-seq regions on A549 cell line (ENCODE
experiment ENCFF816XLT).

CTCF (JASPAR ID MA0139.1), ATF3 (JASPAR ID MA0605.2), and GATA1 (JASPAR ID MA0035.4)
(Fig.5.11). The three motifs exhibit diversity in length (from 11 to 19 bp), information content, and
evolutionary conservation. To investigate regions with likely true binding events, we focused our analysis
on ChIP-seq peak regions in six different cell lines (A549, GM12878, H1, HepG2, K562, MCF-7) retrieved
from the ENCODE Project database (Consortium et al., 2012; Davis et al., 2018) (Table 5.7). For each
TF, we systematically acquired the optimal IDR thresholded peaks from ENCODE (bigBED format).
Subsequently, we employed UCSC’s bigBedToBed tool (Kent et al., 2010) to convert each bigBED file
into its corresponding BED. To enhance data quality, we filtered the resulting BED files, excluding
features mapped to non-canonical chromosomes. The filtered BEDs were then subjected to sorting based
on both q-values and peak signals. This sorting allowed us to prioritize the identification of the most
informative regions, specifically selecting the top 3,000 peaks for each experiment. Then, we performed a
comprehensive scan on the prioritized regions using GRAFIMO. In our subsequent downstream analyses,
we retained those sites that exhibited a P -value < 1e−4. This stringent threshold ensured a focus on
statistically significant potential motif occurrences. Finally, we considered the sites meeting these criteria
as potential binding sites for the respective TFs under investigation. Based on the retrieved sites, we
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Figure 5.10. GFF3 track returned by GRAFIMO and loaded on the UCSC Genome Browser. GRAFIMO
produces a GFF3 report which can be loaded on the UCSC Genome Browser. The custom track loaded in the example
shows three potential CTCF occurrences (region chr8:142,782,661-142,782,680) recovered by GRAFIMO, which overlap a
dbSNP annotated variant (rs892844).

Figure 5.11. Transcription factor motifs used to test GRAFIMO. Transcription factor binding site motifs of (A)
CTCF, (B) ATF3, and (C) GATA1.

consistently observed across the three investigated TFs that genetic variants can significantly affect the
estimated binding affinity.

5.2.1 Searching for CTCF occurrences
CTCF is a zinc-finger transcription factor involved in transcriptional regulation, playing a pivotal role in
epigenetic control (Ishihara et al., 2006), and functioning as a tumor suppressor (Fiorentino and Giordano,
2012). In our experiments, we performed a targeted search for CTCF motif (JASPAR ID MA0139.1)
(Fig.5.11 (A)) occurrences within the 1KGP genome graph. Interestingly, we found a substantial num-
ber of CTCF motif occurrences exclusive to non-reference haplotypes, indicating that a significant pool of
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Chromosome Number of genetic variants
Chr1 6,191,833
Chr2 6,790,551
Chr3 5,641,493
Chr4 5,477,810
Chr5 5,115,036
Chr6 4,863,337
Chr7 4,511,408
Chr8 4,425,449
Chr9 3,384,360
Chr10 3,874,259
Chr11 3,881,791
Chr12 3,745,465
Chr13 2,760,845
Chr14 2,548,903
Chr15 2,301,453
Chr16 2,548,920
Chr17 2,209,149
Chr18 2,189,529
Chr19 1,738,824
Chr20 1,817,492
Chr21 1,045,269
Chr22 1,059,079
ChrX 106,963

Table 5.6. Genetic variants in the 1KGP genome graphs. Number of genetic variants (SNPs and indels) in the
genome graph constructed using 1KGP phase 3 on hg38 data. The variants belong to 2,548 individuals from 26 populations.
In total the genome graphs encoded ∼78 millions variants
.

Motif A549 GM12878 H1 HepG2 K562 MCF-7
CTCF ENCFF816XLT ENCFF267NYF ENCFF015OJG ENCFF895HAG ENCFF088JWU
ATF3 ENCFF207AVV ENCFF753WNT ENCFF787GVU

GATA1 ENCFF811YFQ
ENCFF939ODZ

Table 5.7. ENCODE ChIP-seq experiments. To test our software we searched potential occurrences of three tran-
scription factor motifs (CTCF, ATF3, and GATA1) in a hg38 genome graph enriched with genetic variants and haplotypes
of 2,548 individuals from 1000 Genomes Project phase 3.

potential TFBS is overlooked when scanning the genome without considering genetic variants (Fig.5.12
(A)). Furthermore, our analysis identified several highly significant CTCF occurrences within rare hap-
lotypes (Fig.5.12 (B)), that may influence gene expression in individuals showing these haplotypes.
We investigated the genomic locations of significant motif occurrences to assess how individual binding
sites might be affected by genetic diversity–whether disrupted, created, or modulated. Interestingly, our
experiments revealed that 6.13% of potential CTCF binding sites were exclusive to non-reference hap-
lotypes, 5.94% were disrupted by variants in non-reference haplotypes, and approximately 30% retained
significance in non-reference haplotypes, but with different binding scores (Fig.5.12 (C)). Notably, a
considerable portion of putative binding sites recovered solely on individual haplotypes exhibited popu-
lation specificity. For instance, 24.66%, 6.74%, 5.68%, 13.01%, and 12.52% of potential CTCF binding
sites retrieved exclusively from individual haplotypes were specific to AFR, EUR, AMR, SAS, and EAS
populations, respectively (Fig.5.12 (D)). Among the unique motif occurrences identified exclusively in
non-reference haplotypes in CTCF ChIP-seq peaks, we uncovered a TFBS (chr19:506,910-506,929) that
illustrates the pitfalls of relying solely on reference genomes for motif scanning. In this genomic locus,
we identified a heterozygous SNP aligning with position 10 of the CTCF matrix, that significantly mod-
ulates the binding affinity of the corresponding binding site. By inspecting ChIP-seq reads (experiment
ENCSR000DZN on GM12878), an allelic imbalance emerged towards the alternative allele. The alterna-
tive allele G exhibited a clear prevalence (70.59% of reads), while the reference allele A lagged behind at
29.41% of reads. This allelic imbalance is not observed in the control reads (experiment ENCSR000EYX)
(Fig.5.13).
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Figure 5.12. Searching CTCF motif on genome graphs using GRAFIMO provides insights on the impact
of genetic diversity on putative binding sites. (A) Statistically significant (P -value < 1e−4) and non-significant
potential CTCF occurrences found in the reference and haplotype sequences found using GRAFIMO on 1KGP genome
graph. (B) Statistical significance of the identified CTCF occurrences and their frequency within the haplotypes embedded
in the genome graph. (C) Percentage of statistically significant potential CTCF binding sites found only in the reference
genome, only in alternative haplotypes, and with their binding scores modulated by 1KGP genetic variants. (D) Percentage
of population-specific and common (shared by two or more populations) CTCF binding sites found in individual haplotypes.

5.2.2 Searching for ATF3 occurrences

Activating Transcription Factor 3 (ATF3) is a member of the cAMP responsive element-binding family,
exhibits increased activity in response to physiological stress across diverse tissues (Chen et al., 1996).
Moreover, ATF3 has versatile roles in immunity and cancer (Thompson et al., 2009). ATF3 binds to
short conserved DNA sequences. In our investigations, we searched ATF3 motif (JASPAR ID MA0605.2)
(Fig.5.11 (B)) occurrences within the 1KGP genome graph. For subsequent analyses we considered
ATF3 occurrences with P -value < 1e−4 as potential binding sites. Our results unveiled several potential
motif occurrences that would be lost scanning only the reference genome sequences (Fig.5.14 (A)).
Additionally, we observed that several ATF3 motif occurrences with high statistical significance were
identified in alternative haplotypes (Fig.5.14 (B)). Furthermore, we observed that 7.03% of potential
ATF3 binding sites are exclusively identified in non-reference haplotype sequences, 11.28% are disrupted
by genomic variants, and approximately 13% of ATF3 TFBS maintain significance in non-reference
haplotypes but exhibit different binding scores (Fig.5.14 (C)). Importantly, a substantial fraction of
putative ATF3 binding sites displayed population specificity: 19.81%, 3.77%, 7.55%, 19.81%, and 19.81%
of potential binding sites retrieved in individual haplotypes were specific to AFR, EUR, AMR, SAS, EAS
populations, respectively (Fig.5.14 (D)).
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Figure 5.13. Considering genomic diversity, GRAFIMO captures additional binding events. GRAFIMO
reports a potential CTCF binding site at chr19:506,910-506,929 exclusively present in haplotype sequences. The binding
site was identified by scanning CTCF ChIP-seq peaks (experiment ENCSR000DZN on GM12878). The analysis of ChIP-
seq reads (ENCFF162QXM) unveils an allelic imbalance at position 10 of the motif, towards the alternative allele (G).
GRAFIMO accurately captures this imbalance by reporting sequences carrying a G at position 10 (as found in the alternative
haplotypes), while the potential TFBS on the reference, which carries an A, is not reported as statistically significant. This
discrepancy aligns with CTCF motif logo, which illustrates G as the dominant nucleotide at position 10.

5.2.3 Searching for GATA1 occurrences
GATA1 is a zinc-finger transcription factor playing a pivotal role in the development of hematopoietic
cell lineages (Calligaris et al., 1995). GATA1 binds short (11 bp) highly conserved DNA sequences.
In our experiments, we searched GATA1 motif (JASPAR ID MA0035.4) (Fig.5.11) occurrences within
the 1KGP genome graph. In our downstream analyses we considered GATA1 occurrences with P -value
< 1e−4 as potential binding sites. In our experiments we observed that several GATA1 occurrences are
lost when not considering genetic diversity while scanning genomic sequences (Fig.5.15 (A)). Moreover,
several potential motif occurrences with high statistical significance were found scanning non-reference
haplotypes (Fig.5.15 (B)). Further investigations unveiled that 9.78% of potential GATA1 binding sites
are exclusive to non-reference haplotype sequences, 12.58% are disrupted by genetic variants, and ∼4%
maintain significance in non-reference haplotypes but exhibit different binding scores (Fig.5.15 (C)).
We also identified population specific GATA1 binding sites among those retrieved only in individual
haplotypes, with 25.97% specific to AFR, 3.90% to EUR, 9.09% to AMR, 19.48% to SAS, and 11.69% to
EAS populations (Fig.5.15(D)).

5.3 Comparing GRAFIMO and FIMO
To validate GRAFIMO accuracy, we conducted a comparative analysis with FIMO, running the latter
on the same ChIP-seq regions used to test the former. FIMO and GRAFIMO runs were performed on
a Linux-based machine with an Intel(R) Core (TM) i7-5960X 3.00GHz CPU (16 cores) and 64 GB of
memory (RAM). Since FIMO scans sets of sequences given as FASTA files, for each investigated TF, we
recovered the reference genome sequences representing the ChIP-seq optimal IDR thresholded peaks using
BEDTools (Quinlan and Hall, 2010). For each studied TF, we observed that GRAFIMO reports all poten-
tial motif occurrences identified by FIMO. Therefore, GRAFIMO successfully identifies additional motif
candidates found in individual haplotypes embedded in the genome graph without sacrificing potential
motif occurrences in the reference genome sequence. We further benchmarked GRAFIMO against FIMO
in terms of running time and memory usage. Using CTCF motif (19 bp) as an example, we searched for
potential motif occurrences on forward and reverse strands in 1000 genomic regions of human chr22 with
increasing length (1 to 9 Mb). To run FIMO, for each set of genomic regions we created the corresponding
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Figure 5.14. Searching ATF3 motif on genome graphs using GRAFIMO provides insights on the impact
of genetic diversity on putative binding sites. (A) Statistically significant (P -value < 1e−4) and non-significant
potential ATF3 occurrences found in the reference and haplotype sequences found using GRAFIMO on 1KGP genome
graph. (B) Statistical significance of the identified ATF3 occurrences and their frequency within the haplotypes embedded
in the genome graph. (C) Percentage of statistically significant potential ATF3 binding sites found only in the reference
genome, only in alternative haplotypes, and with their binding scores modulated by 1KGP genetic variants. (D) Percentage
of population-specific and common (shared by two or more populations) ATF3 binding sites found in individual haplotypes.

FASTA file. To assess GRAFIMO performance we scanned chr22 genome graph without encoded vari-
ants, on the previously computed set of regions. Since FIMO does not provide a parallel implementation
we run GRAFIMO using a single thread. Although FIMO exhibits superior speed and lower memory
requirements in a single-thread scenario (Fig.5.16 (A) and (B)), GRAFIMO surpasses FIMO in speed
when scanning regions accounting for genetic variants of 2,548 individuals (Fig.5.16 (C)). We excluded
from the measurements for FIMO the overhead introduced to compute the FASTA files from the original
BED files. These results were expected since FIMO is a highly optimized tool scanning linear reference
genomic sequences, while GRAFIMO efficiency shines while scanning panels of individuals accounting
for their genetic diversity. We further evaluated GRAFIMO performance using 1, 4, 8, and 16 threads
to scan the chr22 genome graph embedding the 2,548 individuals and their genetic variants from 1KGP
(Fig.5.17). As expected, using multiple threads significantly reduces running time, although memory
usage remains consistent with the number of threads. For the analyses presented in the previous section
each scan on average took ∼15 minutes and consumed around 24 GB of memory.

5.4 Discussion and limitations
By leveraging genome graphs, GRAFIMO introduces an effective approach for investigating the impact
of genetic variation on the binding landscape of transcription factors (TFs) across diverse populations.
Notably, our findings revealed the presence of numerous potential and exclusive TF binding sites (TFBS)
in individual haplotype sequences. Additionally, genomic variants exert a substantial influence on the
binding affinity of several motif occurrence candidates identified in the reference genome sequence. This
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Figure 5.15. Searching GATA1 motif on genome graphs using GRAFIMO provides insights on the impact
of genetic diversity on putative binding sites. (A) Statistically significant (P -value < 1e−4) and non-significant
potential GATA1 occurrences found in the reference and haplotype sequences found using GRAFIMO on 1KGP genome
graph. (B) Statistical significance of the identified GATA1 occurrences and their frequency within the haplotypes embedded
in the genome graph. (C) Percentage of statistically significant potential GATA1 binding sites found only in the reference
genome, only in alternative haplotypes, and with their binding scores modulated by 1KGP genetic variants. (D) Percentage
of population-specific and common (shared by two or more populations) GATA1 binding sites found in individual haplotypes.

Figure 5.16. Comparing GRAFIMO and FIMO performance. (A) FIMO is faster than GRAFIMO (using 1
thread) when searching CTCF motif (JASPAR ID MA0139.1) on human chr22 regions (total width ranging from 1 to 9
Mb) and without accounting for genetic variants. (B) FIMO uses less memory than GRAFIMO, however it only scan
reference sequences. (C) GRAFIMO is generally faster than FIMO while searching CTCF occurrences when considering
genetic diversity in large panels of individuals (e.g. 1KGP phase 3), even with single thread.
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Figure 5.17. GRAFIMO running time efficiently scales with the number of threads. By running GRAFIMO
with multiple threads (A) the running time significantly decreases, while (B) memory usage remains similar.

tool offers a valuable resource for prioritizing regions that could underlie individual-specific alterations
in gene expression, a facet often overlooked when relying solely on reference genomes.
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MotifRaptor: a Transcription
Factor-centric method to evaluate
non-coding genetic variants impact

Several studies highlighted the impact of genetic variants on the modulation of transcription factor
binding affinity (De Gobbi et al., 2006; Weinhold et al., 2014; Wienert et al., 2015). Genome-wide as-
sociation studies (GWASs) revealed numerous SNPs associated with complex traits or human diseases
(Buniello et al., 2019). However, despite these extensive endeavors, functional studies aimed at prior-
itizing potential causal variants have faced challenges, leading to a constrained understanding of the
pathophysiological mechanisms linking variants to phenotypes (Gallagher and Chen-Plotkin, 2018). This
poses challenges when interpreting the functional impact of individual- or population-specific variants on
TF binding landscape. Missense variants may modulate the function of a TF by influencing its coding
sequence, altering the protein structure, and consequently impacting its DNA binding capability. This
scenario is particularly relevant in Mendelian diseases (Barrera et al., 2016). Conversely, for common
diseases and complex traits, most associated variants (over 90%) are located in non-coding regions, pre-
dominantly within DNase I hypersensitive sites. Often non-coding variants are located within genomic
regulatory elements, such as enhancers, silencers, or promoters (Maurano et al., 2012). Mutations that
alter TF binding activities may serve as mediators for chromatin state alterations and gene deregulation.
Therefore, genetic variants within non-coding domains may alter TF recognition sequences, enhancing
or disrupting TF-DNA binding events, consequently inducing changes in downstream gene expression
programs (Deplancke et al., 2016). While individual non-coding variants may exert only moderate effects
on binding sites and lack the power to comprehensively elucidate gene expression programs, the statistical
analysis of a set of SNPs that modulate common TF binding sites holds the promise of revealing con-
vergent regulatory mechanisms underlying complex traits. Despite the existence of various approaches
aimed at investigating the impact of genetic variants on TF binding sites, challenges persist in achieving
a comprehensive understanding (Tognon et al., 2023). MotifRaptor (Yao et al., 2021) addresses these
challenges by providing a unique framework. The rationale behind its development stems from the lim-
itations of existing tools, such as MMARGE (Link et al., 2018), GERV (Zeng et al., 2016b), DeepSEA
(Zhou and Troyanskaya, 2015), Basset (Kelley et al., 2016), or IMPACT (Amariuta et al., 2019), which
heavily rely on the availability of genome-wide maps of TF occupancy and chromatin marks in specific
cellular contexts. MotifRaptor, instead, accommodates scenarios where only motif PWM models and
gene expression data are available. Existing models based on ChIP-seq or PWM data lack a systematic
approach to globally rank and assess the significance of TFs based on all trait-associated variants. While
tools like CADD (Maurano et al., 2015), CENTIPEDE (Moyerbrailean et al., 2016), or atSNP (Zuo et al.,
2015) offer valuable insights, they are limited in providing a formal testing procedure for the global effect
of a set of GWAS variants on the overlapping TF binding sites. MotifRaptor overcomes this limitation
by introducing a novel genome-wide statistic. This genome-wide statistic prioritizes putative causal TFs
based on the entire set of binding sites and overlapping variants, offering a more comprehensive approach.
Furthermore, linkage disequilibrium (LD) is often overlooked in current methods, leading to potential
confounding in the analysis. MotifRaptor addresses this issue by implementing strategies that reduce
the space of variants in each LD block and explicitly account for local LD structure. By focusing on cell
type-specific chromatin accessibility regions and sampling the background set of chromatin accessibility
regions in close proximity, Motif-Raptor mitigates the problem of false positives, offering specificity in
identifying variants within regions that are cell type-specific. In comparison to available tools, MotifRap-
tor overcomes these challenges and provides a genome-wide significance score for each TF, taking into
account the directional modulation of TF binding sites by variants. While tools like SLDP (Reshef et al.,
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Figure 6.18. MotifRaptor analysis pipeline. MotifRaptor executes a three-step process to enhance its functionality: (i)
characterization of pertinent cell types, determined by the enrichment of trait-associated SNPs within chromatin accessible
sites; (ii) identification of TFs with binding sites significantly influenced by genetic variants in these cell types; and (iii)
pinpointing and visually representing individual TF-SNP regulatory events (taken from Yao et al. (2021)).

2018) and GREGOR (Schmidt et al., 2015) consider LD structure, MotifRaptor offers a distinctive ap-
proach with its TF-centric analysis, statistics, and visualization functionalities. This tool is poised to
enhance the discovery and interpretation of the impact of non-coding variants on crucial regulators of
complex traits, providing a scalable framework to shift towards precision medicine-oriented methods.

6.1 Design and implementation
MotifRaptor analysis requires GWAS summary statistics, TF PWM models (PFM format (Appendix
A.9)), chromatin accessibility (BED format (Appendix A.6)), and transcriptomic data as input. Mo-
tifRaptor leverages and interpolates the input data to generate a prioritized list of putative trait-associated
TFs. This list contains TFs whose binding sites may be modulated by genetic variants in different cell
types. Furthermore, the tool offers intuitive visualizations for exploring external annotations and assess-
ing potential co-factor involvement for each variant. MotifRaptor analysis involves three key steps: (i)
characterizing relevant cell and tissue types through the enrichment of the trait-associated SNPs in open
chromatin regions, (ii) identifying significant TFs in these cell types, and (iii) pinpointing and annotating
crucial TF-SNP regulatory events (Figure 6.18). Developed as an open-source command-line utility,
MotifRaptor is implemented with Python and Cython.

6.1.1 Quantifying genetic variants impact on Transcription Factor Binding
Sites

To evaluate the impact of genetic variants on TFBS, MotifRaptor implements an efficient and comprehen-
sive genome-wide scoring procedure. MotifRaptor scoring procedure scans all binding sites overlapping
the input variants. Although the scanning procedure is similar to the algorithm implemented by other
motif scanning algorithms, such as MOODS (Korhonen et al., 2009), FIMO (Grant et al., 2011) or
GRAFIMO (Tognon et al., 2021), MotifRaptor proposes a threshold-free scanning. Threshold-free motif
scanning enables to efficiently compute modulation scores and null models, used to test scores statisti-
cal significance. Given a genomic sequence s, where |s| = m, and a PWM, the score M(i, Si) denotes
the likelihood of observing the nucleotide Si ∈ {A,C,G, T} at position i, where 1 ≤ i ≤ m. We derive
the binding score BS from M(i, Si) as a log-likelihood score computed over the entire binding site and
corrected to account for genome-wide nucleotide frequencies, or background frequencies, B(si):

BS = log

m∏
i=1

M(i, si)

B(si)
=

m∑
i=1

(logM(i, si))− logB(si))

Based on this formulation, MotifRaptor computes a disruption score DS, which reflects the potential
impact of genetic variants on a given binding site. Given a target variant, MotifRaptor assumes two
haplotypes, denoted as sref and salt for the reference and alternative alleles, respectively. MotifRaptor
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assigns a BS to each allele, resulting in binding scores for the reference and alternative alleles (i.e.
BS(sref ) and BS(salt)). To ensure computational scalability, MotifRaptor restricts the calculations to a
region spanning 61 bp, centered around the target variant. For each region, MotifRaptor considers the
best putative binding position K for both sref and salt:

K = argmax
1≤k≤m

(BS(sref,k:k+m−1,M),BS(salt,k:k+m−1,M))

Therefore, the disruption score DS at position K is defined as:

DS = ∆BS

The magnitude and sign of DS are valuable indicators, conveying information about the direction and
strength of the target variant’s impact on TF binding. Specifically, positive DS suggest an increased bind-
ing affinity, while negative values imply a reduced binding potential. Since TFBS motifs exhibit varying
length and specificity, MotifRaptor scales both BS and DS to the ranges [0, 1] and [−1, 1], respectively:

BSmax(M) = max
si∈{A,C,G,T}

m∑
i=1

logM(i, si)− logB(si)

DSmax(M) = max
s̸=w∈{A,C,G,T}

| logM(i, si)− logM(i, wi)|

Given the scaled scores, MotifRaptor establishes a Binding-Disruption (BD) space. The BD-space offers
a comprehensive framework to visualize and summarize TF-SNP modulation events globally and across
different factors. Within the BD-space, events located near the distal corners from the origin (coor-
dinates (1, 1) or (1, 1)) signify robust binding and substantial modulation induced by genetic variants.
Furthermore, MotifRaptor combines BS and DS into a composite score, called modulation score (MS):

MS(s,M) =

(
BS(s,M)

BSmax(M)

)
×
(

DS(s,M)

DSmax(M)

)
MS encapsulates the rectangular area spanned by the scaled DS and BS. Larger absolute MS values,
correspond to events close to the distal corners, and indicate meaningful modulation. Since no para-
metric distributions adequately fit the observed data, MotifRaptor proposes to determine the statistical
significance of SNP-TF modulation events, by estimating a null model based on the central limit theo-
rem (CLT). However, this strategy involves a complete enumeration of all potential binding sites across
the genome. MotifRaptor overcomes this issue by leveraging efficient data structures, that efficiently
compute genome-wide BS and DS for all input SNPs and TFs. Importantly, MotifRaptor avoids to rely
on pre-determined scores, P -value cutoffs, or computationally intensive shuffling procedures. Moreover,
MotifRaptor generates a ranked list of transcription factors built defining a TF score, that combines its
cell type-specific expression and MS in chromatin accessible regions. Since TFs may share similar motifs
but their expression and function is different across cellular contexts, the TF score, given a motif M and
a cell type C, is defined as:

TF-score(M,C) = EP(M,C)× (1−minFDR(M,C))

where the TF-score is constrained in [0, 1], EP(M,C) is the expression percentile, and minFDR(M,C)
is the corrected P -value for MS significance. minFDR(M,C) compares MSs’ distribution in cell type-
specific chromatin accessible regions.

6.1.2 Fast genome-wide motif scanning
The construction of a null model to statistically evaluate the BD-space and MS requires the exhaustive
enumeration of all potential TFBS across the genome coupled with an assessment of their potential mod-
ulation by SNPs unrelated to any phenotype. While tools like FIMO or MOODS offer fast binding site
occurrences enumeration, they are not optimized to efficiently compute the modulation of binding affinity
induced by a set of SNPs (Zuo et al., 2015). GRAFIMO partially overcomes this limitation, by consid-
ering genetic variation while searching motif occurrences (Chapter 5). However, some downstream
analysis is required to recover the binding affinity modulation induced by genetic variants. MOODS,
FIMO or GRAFIMO rely on a pre-defined threshold on statistical significance (P -value or q-value) to
filter potential false positives or enhance computational efficiency. However, this strategy may exclude
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weak but genuine binding events (Boeva, 2016; Tognon et al., 2023). In MotifRaptor context, if em-
ployed, this strategy may bias the estimation of the complete empirical distribution of MSs. Moreover,
establishing a uniform threshold for different TFBS motifs is neither practical nor reasonable (Tognon
et al., 2023). In fact, different TFBS display varying lengths and complexities. atSNP (Zuo et al., 2015)
addresses the first challenge by proposing an efficient P -value estimation procedure. However, it lacks
an effective threshold-free scanning technique. On the other hand, MotifRaptor overcomes these limi-
tation by avoiding redundant calculations. To avoid redundant calculations, MotifRaptor leverages two
text-indexing data structures: a suffix array (SA) (Puglisi et al., 2007) and a longest common prefix
(LCP) array (Landau et al., 2001). SA and LCP enables bypassing of repeated portions of the genome,
significantly reducing redundancy in calculations. MotifRaptor algorithm performing fast genome-wide
motif scanning encompasses different steps (Algorithm 4). MotifRaptor starts by recovering all input
SNPs and their flanking genomic sequences. Let us assume N input variants and that the length of the
flanking sequences surrounding each SNP is 2m− 1, where m = |M |. MotifRaptor enrich each reference
sequence with its linked variant returning two sequences: sref and salt. Subsequently, sref and salt are
concatenated constructing a single sequence, and the original sequences’ genome positions are recorded.
This results in a unique extended pseudo-genome (P ) of length 2 × (2m − 1) × N . MotifRaptor then
computes the SA and LCP arrays on P in linear time and space (O(mN)), using the divsufsort algorithm
(Fischer and Kurpicz, 2017). By leveraging SA and LCP data structures, MotifRaptor scan sequences
in lexicographical order. Let us assume the algorithm is at iteration j and it inductively computed an
auxiliary array BS[1 : m], storing binding scores between M and the first m nucleotides in P starting at
position SA[j − 1]. Then, BS[m] = BS(P [SA[j − 1]]) against entire M . At iteration j = 0, MotifRaptor
fills BS with 0s. At iteration j = 1, MotifRaptor inductively computes BS[1 : m] for the first m nu-
cleotides of suffix SA[j]. The existing values in BS[1 : m] referring to SA[j − 1] and the LCP[j] value
are exploited for efficient computation. If the common prefix’s length between SA[j − 1] and SA[j] is
p = LCP[j], the update of binding scores can start from position p+1, since the binding scores in BS[1 : p]
remain unchanged, given that SA[j − 1] and SA[j] share the initial p characters for which binding scores
have already been computed, BS[1 : p]. Explicitly, for p+ 1 ≤ x ≤ m:

BS[x] = BS[p] +
x∑

i=p+1

logM(i, si)− logB(si)

To map the binding score BS[m] relative to an substring s, where s ∈ P and |s| = m, aligned against
the motif M , back to the SNP site, MotifRaptor determines the SNP position and the binding position
according to:

SNP =

⌊
SA[j]

2m− 1

⌋

binding_site = SA[j] mod (2m− 1)

It is fundamental to note that not all prefixes w, where |w| = m, of P ’s suffixes are substrings of the
original genome. Recall that P is constructed by concatenating sequences blocks centered around SNP
positions. MotifRaptor further improves the running time by skipping cross-block sequences scanning. By
exploiting these data structures and score design, MotifRaptor efficiently compute genome-wide binding
and disruption scores for each TF, enabling complete null models estimation factor.

Algorithm 4: MotifRaptor motif scanning algorithm
Data: SNPs, G, M
Result: BS

1 P ← computePseudoGenome(SNPs, G,M) ; /* see algorithm 5 */
2 SA← computeSuffixArray(P ) ; /* use divsufsort algorithm */
3 LCP← computeLCP(P, SA);
4 BS← initializeArray(0, |P |);
5 for i ∈ |BS| do
6 BS[i]← scoreSequence(P [i : i+m],M, SA[i− 1],LCP[i]);
7 return BS
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Algorithm 5: Algorithm computing Pseudo-genome P

Data: SNPs, G, M
Result: P

1 m← |M |;
2 P ← ∅;
3 for snp ∈ SNPs do
4 sref ← G[snppos −m : snppos +m];
5 salt ← enrichSequence(sref, snp);
6 s← concatenate(sref, salt);
7 P ← concatenate(P, s);
8 return P

6.1.3 Evaluating TF-SNP modulations significance
To assess the statistical significance of TF-SNP modulation scores (MSs), MotifRaptor employs a method
leveraging the central limit theorem (CLT). This involves estimating a complete null model through the
enumeration of all potential binding sites across the genome. To ensure scalability, MotifRaptor leverages
suffix and LCP arrays, that enable exhaustive enumeration while maintaining method’s scalability. For
a given set of target variants V , MotifRaptor evaluates whether they significantly modulate TF binding
events by testing if MS distribution DMS(V ) significantly differs from the MS distribution obtained from a
set of background (genome-wide) SNPs W (DMS(W )). To assess the distinction between the distributions,
MotifRaptor employs a non-parametric test with a null hypothesis:

E(DMS(V )) = E(DMS(W ))

According to CLT, the distribution of the sample mean of W , converges to a normal distribution, with
its mean equal to E(DMS(W )), and variance equal to Var(DMS(W ))

Nsample
, regardless of the underlying MS dis-

tribution. Consequently, MotifRaptor assesses the significance of enhanced scores E(DMS(V )), disrupted
scores E(DMS(W )), or both. This robust procedure, combined with efficient data structures, enables
the identification of significant genome-wide shifts in TF-SNP binding modulations without relying on
predetermined scores or cutoffs on P -values.

6.2 MotifRaptor helps prioritizing variants affecting Transcrip-
tion Factor Binding Sites involved in LDL-C uptake

We demonstrate the capabilities of MotifRaptor by utilizing the tool to prioritize potential TFs modulated
by a set of lipoprotein cholesterol (LDL-C)-associated GWAS variants and low-density lipoprotein receptor
(LDLR) coding variants on LDL-C uptake in HepG2 hepatocellular carcinoma cells. Genetic differences
in LDL-C levels significantly impact the risk of coronary artery disease. This is supported by quantitative
serum LDL-C measurements, which are consistently recorded across various biobanks, making them one of
the most reliable human phenotypic datasets available. Through a trans-ancestry GWAS meta-analysis
conducted by the Global Lipids Genetics Consortium (GLGC), over 900 genome-wide significant loci
associated with blood lipid levels have been identified, with more than 400 loci specifically linked to LDL-C
(Graham et al., 2021). Notably, these LDL-C GWAS loci exhibit a significant overlap with gene expression
patterns in the liver, suggesting the liver’s pivotal role in modulating the effects of LDL-C variants (Wang
et al., 2022a; Finucane et al., 2018). Despite this correlation, the specific causal variants and mechanisms
underlying many of these loci’s influence on LDL-C levels remain elusive. LDL-C levels are profoundly
influenced by rare coding variants, with the most severe cases linked to Familial Hypercholesterolemia
(FH), a disease characterized by markedly elevated LDL-C levels and premature cardiovascular disease
(Bouhairie and Goldberg, 2015). FH arises from inherited monogenic variants in several genes, primarily
affecting LDLR, a cell surface receptor pivotal for LDL uptake, thereby regulating its circulation levels
(Brown and Goldstein, 1984). Despite the efficacy of lipid-lowering therapies, individuals with FH still
face a significantly heightened risk of coronary events compared to the general population (Mundal et al.,
2018). Given that elevated LDL-C levels elevate cardiovascular disease risk across the lifespan, early
identification of at-risk individuals holds paramount clinical significance (Bouhairie and Goldberg, 2015).
However, many LDLR variants currently lack clear clinical interpretation. For instance, among the 1,427
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Variant Chrom Position (hg38) Major
Allele

Minor
Allele

HepG2 Editable
REF Allele

HepG2 Edited
Allele MAF

rs4149309 chr9 104,827,299 A T A G 0,11951
rs12042481 chr1 45,499,094 T C T C 0,169
rs186701924 chr19 56,948,710 A C A G 0,00125
rs4457349 chr8 125,482,075 A G A G 0,0259
rs429358 chr19 44,908,684 T C T C 0,156
rs11149612 chr16 83,947,360 C T T C 0,461
rs4719853 chr7 26,029,463 T A T C 0,237
rs76895963 chr12 4,275,678 T G T C 0,02104
rs35081008 chr19 58,150,868 C T T C 0,147
rs58198139 chr5 156,972,028 C T T C 0,364
rs1250259 chr2 215,435,759 T A A G 0,265
rs704 chr17 28,367,840 G A A G 0,474
rs77542162 chr17 69,085,137 A G A G 0,0229
rs1434282 chr1 199,041,592 C T T C 0,274
rs8126001 chr20 64,080,106 C T T C 0,48964
rs10107182 chr8 58,480,178 C T T C 0,336
rs62084210 chr17 67,832,594 A G A G 0,29613
rs771555783 chr17 80,025,096 CACCAT C 0,224
rs115421711 chr5 52,787,392 A G A G 0,0413
rs3767844 chr1 214,007,378 A G A G 0,28746
rs2618566 chr20 17,864,040 G T T C 0,339
rs4390169 chr1 155,133,578 A G A G 0,481
rs402348 chr18 63,367,187 T G T C 0,211
rs116734477 chr5 52,799,190 C T T C 0,0412

Table 6.8. LDL-C uptake associated variants prioritized through BEAN and tested for Transcription Factor
binding modulation. The table provides details of genetic variants linked to LDL-C uptake, which were prioritized
using BEAN (Ryu et al., 2024). These variants underwent testing for modulation of Transcription Factor binding using
MotifRaptor (Yao et al., 2021). It includes information such as the genomic location (hg38 genome assembly), major and
minor alleles on both the reference genome and HepG2 cells, as well as the minor allele frequency (MAF) associated with
each variant. MAF values are sourced from the UK Biobank cohort (Bycroft et al., 2018).

LDLR missense variants cataloged in the ClinVar database (Landrum et al., 2020), half are designated
as variants of unknown significance (VUS) or exhibit conflicting interpretations of pathogenicity, thereby
complicating FH diagnosis. Similarly, within the UK Biobank cohort (Bycroft et al., 2018), 69% of the
758 unique LDLR missense variants carried by sequenced individuals lack reporting or have uncertain
annotations in ClinVar. A more comprehensive understanding of the impacts of LDLR variants would
facilitate the earlier diagnosis and treatment of numerous individuals at risk for FH and associated
cardiovascular complications. To assess the effects of both common GWAS-associated and rare coding
variants in the LDLR gene, we developed a novel approach, called BEAN (Ryu et al., 2024), leveraging
base editing techniques (Section 7.2.1) followed by the cellular uptake of fluorescent LDL-C in HepG2
cells (Figure 6.19). BEAN offers a scalable flow cytometric assay to measure a critical determinant of
serum LDL-C levels (Hamilton et al., 2023), as the liver plays a predominant role in clearing LDL-C from
circulation (Spady, 1992). Our experimental-computational pipeline enables us to scrutinize LDL uptake-
altering GWAS-associated variants and elucidate their downstream effects on chromatin accessibility,
transcription factor binding, and gene expression, ultimately impacting LDL uptake. Intriguingly, we
identify causal variants that influence LDL-C uptake by affecting the genes OPRL1, VTN, and ZNF329,
which were not previously linked to LDL-C levels.

6.2.1 Evaluating candidate variants impact on Transcription Factor Binding
potential

To investigate the potential effects of LDL-C uptake-associated variants, prioritized using BEAN (Table
6.8), on transcription factor binding sites and their regulatory impact on genes involved in LDL-C
uptake, we adapted the pipeline of MotifRaptor for our analysis. Each variant’s genomic context was
investigated by retrieving sequences spanning 61 bp centered around the SNP location. To recover the
genomic context we used the GRCh38 genome assembly as reference. For each variant, we generated
both a reference and an alternative sequence by substituting the major allele with the minor allele at the
SNP position. Subsequently, we employed all human TF PWMs from the CIS-BP database (Weirauch
et al., 2014) to scan each pair of reference and alternative sequences, generating binding scores for each
major and minor allele. The comparison of these scores for each TF across the reference and alternative
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Figure 6.19. BEAN computational-experimental base editing screening pipeline. (A) The plot illustrates the
process and analysis workflow for activity-normalized base editing screening, followed by analysis using BEAN. Initially, a
library of gRNAs, each coupled with a reporter sequence containing its genomic target, is inserted into a lentiviral base
editor expression vector. Lentiviral transduction is conducted in HepG2 cells, succeeded by flow cytometric sorting of four
distinct populations based on fluorescent LDL-cholesterol (BODIPY-LDL) uptake levels. Paired-end NGS is then employed
to decode gRNA counts and reporter editing outcomes within each flow cytometric bin. Subsequently, BEAN is utilized to
model the editing frequency of the reporter and allelic outcomes, along with gRNA enrichments across flow cytometric bins.
This enables BEAN to estimate variant phenotypic effect sizes. (B) The sequence logo illustrates the adjacent nucleotide
specificity of ABE8e-SpRY editing, derived from 7,320 gRNAs. In the logo, the height of each base symbolizes the relative
frequency of observing that particular base given an edit at position 0. (C) Average editing efficiency of ABE8e-SpRY
by protospacer position and PAM sequence. (D) The scatterplots illustrate the comparison of nucleotide-level editing
efficiency between the reporter and endogenous target sites across three experimental replicates for a total of 49 gRNAs
spanning four loci. The top panel displays the accessibility of the four loci as measured by ATAC-seq signal in HepG2 cells,
with scatterplot markers colored according to the accessibility of each nucleotide. Pearson correlation coefficients (r) are
provided to indicate the strength of correlation between the editing efficiency of reporter and endogenous target sites. (E)
The schematic depicts the design of the LDL-C variant library gRNA, targeting selected GWAS candidate variants. The
Manhattan plot illustrates variant P-values obtained from a recent GWAS study (Klimentidis et al., 2020). The gRNAs are
strategically designed to tile the variant at five positions, maximizing editing efficiency at protospacer positions 4–8. (F)
gRNA coverage of the LDLR tiling library across LDLR coding sequence along with 5’ and 3’ UTRs and several regulatory
regions.

alleles within every sequence pair was crucial for assessing a variant’s impact on TF binding. Higher
binding scores for the alternative sequence indicated an increase in TF binding potential, while lower
scores suggested a decrease. To quantify these changes, we computed disruption scores (DS) (Section
6.1.1). Recall, that DS captures the directional change induced by each variant, where a negative value
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Figure 6.20. MotifRaptor analysis reveals insights into potential disruption of transcription factor binding
by candidate variants. (A) The disruption is graphically represented against the binding scores of motifs, specifically
examining the transition from the minor to major allele of rs8126001. (B-C) The identified motifs of ZNF333 and ZNF770
are showcased, aligned with the loci of rs8126001, featuring both minor and major alleles.

signifies reduced TF binding potential, and a positive value indicates an increase. For each variant, we
ranked TFs exhibiting heightened binding potential and susceptibility to disruption by the variant. In the
case of rs8126001, our methodology highlighted two zinc finger TFs, ZNF333 and ZNF770, showcasing
enhanced binding site sequences attributed to the presence of the heterozygous minor allele in HepG2 cells
(Figure 6.20). HepG2 ChIP-seq data provides supportive evidence for the binding of these TFs at the
locus, even though the variant lies at the periphery of the peaks (Figure 6.21). While drawing definitive
conclusions necessitates additional experimental validation, our findings are consistent with prior research
(Farh et al., 2015), which implies that a minority of causal variants directly modify canonical TF binding
sequences. Instead, the majority tend to influence non-canonical sequences, emphasizing the intricacies
involved in understanding the impact of genetic variants on transcription factor interactions.

6.3 Discussion and future directions
MotifRaptor is a computational toolkit designed to investigate the impact of genetic variants on TFBS
within non-coding regions. MotifRaptor analysis encompasses three key steps that enable users to identify
relevant cell types, cell type-specific genomic regions, and TFs, and to analyze and annotate SNPs based
on their effects on TF binding landscape. Importantly, MotifRaptor is independent from ChIP-seq
data, which may not be readily accessible for many cell type-TF combinations. Instead, MotifRaptor
employs TF PWMs models, which are more widely available. Its efficient algorithmic design enables the
computation of genome-wide null models for each TF, facilitating a comprehensive exploration of potential
relationship between SNP-trait focusing on TF binding sites. Moreover, MotifRaptor incorporates gene
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Figure 6.21. An overview of ChIP-seq signal Log2 Fold Change (LFC), signal P -values, peaks, and motif
occurrences is provided for ZNF333 and ZNF770 in proximity to rs8126001. PhastCons100way conservation
scores and gene annotations are co-displayed. ENCODE accession numbers are encapsulated in parentheses. The ENCODE
signal LFC and P -values are derived through the ENCODE processing pipeline, utilizing MACS2 (Zhang et al., 2008) for
the generation of signal P -values.

expression data to filter out false positives, enhancing the accuracy of its predictions. Additionally, the
MotifRaptor integrates established annotations to evaluate individual SNPs based on their conservation
and potential deleterious effects, providing users with valuable insights into the functional significance
of genomic variants. However, further extensions or downstream analyses are necessary to evaluate the
significance of individual SNPs and their potential target genes. Additionally, it is important to note
that MotifRaptor does not currently incorporate any preprocessing or filtering steps for the summary
statistic files provided as input. Therefore, while it assumes the completeness and accuracy of these
files, the biological insights and prioritized factors that can be derived may be influenced by the quality
of the input data. MotifRaptor may be extended to consider other TFBS models, such as Support
Vector Machine (SVM)-based or Deep Neural Network (DNN)-based. Since these models have been
demonstrated to outperform PWMs in many predictive tasks (Tognon et al., 2023), they may boost the
accuracy of MotifRaptor’s predictions. However, while several complete collections of PWMs are available,
comprehensive libraries of SVM-based or DNN-based models are still not available to the community.
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CRISPR genome editing

The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system
has revolutionized genetic engineering, offering a precise, versatile and programmable framework to mod-
ify the genomes of living organisms (Cong et al., 2013). Originally identified in bacterial immune system
(Garneau et al., 2010), CRISPR-Cas system has become a transformative gene-editing tool with profound
implications for molecular biology and the potential for innovative therapeutic interventions (Jinek et al.,
2012; Hsu et al., 2014; Kantor et al., 2020). CRISPR-Cas systems encompass an ensemble of diverse com-
ponents each employing distinct mechanisms of action. Despite different Cas proteins (Table 7.9) may
be employed depending on the editing goal (Makarova et al., 2020), all systems rely on CRISPR RNA
(crRNA) for precise target specificity. Notably, some variants introduce an additional requirement for
trans-activating RNA (tracrRNA), forming a crucial scaffold structure (Kantor et al., 2020). The afore-
mentioned CRISPR RNAs are joined into a single small guide RNA (sgRNA) (Ran et al., 2013). Using
sgRNAs rather than crRNAs and tracrRNAs significantly simplifies the editing process design. Proto-
spacer adjacent motif (PAM) sequences are other key components of most CRISPR-Cas systems. PAM
sequences are short motifs adjacent to the target sequence, restricting Cas proteins action to locations
presenting the target sequence followed by the appropriate PAM. The simplicity of the 5’-NGG-3’ PAM
sequence requirement has led to the predominant use of Streptococcus pyogenes’ Cas9 (SpCas9) protein
in different applications (Figure 7.22 (A)). However, spCas9’s PAM sequence significantly restricts
its editing landscape. Consequently, recent studies focused on proposing novel engineered Cas proteins
enhancing Cas9 editing scope (Anders et al., 2016; Miller et al., 2020). Notably, the SpG and SpRY Cas9
variants significantly expanded the editing landscape (Walton et al., 2020), targeting less stringent PAMs.
SpG is designed to target an expanded set of NGN PAMs. SpRY is a nearly PAM-less variant (PAM NRN)
enabling to edit regions previously considered ”un-targetable”. By delivering the Cas9 nuclease complex
coupled with a synthetic sgRNA (Cas9:sgRNA) CRISPR provides a simple and programmable means to
modify genomic sequences at specific locations (Figure 7.22 (B)). To perform its editing action, the
Cas9:sgRNA complex engages in a randomized exploration of the cellular DNA, initially seeking the ap-
propriate PAM. Upon locating the PAM sequence, Cas9 unwinds the DNA to facilitate the hybridization
of the Cas9-associated sgRNA with the exposed DNA strand, known as the protospacer. When the DNA
sequence aligns with the sgRNA target sequence, the catalytic domains of the endonuclease execute the
cleave the DNA double strand, resulting in a double-strand break (Jinek et al., 2012). Subsequently,
the host cell undertakes the repair of this break through either non-homologous end joining (NHEJ) or
homology-directed repair (HDR) mechanisms (Figure 7.22 (C-D)). Genome editing mediated by other
Cas proteins works similarly. While NHEJ leads to insertions or deletions at the repair site, HDR can
be employed to insert a defined DNA template, to precisely repair the edited DNA segment. However,
HDR pathway exhibits limited efficiency and high rates of unintended indels mutations, potentially com-
promising the mutation repairing (Mao et al., 2008; Song and Stieger, 2017). CRISPR-Cas-mediated
single-base-pair editing (DNA base-editors) systems have been developed to address these limitations
(Nishida et al., 2016; Kantor et al., 2020). There are two classes of base-editors (BEs): cytosine base-
editors (CBEs) and adenine base-editors (ABEs). CBEs and ABEs can introduce all four nucleotide
transitions. The introduction of prime-editors (PEs) broadened the spectrum of donor-free precise DNA
editing. In fact, PEs not only cover all nucleotide transitions and transversions but also extend their ca-
pability to handle small insertion and deletion mutations (Anzalone et al., 2019). CRISPR-Cas systems
empower precise yet potentially random sequence editing, the experiment success relies on metculous de-
sign of guide sgRNAs to direct the Cas complex to the intended target sequences (on-targets). Achieving
this precision is crucial to avoid unintended and potentially risky alterations in non-targeted sequences
(off-targets) (Pattanayak et al., 2013; Cho et al., 2014). Additionally, genetic variants may introduce
novel unexpected target sites and PAMs, potentially influencing experiment outcome (Scott and Zhang,
2017). As a result, while designing sgRNA designs it becomes imperative to consider genetic diversity,
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Nuclease PAM
spCas9 NGG
SpCas9-VQR NGAG
spCas9-VRER NGCG
spCas9-NG NGN
spCas9-xCas9 NG/GAA/GAT
spCas9-Sc++ NNG
spCas9-SpG NGN
spCas9-SpRY NRN
SaCas9 NNGRRT
SaCas9-KKH NNNRRT
AsCas12a TTTV
AsCas12a-RR TYCV
AsCas12a-RVR TATV
Cas12j TTN
Cas12e TTCN
Un1Cas12f1 TTTN
CnCas12f1 CCN

Table 7.9. Cas nucleases and their PAM sequences. List of different Cas nucleases and their Protospacer Adjacent
Motif (PAM) sequences. Underlined Cas proteins denote “near PAM-less” nucleases

especially in clinical applications, to prevent potential undesired and hazardous consequences within the
host genome. In aiding the design of suitable sgRNAs, various computational approaches have emerged.
Guide-design tools primarily focus on computationally predicting potential guide RNAs that can target a
specified input sequence, such as a gene or regulatory element, given a PAM. In parallel, off-target nom-
ination tools offer insight into the potential sequences edited using a specific sgRNA and PAM sequence
within a host genome. These tools furnish a list of both the intended target sequence and potentially
unintended edited sequences. Furthermore, additional tools have been developed to assist researchers in
evaluating and quantifying the success of their CRISPR genome editing experiments by analyzing the
observed editing events in their data. Altogether, CRISPR genome editing has the potential to revolu-
tionize the precision medicine paradigm. Its ability to make targeted modifications to the genome presents
a powerful framework for addressing diseases linked to individual-specific molecular reasons (Sgro and
Blancafort, 2020; Ho et al., 2020). Beyond disease correction, CRISPR-based interventions hold promise
in advancing our understanding of intricate genetic and epigenetic mechanisms underlying various health
conditions (Syding et al., 2020). Moreover, the adaptability of CRISPR technologies allows for the explo-
ration of therapeutic avenues in the context of genetic disorders, neurodegenerative diseases (Kolli et al.,
2018), and even certain types of cancer (Wang et al., 2022b), paving the way for innovative and personal-
ized treatment strategies. Additionally, the continuous refinement of CRISPR tools and the exploration
of new delivery methods contribute to the ongoing evolution of this revolutionary technology, expanding
its potential applications in diverse biomedical and therapeutic realms. The subsequent sections delve
into the fundamental components of the Cas9 complex (with similar principles applicable to systems
employing different Cas proteins), explore Base Editors (BEs) and Prime Editors (PEs) along with their
distinctions from other CRISPR-Cas systems, address the off-target problem, and present an overview of
computational methods available for the analysis of CRISPR genome editing experiment data.

7.1 Essential elements in CRISPR-Cas9 Genome Editing
SpCas9 popularity in several CRISPR genome editing applications is mainly attributed to the simplicity
of its 5’-NGG-3’ PAM sequence and its widespred availability (Figure 7.22). The precision of CRISPR-
Cas9 editing systems hinges on two crucial factors (Ran et al., 2013): (i) the target sequence, a 20 bp
string within each CRISPR locus of the sgRNA array, which typically has multiple unique targets, and
(ii) the PAM sequence, which Cas9 identifies to initiate editing. Once identified its target sequences, Cas9
nuclease opens both DNA strands to introduce novel and precise modifications. Cas9 operates primarily
through two mechanisms: (i) knock-in and (ii) knock-out mutations. In knock-in, HDR employs DNA
sequences that resemble the target to mend the Cas9-induced breaks in the genome, using exogenous
DNA as a template for repair. Conversely, in knock-out, the mutations in the DNA introduced by Cas9
result in the repair of breaks via NHEJ. Repair through NHEJ often leads to random indels in the target
sequence, which can disrupt, enhance, or alter the function of the targeted site.
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Figure 7.22. CRISPR-Cas9 genome editing. (A) X-Ray resolved structure of SpCas9 nuclease (obtained from
the PDB database, accession number 6VPC (Lapinaite et al., 2020)). (B) sgRNA:Cas9 complex. The sgRNA guides
Cas9 to its target sequence. Once the sgRNA is paired with the target sequence, Cas9 opens the double-stranded DNA
(dsDNA) near the Protospacer Adjacent Motif (PAM) sequence. After unwinding the DNA, Cas9 cleaves the dsDNA 3-4
bp upstream with respect to the PAM sequence, inducing a DNA breakage. The DNA breaks are repaired through either:
(C) Non-homologous End Joining (NHEJ), which introduces insertions or deletions (indels) in the edited sequences, or (D)
Homologous Directed Repair (HDR), which inserts a template DNA within the edited segment.

7.1.1 The Cas9 nuclease
Cas9 is a protein that holds a crucial role in the immune defense mechanisms of certain bacteria against
DNA viruses and plasmids. Widely utilized in genetic engineering applications, its primary function
revolves around cleaving DNA, enabling modifications to a cell’s DNA sequence. To survive in diverse and
challenging environments populated with bacteriophages, certain bacteria have evolved mechanisms to
resist and repel predatory viruses. The CRISPR system serves as a fundamental element in these defense
strategies. Functionally, CRISPR-Cas systems act as self-programmable restriction enzymes. CRISPR
loci consist of short, palindromic repeats occurring at regular intervals, comprising alternating CRISPR
repeats and variable CRISPR spacers ranging from 24 to 48 bp in length. Typically, CRISPR loci are
accompanied by adjacent CRISPR-associated (cas) genes, which encode DNA restricting enzymes, such as
SpCas9 in Streptococcus pyogenes (Figure 7.22 (A)). The discovery that spacer regions within CRISPR
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loci exhibit homology to foreign DNA elements, including plasmids and viruses, marked the first biological
evidence suggesting that CRISPRs might function as an immune system, providing bacteria with a
versatile and adaptive defense mechanism against viral intruders. This discovery laid the foundation
for applying the CRISPR-Cas system to edit genome sequences (Mali et al., 2013). Cas9, a dual RNA-
guided DNA endonuclease enzyme associated with the CRISPR adaptive immune system in Streptococcus
pyogenes, plays a pivotal role in this system (Figure 7.22 (B)). In Streptococcus pyogenes, CRISPR
memorizes foreign DNA, while Cas9 functions as an executor, interrogating and cleaving intruding DNA
(Garneau et al., 2010; Jinek et al., 2012; Heler et al., 2015). Cas9’s interrogation involves unwinding
foreign DNA and scrutinizing it for sites that align with the 20 bp spacer region of the guide RNA
(gRNA). Upon identifying complementarity, Cas9 executes the cleavage of the invading DNA. Beyond its
role in bacterial immunity, Cas9 has emerged as a robust genome engineering tool, inducing site-directed
double-strand breaks in DNA. These breaks can lead to the inactivation of genomic functional elements or
the introduction of foreign segments through non-homologous end joining (NHEJ) or homology-directed
repair (HDR), respectively (Figure 7.22 (C-D)). Cas9’s popularity has surged due to its capability
to cleave nearly any sequence complementary to the guide RNA (Jinek et al., 2012). Importantly, its
target specificity relies on guide RNA:DNA complementarity rather than modifications to the protein
itself. This unique feature makes Cas9 directly applicable to target DNA sequences (Mali et al., 2013).
The original bacterial Cas9 requires a guide RNA composed of two distinct RNAs: the CRISPR RNA
(crRNA) and the trans-activating crRNA (tracrRNA) (Deltcheva et al., 2011). To simplify Cas9 DNA
targeting, chimeric single guide RNAs (sgRNAs) have been engineered. These advancements underscore
the versatility and potential of Cas9 as a powerful tool in genetic engineering and genome editing (Ran
et al., 2013).

7.1.2 sgRNA: guiding Cas9 to target sequences
Guide RNAs (sgRNAs) are RNA segments that serves as a guiding tool for enzymes, such as Cas nucleases,
targeting RNA or DNA sequences (Ran et al., 2013). By forming complexes with Cas enzymes, sgRNAs
guide the sgRNA:Cas complex to the intended target sequences to edit (Figure 7.22 (B)). While guide
RNAs have natural occurrences and play crucial roles in various biological functions, sgRNAs are syn-
thetically designed in genome editing applications to achieve precise and targeted modifications. sgRNAs
achieve targeting through straightforward Watson-Crick base pairing with complementary sequences.
Through complementary base-pairing sgRNAs direct Cas enzymes to the specific target region. sgRNAs
are synthetically designed by joining two RNAs: (i) the trans-activating RNA (tracrRNA), and (ii) the
CRISPR RNA (crRNA) (Deltcheva et al., 2011). The tracrRNA facilitates Cas9 endonuclease activity,
while the crRNA binds to the target-specific DNA segments. tracrRNA possesses a stem-loop structure,
serving as the base-pairing partner for the endonuclease enzyme. crRNA contains a spacer-flanked region
resulting from repeat sequences, comprising 18-20 bp. crRNA recognizes the specific complementary
target region, initiating cleavage by Cas9 upon binding with the crRNA and tracrRNA effector complex.
Modifications in the crRNA sequences enable changes in the target regions, rendering it a user-defined
programmable tool. sgRNAs design is crucial for the precision of CRISPR-mediated genome editing
experiments. For instance, in CRISPR-Cas9 regions targeting is dictated by the 20 bp sequence at the 5’
end of sgRNA. However, to ensure cleavage the target sequence must be followed by the Protospacer Ad-
jacent Motif (PAM). PAMs are short DNA segments located immediately after the target region. PAMs
are crucial for Cas nucleases to cleave targets and are generally located 3-4 bp downstream from the
cleavage site.

7.1.3 Protospacer Adjacent Motifs
Protospacer Adjacent Motifs (PAMs) (Figure 7.22 (B)) constitute a 2–6 bp DNA sequence positioned
immediately following the sequence targeted by Cas nucleases (Shah et al., 2013). Notably, PAMs are
absent in the bacterial host genome, despite their integration into the invading virus or plasmid. The
effective binding and cleavage of the target DNA sequence by Cas proteins hinge on the presence of the
PAM sequence following it (Jinek et al., 2012; Shah et al., 2013). In fact, Cas9 refrains from cleaving
the target sequence unless there is an immediately adjacent PAM sequence. Serving as an indispensable
targeting component, PAM plays a pivotal role in discerning bacterial self from non-self DNA, thereby
shielding the CRISPR locus from being targeted and disrupted by the CRISPR-associated nuclease. In
CRISPR-Cas9 genome editing applications, sgRNAs recognize target sequences with a NGG PAM sequence
at the 3’-end, guiding the nuclease to a specific sequence for cleavage (Cong et al., 2013). After sgRNA-
target pairing, Cas9 starts breaking the DNA double strand 3-4 bp upstream the PAM location. Crucially,
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most Cas proteins start editing exclusively at sites where they recognize a PAM. Numerous endeavors
have been undertaken to engineer SpCas9 and other Cas nucleases capable of recognizing various PAMs,
with the goal of enhancing the versatility of CRISPR genome editing at specified locations within the
genome (Kleinstiver et al., 2015) (Table 7.9).

7.2 Precision Genome Editing: Maintaining DNA Double Strand
Structure with Base-Editing and Prime-Editing

While Homologous Directed Repair (HDR) can insert DNA templates within edited sites to accurately
restore genome sequences, this pathway is hindered by restricted efficiency and elevated rates of undesir-
able indel mutations. These mutations often offset the potential advantages gained from the mutation
repair process (Kantor et al., 2020). Additionally, HDR-mediated editing is constrained to cell types that
are actively dividing, as it heavily relies on homologous recombination processes (Bollen et al., 2018).
The introduction of base-editing (BE) and prime-editing (PE) systems addressed these issues, introducing
frameworks to precisely edit the genome sequence without breaking double strand DNA (Komor et al.,
2017; Anzalone et al., 2019). Importantly, BEs and PEs have potential to rectify disease-causing muta-
tions within the human genome. Targeting the four transition mutations enables the correction of over
25% of human pathogenic SNPs. By inserting or deleting short DNA segments beside targeting the four
nucleotide transitions, PEs may address up to 89% of known genetic variants linked to human diseases
(Komor et al., 2017; Anzalone et al., 2019; Kantor et al., 2020). Therefore, BEs and PEs hold great
promises in expanding the therapeutical significance of genome editing technologies. Notably, BEs and
PEs may become fundamental tools in precision medicine settings and bring closer the realization of the
paradigm (Porto et al., 2020). The next sections describe the main concepts behind BE and PE.

7.2.1 Base-editing
BE systems present similar components to CRISPR-Cas. However, beside encompassing a Cas enzyme,
BEs include a single-stranded DNA modifying enzyme to precisely modify nucleotides. BEs are divided in
two distinct classes based on the single-stranded DNA modifying enzyme: cytosine base-editors (CBEs)
and adenine base-editors (ABEs). Collectively, CBEs and ABEs can perform all four nucleotide transi-
tions (C→ T, T→ C, A→ G, G→ A). Furthermore, the introduction of dual base-editor systems designed
for combinatorial editing within human cells, expanded BEs’ scope incorporating transversions (Kurt
et al., 2021; Grünewald et al., 2020; Sakata et al., 2020; Zhang et al., 2020). Such advances may facilitate
targeting more intricate compound edits significantly expanding DNA BE landscape.

Cytosine base-editors

Cytosine base-editors (CBEs) deaminate cytosine to uracil (C → U), which is recognized as a thymine
during cell replication. This process results in C → G and T → A transitions fixed in the DNA sequence
after cell replication (Komor et al., 2016, 2017). The introduction of the engineered nCas9 protein
dramatically improved CBE efficiency (Komor et al., 2016). This Cas9 variant induces a nick in the
strand containing the G in the U-G intermediate. The nick on the non-edited DNA strand favors cellular
repair towards a U-A outcome. The latter is subsequently transformed into T-A during DNA replication.
Employing nCas9 resulted in a six-fold increase in editing efficiency. Despite nCas9 exhibited 1.1%
indel rate, it remains significantly lower compared to the rate induced by editing systems using HDR and
breaking double strand DNA (Komor et al., 2016). Further improvements have been introduced to reduce
indel rate (Kim et al., 2017; Kantor et al., 2020). In parallel, researchers focused on broadening the range
of targetable bases, by developing BEs that incorporate different CRISPR nucleases. In fact, CBEs using
SpCas9 face limitations due to their dependence on its G/C-rich PAM. To address the challenge a range
of engineered Cas9 variants with modified PAM sequences and enhanced cleavage specificity has been
developed. These variants hold the potential to further expand the targeting scope (Kim et al., 2020;
Chatterjee et al., 2020; Miller et al., 2020; Zetsche et al., 2015).

Adenine base-editors

Since their editing capabilities are constrained to install C-G to T-A mutation, CBEs present a limited
spectrum of correction of disease-linked variants. Moreover, methylated cytosines are prone to sponta-
neous deamination (Alsøe et al., 2017), potentially introducing pathogenic variants. Adenine base-editors
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(ABEs) address these limitations by converting A-T to G-C. Importantly, this enable to potentially reverse
∼50% of pathogenic SNPs. This development significantly broadened the scope of BEs applications to
treatment of diseases with genetic and molecular bases. ABEs employ an ABE-dCas9 complex binding
to a target DNA sequence guided by gRNA. The complex’s deaminase domain catalyzes the transition
of adenine to inosine, that is interpreted as guanine during DNA replication (Gaudelli et al., 2017). This
facilitates the replacement of the original A-T with G-C at the targeted site. Generally, ABEs editing
efficiency is high introducing almost no indels. While they worked well when paired with SpCas9, ABEs
exhibited limited compatibility with Cas9 variants. ABE8e (Gaudelli et al., 2017; Richter et al., 2020)
solved this issue, providing a base-editor with enhanced efficiency and compatibility with Cas9 variants
other than SpCas9. This significantly expanded the editing landscape of ABEs, enabling the editing of a
wide range of genomic regions.

7.2.2 Prime-editing
Originally, CBEs and ABEs limited their editing capability to four transition mutations. Prime-editing
(PE) (Anzalone et al., 2019) addressed the issue proposing a BE method operating without inducing
double-strand breaks in the DNA, and employing an engineered reverse transcriptase (RT). The RT
is fused to Cas9 nickase (nCas9) and a prime-editing guide RNA (pegRNA) (Anzalone et al., 2019).
pegRNAs have two major functions purpose: (i) directing nCas9 to the target site, and (ii) harboring an
additional sequence specifying the desired sequence edits (Anzalone et al., 2019). Briefly, the 5� end of
the pegRNA binds to the primer binding site (PBS) region on the DNA. This bind induces the exposure
of the non-complementary strand. Subsequently, Cas9 nicks the unbound DNA strand containing the
PAM, creating a primer for the RT to start its retrotranscription. While elongating the nicked strand,
RT uses the interior of the pegRNA as a template, editing the target region. This operation produces
two redundant PAM DNA flaps: the edited 3� and unedited 5’ flaps. To include the edit within the
DNA, PE exploits cellular endonucleases actions. In fact, The cell endonucleases are abundant during
lagging-strand DNA synthesis, and preferentially degrade the 5� flaps (Kantor et al., 2020). The resulting
heteroduplex containing the unedited and the edited strands is resolved and integrated into the host
genome through cellular replication and repair processes.

7.3 Editing unwanted regions: addressing the Off-Targets issue
and understanding the influence of Genetic Diversity

CRISPR genome editing offers signifcant opportunities for developing innovative therapeutics by precisely
modifying genetic or epigenetic elements, such as regulatory elements, within specific genomic regions.
The design of gRNAs to precisely target the intended sequences (on-targets) is of paramount importance.
gRNAs precision is essential to prevent unintended and potentially deleterious edits in non-targeted
sequences, called off-targets (Pattanayak et al., 2013; Cho et al., 2014). Off-target edits often occur at sites
exhibiting sequence homology to the intended on-target. However, the precise rules governing off-target
editing remain unclear (Tycko et al., 2016). The presence of mismatches in sequences may result in either
a decrease in cleavage activity or may have no discernible effect, contingent upon the specific nature of the
base alteration and its relative position (Doench et al., 2014, 2016). Furthermore, while off-target editing
generally decreases with the number of mismatches (Cho et al., 2014), several studies demonstrated that
off-targets mutations occur in sites displaying up to 6 mismatches with respect to the on-target (Tsai
et al., 2015). Off-target prediction is a fundamental practice guiding the development and design of
CRISPR experiment. Beyond the mere count of mismatches or bulges, various sequence characteristics,
such as the position of the mismatch or bulge relative to the PAM, or specific base alterations, contribute
to the likelihood of off-target effects. Notably, genetic diversity significantly influences the potential
creation of new off-target sites (Scott and Zhang, 2017). Indeed, genetic variants can enhance the affinity
of certain sequences previously unbound by the sgRNA. Furthermore, they may generate novel PAM
sequences due to their simple structure. PAMs occurring in novel positions may induce Cas proteins
to break double stranded DNA in previously uncut positions, with potential hazardous effects on the
cell environment. Several methods are currently available to assess on- and off-target genome editing at
individual loci (Clement et al., 2020). These approaches encompass both sequencing and non-sequencing-
based methods. While non-sequencing-based methods, generally, provide cost-effective solutions to detect
sequence edits, sequecing-based technologies precisely quantify editing frequencies and define the mutation
alleles induced by genome editing (Clement et al., 2020). Among these methods, GUIDE-seq (Tsai et al.,
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2015) and Circle-seq (Tsai et al., 2017) have been succesfully employed to experimentally identify off-
target edits in cellula and in vivo, respectively.

7.4 The computational aspects of CRISPR Genome Editing ex-
periments

Designing effective gRNAs is crucial for precisely targeting specific sequences within the genome while
minimizing off-target effects. Several computational tools are to design guides (guide-designer). Guide-
designer provide a list of potential guides targeting a region. However, these tools must account for
potential off-target sites during gRNA design to mitigate unintended genetic alterations. Off-target
nomination tools predict and analyze off-target effects of input gRNAs. They provide a comprehen-
sive landscape of the potential experimental outcomes. CRISPR edits can be quantified using several
tailored computational methods, that measure editing events from sequencing data. Although, quantifi-
cation methods detect and quantify editing events in common CRISPR genome editing settings, they
fall short when measuring the phenotypic outcomes in more compelx experiments, like CRISPR screens.
CRISPR screens evaluate the impact of genetic variants on phenotypic traits, providing insights into the
functionality of specific genomic elements and their implications for disease and therapeutics, such as
cancer.

7.4.1 Designing guide RNAs
Designing guide RNAs (gRNAs) to precisely target specific sequences within the genome is a critical
aspect of planning CRISPR genome editing experiments. These gRNAs not only need to efficiently
target the intended target sequence but also must minimize the risk of binding to unintended sites,
thereby reducing the likelihood of off-target effects. To assist researchers in this endeavor, a variety
of computational tools have emerged to facilitate the design of gRNAs with optimal characteristics (Li
et al., 2023). These tools, available both online and offline, leverage sophisticated algorithms to predict
gRNA efficacy and specificity. Among the available tools, web-based platforms like CRISPOR (Haeussler
et al., 2016), CRISPR-SURF (Hsu et al., 2018), and CHOPCHOP (Montague et al., 2014) offer user-
friendly interfaces for designing gRNAs. Additionally, specialized tools such as Prime-design (Hsu et al.,
2021) cater to specific applications, such as designing pegRNAs used in PE experiments. A crucial
aspect of these gRNA design tools is their ability to assess the off-target potential associated with the
predicted guides. Once gRNAs are designed, their efficacy and specificity are typically evaluated using
off-target prediction tools. These tools aim to detect potential off-target sites that may be edited using
the predicted gRNAs, providing researchers with valuable insights into the potential risks associated with
their experimental designs.

7.4.2 Nominating potential CRISPR off-targets
Off-target genomic cleavage, occurring at sequences sharing high similarity with the intended on-target
site, poses a significant challenge in CRISPR genome editing (Pattanayak et al., 2013; Cho et al., 2014).
Computational methods nominating off-target sites during guide RNA design have been pursued exten-
sively to address this issue (Hanna and Doench, 2020). Various methods have been developed to predict
off-target sites based on factors like sequence homology, mismatches, RNA/DNA bulges, and the effects
of mismatches on cleavage activities (Doench et al., 2014, 2016; Sanson et al., 2018). Traditional sequence
aligners offer a rapid way to identify putative off-target sites by aligning the target sequence to the refer-
ence genome and reporting loci with specified mismatches. Notable examples are CRISPR-P (Lei et al.,
2014), Bowtie2 (Langmead and Salzberg, 2012), BWA (Li and Durbin, 2009), CHOPCHOP (Montague
et al., 2014), GT-scan (O’Brien and Bailey, 2014), CRISPOR (Haeussler et al., 2016). However, their
effectiveness is limited as they may miss some potential off-target sites. Newer search algorithms have
been devised to overcome these limitations, incorporating considerations like PAM requirements (Xiao
et al., 2014; Zhu et al., 2014), RNA and/or DNA bulges (Bae et al., 2014; Cancellieri et al., 2020), and
enzymatic binding and cleaving processes (Klein et al., 2018). Despite off-target editing generally de-
creasing with an increasing number of mismatches, experiments have shown mutations occurring at sites
with numerous mismatches, highlighting the complexity of off-target effects. Therefore, determining the
optimal number of tolerated mismatches during in silico off-target site nomination remains a challenge
(Clement et al., 2020). Insights from experimental datasets have been leveraged to train computational
models using various techniques such as logistic (Allen et al., 2019), regression (Listgarten et al., 2018), or
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random forest regression (CRISTA) (Abadi et al., 2017) models. However, generating sufficient data for
model training remains a hurdle. Additionally, these models were trained on CRISPR-CAs9 derived data
and are not directly applicable on other Cas proteins or on base editors. Together, off-target nomination
tools provides a comprehensive in silico prediction of genome editing potential outcomes.

7.4.3 Quantifying CRISPR Genome Editing experiments outcome
Genome editing outcomes can be quantified through different sequencing methods. Sanger sequencing
trace decomposition tools like TIDE and ICE offer quick and cost-effective quantification of editing and
allelic frequencies, particularly useful for screening edited cell clones (Brinkman et al., 2014; Conant et al.,
2022). Alternatively, PCR amplicons can be cloned into plasmids and sequenced via Sanger methods to
identify specific alleles (Canver et al., 2014). Next-generation sequencing (NGS) is considered the gold
standard for determining editing frequency and characterizing resulting alleles. Compared to traditional
methods, NGS provides more accurate results, although it can be cost-prohibitive and time-consuming.
However, as sequencing costs decrease, NGS analysis becomes more accessible, enabling the development
of multiplexed readouts and more sensitive assays for detecting rare alleles. Numerous computational
tools have been developed for analyzing NGS data from CRISPR-Cas nucleases (Park et al., 2017; Pinello
et al., 2016) and base editors (Clement et al., 2019; Hwang et al., 2018). These tools employ various
alignment and analysis techniques to distinguish true genome edits from sequencing errors. For instance,
the ”editing window” approach focuses on mutations overlapping the predicted target site, reducing false-
positive results (Clement et al., 2019). Such methods enhance the accuracy of genome editing analysis
and pave the way for more reliable experimental outcomes. Despite quantification tools may be used to
quantify the phenotypic outcomes of genome wide CRISPR experiments, they fall short when quantifying
the impact on extended pooled screens.

7.4.4 Quantifying gene essentiality from genome-wide pooled CRISPR screens
Perturbing gene activity and evaluating the resulting phenotype is a fundamental approach for identi-
fying and understanding a gene’s biological functions. Historically, the ability to induce complete gene
knockouts (KOs) on a genomic scale was confined to model organisms like yeast. In higher eukaryotes,
including human cell lines, researchers relied on RNA interference (RNAi) or gene trapping methods in
haploid human cells (Carette et al., 2011). RNAi uses the endogenous RNA-induced silencing complex
(RISC) machinery to target messenger RNA transcripts, whose abundance can vary significantly. This
variability often leads to incomplete target knockdown and off-target effects of varying severity, resulting
in diluted data (Kaelin Jr, 2012; Hart et al., 2014). The adaptation of the CRISPR-Cas system to pooled
library gene KO screens in mammalian cells has revolutionized the identification of essential genes, en-
abling high-throughput functional analysis of the genome (Koike-Yusa et al., 2014; Shalem et al., 2014;
Meyers et al., 2017). In CRISPR pooled library screens, multiple gRNAs target each gene, with each cell
affected by a single gRNA clone, while each guide targets numerous cells. Cells without any perturbation,
or those with KOs showing no growth phenotype, exhibit normal growth rates, akin to wildtype cells.
Conversely, cells with a gRNA targeting a gene critical for fitness demonstrate reduced growth rates.
To pinpoint genes responsible for fitness defects upon KO, the frequency distribution of gRNAs in the
population is analyzed via deep sequencing and compared to an early control timepoint. Changes in the
gRNA frequency distribution are quantified as log fold changes, with severe negative values indicating
gRNAs associated with significant fitness defects. However, accurately estimating the gene-level effect
by aggregating individual reagents poses a major challenge in the analysis of CRISPR pooled screens.
BAGEL (Hart and Moffat, 2016) introduced a method employing a Bayesian classifier, utilizing training
sets comprising both known essential and non-essential genes to construct models to predict the expected
fold change distributions for each gene category. When assessing the effects on uncharacterized genes,
BAGEL consolidates experimental data from reagents targeting the gene of interest, such as gRNAs or
short hairpin RNAs, and evaluates the probability of these observations aligning with the essential or
non-essential training sets. However, the accuracy of cell proliferation measurements in CRISPR–Cas9
loss-of-function screens can be compromised by genomic copy number variations (Wang et al., 2015;
Aguirre et al., 2016). This influence is particularly pronounced when the gRNA–Cas9 complex targets
regions with copy number gain, triggering a DNA-damage response. This sequence-independent effect
complicates the assessment of gene deletion consequences on cell viability, even with low-level copy num-
ber alterations, posing challenges in cancer cell lines with numerous genomic amplifications. Current
methods for addressing this issue involve filtering schemes that exclude data from amplified regions, po-
tentially overlooking low-level alterations (Wang et al., 2017). CERES (Meyers et al., 2017) introduced
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an approach for estimating gene dependency from essentiality screens while computationally correcting
for copy number effects. CERES employs a nonlinear model to address bias stemming from DNA cutting
toxicity by estimating the fitness impacts caused by multiple DNA cuts. CRISPRCleanR (Iorio et al.,
2018) offers an unsupervised method for genome-wide screens, organizing reagents based on their targeted
genomic locations. Regions showing gRNA enrichment or depletion are adjusted to the global mean under
the assumption that they reflect a copy number alteration. Chronos (Dempster et al., 2021) addresses
challenges related to gRNA efficacy, such as variable screen quality, cell growth rates, and diverse DNA
cutting outcomes by incorporating a mechanistic model of the experiment. Notably, Chronos directly
analyzes read-count level data using a robust negative binomial noise model (Anders and Huber, 2010),
rather than modeling log-fold change values with a Gaussian distribution as other tools do. Addition-
ally, Chronos employs an enhanced model to eliminate biases associated with copy number variations,
accounting for multiple sources of bias.

7.4.5 Quantifying variants impact on phenotypic traits through CRISPR
screens

CRISPR screens are also valuable for evaluating the impact of genetic variants on phenotypic traits and
disease susceptibility at genome-wide scale (Doench, 2018). They have been instrumental in prioritizing
potential cancer therapeutic targets on a genome-wide scale (Behan et al., 2019). This approach has led
to the establishment of consortia like the Cancer Dependency Map (DepMap) (Tsherniak et al., 2017),
which enables the research community to investigate cancer vulnerabilities by providing open access
to key cancer dependencies, along with analytical and visualization tools. DepMap utilizes large-scale
functional genomics profiling to identify genes essential for cell growth, conducting genome-wide RNAi
and CRISPR loss-of-function screens in over 1,000 cancer cell lines. These extensive efforts are crucial for
uncovering novel cancer targets and advancing precision medicine strategies. Sequencing of gRNAs for
analysis often introduces overdispersion due to multiple PCR rounds in library construction, impacting
accuracy (Clement et al., 2020). To address this, analysis tools incorporate distributions like negative
binomial or beta binomial for P -value calculation, while permutation-based non-parametric analysis
avoids distribution assumptions (Spahn et al., 2017; Jeong et al., 2019; Jia et al., 2017). The P -value
indicates the impact of a gRNA on the observed phenotypes. For pooled screens with multiple gRNAs
targeting each gene, gene-level statistics are derived by aggregating individual P -values, considering
factors like allelic diversity and cleavage efficiency (Li et al., 2014, 2015; Yu et al., 2016). Tools like
MAGeCK and hierarchical mixture-based models adjust for variable gRNA efficiencies and offer quality
control and visualization capabilities (Li et al., 2015; Wang et al., 2019). In single-cell analysis, scRNA-
seq readouts help measure perturbation effects on gene expression, with methods like scMAGeCK and
MUSIC modeling gRNA effects using linear models or topic modeling (Yang et al., 2020; Duan et al.,
2019). CRISPR base editing screens leverage base editors (BEs) for targeted introduction of transition
variants, valuable for investigating coding variant effects and GWAS-associated variants. Notably, BE
screens have been employed to dissect coding variant effects and to evaluate GWAS-associated variant
functions (Kweon et al., 2020; Després et al., 2020; Hanna et al., 2021; Cuella-Martin et al., 2021; Cheng
et al., 2021; Huang et al., 2021a; Sánchez-Rivera et al., 2022; Kim et al., 2022; Sangree et al., 2022; Morris
et al., 2023; Martin-Rufino et al., 2023; Pablo et al., 2023; Coelho et al., 2023; Lue et al., 2023; Garcia
et al., 2023). BEAN (Ryu et al., 2024) proposes using genotypic outcome data to normalize phenotypic
scores of target variants and can analyze densely tiled coding sequence data, enhancing accuracy in
evaluating phenotypic scores for each coding variant.
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Assessing CRISPR genome editing
outcomes: A comparative analysis of
advanced quantification methods
using high-depth Whole Genome
Sequencing

CRISPR genome editing (Cong et al., 2013) holds significant promise for various clinical applications,
particularly in the realm of precision or personalized medicine. However, one of the major challenges
hindering the clinical adoption of CRISPR genome editing technologies lies in the risk associated with
unintended genetic modifications at unpredicted genomic loci (Fu et al., 2013). To address this concern,
both computational and experimental approaches have been devised to identify potential off-target editing
sites (Clement et al., 2020). These strategies typically generate a ranked list of candidate sites, with
those ranking highest being prioritized for further validation using amplicon sequencing to assess the
extent of genome editing (Akcakaya et al., 2018). However, such nomination strategies often lack a clear
cutoff point to determine which sites warrant experimental validation. As a result, the decision on the
number of sites selected for validation may be subjective, influenced by factors such as budget constraints
or arbitrary thresholds (e.g., selecting the top 100 sites). This approach leaves open the possibility
of editing occurring at lower-ranked sites, while also raising concerns about the nomination strategies’
ability to comprehensively capture the dynamics of CRISPR genome editing. Consequently, relying
solely on nomination strategies may not be sufficient to mitigate the risk of unintended modifications at
unpredicted genomic locations. Whole-genome sequencing (WGS) has emerged as a standard method
to comprehensively analyze the genome to identify editing evidences. WGS offers numerous advantages,
including the potential to assess editing activity at every nucleotide position, as well as the potential to
detect complex editing outcomes such as translocations (Yin et al., 2022). However, despite the increasing
accessibility and declining costs of sequencing technologies, in the context of editing detection, WGS still
presents challenges due to its significant expense. In fact, extensive sequencing coverage across the
entire genome is essential to detect rare editing events. Moreover, distinguishing rare editing events from
sequencing errors poses additional complexities. WGS has already been used to identify genome editing
events in clonal cell lines (Smith et al., 2014; Veres et al., 2014). This approach leverages individual
cells within a clone as replicates to mitigate the bias introduced by sequencing artifacts. However, while
effective for detecting editing events that occur with relatively high frequency, this method is less suitable
for identifying rare off-target events. The sensitivity of detection is constrained by the number of clones
analyzed, with a larger number of clones required to reliably detect rare events (e.g., performing WGS
on 100 clonal lines to detect an editing event occurring at a 1% rate). In this chapter, we explore the
effectiveness of whole-genome sequencing (WGS) for detecting genome editing events across entire cell
populations. By generating ultra-deep 1000x WGS datasets from genome-edited samples, we thoroughly
analyze editing occurrences at both intended and unintended target sites. Additionally, we compare the
detection efficiency of WGS with various experimental and computational methods for nomination and
identification of editing events. This comprehensive approach, integrating models, datasets, and analytical
techniques, offers valuable insights into the utility of WGS for detecting genome editing events.
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Guide Specificity Maximum Mismatches Potential off-targets
RNF2 High 4 7
EMX1 Moderate 4 293
HEKSite4 Moderate 4 832

Table 8.10. Editing gRNAs selected to benchmark editing detection rate. The table displays the three chosen
guides (RNF2, EMX1, and HEKSite4) used to assess the detection rate of editing events across various computational
methods. These three gRNAs were selected based on their effectiveness in editing when paired with the Cas9 protein, each
exhibiting different levels of specificity. Our study examined potential off-target sites for each gRNA, considering matches
of up to 4 mismatches. Note that DNA/RNA bulges were not taken into consideration in our analysis.

8.1 Establishing sequencing depth requirements to detect genome
editing events

The genome editing detection problem can be dissected into two primary components: (i) sequencing
genomic DNA with adequate depth to identify editing events at specific loci, and (ii), accurately in-
terpreting the sequencing data to differentiate true CRISPR edits from technical artifacts. Addressing
the first aspect, we propose a binomial model to assess sequencing depth requirements, and use simu-
lated samples to evaluate the efficacy of existing mutation callers in identifying edited reads. Sequencing
genomic DNA to detect editing events can be conducted in a heterogeneous population of edited cells,
where the detection limit and power are directly proportional to the sequencing depth. This principle
applies not only to amplicon sequencing targeting a single locus but also to WGS. Notably, while WGS
can be conducted at low coverage in clonal cell lines to identify genome editing in individual cells, the
limit of detection in this scenario is determined by the number of single-cell clones that can be sequenced.
To detect genome editing events is essential to sequence samples at sufficient depth. Deeper sequencing
is necessary to detect rarer editing occurrences. To formalize the ability to detect editing events across
various frequencies, we employed a statistical model based on the binomial distribution as a framework
(Petrackova et al., 2019). With this model, we can determine the sequencing depth required to observe
a specific number of reads, given a certain frequency of edited reads in a sample. For instance, to detect
a single edited read in a sample with a mutation rate of 10%, 30 reads are required, while 300 reads
are needed to detect a single edited read in a sample with a mutation rate of 1%, with a power of 95%.
Additionally, the binomial distribution confidence interval may be used to estimate the range of true
editing rates based on an observed editing rate and sequencing depth. For example, the 95% confidence
interval for an edit observed in 15 out of 30 reads ranges from 31.3% to 68.7%.

8.2 Generating WGS datasets

Whole-genome sequencing is a fundamental tool to comprehensively identify mutations throughout the
genome. Notably, WGS has found application in clinical settings for detecting disease-associated germline
mutations (Thiffault et al., 2019). Clinical WGS protocols typically target sequencing depths of 30x-50x
coverage, with 40x coverage being recognized as adequate for detecting both heterozygous and homozy-
gous single nucleotide polymorphisms (SNPs) (Sun et al., 2021). According to our models (Section 8.1),
sequencing at 30x coverage can identify a single edited read amidst approximately 5% genome editing
at 80% confidence. However, for detecting rare editing events, deeper sequencing is required. Our goal
is to construct WGS libraries at a depth of 1000x, enabling the detection of a single edited read with
a 0.2% editing rate and 80% power. In our study, we edited K562 and GM12878-Cas9 cell lines (Ma
et al., 2017) using three guides exhibiting varying specificities, as determined by the number of sites in
the genome with sequence homology up to 4 mismatches (Table 8.10). Specifically, we selected guides
targeting RNF2 (high specificity, 7 off-by-4 sites), EMX1 (moderate specificity, 293 off-by-4 sites), HEK-
Site4 (moderate specificity, 832 off-by-4 sites). Additionally, a Cas-12a guide targeting DNMT1Site3
was utilized as a control guide. For each sample, PCR-free sequencing libraries were prepared. Genomic
sequencing depth was assessed using Mosdepth (Pedersen and Quinlan, 2018), revealing a minimum of
89% genomic coverage at 1000x in GM12878 and at least 57% genomic coverage at 1000x in K562.
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8.3 Measuring genome editing detection rates using existing
tools

We leveraged our WGS datasets to evaluate the efficacy of established tools commonly utilized for variant
detection in non-CRISPR contexts: Mutect2 (McKenna et al., 2010), Varscan2 (Koboldt et al., 2012),
and Strelka2 (Kim et al., 2018). While these tools have been developed to ignore technical artifacts, such
as sequencing errors, and to identify rare alleles, none is specifically designed to detect CRISPR-edited
reads or genomic sites affected by CRISPR editing. Nevertheless, they are frequently employed to identify
rare editing events. We therefore tested the ability of these tools to detect CRISPR editing at and around
sites nominated by experimental (GUIDE-seq (Tsai et al., 2015)), and computational (Casoffinder (Bae
et al., 2014)) methods.

8.3.1 Detecting genome editing events in GUIDE-seq sites
For each site identified by GUIDE-seq, we defined 20 Kb windows to analyze the occurrence and char-
acteristics of events detected by Mutect2, Strelka2, and Varscan2 in both K562 and GM12878-Cas9 cell
lines. Each GUIDE-seq nominated site was expanded to include 10 Kb upstream and downstream of
the target site. Within our analysis, edits situated within the predicted target site were considered true
positives, while those located upstream or downstream were labeled as false positives. Upon inspect-
ing Mutect2 editing events identified in GM12878 (using gRNA EMX1) (Figure 8.23) and K562 cells
(Figure 8.24), a significant proportion of the called events were found outside (both upstream and
downstream) of the GUIDE-seq target sites. This prevalence of false positives was also observed with
Strelka2 and Varscan2, across cells treated with other gRNAs (Figure 8.25). However, in GM12878 cells
targeted by RNF2, both Mutect2 and Strelka2 did not detect any editing events outside of the designated
target site (Figure 8.25 (C)). Similarly, in K562 cells targeted with EMX1 gRNA, Strelka2 exclusively
identified edits within the specified target region (Figure 8.25 (D)). Interestingly, we noticed a higher
frequency of SNV calls compared to insertions or deletions (indels) in the samples, indicating that Mu-
tect2, Strelka2, and Varscan2 are more inclined to detect the genetic diversity inherent within cell lines
rather than authentic editing events. Although Mutect2 was able to detect true positive editing events
lying within the target site, particularly within strong GUIDE-seq sites, most events were discarded
upon applying filters, tagged as artifacts (Figure 8.23 (B) and 8.24 (B)). However, such explicit fil-
tering steps were not provided by Strelka2 and Varscan2. These observations are expected, as Mutect2,
Strelka2, and Varscan2 were not specifically tailored to identify CRISPR editing events. Consequently,
while they recovered several true positive events, they also reported numerous false positive events, po-
tentially biasing the quantification and detection of editing events, especially those occurring outside the
expected edited regions. Moreover, the noise in the signal returned by the variant callers could further
skew the quantification of editing efficiency. It is noteworthy that the variant callers seem to capture true
positive editing events mainly on the strongest sites. However, studies have demonstrated that editing
may be observed on targets displaying up to 6 mismatches to the gRNA (Tsai et al., 2015; Clement et al.,
2020). Given these considerations, we further explored how variant callers behave when focusing solely
on computationally predicted target sites.

8.3.2 Detecting genome editing events in CasOffinder sites
We extended our investigation by focusing on target sites predicted computationally by CasOffinder (Bae
et al., 2014), comparing the performance of variant callers with that of CRISPResso2 (Clement et al.,
2019), a widely recognized computational tool for quantifying genome editing events in WGS experiments.
For each CasOffinder site, we computed an editing rate by comparing the number of reads supporting
the edited allele against those supporting the wild-type allele. The editing rate for a site s is calculated
using the following formula:

editingrate(s) =
∑
a

readsalt
readsrefa + readsalta

where a represents each variant called within that site by the variant caller or CRISPResso. In this
analysis, we focused on the strongest on-target and off-target sites predicted by CasOffinder. Generally,
we observed that both variant callers and CRISPResso identified edits primarily in treated cells, predicting
minimal editing in control cells (Figure 8.26 and 8.27). However, a notable exception was observed with
Strelka2, which identifies some edits in control samples for gRNA EMX1 and HEKSite4 on GM12878
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Figure 8.23. Editing events detected on GM12878 cell line (gRNA EMX1) using Mutect2. (A) Mutect2
detected editing events on the edited GM12878 (using gRNA EMX1) within a ∼20 Kb window around the GUIDE-seq
nominated sites. Mutect2 identifies most events outside the intended target site, suggesting high false positives rate. When
the window size was restricted to 100 bp, Mutect2 detects true editing events (indels and polyploid events) only at strong
sites with up to 2 mismatches. (B) The table provides a summary of the true and false positive events detected by Mutect2.
After applying filtering steps, Mutect2 discarded a significant number of true editing events, affecting its accuracy.
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Figure 8.24. Editing events detected on K562 cell line (gRNA EMX1) using Mutect2. (A) Mutect2 detected
editing events on the edited K562 (using gRNA EMX1) within a ∼20 Kb window around the GUIDE-seq nominated sites.
As expected from K562 genetic make-up, Mutect2 recovers significantly more events compared to GM12878. However,
Mutect2 still identifies most events outside the intended target site. Restricting the window size to 100 bp, we observe that
Mutect2 detects true editing events (indels and polyploid events) at both strong and weak sites (up to 2 and 3 mismatches).
(B) The table provides a summary of the true and false positive events detected by Mutect2. After applying filtering steps,
Mutect2 discarded a significant number of true editing events. However, Mutect2 filter keeps a deletion detected on a target
site (3 mismatches).
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Figure 8.25. Detected editing events locations on GM12878 and K562 cells. (A-C) The locations of editing
events identified by Mutect2, Strelka2, and Varscan2 in GM12878-Cas9 cells are analyzed. The majority of the editing
events reported by the three tools are located outside the target sites predicted by GUIDE-seq. (C) Interestingly, in cells
targeted by RNF2, both Mutect2 and Strelka2 do not detect any editing events outside of the designated target site. (D-F
The analysis of editing events detected by Mutect2, Strelka2, and Varscan2 in K562 cells reveals that, similar to GM12878,
most of the reported editing events occur outside the target sites predicted by GUIDE-seq. (D) Notably, when targeting
EMX1, Strelka2 exclusively identifies edits within the specified target region.
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cells (Figure 8.26 (A) and (C)), and Mutect2, which identifies some edits in control samples for gRNA
RNF2 on GM12878 cells (Figure 8.26 (A)). As expected, editing rates are higher in K562 cells than
GM12878, due to their genetic diversity. Interestingly, all variant callers and CRISPResso successfully
identified and recovered editing events occurring in the on-target sites. However, variant callers appeared
to generally underestimate editing events occurring in the best off-target site. This observation aligns
with our previous findings, where we demonstrated how variant callers struggle to recover editing events
in weaker sites.

8.4 Discussion, limitations and future directions
Whole-genome sequencing has emerged as a promising method for detecting genome editing due to its
ability to capture sequence variations across the entire genome without the biases associated with ampli-
con sequencing. Unlike experimental nomination methods, WGS does not rely on biochemical properties
and offers a comprehensive view of genomic alterations. Previous attempts at WGS, however, have been
limited by insufficient power to detect rare mutations, particularly in heterogeneous populations. De-
spite its potential, using WGS for identifying CRISPR-Cas editing sites presents several challenges. The
primary obstacle is the cost associated with next-generation sequencing, especially considering that the
majority of sequenced reads do not correspond to potential editing sites. Moreover, existing computa-
tional tools for WGS analysis are not optimized to identify sequence alterations induced by CRISPR-Cas9
editing, and the computational resources required for analyzing ultra-deep WGS samples are often pro-
hibitive. We investigated the effectiveness of ultra-deep WGS in detecting rare editing events resulting
from CRISPR-Cas9 editing, benchmarking different computational methods commonly used to detect
and quantify editing events. Our findings reveal that although the compared computational tools may
capture some editing events, other are ignored or underestimated. Moreover, the development of methods
to tailored to exactly quantify editing events is required to better capture and estimate editing at less
deep sequencing rates. Furthermore, translating WGS findings to clinical applications poses additional
challenges. WGS is a destructive process, meaning that cells analyzed by WGS may not accurately rep-
resent those used in therapy. There is also a risk that cells with rare editing events may be present in
the therapeutic cell population, and biological conditions observed in WGS samples may not fully reflect
those in the clinical setting. However, despite these challenges, using WGS at a specified depth offers
a means to quantify the risk of failure in medical interventions, particularly the risk of editing at unin-
tended targets. This approach provides a quantifiable measure of risk that can inform decision-making
in precision medicine applications.
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Figure 8.26. Editing rates on treated and control GM12878 cells. Editing rates computed analyzing treated and
control GM12878 cells on computationally predicted on-target (A) and off-target (B) targeting EMX1, (C-D) HEKSite4,
and RNF2 (E-F).
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Figure 8.27. Editing rates on treated and control K562 cells. Editing rates computed analyzing treated and control
K562 cells on computationally predicted on-target (A) and off-target (B) targeting EMX1, (C-D) HEKSite4, and RNF2
(E-F).
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Genetic diversity alters potential
therapeutic CRISPR genome editing
off-targets outcomes

CRISPR genome editing stands as a groundbreaking approach for crafting innovative therapeutics through
the precise manipulation of genetic or epigenetic elements within targeted genomic regions. However, the
therapeutic potential of CRISPR-based systems is tempered by the risk of unintended off-target modifica-
tions, which could potentially lead to genotoxic effects. To mitigate this risk, a plethora of experimental
assays and computational methodologies have been devised to uncover or predict these off-target sites
(Clement et al., 2020). Off-target site can be partially predicted based on their homology to the spacer
and PAM sequence (Section 7.3). However, a multitude of sequence features beyond simply the number
of mismatches or presence of bulges influence off-targets potential (Clement et al., 2020; Bao et al., 2021;
Hsu et al., 2013; Doench et al., 2016). Computational models play a pivotal role in complementing ex-
perimental approaches to off-target nomination by triaging gRNAs before experiments (Section 7.4.2).
These methods predict the number and cleavage potential of off-target sites, and prioritize target sites
for experimental scrutiny. Moreover, genetic variants may significantly alter the landscape of both on-
target and off-target editing. Strategies designed to specifically target patient mutations may increase the
likelihood of editing mutant alleles, while variants that reduce homology to the intended target sequence
may diminish the efficiency of the desired genetic modification. Although various experimental methods
exist for empirically nominating off-target sites in vitro and in cellula, these methods typically rely on ho-
mology to the reference genome or a limited set of human donor genomes to evaluate off-target potential
(Bao et al., 2021; Chaudhari et al., 2020). Therefore, computational methods offer a particularly valuable
avenue for predicting the impact of off-target sequences not present in reference genomes. Previous stud-
ies have utilized population-based variant databases such as the 1000 Genomes Project (1KGP) and the
Exome Aggregation Consortium (ExAC) to demonstrate how genetic variants can significantly alter the
off-target landscape. Specifically, genetic variants may generate novel and personalized off-target sites
not present in a single reference genome (Lessard et al., 2017; Scott and Zhang, 2017). However, exist-
ing computational tools often have limitations, such as their inability to efficiently handle large variant
datasets, consider higher numbers of mismatches, model RNA:DNA hybrid bulges, and accommodate
alternative haplotypes and indels. Moreover, these methods often require advanced computational skills,
limiting their potential audience. Several user-friendly websites have emerged to facilitate the design of
gRNAs and evaluate their potential off-target effects (Concordet and Haeussler, 2018; Listgarten et al.,
2018; Labun et al., 2019; Park et al., 2015). However, while these scalable graphical user interface (GUI)
tools are invaluable for gRNA design, they do not address genetic variants. These tools typically impose
artificial constraints on the number of mismatches for the search and often lack support for DNA/RNA
bulges. Consequently, using the available tools to design gRNAs for therapeutic purposes may overlook
significant off-target sites, potentially leading to unintended genotoxicity. A comprehensive and exhaus-
tive haplotype-aware off-targets search, encompassing an arbitrary number of mismatches, bulges, and
genetic variants while being, poses a significant computational challenge requiring specialized and efficient
data structures. CRISPRitz (Cancellieri et al., 2020), a recently introduced command line tool, address
this challenge. By employing optimized data structures, CRISPRitz efficiently searches off-target sites
accounting for SNVs, mismatches and bulges. However, CRISPRitz has inherent limitations. CRISPRme
substantially extends CRISPRitz by proposing a comprehensive tool designed to assist in gRNA design
while incorporating support for haplotype-aware off-target enumeration, short indel variants, and flexible
parameters for mismatches and bulges (Cancellieri et al., 2023). CRISPRme is a unified, user-friendly
web-based application providing several reports to prioritize putative off-target sites based on their risk
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at population or individual level. Additionally, CRISPRme offers flexibility by allowing users to incor-
porate custom genomic annotations, including empirically identified off-target sites or cell type-specific
chromatin features. Moreover, CRISPRme can integrate population genetic variants from phased indi-
vidual variants datasets (e.g., from 1000 Genomes Project (Consortium et al., 2015; Lowy-Gallego et al.,
2019)), unphased individual variants (e.g., from the Human Genome Diversity Project (Bergström et al.,
2020)), and population-level variants (e.g., from the Genome Aggregation Database (Karczewski et al.,
2020)). Furthermore, CRISPRme can analyze personal genomes from individual subjects to identify and
prioritize private off-targets created by variants unique to a single individual. To demonstrate the tool’s
utility, we conduct an analysis of the off-target potential of a gRNA currently undergoing clinical trials for
sickle cell disease (SCD) and β-thalassemia (Frangoul et al., 2021; Canver et al., 2015; Wu et al., 2019).
Our analysis reveals potential off-targets introduced by genetic variants within and extending beyond the
1KGP dataset. Notably, we identify a previously overlooked off-target site introduced by a variant preva-
lent in individuals of African ancestry (rs114518452, minor allele frequency (MAF) = 4.5%). Moreover,
we provide experimental evidence of its off-target potential in gene-edited human CD34+ hematopoietic
stem and progenitor cells (HSPCs). Additionally, we illustrate that allele-specific off-target potential is
pervasive across various nucleic acid targeting therapeutic strategies.

9.1 CRISPRme: a computational tool for variant-aware off-target
nomination

CRISPRme is a web-based tool designed to predict the off-target potential of CRISPR gene editing, that
accounts for the impact of genetic variation. CRISPRme is available online at http://crisprme.di.
univr.it. CRISPRme offers a versatile platform that can also be deployed to local, secure, and isolated
environments, as both a web application or a command-line utility. Importantly, neither deployment
option involves the transfer or storage of data online, ensuring compliance with genomic privacy and
regulations. As input, CRISPRme requires a Cas protein, gRNA spacer sequence, and PAM, a genome
build, sets of variants (provided as VCF files for populations or individuals), user-defined thresholds for
mismatches and bulges, and optional genomic annotations specified by the user. These inputs collectively
enable CRISPRme to generate comprehensive and personalized reports (Figure 9.28 (A)). CRISPRme
is designed to accommodate diverse gene editors with flexible and relaxed PAM requirements (Walton
et al., 2020). Leveraging a PAM encoding method based on Aho-Corasick automata and an index based
on a ternary search tree, CRISPRme efficiently performs genome-wide exhaustive searches. Even when
tested with challenging conditions such as an NNN PAM, extensive mismatches (validated with up to 7
mismatches), and the presence of RNA:DNA bulges (validated with up to 2 bulges), CRISPRme demon-
strates robust performance. Notably, a comprehensive search with up to 6 mismatches, 2 DNA/RNA
bulges, and a fully nonrestrictive PAM (NNN), on a small computational cluster node equipped with 20
CPU cores and 128 GB RAM (Intel Xeon CPU E5-2609 v4 clocked at 2.2 GHz) took ∼34 hours of
real-time processing and ∼152 hours of CPU time (including both user and system times). Importantly,
all available 1KGP variants, including both SNVs and indels, can be included in the search alongside
accompanying metadata for each individual, such as sex, superpopulation, and age. The search accounts
for the haplotypes observed in the input variants datasets. To prevent the inflation of reported sites,
off-target sites representing alternative alignments to a specific genomic region are merged. While several
tools are available for off-target enumeration, only two command-line tools incorporate genetic variants
in the search (Lessard et al., 2017; Fennell et al., 2021). However, these tools have several limitations con-
cerning scalability for large searches, supported number of mismatches, bulges, haplotypes, and variant
file formats, and notably lack an easy-to-use graphical user interface (GUI). CRISPRme generates differ-
ent reports: (i) gRNA off-targets report, (ii) a comparison of gRNAs against customizable annotations,
(iii) cumulative distribution of homologous sites based on the reference genome or superpopulations, and
(iv) individual-focused reports. The gRNA off-targets report provides a summary for each gRNA, listing
all potential off-targets identified in the reference or variant genomes based on mismatches and bulges
(Figure 9.28 (B)). Additionally, CRISPRme generates a file containing comprehensive information on
each identified candidate off-target. By default, CRISPRme annotates gRNAs by categorizing potential
off-target sites using GENCODE (Frankish et al., 2019) for genomic features and ENCODE (Consortium
et al., 2012) for candidate cis-regulatory elements (cCREs). Users can incorporate their own annotations
in BED format (Appendix A.6), such as empirically derived off-target scores or cell type-specific chro-
matin features (Figure 9.29). By leveraging 1KGP (Consortium et al., 2015) and/or HGDP (Bergström
et al., 2020) variants, CRISPRme presents the cumulative distribution of homologous sites based on the

96



Figure 9.28. CRISPRme offers a web-based platform to analyze the off-target potential of CRISPR-Cas
gene editing, taking into account population-level genetic diversity. (A) CRISPRme analyzes CRISPR-Cas gene
editing off-target potential. It accepts inputs such as a reference genome, genetic variants, PAM sequence, Cas protein type,
spacer sequence, homology threshold, and genomic annotations. Through a user-friendly interface, it provides comprehensive
analyses tailored to specific targets, allowing both target-focused and individual-focused assessments of off-target potential.
Available as an online web tool, CRISPRme can also be deployed locally or utilized offline as command-line software. (B)
Analysis of off-target’s potential of BCL11A-1617 spacer targeting the +58 erythroid enhancer with SpCas9, NNN PAM,
considering 1KGP variants (up to 6 mismatches and 2 bulges). (C) The top 1,000 predicted off-target sites ranked by CFD
score, provide insight into their potential off-target effects. The CFD score is displayed for both the reference and alternative
allele, where applicable, with the size of the circle representing the allele frequency. (D) The off-target showing the highest
CFD score corresponds to the minor allele of rs114518452 (coordinates the potential off-target on hg38 are 0-based and
1-based for the variant ID). The minor allele frequency (MAF) is based on 1KGP data. (E) The top predicted off-target
site exhibits allele-specific off-targeting, with 3 mismatches to the BCL11A-1617 spacer. rs114518452-C minor allele creates
a de novo NGG PAM sequence, as indicated by the PAM (in bold). Mismatches to BCL11A-1617 spacer are displayed in
lowercase. Coordinates on hg38 are 1-based. (F) Allele frequencies of rs114518452, sourced from gnomAD v3.1.
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Figure 9.29. The top 100 predicted off-target sites for the BCL11A-1617 spacer ranked by their CFD
scores. Results from CRISPRme’s search depicted in Figure 9.28. Candidate off-target sites located within coding regions,
as identified by GENCODE annotations, and within ATAC-seq peaks in hematopoietic stem cells (HSCs), based on user-
provided annotations are highlighted (data sourced from Corces et al. (2016)).

reference genome or superpopulation. These global reports enable comparison of different gRNA sets
based on the impact of genetic variation on their predicted on- and off-target cleavage potential using
cutting frequency determination (CFD) (Doench et al., 2016) or CRISPR Target Assessment (CRISTA)
(Abadi et al., 2017) scores (Figure 9.30). CRISPRme offers multiple scoring metrics and can read-
ily incorporate new ones, including those tailored for various gene editors. CRISPRme also generates
personalized genome-focused reports, called personal risk cards, which highlight private off-target sites
attributed to unique genetic variants.

9.1.1 CRISPRme off-targets search

CRISPRme is available through an online web application hosted at http://crisprme.di.univr.it/
(tested for compatibility with browsers like Google Chrome, Mozilla Firefox, and Apple Safari). Addition-
ally, CRISPRme can be deployed offline as either a local web application or a standalone command-line
package. To initiate a search, users need to input parameters such as gRNA spacer(s), Cas protein, PAM
sequence, genome build, and thresholds for mismatches and DNA/RNA bulges. Optional inputs include
genetic variant datasets (such as 1KGP, HGDP, and/or personal variants) and annotations. CRISPRme
search is straightforward and involves just three simple steps facilitated by the user-friendly interface
(Figure 9.31 (A)). Furthermore, the tool offers several customization options to tailor the search ac-
cording to specific requirements.
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Figure 9.30. Plots depicting the rank-ordered correlation between CFD and CRISTA reported targets. The
scatter plots illustrate the correlation between ranked targets, obtained by selecting the top 10,000 targets sorted by CFD
and CRISTA scores, respectively. From left to right, the plots depict the correlation of targets with 0, 1, and 2 bulges. In
the left plot, which represents targets with 0 bulges, Pearson’s correlation is 0.57 (P < 1e−10) and Spearman’s correlation is
0.55 (P < 1e−10). Moving to the center plot, which shows targets with 1 bulge, Pearson’s correlation is -0.16 (P < 1e−10),
and Spearman’s correlation is -0.33 (P < 1e−10). Finally, in the right plot, representing targets with 2 bulges, Pearson’s
correlation is -0.55 (P < 1e−10), and Spearman’s correlation is -0.80 (P < 1e−10). These correlation values and P -values
(two-sided) were computed using standard functions from the Python scipy library. The colors in the plots indicate the
lowest count of bulges for each target, as different alignments prioritized by the two scoring methods may result in varying
numbers of mismatches and bulges for the same target.

Spacer, Cas protein, and PAM selection

The gRNA spacer sequence, typically 20 bp long, matches the genomic target protospacer sequence and
directs Cas protein binding in the presence of a PAM (Section 7.1.2). In CRISPRme gRNAs are
represented as DNA for easy comparison to the aligned protospacer sequence. CRISPRme allows the
user to input a set of gRNA spacers each without a PAM (max 100 sequences in the online version).
Alternatively, users can input a set of genomic coordinates in BED format (Appendix A.6) or DNA
sequences in FASTA format (Appendix A.1). BED coordinates are treated as 0-based, and CRISPRme
extracts the first 100 possible spacer sequences within these coordinates, starting from the positive strand.
The protospacer adjacent motif (PAM) is essential for Cas protein binding to a specific DNA target
(Section 7.1.3). CRISPRme supports various PAMs. In the online version, users can select one available
PAM to perform the search. Both 3’ (e.g., SpCas9) and 5’ (e.g., Cas12a) PAM sequences are supported.

Genome selection and threshold configuration

CRISPRme supports genome builds based on FASTA files (Appendix A.1). The software accommodates
reference sequences available in FASTA format such as transcriptomes, genomes from other organisms,
and cancer genomes. The default hg38 genomic build, including mitochondrial DNA, is available in the
online version, with options to incorporate variants from 1KGP and/or HGDP in the search. Personal
variants can be added in the local offline and command-line versions. Users can specify the number
of mismatches, DNA, and RNA bulges tolerated in enumerating potential off-targets. The online tool
allows up to 6 mismatches and up to 2 DNA/RNA bulges (consecutive or interleaved). For local web and
command-line versions, these thresholds are customizable based on available computational resources.
Furthermore, CRISPRme enables users to specify the window for base editing susceptibility (Section
7.2.1) when selecting a base editor as the Cas protein (Figure 9.31 (B)). CRISPRme includes in the
final report whether a candidate off-target displays base editing susceptibility or not.

Annotations and Email Notification

To assess off-target activity impact, CRISPRme provides functional annotations for coding and non-
coding regions based on files from the Encyclopedia of DNA Elements (ENCODE) (Consortium et al.,
2012) and GENCODE (Frankish et al., 2019). Users can add custom genome annotations (provided in
BED format) in the offline version. Users may provide an email address in the online version to be notified
upon job completion. Upon submitting the job, the search begins. Progress is shown on a new page, and
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Figure 9.31. CRISPRme graphical user interface. (A) Main page layout of CRISPRme’s graphical user interface.
(B) Base editing options to flag potential off-target sites susceptible to base editing. The example illustrates two targets
identified as susceptible to A base editing, while one target shows no susceptibility. A target is labeled as susceptible to
<nt>BE if it contains the selected nucleotide within the specified window. Conversely, if the nucleotide is absent in the
window, the target is labeled as non-susceptible. (C) CRISPRme’s status report page.

upon completion, a “View Results” link appears at the bottom of the status report page (Figure 9.31
(C)).

9.1.2 CRISPRme output and graphical reports
CRISPRme summarizes the results in a table, emphasizing, for each gRNA, its CFD specificity score
alongside the count of on-targets and off-targets detected in both the reference and variant genomes,
grouped by the number of mismatches and bulges (Figure 9.32 (A)). Notably, the CFD specificity
score was originally devised for searches encompassing up to 3 or 4 mismatches. However, as the number
of mismatches increases, the specificity score diminishes non-linearly. Therefore, it’s crucial to compare
with caution these scores across searches with varying numbers of mismatches/bulges or different ge-
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netic variant datasets. Furthermore, six other downloadable interactive reports are generated for each
guide: Custom Ranking, Summary by Mismatches/Bulges, Summary by Sample, Query Genomic Region,
Graphical Reports, and Personal Risk Cards.

CRISPRme targets tabular reports

Custom ranking reports enable users to filter and prioritize potential off-targets according to various
criteria such as the number of mismatches and/or bulges, CFD/CRISTA score, Risk Score (indicating
the impact of genetic variants), or a combination of these preferences (Figure 9.32 (B)). The report
by mismatches/bulges presents a matrix grouping off-targets into subgroups according to their type,
mismatch count, and bulge size. Targets labeled with ”X” exclusively feature mismatches, while those
labeled ”DNA” include DNA bulges (potentially alongside mismatches), and ”RNA” targets comprise
RNA bulges (also potentially alongside mismatches) (Figure 9.33 (A-B)). The Summary by Sample
displays data related to the samples available in the input VCFs, enabling users to extract and visualize
specific targets associated with each sample (Figure 9.33 (C-D)). The Query Genomic Region page
enables users to fetch off-targets that intersect with a particular genomic region. For instance, this
capability allows rapid assessment of potential off-targets within a designated regulatory element or
coding region (Figure 9.33 (E)).

CRISPRme graphical reports

The Graphical Reports page generates and displays different graphical reports for each input gRNA.
Stem plots (Figure 9.34 (A)) illustrate how genetic variants impact the predicted off-target potential.
The arrow connecting the red (reference allele off-target) and blue (alternative allele off-target) dots
displays the change in predicted cleavage potential due to the variant. Bar plots display the distribution
of candidate off-targets across super-populations based on the number of mismatches and bulges (Figure
9.34 (B)). A radar chart, derived from annotations from GENCODE and ENCODE, depicts a gRNA’s
potential off-targets falling within annotated regions. A larger area in the chart signifies more potential off-
targets within these regions, which could indicate an undesirable outcome. A summary table provides the
count and percentage of off-targets with a given annotation (Figure 9.34 (B)). A motif logo summarizes
the frequency of mismatches and bulges among the predicted off-targets for each base of the protospacer
+ PAM (Figure 9.34 (B)).

CRISPRme Personal Risk cards

CRISPRme provides a dedicated feature known as Personal Risk Cards, designed to generate reports
summarizing potential off-target editing by a specific gRNA in an individual, influenced by its genetic
variants. This feature is particularly important to retrieve and investigate private off-targets. The
report encompasses two dynamically generated plots showcasing all candidate variant off-targets for the
sample, including non-unique and individual-unique targets (Figure 9.35 (A)). These plots underscore
how the introduction of genetic variants can alter predicted off-target cleavage potential, emphasizing
the importance of CRISPRme’s variant-aware off-target assessment. Furthermore, the report includes
two tables (Figure 9.35 (B)): (i) a summary table at the top, and (ii) detailed information on each
extracted candidate off-target at the bottom. The summary table features several informative columns.
The Personal column counts all candidate variant off-targets for the selected sample, encompassing both
variants unique and non-unique to the individual. Similarly, the PAM creation column counts all instances
where a genetic variant in the sample introduces a new PAM, with the PAM used in the search not found
in the reference genome at the same position. Finally, the Private column counts all candidate variant
off-targets uniquely identified in the selected sample. CRISPRme offers the opportunity to download the
personal card table file, as a separate instance.

9.1.3 Computational details on CRISPRme implementation
The CRISPRme web version and frontend were developed using Dash, a Python framework renowned
for building responsive and interactive web applications (https://plotly.com/dash/). Delving into
the backend, which encompasses graphical report generation and data analysis, Python and bash scripts
form the core components. Furthermore, to ensure optimal performance and stability, the search engine
powering CRISPRme is developed in C++ and extends the original CRISPRitz off-target nomination
tool (Cancellieri et al., 2020). Leveraging the inherent speed and robustness of C++, the search engine
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Figure 9.32. CRISPRme targets summary report. (A) The table provides a comprehensive overview of the search
results performed with sg1617, utilizing an NNN PAM, allowing for up to 6 mismatches and 2 DNA or RNA bulges. The
search was performed on the human reference genome, augmented with the 1KGP dataset comprising 5 super-populations,
as well as the HGDP dataset featuring 7 super-populations. It includes columns detailing the nuclease used, the CFD
specificity score, and the count of targets categorized based on the number of mismatches and bulges. Additionally, situated
in the top left corner are two buttons: ”Download General Table,” enabling the download of the table as a text file, and
”Download Integrated Results,” facilitating the retrieval of the full results. (B) Users can specify filters, orders, and group-
by operations to efficiently retrieve results based on custom logic tailored to their specific needs. Here, we display the first
seven columns of the table, which include sequence and positional information.

fully harnesses parallel computation and compiler optimizations, thereby enhancing efficiency and scala-
bility. This multi-faceted approach underscores CRISPRme’s commitment to delivering a seamless user
experience while conducting comprehensive off-targets nomination analyses. To perform variant- and
haplotype-aware off-target nomination CRISPRme employs a tailored procedure enriching the reference
genome sequence with variants (SNPs and short indels) defined in the input VCFs.

Enriching reference genomes with genetic variants

CRISPRme conducts off-target searches based on reference genomic sequences stored in FASTA files. To
enhance the accuracy of this search, reference genomes can be ”enriched” with genetic variants sourced
from VCF files obtained from databases such as 1KGP (Consortium et al., 2015), HGDP (Bergström
et al., 2020), or personal datasets. The enrichment process involves encoding SNPs and indels using
IUPAC notation (Algorithm 6). IUPAC symbols allow to represent alternative alleles via ambiguous
DNA characters. For instance, at a specific position where the reference allele is G and the alternative
allele is A, both alleles are represented by the ambiguous character R, corresponding to the IUPAC
symbol encoding both G or A. This enrichment technique ensures that the resulting genome encapsulates
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Figure 9.33. Summary report by Mismatches/Bulges, by Sample, and by Region. (A) The Mismatches/Bulges
summary table displays the first 4 out of 33 rows for a search allowing up to 6 mismatches and 2 DNA or RNA bulges. The
combined column aggregates the counts of off-targets found in both the reference and variant genomes. (B) View of ”Show
Targets” with 3 mismatches and no bulges. Users can toggle between different columns using the ”Toggle Columns” button
located at the top of the table. The first seven columns, which include sequence and positional information, are detailed
in Table. (C) A tabulated list displays samples along with their corresponding gender, population, and super-population
information, along the variant off-target counts specific to each sample, its population, and super-population, as well as
the number of PAM creation events observed for each sample. (D) A glimpse into the ”Show Targets” view for subject
HGDP01211 is provided. Users can choose which columns to display by utilizing the ”Toggle Columns” button located at
the top of the table. Presented here are the initial seven columns, furnishing sequence and positional insights. (E) The
table displays the candidate off-target(s) within the specified region. Here, the table’s initial seven columns are displayed,
providing sequence and positional details.
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Figure 9.34. CRISPRme Graphical Reports. (A) CRISPRme comparison using sg1617, NNN PAM, 6 mismatches,
and 2 DNA/RNA bulges, assessed on hg38 reference genome along with 1KGP and HGDP variants. A stem plot displays
the CFD score distribution for candidate off-targets, sorted by descending CFD score. When a genetic variant enhances
the CFD score, both alternative (blue) and reference (red) allele CFD scores at the same locus are shown, with circle size
proportional to allele frequency. (B) On the left, stacked bar plots summarize the number of candidate off-targets for each
mismatch + bulge category across super-populations in the input variant data. On the right, a radar chart illustrates the
percentage of off-targets categorized by specific genomic annotations relative to the total count, accompanied by a table
detailing the precise number of off-targets falling into each category (note: an off-target can belong to multiple categories).
Additionally, a motif plot exhibits the distribution of mismatches and bulges concerning the spacer+PAM sequence.

all SNP variants across different samples, including multiallelic sites with three or more observed alleles.
Indels, however, are handled differently. For each indel, CRISPRme generates a simulated chromosome
containing the variant DNA sequence along with 50 surrounding nucleotides (25 on each side). The
association between samples and variants is facilitated through a hash table, enabling efficient querying
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Figure 9.35. CRISPRme Personal Risk Card. The example shows data for subject HGDP01211. (A) On the left:
Plot illustrating potential variant off-targets specifically associated with the chosen sample. On the right: Plot displaying
potential off-targets exclusive to the selected sample. (B) The top table provides a summary of personal variant off-targets,
instances of PAM creation, and private off-targets. The bottom table enumerates all private targets identified for the
selected sample. Here, the table’s initial seven columns are displayed, comprising sequence and positional information.

to identify which samples contain a given SNP/indel. Notably, this approach removes the need for users
to manually generate multiple variant-containing genomes, simplifying the operation and automating the
association of targets with specific haplotypes. The haplotype-aware search implemented in CRISPRme
ensures that only off-targets present in real genomes are reported, thereby eliminating the chance of
reporting spurious off-targets. This operation considers the potential presence of multiple variants in any
given off-target, generating and analyzing various combinations efficiently. An ad-hoc algorithm has been
developed to process candidate off-targets in polynomial time, grouping variants by sets of individuals
sharing them to avoid redundant computations. Additionally, the algorithm accommodates both phased
and unphased VCFs as input. When phased VCFs are utilized, CRISPRme generates haplotypes for
the positive and negative strands, considering the position of the analyzed variant, even in cases where
multiple variants are present in the same target. This optimization significantly reduces computation
time and ensures the exclusion of artificial off-targets from the final report.

CRISPRme off-target nomination: indexing, search, and analysis procedures

To perform efficient target searches, CRISPRme employs an indexed reference or enriched genome and
bit-wise matching operations (Figure 9.36). This index employs a tree-based data structure encoding
all potential candidate off-targets. The tree data structure allows for swift retrieval of both reference
and variant-enriched sites. However, regions of the genome containing ambiguous bases (e.g., poorly
assembled or repetitive regions represented by Ns) are excluded from the search operation for accuracy.
For this task CRISPRme employs CRISPRitz’s search engine (Cancellieri et al., 2020). To identify all
genome regions matching the input PAM, the algorithm constructs a compact deterministic automaton
(Figure 9.36 (A) and Algorithm 7). This machine scans and enumerates all potential PAM matches
in linear time (O(|PAM|)). The automaton allows to reduce time complexity of targets search to the
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Algorithm 6: CRISPRme reference genome enrichment algorithm
Data: G, VCFS
Result: E, I, hapMap

1 E ← G ; /* Genome enriched with SNPs */
2 I ← G ; /* Genome enriched with indels */
3 hapMap← ∅;
4 for vcf in VCFS do
5 posprev ← 1;
6 for v in vcf do
7 ref, alt, id,pos, samples← parseVariant(v) ; /* Recover variants VCF fields */
8 if v is SNP then
9 Eposprev:pos ← enrichSequence(Gposprev:pos, v, pos) ; /* Encode ref and alt alleles

using IUPAC symbols */
10 else
11 Iposprev:pos ← enrichSequence(Gposprev:pos, v, pos) ; /* Encode ref and alt alleles

using IUPAC symbols */
12 hapMap[id]← samples;

13 return E, I, hapMap

minimum number of comparisons, with a complexity of O(N), where N = |G| and G is the input
genome. Notably, this algorithm scans each nucleotide in the genome only once. In CRISPRitz, the
automaton is structured as a rooted directed tree, often referred to as a trie (Bodon and Rónyai, 2003),
enriched with additional connections among nodes. Each path from the root to a leaf corresponds to a
PAM sequence (Figure 9.36 (A)). Therefore, PAM search is executed by reading one nucleotide at a
time and matching it with a node of the graph. When traversing trie’s nodes, the algorithm advances
along the corresponding path by moving one node forward in the tree and one nucleotide in the genome.
This traversal iteratively continues as long as the current genome nucleotide matches the current node.
If it is not possible to match the next available node, the algorithm backtracks to the parent node of
the graph by following special failure edges (Figure 9.36 (A)), and the search resumes from the parent
node. Importantly, the paths following the failure edges reduce the number of comparisons by allowing
the search to restart from the longest common substring that could be matched at that stage. Every
time the graph visit reaches a leaf node, the algorithm records the current index (i.e., the nucleotide
position in the reference genome) as it may represent the starting position of a candidate target site.
The result is the complete list of indices of candidate off-target sites. The indices are saved in two
arrays that differentiate between positive and negative strands. For each identified PAM, the upstream
or downstream sequences, depending on the Cas protein and strand orientation, adjacent to the PAM
occurrence are extracted. The candidate target sequence length equal the width of the input gRNA.
All identified candidate off-target sequences are gathered, sorted in lexicographical order, and encoded
using four-bit notation (Figure 9.36 (B)). To efficiently consider bulges during candidate targets search,
CRISPRitz harnesses a ternary search tree (TST) data structure (Bentley and Sedgewick, 1998) to index
the genome. In a TST, each node represents a nucleotide and can have at most three children: left,
center, and right. The TST construction involves inserting one candidate target sequence at a time, with
insertion carried out through a recursive search. Beginning with the first nucleotide of the candidate
target sequence and the TST root, the algorithm compares if the two nucleotides match. If they do, the
comparison proceeds to the next nucleotide on the candidate target sequence, descending in the TST
through the center child node without adding a new node to the TST. Conversely, if the nucleotide
pair between the center child node and the nucleotide from the candidate off-target sequence do not
match, the algorithm verifies the lexicographical order of the nucleotide on the candidate target. If it is
smaller than the current nucleotide in the TST node, the search recursively continues to the left child.
Conversely, if the candidate target nucleotide is lexicographically greater, the search recursively continues
to the right child. Subsequently, if the node in the chosen direction does not exist, a new node is inserted
into the TST with the current nucleotide of the candidate target sequence. Each genomic sequence
inserted in the TST is two characters longer than the PAM sequence to accommodate searches with up
to two DNA bulges (Figure 9.36 (C)). Genome-wide target search is a computationally intensive task
(Figure 9.36 (B)). Nonetheless, CRISPRitz addresses this challenge by employing a 4-bit encoding to
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Algorithm 7: CRISPRme PAM indexing algorithm
Data: E, PAM
Result: P

1 P ← ∅ ; /* Enriched genome */
2 A← initializeAutomaton(PAM) ; /* initialize PAM matching automaton (refer to

figure 9.35 (A)) */
3 count← 0;
4 for i in |E| do
5 nuc← E[i];
6 s← recoverState(nuc, A);
7 if s = success then
8 count ++;
9 if count = |PAM| then

10 P ← addPosition(P, i);
11 count = 0 ; /* Reset automaton states */

12 else
13 if count > 0 then
14 count−−;

15 return P

represent each IUPAC nucleotide, enabling efficient bitwise operations to handle potentail mismatches
between the gRNA and candidate target sequences (Figure 9.36 (B)). Therefore, if a gRNA aligns
perfectly to a candidate sequence without mismatches, its position indicates the starting position of an
on-target site. Conversely, if mismatches are present and their number is lower than the user-defined
threshold, the position is reported as a candidate off-target. However, CRISPRitz employs a different
strategy to handle potential bulges in the candidate target sequences. This algorithm leverages the TST
index significantly reducing the computational complexity to O(k) operations required to search for a
sequence s, where |s| = k, on a TST containing n candidate off-targets. The search process is executed
through a function that recursively traverses the TST. Beginning at the root, the algorithm explores all
branches of the TST, determining whether nucleotide comparisons result in a match, mismatch, or bulge
(DNA/RNA). Notably, when bulges are permitted, CRISPRitz may yield duplicate results, representing
the same target with varying numbers of mismatches and/or bulges, or at different positions. In the
mismatch-bulge search type, traversal along a branch may terminate at a leaf if the bulge threshold
allows for the exploration of all nodes within the branch. This occurrence is feasible because DNA bulges
are treated as supplementary characters that can align with supplementary characters on the candidate
off-target site. The mismatch-bulge search type ceases when a branch of the TST is fully explored (i.e.,
reaching a leaf), when a partial exploration of the TST exceeds the specified threshold for mismatches
or bulges, or when the traversal encounters a number of nodes equal to the length of the guide (Figure
9.36 (C)). Importantly, CRISPRme incorporates individual-specific analysis by extracting haplotype-
specific off-targets and their corresponding samples from the IUPAC-encoded enriched genome. For each
site, CRISPRme provides off-target potential scores. In cases where multiple alignments exist at a given
site (e.g., due to RNA/DNA bulges), CRISPRme reports the alignment with the highest score, ensuring
accuracy in off-target prediction. Currently, CRISPRme employs two widely used scoring functions,
CFD (Doench et al., 2016) and CRISTA (Abadi et al., 2017) scores. These scoring functions are chosen
for their efficiency in computation across thousands of sites, their ability to handle bulges, and their
proven effectiveness in predicting off-targets, as validated by deep sequencing studies (Bao et al., 2021).
While CRISPRme currently supports these scoring functions, it has the potential to extend its support
to include other predictive off-target scores in the future. Along individual CFD scores, CRISPRme
provides a global score (CFD specificity) for each input gRNA:

CFDspecificity score = 100 · 100

100 +
∑

ti
CFD(ti)

where ti is one of the enumerated off-targets returned during the search. Its value falls within (0, 100],
where a gRNA that doesn’t yield any predicted off-targets given the search parameters receives a perfect
CFD specificity score of 100. It’s important to note that the CFD score is specifically designed for SpCas9,
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Figure 9.36. CRISPRme Off-target nomination indexing and search engine. (A) The PAM search process
involves seeking the PAM sequence in the genome (NGG in the example). In the illustrated example, the process starts
by matching of the base A at position 0 in the genome G with the root children T, G, C, and A of the pattern-matching
machine. To illustrate, let’s examine the initial 11 transitions of the automaton, which correspond to the identification
of three candidate targets (at positions 0, 5, and 6). (B) The mismatch-aware guide matching strategy involves encoding
characters using 4-bit notation. At a specific genomic position, the algorithm compares the gRNA’s characters with those
of G employing bitwise operations. In the illustrated example, gRNA matching starts from index 24. (C) Considering an
example of gRNA matching where up to 1 mismatch and 1 RNA/DNA bulge are permitted. The search starts by exploring
the left-most path of the tree, corresponding to the candidate sequence CT2. Upon encountering the second mismatch (T
versus C), the algorithm confirms that no bulges are permissible and halts the traversal of the CT2 path. Subsequently, the
algorithm backtracks to the previous branch, G, indicating the first mismatch. It proceeds along the CT1 path, where it
determines that while the second mismatch cannot be treated as a DNA bulge, it can be regarded as an RNA bulge. This
traversal concludes with the identification of CT1 as an off-target with one mismatch and one RNA bulge. Similarly, the
algorithm retreats to the previous branch, A, and follows the CT3 path, thereby identifying CT3 as an off-target with one
mismatch and one DNA bulge (adapted from Cancellieri et al. (2020)).

and therefore, CRISPRme does not compute CFD scores for editors different from SpCas9. In such cases,
a value of -1 is assigned to each off-target. Similarly, the CRISTA specificity score is calculated as:

CRISTAspecificity score = 100 · 100

100 +
∑

ti
CRISTA(ti)

Crucially, CRISPRme employs a constructed hash table that maps samples to variants. This enables
CRISPRme to filter results post-initial search, ensuring that only targets matching haplotypes present
in the populations and corresponding individuals are reported. Since bulges may create multiple align-
ments for a genomic region, CRISPRme generates two lists of candidate off-target sites. To address this
issue, CRISPRme merges off-target sites within a 3 bp range into a single entry per genomic region.
The surviving off-targets are selected and sorted based on the user-defined criterion. For completeness,
CRISPRme reports also the excluded targets in a different optional report.
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CFD scoring function in CRISPRme

To evaluate targets using Cutting Frequency Determination (CFD) score (Doench et al., 2016), CRISPRme
employs a matrix based on empirical data developed by the authors. We recall that CFD score was
specifically developed to evaluate spCas9 cutting potential. This matrix encompasses all possible pairs
of mismatches between a RNA and DNA sequence of 20 nucleotides in length. Each entry in the matrix
file signifies a pairing between a RNA and DNA nucleotide. For instance, the entry “rA:dG,20’, F0.22”
denotes that when the RNA nucleotide A pairs with the DNA nucleotide G at position 20, it receives
a score of 0.227. This score is then multiplied with values corresponding to any additional mismatches
present, yielding the overall CFD score for the off-target sequence. If a sequence has only one mismatch,
its final score will simply be the score of that mismatch. Thus, in the aforementioned example, the
CFD score of an off-target with a single mismatch (20A>G) would be 0.227. Furthermore, the matrix
encompasses scores for bulges, denoted by “-”. An example entry in the matrix representing a bulge is
“sS’r-:dA,2’, F0.692,” which signifies that a RNA bulge pairing with the DNA nucleotide A at position
2 has a score of 0.692. Notably, bulges are not permitted in the first position of the RNA or DNA
sequence. When dealing with targets featuring DNA bulges, computationally, they are reported with a
longer sequence compared to the original spacer. To ensure consistency in calculating the CFD score
for off-targets with DNA bulges, we compute the score based solely on the last 20 nucleotides of the
protospacer, as intended by the original CFD scoring method. Moreover, the scoring process extends to
include the PAM nucleotides. As the CFD score was derived from SpCas9 data, the matrix exclusively
contains scores for NGG and all possible combinations of the last two positions of the PAM. Let’s delve
into an example of an off-target with a DNA bulge:

Spacer: CTAACAGTTGCTT-TTATCACNNN

Protospacer: CTAACAGcTGCTTCTTATCACCTC

In this instance, the off-target incorporates one mismatch (in lowercase) and one DNA bulge (aligned
with the gap in the spacer sequence). When computing its CFD score, we exclude the first nucleotide
of the protospacer since the protospacer is one nucleotide longer than the spacer. Each mismatch and
bulge encountered is scored according to the matrix, and the values of each pair are multiplied to derive
the final CFD score. For instance, the first mismatch is rT:dC at position 7, yielding a score of 0.588.
Then, we come across the bulge r-:dC at position 13, which scores 0. The process continues until reaching
the PAM. In this case, the nucleotide pair TC has a score of 0. Subsequently, we multiply all the values
accumulated during the process. Hence, the final score is calculated as 0.588 * 0 * 0, resulting in an off-
target CFD score of 0 for this example. Scoring off-targets with RNA bulges is relatively straightforward
since the spacer sequences remain unchanged despite the presence of bulges. For instance:

Spacer: CTAACAGTTGCTTTTATCACNNN

Protospacer: CTAACAGTTGCTTTTAT-ACGTG

In this scenario, the off-target solely contains a RNA bulge (in the protospacer gap). Upon scanning
the sequence, we identify the bulge at position 18, utilizing matrix entry “rC:d-,18” with a score of 0.
Consequently, the final CFD score for the off-target will be 0.

9.1.4 Comparing CRISPRme with available off-target nomination tools
While several tools exist for enumerating CRISPR-Cas off-targets, only three previous studies have re-
ported computational strategies to assess off-target potential in the presence of genetic variants (Lessard
et al., 2017; Scott and Zhang, 2017; Fennell et al., 2021). Notably, among these, only crispRtool (Lessard
et al., 2017) and CALITAS (Fennell et al., 2021) provide general command line software. However,
upon testing, CALITAS (v1.0) was found to be unable to use phasing information and does not directly
support publicly available 1KGP VCFs as input. This limitation significantly restricts the tool’s utility
for conducting comprehensive and general variant-aware analyses. Hence, we opted to narrow down our
comparison to CRISPRme (v1.7.7) and crisprRtool (v2.0.5). To ensure a fair assessment, we evaluated
both tools based on available features and running times using identical hardware specifications (AMD
Ryzen Threadripper 3970X 32-Core Processor clocked at 2.2 GHz with 124 GB RAM). Our tests were
conducted using the 1617 sgRNA (see Section 9.2), NGG PAM, variants sourced from 1KGP, and a vari-
able number of mismatches and bulges. In summary, crisprRtool initially incorporates variants (limited
to SNPs) into the reference genome using IUPAC notation, similarly to CRISPRme. It then proceeds
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to scan the input gRNA(s) on the variant-enriched genome, generating a list of potential on- and off-
targets with IUPAC nucleotides. The tool does offer an option to search each VCF file individually
to resolve haplotypes (including SNPs and indels) of the identified off-targets. However, this requires
manual editing and execution of a script for each VCF file, adding complexity to the process. Moreover,
the search operation in crisprRtool is constrained by certain limitations, including a maximum of 5 al-
lowed mismatches, lack of consideration for bulges, and restricted flexibility regarding the PAM location
relative to the protospacer (limited to the 3’ end). With the specified settings, crispRtool required ∼9
hours to execute a non-haplotype-resolved search with 5 allowed mismatches. Furthermore, a haplotype-
resolved search restricted to chromosome 1, using 1KGP variants (6 million SNPs and indels), required
∼37 hours. Extrapolating this duration to encompass all other chromosomes, the entire search operation
would exceed 300 hours. However, it’s noteworthy that the results obtained from crispRtool lack the
comprehensive graphical reports and textual summaries offered by CRISPRme, which would encompass
results from all chromosomes. In contrast, CRISPRme capitalizes on an efficient genome index and aux-
iliary data structures, constructed just once during installation, which takes ∼4 hours for NGG PAM and
∼12 hours for NNN PAM. Alternatively, users can download these structures directly from our complete
test package. Leveraging these resources, CRISPRme can execute a haplotype-aware search for a given
gRNA across the entire genome with 5 allowed mismatches in approximately 1 hour. Furthermore, a
haplotype-resolved search encompassing the entire genome, with up to 6 mismatches and 2 DNA/RNA
bulges, requires only 2 hours (excluding the guide-independent indexing operation described above) and
provides a comprehensive summary report.

9.2 A common allele-specific off-target for a gRNA in the clinic
We tested CRISPRme using a specific gRNA (#1617) designed to target a GATA1 binding motif lo-
cated at the +58 erythroid enhancer of BCL11A (Canver et al., 2015; Wu et al., 2019). Recent clinical
observations described two patients, one with sickle cell disease (SCD) and another with β-thalassemia,
both treated with autologous gene-modified hematopoietic stem/progenitor cells (HSPCs) edited with
Cas9 and this gRNA. Remarkably, these patients exhibited sustained increases in fetal hemoglobin lev-
els, achieved transfusion independence, and showed an absence of vaso-occlusive episodes (in the case
of the patient with SCD) post-therapy. Notably, neither this study nor prior preclinical investigations
utilizing the same gRNA (#1617) have revealed any evidence of off-target editing in treated cells. This
conclusion is drawn from the absence of off-target sites identified through bioinformatic analysis of the
human reference genome and empirical analysis of in vitro genomic cleavage potential (Frangoul et al.,
2021; Wu et al., 2019; Demirci et al., 2019). CRISPRme analysis revealed a notable predicted off-target
site within an intronic sequence of CPS1 (Figure 9.28 (C-D)), a genomic locus known to exhibit com-
mon genetic variation (as evidenced by a SNP with a minor allele frequency (MAF) of ≥ 1%). The CFD
scores employed in our analysis range from 0 to 1, where a perfect match to the on-target site is assigned
a score of 1. Specifically, the alternative allele rs114518452-C introduces a TGG PAM sequence, which
aligns optimally with SpCas9, thereby generating a potential off-target site with three mismatches and
a CFD score (CFDalt = 0.95) approaching that of the on-target site (Figure 9.28 (E)). In contrast,
the reference allele rs114518452-G disrupts the PAM to TGC, resulting in a markedly reduced predicted
cleavage potential (CFDref = 0.02). In gnomAD v3.1, the rs114518452-C allele exhibits an overall MAF of
1.33%, with variable frequencies across different populations, including 4.55% in African/African Amer-
ican, 0.91% in Other, 0.66% in Latino/Admixed American, 0.12% in South Asian, 0.01% in European
(non-Finnish), and 0.00% in all remaining represented populations (Figure 9.28 (F) and Table 9.11).
To comprehensively assess potential off-target effects beyond those predicted by 1KGP variants, we scruti-
nized HGDP variants derived from whole-genome sequences of 929 individuals spanning 54 diverse human
populations. Our analysis identified 249 candidate off-targets for gRNA #1617, each exhibiting a CFD
score of ≥ 0.2, with HGDP-derived CFD scores surpassing those observed for either the reference genome
or 1KGP variants by at least 0.1 (Figure 9.37 (A) and 9.38). These additional variant off-targets,
not found in the 1KGP dataset, were observed across all superpopulations, with the highest frequency
in the African superpopulation (Figure 9.37 (B)). Among these variant off-targets, 229 (92.0%) were
unique to a superpopulation, with 172 (69.1%) being private to a single individual (Figure 9.37 (C)).
Moreover, individual-focused searches, such as the analysis of HGDP01211, a member of the Oroqen
population within the East Asian superpopulation, revealed that while most variant off-targets (with
higher CFD scores than the reference) were due to variants also present in 1KGP (n = 32,369, 90.4%),
a subset originated from variants shared with other HGDP individuals but not present in 1KGP (n =
3,177, 8.9%). A small fraction of off-targets were private to the individual (n = 234, 0.7%) (Figure 9.37
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Population Allele count Allele number Number of
Homozygotes Allele frequency

African/African-American 1,882 41,386 39 0.0455
Other 19 2,090 0 0.0091
Latino/Admixed American 100 15,246 0 0.0066
South Asian 6 4,830 0 0.0012
European (non-Finnish) 10 67,992 0 0.0001
European (Finnish) 0 10,612 0 0.0000
Amish 0 912 0 0.0000
East Asian 0 5,170 0 0.0000
Middle Eastern 0 316 0 0.0000
Ashkenazi Jewish 0 3,470 0 0.0000
XX 1,088 77,776 23 0.0140
XY 929 74,248 16 0.0125
Total 2,017 152,024 39 0.0133

Table 9.11. Complete population frequencies for rs114518452 from gnomAD v3.1.

(D)). Among these private off-targets was one generated by a variant (rs1191022522, 3-99137613-A-G,
gnomAD v3.1 MAF 0.0053%), where the alternative allele produces a canonical NGG PAM that increases
the CFD score from 0.14 to 0.54 (Figure 9.37 (D-E)). To experimentally validate the top predicted
off-target identified by CRISPRme, we selected a CD34+ HSPC donor of African descent who was het-
erozygous for rs114518452-C, the variant predicted to induce the most significant increase in off-target
cleavage potential (Figure 9.28 (C-F)). We performed ribonucleoprotein (RNP) electroporation using
a gene editing protocol designed to preserve engrafting HSC function. Amplicon sequencing analysis
revealed 92.0 ± 0.5% indels at the on-target site and 4.8 ± 0.5% indels at the off-target site. Notably,
indels were exclusively detected at the alternative PAM-creating allele among reads spanning the variant
position, with no indels observed at the reference allele (Figure 9.39 (A-C)). This observation suggests
a 9.6 ± 1.0% off-target editing rate specifically targeting the alternative allele. In an additional analysis
involving six HSPC donors homozygous for the reference allele rs114518452-G/G, no indels (0.00 ± 0.00%)
were detected at the off-target site. This finding strongly indicates that off-target editing was strictly
restricted to the alternative allele (Figure 9.39 (D)).The on-target BCL11A intronic enhancer site is
located on chr2p, while the off-target-rs114518452 site resides on chr2q within an intron of a noncanoni-
cal transcript of CPS1. Utilizing inversion PCR, we identified inversion junctions indicative of ∼150 Mb
pericentric inversions between BCL11A and the off-target site, specifically observed in edited HSPCs car-
rying the alternative allele (Figure 9.40 (A-B)). Subsequent deep sequencing of the inversion junction
confirmed that inversions were solely present on the alternative allele in the heterozygous cells (Figure
9.40 (C-D)). Droplet digital PCR analysis revealed these inversions to occur at an allele frequency of
0.16 ± 0.04% (Figure 9.40 (E)). Different high-fidelity Cas9 variants hold promise for enhancing the
specificity of gene editing, albeit potentially at the expense of reduced efficiency. Employing a HiFi
variant, 3xNLS-SpCas9 (R691A), in cells heterozygous for the rs114518452-C variant yielded 82.3 ± 1.6%
on-target indels, with only 0.1 ± 0.1% indels detected at the rs114518452-C off-target site. This represents
a ∼48-fold reduction compared to editing with SpCas9 (Figure 9.39 (C)). Notably, inversions were not
detected following editing with HiFi-3xNLS-SpCas9 (Figure 9.40 (B) and (E)).

9.3 Allele specific off-target potential of additional gRNAs
To explore the prevalence of off-target potential linked to alternative alleles, we assessed an additional
set of 13 gRNAs commonly used in clinical development or SpCas9-based gene editing (Xu et al., 2017,
2019a; Stadtmauer et al., 2020; Gillmore et al., 2021; DeWitt et al., 2016; Xu et al., 2019b; Métais et al.,
2019; Tsai et al., 2015; Zeng et al., 2020a; Musunuru et al., 2021), along with 6 gRNAs for non-SpCas9-
based editing, such as SaCas9 and Cas12a (Xu et al., 2019b; Chu et al., 2021; Newby et al., 2021; Maeder
et al., 2019; De Dreuzy et al., 2019). Our analysis, incorporating data from the 1KGP and HGDP genetic
variant datasets, revealed that 18% (with a 95% confidence interval of 13–23%) of all identified off-target
sites were attributed to alternative allele-specific off-targets. Interestingly, most of these alternative
allele-specific off-targets were associated with rare variants (MAF < 1%), although candidate off-targets
linked to common variants were also identified for each gRNA (Figure 9.41 (A)). Notably, none of these
alternative allele-specific off-target sites were previously reported in the original manuscripts detailing
the editing strategies and off-target analyses. CRISPRme generates visual representations specifically
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Figure 9.37. CRISPRme offers comprehensive analysis of CRISPR-Cas gene editing’s off-target potential,
encompassing both population-wide and private genetic diversity. (A) CRISPRme analysis was performed using
variants from HGDP comprising whole-genome sequencing of 929 individuals from 54 diverse human populations. Off-
targets associated with HGDP variants exhibiting higher CFD scores compared to the reference genome or 1KGP were
plotted and categorized by CFD score. HGDP variant off-targets are visualized in blue, while reference or 1KGP variant
off-targets are depicted in red. (B) Cumulative distribution plot illustrating HGDP variant off-targets with CFD ≥ 0.2 and
increase in CFD by ≥ 0.1 per superpopulation. To generate robust statistics, individual samples from each of the seven
superpopulations were randomly shuffled 100 times. calculating the mean and 95% confidence interval (shading around
lines). (C) Intersection analysis of HGDP variant off-targets with CFD ≥ 0.2 and increase in CFD of ≥ 0.1. Shared
variants (black) are found in two or more HGDP samples whereas private variants (gray) are exclusive to a single sample.
(D) CRISPRme analysis of a single individual (HGDP01211) showing the top 100 variant off-targets from each of the
following three categories: shared with 1KGP variant off-targets (left panel), higher CFD score compared to reference
genome and 1KGP but shared with other HGDP individuals (center panel) and higher CFD score compared to reference
genome and 1KGP with variant not found in other HGDP individuals (right panel). In the center and right panels, the term
”reference” denotes the CFD score derived from the reference genome or 1KGP variants. (E) The top predicted private
off-target site associated with sample HGDP01211 is an allele-specific off-target. In this scenario, the rs1191022522-G
minor allele replaces a noncanonical NAG PAM with a canonical NGG PAM sequence.For ease of visual alignment, the spacer
is represented as a DNA sequence.
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Figure 9.38. HGDP superpopulation distribution plots. HGDP Variant Off-Targets with CFD ≥ 0.2 and Increased
CFD of ≥ 0.1. Individual samples from each of the seven superpopulations were randomly shuffled 100 times to compute
the mean and 95% confidence interval. The first panel depicts the distribution across all 54 discrete populations, with
colors indicating superpopulations. Additional seven panels display the distribution of discrete populations within each
listed superpopulation. 113



Figure 9.39. Allele-specific off-target editing by a BCL11A enhancer targeting gRNA in clinical trials
associated with a common variant in African-ancestry populations. (A) Human CD34+ HSPCs obtained from
a donor heterozygous for rs114518452-G/C (donor 1, REF/ALT) underwent 3xNLS-SpCas9:sg1617 RNP electroporation
(NLS: nuclear localization signal), followed by amplicon sequencing of the off-target site located around chr2:210,530,659-
210,530,681 (off-target-rs114518452 in 1-start hg38 coordinates). The CFD scores for both the reference and alternative
alleles are provided, along with representative aligned reads. For ease of visual alignment, the spacer is depicted as
a DNA sequence, with lowercase indicating mismatches and the rs114518452 position highlighted in bold. (B) Reads
classified based on allele (indeterminate if rs114518452 position is deleted) and presence or absence of indels (edits). (C)
Huma CD34+ HSPCs ffrom a donor heterozygous for rs114518452-G/C (donor 1) were subject to 3xNLS-SpCas9:sg1617
RNP electroporation, HiFi-3xNLS-SpCas9:sg1617 RNP electroporation, or no electroporation (mock) followed by amplicon
sequencing of the on-target and off-target-rs114518452 sites. Each dot represents an independent biological replicate (n
= 3). Lines represent median values. Indel frequency was quantified for reads aligning to either the reference (REF)
or alternative (ALT) allele. (D) Human CD34+ HSPCs from six donors homozygous for rs114518452-G/G (donors 2–7,
REF/REF) were subject to 3xNLS-SpCas9:sg1617 RNP electroporation with one biological replicate per donor followed by
amplicon sequencing of the on-target and off-target-rs114518452 sites.

designed to highlight alternative allele-specific candidate off-target sites that intersect with cCREs and
protein-coding sequences, including putative tumor suppressor genes (Zhao et al., 2016), and/or involve
PAM creation events (Figure 9.41 (B-C)). For instance, among the top 20 candidate off-targets iden-
tified by CRISPRme for a SpCas9 gRNA targeting EMX1 (Tsai et al., 2015), two sites are associated
with genetic variants exhibiting high MAF (52% and 26%) and demonstrate substantial increases in CFD
score from REF to ALT (+0.69 and +0.44). The first site involves an intronic PAM creation variant,
while the second introduces two PAM-proximal matches to the gRNA (Figure 9.41 (D)). Remarkably,
both of these candidate off-targets encompass indel variants, highlighting the capability of CRISPRme to
consider variants beyond SNPs. In addition to visualizing candidate off-target sites based on predictive
score ranks (such as CFD or CRISTA) for SpCas9-derived editors, CRISPRme offers the capability to
visualize candidate off-targets according to the number of mismatches and bulges. This feature can be
particularly valuable for Cas proteins with distinct PAMs, where predictive scores might not be readily
available. For instance, SaCas9, a clinically relevant nuclease known for its small size and suitability
for packaging into adeno-associated virus vectors. As an example, consider a SaCas9-associated gRNA
targeting CEP290 (Maeder et al., 2019), which is currently undergoing clinical trials for treating a form of
congenital blindness (NCT03872479). CRISPRme identified two candidate off-targets linked to common
SNPs (with MAFs of 7% and 5%) that reduce mismatches from five (REF) to four (ALT), and these sites
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Figure 9.40. Allele-specific pericentric inversion following BCL11A enhancer editing due to off-target cleav-
age. (A) Concurrent cleavage of on- and off-target-rs114518452 sites may cause pericentric inversion of chr2. PCR primers
F1, R1, F2 and R2 were designed to detect potential inversions. (B) Human CD43+ HSPCs from a donor heterozygous for
rs114518452-G/C (donor 1) were subject to 3xNLS-SpCas9:sg1617 RNP electroporation, HiFi-3xNLS-SpCas9:sg1617 RNP
electroporation or no electroporation with three biological replicates. Human CD43+ HSPCs from six donors homozygous
for rs114518452-G/G (donors 2–7, REF/REF) were subject to 3xNLS-SpCas9:sg1617 RNP electroporation with one biological
replicate per donor. Gel electrophoresis for inversion PCR was performed with F1/F2 and R1/R2 primer pairs on left and
right respectively with expected sizes of precise inversion PCR products indicated. (C) Reads from amplicon sequencing of
the F1/F2 product (expected to include the rs114518452 position) from 3xNLS-SpCas9:sg1617 RNP treatment were aligned
to reference and alternative inversion templates. rs114518452 position is shown in bold. (D) Reads classified based on
allele (indeterminate if rs114518452 position deleted). (E) Inversion frequency by droplet digital PCR (ddPCR) from same
samples as in panel b with three replicates from the single REF/ALT donor and one replicate each from the six REF/REF
donors. F/F indicates forward and R/R reverse inversion junctions as depicted in panel a. NS, not significant.
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Figure 9.41. CRISPRme illustrates prevalent off-target potential due to genetic variation (A) Heatmap
showing the distribution of alternative allele nominated off-targets for SpCas9 guides by CFD score and MAF. (B) UpSet
plot showing overlapping annotation categories for candidate off-targets (tumor suppressor gene (TSG), candidate off-targets
on the same chromosome (chr) as the on-target, CDS regions, cCRE from ENCODE and PAM creation events). (C) Top
100 predicted off-target sites ranked by CFD score for gRNA targeting PCSK9 with no filter, found in cCREs, corresponding
to PAM creation events, and in CDS regions. (D) Candidate off-target sites with increased predicted cleavage potential
introduced by common (MAF 52% and 26%) indel variants for a SpCas9 gRNA targeting EMX1 (top left). Candidate
off-target cleavage sites within coding sequences with increased homology to a lead gRNA for SaCas9 targeting of CEP290
to treat congenital blindness in current clinical trials due to common SNPs (right). Potential missense mutations in the
EPHB3 tumor suppressor resulting from candidate off-target A-to-G base editing by a preclinical lead gRNA targeting
PCSK9 to reduce low-density lipoprotein cholesterol levels (bottom). MM denotes mismatches, deletions are shown in red,
and SNPs are shown in blue.
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Figure 9.42. Candidate transcript off-targets introduced by common genetic variants for non-CRISPR
sequence-based RNA-targeting therapeutic strategies. (A) A common SNP (in blue) introduces a candidate CDS
off-target site with 2 mismatches for the FDA-approved antisense oligo Nusinersen. (B) Top 1000 candidate transcript
off-targets ranked by mismatches and bulges for Nusinersen from a search performed with the 1000G and HGDP genetic
variant datasets. (C) A common insertion variant (in red) introduces a candidate 3’UTR off-target site with 4 mismatches +
bulges for the FDA-approved RNAi therapy Inclisiran. (D) Top 1000 candidate transcript off-targets ranked by mismatches
and bulges for Inclisiran from a search performed with the 1000G and HGDP genetic variant datasets.

are predicted to induce cleavages within coding sequences (Figure 9.41 (D)). CRISPRme’s functionality
extends to the nomination of variant off-targets for base editors and the assessment of their susceptibility
to base editing within a customizable editing window. Consider a gRNA targeting PCSK9 (Musunuru
et al., 2021), which has been utilized with SpCas9-nickase adenine base editor in vivo in preclinical studies
aimed at reducing low-density lipoprotein cholesterol levels.Among the top five candidate off-target sites
identified by CRISPRme, four involve alternative alleles. Notably, one off-target site exhibits a marked
increase in CFD score, from 0.2 (REF) to 0.75 (ALT), and is situated within an ENCODE candidate en-
hancer element. Additionally, CRISPRme has pinpointed a candidate off-target linked to a rare variant
(with a MAF of 0.0007%). This variant elevates the CFD score from 0.06 (REF) to 0.40 (ALT), po-
tentially resulting in missense mutations in EPHB3, a putative tumor suppressor gene (Fig.9.41 (D)).
CRISPRme tackles a fundamental computational hurdle that extends beyond CRISPR-based applications
to encompass other technologies reliant on nucleic acid sequence recognition. For instance, CRISPRme
has the capability to nominate off-targets for RNA-targeting strategies, including RNA-guided gene ed-
itors or oligonucleotide sequences used in RNA interference or antisense oligo therapies (Figure 9.42).
We performed a variant-aware search (without PAM restriction) for the FDA-approved antisense oligonu-
cleotide Nusinersen (Finkel et al., 2017; Mercuri et al., 2018), which targets SMN2 pre-mRNA to address
spinal muscular atrophy. Employing CRISPRme, we pinpointed a potential off-target site within a cod-
ing region where a common SNP (MAF 2%) reduces the number of mismatches from three (REF) to
two (ALT). Similarly, analysis of the FDA-approved RNA interference therapy Inclisiran (Raal et al.,
2020), which targets PCSK9 mRNA to combat hypercholesterolemia, unveiled an intriguing finding. The
antisense strand of Inclisiran harbors a candidate off-target in the 3’ untranslated region of the ribosomal
gene RPP14. Notably, a common insertion variant (MAF 36%) decreases the number of mismatches and
bulges from seven (REF) to four (ALT) at this site.

9.4 Analyzing candidate alternative allele-specific off-targets as-
sociated with therapeutic genome editing approaches with
CRISPRme

In addition to the study involving sg1617, numerous other clinical trials of ex vivo SpCas9 gene editing
have been reported. For instance, one trial utilized a gRNA targeting TRBC for gene-edited CAR-T cells
(Stadtmauer et al., 2020). In this case, 13 out of the top 20 ranked off-target sites, as determined by CFD
score, are associated with alternative alleles. Notably, one off-target site, attributed to a rare variant,
exhibited a CFDref of 0.05 and CFDalt of 0.5, and is located within the coding sequences of TAS2R10,
which encodes a G-protein coupled receptor expressed in T-cells. Moreover, a recent trial reported
in vivo SpCas9 gene editing using lipid nanoparticle delivery to target the TTR gene in hepatocytes
(Gillmore et al., 2021). An off-target site for this gRNA displayed a CFDref of 0.01 and CFDalt of 0.65,
situated within an ENCODE candidate cis-regulatory element. CRISPRme analysis offers flexibility
in accommodating PAM sequences beyond the conventional NGG motif. This capability is particularly
valuable for base editors (BEs), where precise positioning of the desired edit within the editing window
is crucial. For instance, various studies have explored SpCas9 variants with non-NGG PAM restrictions
to optimize base editing outcomes. For example, a study detailed the conversion of the HBB sickle cell
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mutation to a benign hemoglobin variant Makassar using A-to-G base editing (Chu et al., 2021). This was
achieved using a SpCas9 variant with a NGC PAM restriction and an IBE12 deaminase architecture, with
the base editing window spanning from protospacer position 2-16, centered around position 9. During
CRISPRme analysis, several alternative allele-nominated off-target sites were identified, some of which
overlapped coding sequences. Notably, one such site exhibited four mismatches and bulges relative to
the reference genome. However, in the presence of an alternative allele (with a MAF of 0.0007%), the
mismatches and bulges reduced to three. This variant was located within ARHGAP26, where base edits
positioned in the center of the editing window could potentially lead to missense mutations. ARHGAP26
is recognized as a tumor suppressor gene (Chen et al., 2019), underscoring the importance of considering
alternative allele-specific off-target effects in base editing strategies. In another study, the ABE8e-NRCH
base editor was employed to convert the sickle cell allele to the Makassar variant. Upon CRISPRme
analysis of alternative allele off-targets, a total of 1609 alternative allele off-targets were identified, each
exhibiting four or fewer mismatches and bulges. Among these, 198 off-targets involved PAM creation
events. One noteworthy alternative allele off-target site, with a MAF of 0.005%, was found to overlap the
coding sequence for PLA2G4B. In this context, edits within the base editing window were anticipated
to result in splice acceptor site disruption, potentially leading to loss-of-function alleles. PLA2G4B
function has been associated with monocyte metabolic fitness (Saare et al., 2020), suggesting the potential
functional significance of off-target edits in this gene. CRISPRme extends its predictive capabilities
to include off-target prediction for Cas12a-associated gRNAs featuring a 5’ TTTV PAM sequence. For
instance, in the case of a Cas12a gRNA directed at the HBG promoter for the treatment of sickle
cell disease (SCD) in ongoing clinical trials (NCT04853576) (Morgan, 2020), CRISPRme identified an
alternative allele-specific off-target site. In this scenario, the alternative allele introduces the TTTV PAM
sequence, resulting in a protospacer with only 1 mismatch in the seed sequence. Notably, this off-
target site is located within an ENCODE candidate cis-regulatory element. In summary, our study
demonstrates that CRISPRme facilitates comprehensive off-target nomination for various guide RNAs
under clinical development and across multiple Cas proteins (Table 9.12). Notably, none of these
alternative allele off-target sites have been evaluated in the published descriptions of these gene editing
approaches, highlighting the importance of tools like CRISPRme. Such tools can nominate candidate
off-target sites that are absent from the human reference genome but present in specific populations or
individual patients, thereby enabling a more thorough safety assessment.

9.5 Discussion and limitations
The described results underscore the impact of individual-specific genetic variation on off-target potential
of sequence-based therapies, such as genome editing. Enhancing our ability to identify variant-associated
off-target sites present in human populations would benefit from increased availability of haplotype-
resolved genomes spanning diverse ancestries. Furthermore, these findings suggest how important is to
consider genetic variation while developing individual-oriented genome editing therapies shifting towards
precision medicine approaches. However, current tools, including CRISPRme, are limited in their ca-
pacity to enumerate potential off-targets based on structural variants or complex genetic events, such as
combinations of indels and SNPs. Future extensions of CRISPRme, leveraging emerging data structures
like genome graphs (Paten et al., 2017; Garrison et al., 2018), hold promise for handling these complex
events and enhancing off-target nomination efficiency. It’s crucial to assess the practical implications of
allele-specific off-target editing on a case-by-case basis. For instance, in the context of BCL11A enhancer
editing, approximately 10% of sickle cell disease (SCD) patients with African ancestry are expected to
carry at least one rs114518452-C allele. Consequently, there could be up to 10% cleavage at an off-target
site, which was not previously identified using currently available tools. These findings emphasize that
allele-specific off-target editing potential is not uniformly distributed across all ancestral groups but is
notably concentrated in populations of African ancestry, where genomic variation is most pronounced.
Therefore, gene editing initiatives targeting conditions prevalent in populations of African ancestry, such
as SCD, should pay particular attention to this issue. Gene editing efforts tailored to specific patient
populations must account for genetic variants enriched in those populations during off-target assessment.
However, our analysis reveals that variant off-targets can also be unique to individual patients, suggest-
ing potential susceptibility across all human populations. Integrating off-target analysis and testing into
therapeutic genome editing protocols is a multifaceted issue that extends beyond the scope of our study.
Variant-aware off-target analysis is pivotal as it may uncover off-target potential overlooked by conven-
tional methods. It’s important to note that the mere presence of somatic genetic alterations does not
necessarily imply functional consequences. While ex vivo-edited patient cells could theoretically undergo
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Target
gene Cas protein Status Protospacer

+ PAM Chrom Start PAM Total
Off-targets

ALT
Off-targets % ALT

CCR5 SpCas9 Clinical
Trial

TCACTATGCTGC
CGCCCAGTGGG chr3 46,373,162 NGG 3,423,675 484,401 14

CCR5 SpCas9 Clinical
Trial

CCCAGAAGGGGA
CAGTAAGAAGG chr3 46,373,138 NGG 3,365,086 559,834 17

TRAC SpCas9 Clinical
Trial

TGTGCTAGACAT
GAGGTCTATGG chr14 22,547,647 NGG 5,246,366 639,891 12

TRBC1/
TRBC2 SpCas9 Clinical

Trial
GGAGAATGACGA
GTGGACCCAGG chr7 142,792,003/

142,801,350 NGG 4,342,687 557,932 13

PDCD1 SpCas9 Clinical
Trial

GGCGCCCTGGCC
AGTCGTCTGGG chr2 2.42E+08 NGG 2,423,918 249,404 10

TTR SpCas9 Clinical
Trial

AAAGGCTGCTGA
TGACACCTGGG chr18 31,592,987 NGG 4,169,153 497,569 12

HBB SpCas9 Clinical
Trial

CTTGCCCCACAG
GGCAGTAACGG chr11 5,226,967 NGG 2,384,266 340,029 14

HBB SpCas9 Pre-Clinical GGGTGGGAAAAT
AGACTAATAGG* chr11 5,226,803 NGG 2,839,539 328,619 12

HBG1/
HBG2 SpCas9 Pre-Clinical CTTGTCAAGGCT

ATTGGTCAAGG chr11 5,249,955/
5,254,879 NGG 2,943,866 316,718 11

EMX1 SpCas9 NA GAGTCCGAGCAG
AAGAAGAAGGG chr2 72,933,852 NGG 4,887,079 902,572 18

FANCF SpCas9 NA GGAATCCCTTCT
GCAGCACCTGG chr11 22,625,785 NGG 3,328,636 338,978 10

BCL11A A3A(N57Q)-BE3 Pre-Clinical TTTATCACAGGC
TCCAGGAAGGG chr2 60,495,248 NGG 3,398,059 419,349 12

PCSK9 ABE8.8 Pre-Clinical CCCGCACCTTGG
CGCAGCGGTGG chr1 55,040,028 NGG 3,335,810 386,504 12

HBB IBE Pre-Clinical ACTTCTCCACAG
GAGTCAGGTGC* chr11 5,226,993 NGC 3,102,718 94,590 3

HBB ABE8e-NRCH Pre-Clinical
TTCTCCACAGGA
GTCAGGTGCACC
*

chr11 5,226,995 NRCH 5,822,863 1,995,125 34

CEP290 SaCas9 Clinical
Trial

GTCAAAAGCTAC
CGGTTACCTGAA
GGGT

chr12 88,100,976 NNGRRN 373,955 150,445 40

CEP290 SaCas9 Clinical
Trial

GTTCTGTCCTCA
GTAAAAGGTATA
GAGT

chr12 88,102,142 NNGRRN 906,516 318,522 35

HBG1/
HBG2 Cas12a Clinical

Trial
TTTGCCTTGTCA
AGGCTATTGGTC chr11 5,249,950/

5,254,874 TTTV 1,258,797 415,379 33

HBB Cas12a Pre-Clinical
TTTATATGCAGA
AATATTGCTATT
ACC*

chr11 5,225,898 TTTV 453,213 138,953 31

Table 9.12. Additional gRNAs analyzed by CRISPRme representing a variety of target sequences, Cas
proteins, and PAMs. The listed gRNAs are in clinical or preclinical development and/or widely tested in off-target
studies. PAMs are indicated in bold. * indicates that the gRNA is specific to the sickle cell mutation (on-target site not
found in hg38/REF). CRISPRme analysis was performed using the 1KGP and HGDP datasets with up to 6 mismatches
and 2 bulges.

sequencing before infusion, the functional significance of off-target edits varies, ranging from potentially
impactful to neutral. Thus, the detection of off-target editing in cell products may not inherently preclude
their clinical utility, although such testing could deplete valuable material and delay therapy. To mitigate
the risk of unintended allele-specific off-target effects during therapeutic genome editing, several steps are
recommended. Firstly, prioritize the use of genome editing techniques that maximize specificity, such as
high-fidelity editors and pulse delivery methods. Secondly, nominate off-targets in a variant-aware man-
ner, with particular focus on genetic variants prevalent in relevant patient populations, utilizing tools like
CRISPRme. Thirdly, employ off-target detection assays that are variant-aware to empirically assess the
likelihood of off-target editing, recognizing that these assays may not perfectly reflect editing in a thera-
peutic context. When feasible, validate allele-specific off-target editing potential in primary cells of the
relevant genotype through sequencing. However, obtaining such primary cells for biological validation in
a clinically relevant context may pose challenges. Fourthly, conduct a risk assessment of variant off-target
editing considering predicted genomic annotations, DNA repair mechanisms, delivery methods to target
cells, and disease context. For instance, off-target edits within tumor suppressor loci may carry greater
risk than those targeting unannotated non-coding sequences. Fifthly, if excess allele-specific genome edit-
ing risks are identified, consider incorporating genotype into subject inclusion/exclusion criteria. Finally,
for therapeutic genome editing applications where feasible (e.g., hematopoietic cell targeting), proactively
monitor somatic modifications in patient samples to gather data on the frequency and consequences of
such events. This approach can help assess patient-specific risk and provide valuable insights into the
frequency and in vivo dynamics of off-target edits if present. Overall, CRISPRme offers a user-friendly
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framework to comprehensively evaluate off-target potential across diverse populations and within indi-
viduals. Notably, CRISPRme may significantly contribute to the development of more individual-focused
genome editing therapies, helping the clinical shift towards precision medicine-oriented approaches.
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Conclusions

Over the past decade, the landscape of medicine has undergone a profound transformation, signaling
the waning relevance of the one-size-fits-all approach (Ginsburg and Willard, 2009). Precision medicine,
characterized by its focus on tailoring treatments to the unique genetic profiles of individuals, stands
poised to redefine the delivery of healthcare in the foreseeable future (Voelkerding et al., 2009). This
period has also marked a significant advancement in our comprehension of genetic variants, genomic
diversity, and the intricate regulatory mechanisms governing gene expression. Crucially, genetic variants
have emerged as pivotal biomarkers, illuminating the vast diversity among individuals and populations
while holding substantial implications for human health (Raphael et al., 2014). Within this PhD thesis,
we have presented four studies that exemplify how leveraging the wealth of genetic variant data through
computational methodologies can catalyze the transition toward precision medicine-oriented paradigms.
The advent of genome graphs (Paten et al., 2017) represents a pivotal breakthrough in genomics, offering
a dynamic framework capable of capturing the intricate genetic diversity prevalent across populations
and individuals. Unlike conventional linear reference genomes, genome graphs transcend limitations, pro-
viding a sophisticated lens through which to explore complex variant landscapes. Notably, these graphs
offer an efficient means to unravel the genetic underpinnings of cellular environments and their regula-
tory mechanisms, particularly through the lens of genomic regulatory elements and transcription factors
(Liao et al., 2023). Within the cellular environment, genomic regulatory elements and transcription fac-
tors (TFs) orchestrate a symphony of molecular interactions crucial for maintaining regulatory balance
(Lemon and Tjian, 2000; Lambert et al., 2018). By delving into the intricate interplay between genetic
variants and the binding landscapes of transcription factors, we unearth profound insights into the molec-
ular foundations of complex traits and diseases. In this context, the introduction of GRAFIMO (Tognon
et al., 2021), with its novel variant- and haplotype-aware search for transcription factor binding site mo-
tifs on genome graphs, represents a significant leap forward. In our study, we demonstrated the capacity
of GRAFIMO to uncover previously overlooked transcription factor binding sites (TFBSs), particularly
those residing within population-specific and individual-specific genomic regions. This underscores the
pivotal role of genetic variants in shaping the binding landscape of TFs. However, it’s important to
note that GRAFIMO’s predictive performance may be constrained by the models employed to represent
TFBS motifs (Tognon et al., 2023). Using more sophisticated models holds the promise of enhancing
the predictive capabilities of our tool, potentially unveiling further nuances in the landscape of TFBSs.
MotifRaptor (Yao et al., 2021) proposed a method to understand the functional implications of genetic
variants, with a specific focus on their effects on TFBSs. Given that numerous disease-associated sin-
gle nucleotide polymorphisms (SNPs) reside within non-coding regions of the genome, deciphering their
functional significance poses a considerable challenge (Maurano et al., 2012). However, MotifRaptor
has introduced a novel TF-centric approach aimed at elucidating how these variants influence the bind-
ing landscape of transcription factors. Crucially, the methodology put forth by MotifRaptor integrates
diverse omics datasets, including cell type-specific chromatin accessibility and transcriptomic profiles,
enhancing its predictive capabilities. To illustrate its efficacy, we applied MotifRaptor to interpret the
potential impact of two genetic variants associated with lipoprotein cholesterol (LDL-C) uptake. Notably,
the predictions made by MotifRaptor were validated through experimental validation, underscoring its
reliability and utility (Ryu et al., 2024). Looking ahead, while MotifRaptor has demonstrated its prowess,
there remains room for enhancement. Employing more intricate models beyond simple position weight
matrices to represent TF motifs could further refine its predictive accuracy. Additionally, broadening the
scope of analysis to encompass not only the binding sites themselves but also the genetic sequences sur-
rounding these sites would provide a more comprehensive understanding of the impact of genetic variants
on the genomic context guiding TF binding. Such advancements would elevate MotifRaptor’s capacity
to uncover the intricate interplay between genetic variation and transcriptional regulation, paving the
way for deeper insights into the molecular mechanisms potentially underpinning complex traits and dis-
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eases. The advent of CRISPR genome editing (Cong et al., 2013) has empowered us to engineer precise
modifications in the genome, offering unprecedented opportunities for therapeutic interventions. How-
ever, the successful translation of CRISPR-based therapies into clinical practice hinges upon our ability
to accurately predict and quantify editing outcomes (Fu et al., 2013). Whole genome sequencing has
emerged as a cornerstone resource (Yin et al., 2022), offering a comprehensive and unbiased means to
evaluate and quantify editing outcomes without the limitations imposed by arbitrary site selection, as is
often the case with amplicon sequencing (Akcakaya et al., 2018). In this PhD thesis, we have undertaken
a comprehensive study aimed at comparing and benchmarking three widely utilized methods (McKenna
et al., 2010; Kim et al., 2018; Koboldt et al., 2012) for calling genetic variants from sequencing data.
Leveraging ultra-deep whole genome sequencing (1000x coverage), we meticulously examined control and
treated cells subjected to guide RNAs targeting three genes with potential therapeutic relevance. Our
findings underscore the critical importance of employing methods specifically tailored for genome editing
quantification experiments. Notably, we observed that variant calling tools may exhibit tendencies to
inaccurately estimate editing outcomes, potentially leading to under- or over-estimations. Furthermore,
our analysis revealed limitations in the ability of these tools to detect editing events occurring at weak
editing sites, despite their known susceptibility to editing (Tsai et al., 2015). These insights highlight
the pressing need for the development of specialized methodologies explicitly designed to recover and
quantify editing outcomes across varying sequencing depths. Such tailored approaches are indispens-
able for realizing the full potential of CRISPR genome editing in clinical settings, where precision and
accuracy are paramount. By addressing these methodological gaps, we can unlock new avenues for har-
nessing CRISPR technology in therapeutic applications, ultimately advancing the frontier of precision
medicine. Moreover, the successful application of CRISPR genome editing in therapeutic contexts also
hinges crucially on our ability to predict and mitigate off-target effects. Genetic variants play a pivotal
role in potentially introducing novel off-targets or disrupting desired on-target sites (Lessard et al., 2017;
Scott and Zhang, 2017). In this context, the development of variant- and haplotype-aware computational
tools, such as CRISPRme (Cancellieri et al., 2023), marks a significant leap forward. This innovative tool
offers an efficient, scalable, and user-friendly framework for predicting and evaluating off-target effects
across the genome, while accounting for individual-specific genetic diversity. One notable strength of
CRISPRme lies in its comprehensive approach to off-target prediction. It considers complex events such
as the presence of potential DNA/RNA bulges and provides support for user-defined guide RNA and PAM
sequences. Furthermore, CRISPRme generates several user-friendly reports and graphical summaries, fa-
cilitating the interpretation of the impact of genetic variants on CRISPR off-targets. In our study, we
demonstrated the practical utility of CRISPRme by leveraging it to uncover an off-target site created by
a genetic variant and specific to a subset of individuals. This off-target site had the potential to cause an
inversion, disrupting a gene sequence and potentially leading to deleterious consequences in the patient’s
genomic environment. Looking ahead, CRISPRme stands to benefit from the integration of genome
graphs into its predictive framework. By harnessing the power of genome graphs, CRISPRme could un-
cover and predict the impact of complex variants, such as SNP-indel combinations or structural variants,
in the creation and modulation of novel off-target sites. This enhanced predictive capability would fur-
ther bolster the utility of CRISPRme in guiding the safe and effective implementation of CRISPR-based
therapies in clinical settings. In conclusion, our four studies vividly illustrate the transformative poten-
tial of omics sciences and computational tools in advancing precision medicine-oriented approaches. By
centering our investigations on the pivotal role of genetic variants, fundamental biomarkers in precision
medicine, we underscored the critical importance of accounting for individual- and population-specific
genetic diversity. By harnessing the power of innovative computational methodologies, we elucidated
significant events that have the potential to profoundly shape the cellular environment. These findings
not only enhance our understanding of the genetic basis of diseases but also may help in developing
tailored and effective potential precision medicine-oriented approaches.
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Appendix A

Bioinformatics File Formats

This appendix describes the bioinformatics- and computational biology-related file formats encountered
throughout the PhD thesis. The descriptions list the major details of each format, providing some context
when possible.

A.1 FASTA file format
The FASTA file format is a widely used text-based format to represent nucleotide or protein sequences.
It typically consists of two parts: a single-line description (header), beginning with “>”, followed by the
sequence data. The header line contains a brief description of the sequence and may include additional
information, such as the sequence ID, source organism, or any relevant annotations. The sequence data
comprises the nucleotide (A, T, C, G, U) or amino acid (protein) sequence. The sequence may be arranged
as a single line or broken into multiple lines (each 80 bp long) for better readability. FASTA files may
contain a single sequence or multiple sequences, with each sequence following the same two-part structure.
There is no standard filename extension for FASTA files. Among the most common file extensions there
are: fasta and fa.

A.2 FASTQ file format
The FASTQ format is a text-based representation designed to store both a biological sequence, typically
a nucleotide sequence, and its corresponding quality scores. Each sequence letter and quality score is
encoded using a single ASCII character to ensure brevity. Originally created at the Wellcome Trust Sanger
Institute with the purpose of bundling a FASTA-formatted (Appendix A.1) sequence and its quality
data, the FASTQ format has evolved into the prevailing standard for archiving the results produced by
high-throughput sequencing instruments. There is no standard file extension for FASTQ files. However,
.fq and .fastq are commonly used file extensions.

A.3 SAM file format
The Sequence Alignment Map (SAM) (Li et al., 2009a) is a text-based format developed to store biological
sequences aligned to a reference sequence. SAM files present a TAB-delimited structure. The SAM files
comprise a header and an alignment section. The header section, when present, precedes the alignment
section. Headers are denoted by “@”. The alignment section is characterized by 11 mandatory fields
and may include a variable number of optional fields (Table A.1). SAM files can be manipulated and
examined using SAMtools (Li et al., 2009a). The SAM format has become widely adopted for storing
diverse data, including nucleotide sequences, generated by next-generation sequencing technologies. The
standard has been expanded to accommodate unmapped sequences, and it supports both short and long
reads (up to 128 Mbp). SAM is used to store and process mapped data by several tools, such as the
Genome Analysis Toolkit (GATK) (McKenna et al., 2010) or strelka (Kim et al., 2018), and organizations,
such as the ENCODE project (Consortium et al., 2012) or 1000 Genomes Project (Consortium et al.,
2015).
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Field Type Description
QNAME string Query name
FLAG int bitwise FLAG
RNAME string Reference sequence name
POS int Mapping position (1-based)
MAPQ int Mapping quality
CIGAR string CIGAR string
RNEXT string Reference name of the mapped/next read
PNEXT int Position of the mapped/next read
TLEN int Template length
SEQ string Read sequence
QUAL string ASCII Phred-scaled base quality (+ 33)
Table A.1. SAM file format fields. Description of SAM format fields

A.4 BAM file format
BAM (Binary Alignment Map) (Barnett et al., 2011) represents the compressed binary counterpart of the
SAM format (Appendix A.3). BAM files provide a condensed and indexable representation of nucleotide
sequence alignments. SAM/BAM are widely employed by numerous next-generation sequencing and
analysis tools. In terms of custom track display, indexed BAM offers a notable advantage over other
human-readable alignment formats. This approach enables the processing of alignments from large files
that might otherwise cause issues when attempting to analyze the entire files.

A.5 CRAM file format
While BAM (Appendix A.4) files encompass all sequence data within a single file, CRAM files achieve
a smaller size by leveraging an external “reference sequence” file, which is essential for both compression
and decompression of the read information. Due to their higher compression density, many organizations
and tools are transitioning to the CRAM format to optimize disk space utilization. The work properly,
CRAM files necessitate an associated index file, similarly to BAM files.

A.6 BED file format
The BED (Browser Extensible Data) file format serves as a versatile method to display genomic features
on genome browsers, such as the UCSC Genome Browser (Lee et al., 2020). BED files are plain text
documents consisting of twelve tab-separated fields, with the first three being mandatory. BED files can
be analyzed and processed using various tools, including BEDtools (Quinlan and Hall, 2010). Currently,
there exist several variations of the BED file format. Due to its adaptability, BED files have been
extensively employed to summarize diverse genomic features, especially ChIP-seq peak regions. The
ENCODE Project provides ChIP-seq peak data in the ENCODE BED narrowPeak format, deviating
from the classical BED file format. The ENCODE narrowPeak consists of 10 fields (Table A.2). This
format requires all ten fields to contain values. If data are not available for a certain field, the format
defines null values to insert (Table A.2). Importantly BED narrowPeak files store statistical significance
for the called peak, incorporating two fields to store both a P -value and a q-value.

A.7 MEME file format
The MEME file format (Bailey et al., 2009) is a text representation for DNA or amino acid motifs,
encoded as PWMs. Several motif discovery tools return motifs in MEME format, in particular those
within the MEME suite (Bailey et al., 2009). As the format is plain text (ASCII), it can be manually
crafted using a simple text editor or word processor. A single MEME file can encompass one or more
motifs and, if needed, specify the alphabet upon which the motifs are constructed, background frequencies
of the alphabet letters, and strand information when dealing with DNA motifs. MEME files comprise
five sections: (i) the version line, (ii) alphabet, (iii) strands (optional), (iv) background frequencies, and
(v) motifs. The version line denotes the version of the tool (if part of the MEME suite) that produced
the motif. The alphabet line includes the motif sequence alphabet, such as ACGT for DNA, ACGU for RNA,
and ACDEFGHIKLMNPQRSTVWY for protein sequences. The strands line indicates whether the motif has been
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Field Description Type
chrom Name of the chromosome (or contig, scaffold, etc.) mandatory

chromStart Starting position of the feature in the chromosome.
The first base in a chromosome is numbered 0 mandatory

chromEnd Ending position of the feature in the chromosome.
The chromEnd base is not displayed mandatory

name Feature name (preferably unique) optional

score Indicates feature’s gray shade to be displayed in the
genome browser (0-1000). optional

strand +/- denote feature’s strand or orientation
(whenever applicable) optional

signalValue Measurement of overall (usually, average)
enrichment for the region optional

pValue Feature’s statistical significance (-log10). Use -1
if no pValue is assigned optional

qValue
Feature’s statistical significance using false
discovery rate (-log10). Use -1 if no qValue is
assigned

optional

peak Feature’s peak summit position (0-based offset from
chromStart). Use -1 if no peak summit called optional

Table A.2. ENCODE BED narrowPeak file format fields. Description of ENCODE BED narrowPeak format fields.

discovered using both the forward and reverse strands. The background frequency line provides the letter
frequencies of the motif alphabet in the input sequences. These frequencies must sum to 1. The motif
section is further divided into three subsections: motif name, motif letter-probability matrix lines, and
motif URL (optional). The motif name line contains the motif ID and its full name. This line marks the
beginning of a new motif if the file contains more than one motif. The motif letter-probability matrix
lines displays a probability table where rows represent motif positions and columns correspond to motif
alphabet letters, sorted alphabetically. For a DNA motif, the columns contain A data in the first column,
C data in the second, G data in the third, and T data in the fourth. Following the ”letter-probability
matrix” line, four optional values describe the motif alphabet length, motif width, number of source sites,
and source E-value. The motif URL section includes a link to the source page for the current motif.

A.8 JASPAR file format
The JASPAR file format (Sandelin et al., 2004) features a header line introduced by “>”, similar to
FASTA file headers, followed by the motif ID. In JASPAR motif files there are four lines, each one
dedicated to a specific nucleotide (A, C,G, T). In JASPAR motif files columns represent motif positions,
and rows represent the motif alphabet letters. Each line begins with the corresponding nucleotide, and
the subsequent tab-separated raw count values are enclosed in square brackets ”[ ]”.

A.9 PFM file format
The PFM file format includes a header line introduced by “>” and followed by the unique motif identifier.
In PFM files rows represent nucleotides, and columns motif positions. Each nucleotide’s raw count values
are outlined on a separate line, with the row letters ordered alphabetically.
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Appendix B

Motif discovery algorithms

B.1 Algorithmic details of motif discovery software

B.1.1 Enumerative methods

Enumerative methods for motif discovery aim to identify overrepresented sequence patterns in the input
dataset S compared to a background set of sequences B. These methods involve counting the approximate
occurrences of all possible 4k k-mers (assuming an alphabet Σ = A,C,G, T ) in S and assessing the
statistical significance of the difference between the observed matches in S and B or the expected match
frequencies based on a background model (Section 4.2.2). The table in Appendix B.2 provides a
summary of the key characteristics of enumerative methods. Early approaches employed heuristics to
explore the motif search space, allowing for mismatching positions. However, more recent methods such
as Weeder (Pavesi et al., 2001, 2004b) and SMILE (Marsan and Sagot, 2000) present more efficient and
accurate strategies by utilizing suffix trees (STs) to index the input sequences. Both Weeder and SMILE
leverage STs for efficient approximate pattern matching, searching all k-mers occurrences in S while
allowing mismatches at any motif position. Although Weeder and SMILE share a similar data structure,
they differ in their approaches to assess the significance of the identified motifs. SMILE evaluates motif
significance by comparing the number of occurrences of a specific motif in S with its expected frequency
in B. To estimate expected occurrences, SMILE either generates a random set of sequences using a
Markov model or uses a negative set of sequences that do not contain instances of the target binding
sites. On the other hand, Weeder compares the observed occurrences of each motif candidate with its
expected frequencies derived from the regulatory regions of the same organism as the input sequences.
It is important to note that both SMILE and Weeder may require several hours to complete on datasets
consisting of thousands of sequences generated by high-throughput assays. To address this challenge,
there has been a growing interest in the development of enumerative motif discovery methods capable
of efficiently analyzing large datasets comprising thousands of sequences. MDscan (Liu et al., 2002)
uses word enumeration for motif discovery in sequence datasets. Initially designed for ChIP-on-Chip
datasets, MDscan identifies non-redundant patterns that are abundant in the most enriched ChIP peak
sequences, rather than enumerating all possible words from s ∈ S. To assess the statistical significance
of motif candidates, MDscan employs a third-order Markov model as background. Amadeus (Linhart
et al., 2008) evaluates all k-mers in input sequence datasets. Amadeus has been originally designed
to focus on datasets generated by ChIP-on-Chip assays. It groups similar sequence patterns into lists
and combines these lists into motifs, which are statistically evaluated using a hypergeometric test to
determine their significance. Recently, both MDscan and Amadeus have been extended to support other
high-throughput sequencing technologies such as ChIP-seq and DNase-seq. Additionally, Amadeus has
been adapted to analyze data from multiple organisms, aiming to identify conserved motifs across species.
Enumerating words in datasets containing thousands of sequences can be computationally expensive in
most scenarios. DREME (Bailey, 2011) presents an alternative approach using regular expressions to
enhance motif discovery on large sequence datasets. DREME leverages regular expressions for counting
approximate motif occurrences in both S and B, allowing a more efficient exploration of the motif
search space across extensive sequence sets. DREME generates the background dataset from S using a
Markov model or utilizes a user-provided negative set of sequences. To assess the statistical significance
of the discovered motifs, DREME employs Fisher’s exact test, comparing the occurrences of motifs in
sequences from S and B. However, regular expressions for motif discovery hide certain drawbacks: they
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(i) can be computationally demanding on large datasets, (ii) might identify patterns as motifs that
are not biologically relevant, and (iii) may not capture all variations of a motif. While enumerative
methods employing STs may address some of these challenges, they are computationally demanding
and often lack scalability when analyzing thousands of sequences. Trawler, HOMER, and STREME
(Ettwiller et al., 2007; Heinz et al., 2010; Bailey, 2021) propose different enhancements for discovering
motifs using STs in the context of large-scale sequence datasets. Trawler (Ettwiller et al., 2007) focuses
on detecting transcription factor binding site (TFBS) motifs in extensive datasets like ChIP-seq and
DNase-seq data. Employing suffix trees, Trawler enumerates all sequence patterns in both S and B,
measuring their frequencies to identify overrepresented motifs in S. Trawler allows for mismatching
positions by employing degenerate consensuses when matching motif sequences. Statistical evaluation of
prioritized patterns in Trawler involves z-scores derived from the normal approximation to the binomial
distribution. This approach facilitates fast computation without the need to correct for the effect of
overlapping motifs. Trawler constructs motifs by clustering similar and significant patterns. HOMER
(Heinz et al., 2010), tailored to analyze ChIP-seq datasets, indexes both the input and background
sequence datasets using STs. It searches for overrepresented patterns in the target sequences through
approximate pattern matching on the ST. The identified overrepresented k-mers are clustered into motif
candidates, which are statistically evaluated using either the hypergeometric or binomial test. By avoiding
explicit counting of k-mer frequencies, HOMER reduces its running time. The significant motif candidates
undergo further refinement by eliminating those lacking conserved positions or exhibiting low information
content. While originally designed for ChIP-seq, HOMER demonstrates applicability to sequence datasets
from diverse assays. STREME (Bailey, 2021) proposes a strategy to enhance motif discovery efficiency
by employing approximate matching on suffix trees. STREME constructs an ST from S and identifies
overrepresented seed words of different lengths through exact matching on the ST. Statistical significance
of each seed word is assessed using either the Fisher’s exact test or binomial distribution. STREME then
counts the number of approximate matches for the most significant words on the ST, using a mismatch
threshold. Subsequently, STREME prioritizes and groups the most significant seed words to derive the
corresponding motifs. This approach enables STREME to identify motifs of different lengths in a single
tree visit, substantially reducing the running time for motif discovery.

B.1.2 Alignment-based methods
Alignment-based motif discovery algorithms utilize employ alignment profiles to identify potential TFBS
within the input sequence dataset S. These algorithms construct profiles by combining potential motif
instances and then assess each profile’s score using various statistical measures. However, the exhaustive
enumeration of all possible alignments is impractical. As a result, efforts have been directed towards
incorporating heuristics to efficiently generate high-quality alignments. The Table in Appendix B.2
provides a summary of the key characteristics of the alignment-based methods discussed in this section.
CONSENSUS (Hertz and Stormo, 1999) uses a greedy algorithm to identify TFBS alignment profiles. It
assumes a single occurrence of the motif in each sequence of S. Assuming |M | = k, CONSENSUS starts
by comparing all k-mers in two sequences, s1, s2 ∈ S, generating a 4×k profile for each k-mer pair. Each
profile undergoes individual scoring based on information content, and the alignments with the highest
scores are retained. Subsequently, CONSENSUS compares each profile to the k-mers of another sequence,
s3 ∈ S/{s1, s2}, producing a new set of profiles involving three sequences. These resulting profiles are
scored using information content, and the alignments with the highest scores are preserved. CONSENSUS
incrementally stores the best partial alignments with the hope of eventually finding the optimal profile.
However, in cases where motifs lack conservation, the algorithm may store profiles corresponding to
random k-mers, potentially excluding highest-scoring alignments. MEME (Bailey et al., 1994; Bailey
and Elkan, 1995; Bailey et al., 2006) introduced an EM strategy to comprehensively explore the entire
motif search space, distinguishing itself from CONSENSUS by not relying on partial solutions. Initially,
MEME initializes a profile with one k-mer from each sequence, s ∈ S. This starting profile undergoes
iterative refinement through an EM strategy involving two steps: the E-step and the M-step. In the
E-step, MEME computes a likelihood score for each k-mer in S, using the current alignment profile.
In the M-step, MEME assigns a weight to each k-mer in the current profile, proportional to the scores
computed during the E-step, and updates the alignment by replacing low-scoring k-mers with others
that better fit the current profile. MEME accommodates sequences with zero or more than one motif
occurrence, provides background models of different orders, and assigns a P -value to each identified
motif. This P -value indicates the probability of obtaining a profile with the same information content by
chance, offering a measure of confidence for each discovered motif. Algorithms employing Gibbs sampling
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address MEME’s main limitation of potentially converging to local maxima, thus not always reporting
the best alignment profile. The generic Gibbs sampling algorithm begins by initializing a profile with
k-mers randomly chosen from each sequence in the input dataset S. In each iteration, the algorithm
removes a k-mer from the profile originating from a specific sequence s and computes a likelihood score
for each k-mer in s based on the modified profile. This score reflects how well each k-mer fits the profile,
rather than a background model, akin to MEME. Subsequently, the algorithm replaces the removed k-mer
with a new one chosen with a probability proportional to its likelihood score. This process repeats until
a fixed number of iterations or until no further changes to the profile occur. The foundational Gibbs
sampling algorithm (Lawrence and Reilly, 1990) assumes that each sequence in S contains precisely one
binding site. Motif sampler (Neuwald et al., 1995) extended the original algorithm to accommodate
sequences containing one, multiple, or no binding sites. However, it necessitates the user to provide an
estimate of the expected number of occurrences of the TFBS in the input sequence dataset. Further
modifications to the Gibbs sampling procedure were introduced by AlignACE (Hughes et al., 2000) and
ANN-spec (Workman and Stormo, 1999), enabling the simultaneous exploration of TFBS on both strands.
AlignACE also incorporates a sampling method that considers the relative position of each k-mer within a
group in relation to gene transcription start sites (TSS). This ensures that functional motifs correspond to
similar regions occurring at comparable distances from the TSS. ANN-spec couples Gibbs sampling with a
perceptron artificial neural network, replacing the alignment profile. Bioprospector (Liu et al., 2000) and
MotifSampler (Thijs et al., 2001) suggest using a third-order Markov model as a background, enhancing
the predictive performance of the Gibbs sampling algorithm. Typically, alignment-based motif discovery
methods assume that the motif length is known a priori. GLAM (Frith et al., 2004b) modified the
Gibbs sampling procedure to estimate the optimal alignment length and employed simulated annealing to
optimize the motif profiles. GLAM was further extended to consider gapped motifs, introducing flexibility
to motif variability (Frith et al., 2008). While these methods employ heuristics for efficiently exploring
the motif solution space, they were initially designed to analyze datasets comprising hundreds or a few
thousand sequences. To address this limitation, developers of motif discovery algorithms have proposed
novel alignment-based methods extending the original ideas to analyze the large datasets generated by
NGS assays. MEME-ChIP (Machanick and Bailey, 2011) extends the original MEME algorithm to
handle large ChIP datasets. Rather than analyzing the entire input dataset, MEME-ChIP runs the EM
motif search on a random subset of sequences from S. Additionally, MEME-ChIP prioritizes motifs
discovered around ChIP-seq peak summits. While originally designed for ChIP-seq and ChIP-on-Chip
datasets, MEME-ChIP is versatile enough to be applied to datasets generated by different experimental
assays. Similarly, STEME (Reid and Wernisch, 2011) enhances the MEME algorithm by indexing the
input sequences using a suffix tree (ST). Employing a branch-and-bound strategy on the ST, STEME
avoids evaluating the likelihood of all possible k-mers during MEME’s E-step. ChIPMunk (Kulakovskiy
et al., 2010) introduces an efficient method for discovering motifs in thousands of genomic sequences.
In contrast to traditional approaches using EM, ChIPMunk prioritizes a set of enriched k-mers initially
and constructs a profile from them. Subsequently, the profile undergoes a scalable EM-like refinement
to maximize the discrete information content (Kulakovskiy and Makeev, 2009). Moreover, ChIPMunk
leverages ChIP peak shapes to weight the contribution of each sequence s ∈ S to the motif definition,
enhancing the accuracy of identified motifs. XXmotif (Hartmann et al., 2013) integrates enumerative
motif discovery with profile refinement. It iteratively selects sets of k-mers from S to maximize their
fitness to the profile and enhances the motif’s fitness to S. Similarly, ProSampler (Li et al., 2019b)
proposes a highly optimized and ultra-fast hybrid method for discovering motifs in ChIP-seq datasets. It
combines motif enumeration with Gibbs sampling to refine motif profiles effectively.

B.1.3 Probabilistic graphical models-based methods
Whether including dependencies between neighboring and non-neighboring nucleotides in TFBS motif
discovery and models has been a longstanding topic of discussion within the research community. The
Table in Appendix B.2 provides a concise overview of the key characteristics of probabilistic graphical
models-based methods covered in this section. Motif discovery algorithms, such as Dimont (Grau et al.,
2013) and diChIPMunk (Kulakovskiy et al., 2013a), have been developed to detect and represent TFBS
motifs using DWMs. These methods, employing more sophisticated approaches than PWMs, demon-
strate scalability to large datasets comprising thousands of sequences without compromising accuracy.
In the case of Dimont (Grau et al., 2013), the initial motif profile is initialized by combining the most
overrepresented and non-redundant 7-mers in sequence set S, forming an alignment of length |M |. Di-
mont assigns higher weights to the positions at the center of the profile. To ensure scalability with large
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datasets, Dimont uses a highly optimized supervised posterior probabilities estimation technique to refine
the initial profile. The algorithm also filters redundant and reverse complement motifs that match the
highest-scoring profiles, contributing to a reduction in runtime. Finally, the motif profiles undergo opti-
mization using Kullback-Leibler divergence. Similarly, diChIPMunk (Kulakovskiy et al., 2013a) extends
the original ChIPMunk (Kulakovskiy et al., 2010) procedure to construct DWMs, by considering motif
dinucleotide frequencies. The algorithm employs an EM-like approach to optimize the starting motifs
and weighs the contribution of sequences to the TFBS motif, accounting for the ChIP peak shape. Unlike
ChIPMunk, which maximizes the discrete information content on individual nucleotides, diChIPMunk
optimizes this measure based on dinucleotide frequencies. TFFMs (Mathelier and Wasserman, 2013) in-
troduces a model based on hidden Markov models (HMMs) to capture dinucleotide dependencies between
neighboring TFBS positions and learn the properties of sequences flanking the binding sites. By incor-
porating insertion and deletion states into the model, TFFMs can accommodate variable motif lengths,
making it a flexible model. TFFMs leverage the MEME algorithm (Bailey et al., 1994; Bailey and Elkan,
1995; Bailey et al., 2006) to identify motif candidates, subsequently used to train the HMMs employing the
Baum-Welch algorithm. Similarly, Discrover (Maaskola and Rajewsky, 2014) proposes a discriminative
approach for motif discovery in ChIP-seq datasets, using HMMs. Initially, Discrover identifies overrep-
resented motifs in the input dataset S using regular expressions, similar to DREME (Bailey, 2011). The
identified motif candidates serve as seeds to initialize an HMM. The algorithm prioritizes these candi-
dates based on different objective functions (Maaskola and Rajewsky, 2014), such as likelihood or mutual
information, to select the most promising seeds. Subsequently, the initial HMM undergoes refinement
through iterative gradient optimization of the model likelihood. Markov Models (MMs) and HMMs can
be extended to incorporate variable-order dependencies between neighboring and non-neighboring motif
positions, akin to Bayesian Networks (BNs). Slim (Keilwagen and Grau, 2015) introduces a framework
for learning dependencies of different orders between neighboring and non-neighboring nucleotides. The
dependency orders are pruned in a data-driven manner, iteratively establishing the motif positions on
which each nucleotide depends. The models are trained using motif candidates prioritized by running
Dimont on S, maintaining scalability on large sequence datasets. However, to ensure scalability on large
datasets, methods like HMMs and MMs often learn low-order dependencies from the input sequences.
Addressing this, BaMMotif (Siebert and Söding, 2016; Ge et al., 2021) presents an efficient motif dis-
covery algorithm that learns high-order dependencies (up to the 5-th order) on thousands of sequences
using an optimized Bayesian approach to train MMs. To prevent model overfitting, the algorithm uses
the conditional probabilities of (q − 1)-th order as priors for the q-th order conditional probabilities
during training. The algorithm iteratively optimizes the model parameters until convergence through
Expectation-Maximization (EM). During the E-step, BaMMotif estimates the probability that each po-
sition of each s ∈ S is a motif starting position, using the current model. In the M-step, the algorithm
refines the model using the motif candidates identified in the previous step. The algorithm dynamically
adapts the model parameters during training to capture variable orders of dependencies.

B.1.4 SVM-based methods
Support Vector Machines (SVMs) offer an efficient and scalable approach for learning complex sequence
features in different biological contexts, including TFBS. SVMs have demonstrated scalability, even when
dealing with thousands of sequences typical of datasets generated by high-throughput protocols. Notably,
SVMs not only capture the motif itself but also incorporate other sequence features surrounding the
binding sites into the learned model. A summarized overview of the key features of SVM-based methods
discussed in this section can be found in the Table in Appendix B.2. Kmer-SVM (Lee et al., 2011;
Fletez-Brant et al., 2013) proposes a scalable framework using SVMs for the discovery and representation
of TFBS as SVM models. The algorithm operates on a foreground dataset S and a background dataset
B. It dissects the input sequences s ∈ S into contiguous k-mers (with k ∼ 10 base pairs) and computes
their frequencies in both datasets. Employing a trie (Bodon and Rónyai, 2003) for indexing S and B,
Kmer-SVM achieves linear runtime. The complete frequency profiles of k-mers within each sequence
are stored as feature vectors, serving as input for training the SVM kernel. Kmer-SVM employs the
spectrum kernel, optimizing parameters to effectively distinguish between positive and negative sequences
(support vectors). Additionally, Kmer-SVM offers a weighted version of the spectrum kernel, where the
contributions of k-mers are weighted based on their positional information within the sequence. However,
this implementation lacks flexibility in k-mer frequency estimation and encounters scalability issues when
analyzing datasets comprising tens of thousands of sequences containing degenerate and long (> 10 base
pairs) motifs. Agius et al. (2010) present a more flexible framework through the training of Support
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Vector Regression models (SVRs). The algorithm proposes the usage of a dinucleotide mismatch kernel
(di-mismatch kernel). While the basic mismatch kernel permits up to m mismatches in each k-mer
match, for small m values, the mismatch neighborhood of a given k-mer becomes excessively large. To
address this issue, the authors introduced the di-mismatch kernel, which tallies mismatching nucleotides
and favors k-mers with consecutive mismatches. Furthermore, the kernel is tailored for sets of unique
k-mers occurring in training sequences, such as PBM probe sequences. Nevertheless, this method is
constrained by considering short k, restricting the ability to discover longer motifs. To overcome this
limitation, gapped-k-mers (Ghandi et al., 2014b) introduce gaps in non-informative motif positions to
accommodate longer motifs while preserving scalability on large datasets. A gapped-k-mer is defined
by a pair of values (l, k) representing the full length and the number of non-gap positions, respectively.
For example, A*CG is a gapped-k-mer with l = 4 and k = 3. Gkm-SVM (Ghandi et al., 2014a, 2016)
constructs feature vectors for each input sequence by tallying the occurrences of gapped-k-mers in both
positive and negative datasets, as opposed to exact k-mer frequencies. These feature vectors are then
used to train the gapped-k-mer kernel, which computes support vectors to distinguish between bound
and unbound sequences. To determine the SVM hyperplane, the feature vectors for each sequence are
mapped to the normalized counts of their distinct gapped-k-mers. However, this approach has been
shown to be non-scalable when applied to large sequence datasets (> 10, 000 sequences). LS-GKM (Lee,
2016) enhances Gkm-SVM to effectively handle large-scale datasets. Additionally, LS-GKM introduces a
weighted version of the gapped-k-mer kernel, along with the gkmrbf kernel and its weighted counterpart,
to capture non-linear relationships between sequence features.

B.1.5 Deep Neural Networks-based methods
Deep neural networks (DNNs) have demonstrated considerable success in addressing various challenges
in computational biology, including the discovery and classification of transcription factor binding site
motifs. The Table in Appendix B.2 provides a concise overview of the key characteristics of DNN-based
methods. Convolutional neural networks (CNNs) (LeCun et al., 2015) have found widespread applica-
tions in motif discovery. Typically, CNNs designed for motif discovery consist of several fundamental
layers (Zeng et al., 2016a). In the first layer, known as the convolutional stage, input sequences from the
dataset S undergo scanning with a set of convolutional filters (motif kernels). The resulting response val-
ues are then forwarded to the subsequent layer, called max-pooling layer. Within the max-pooling layer,
maximal responses for each convolutional layer are selected and incorporated into feature vectors. The
subsequent layer, the neural network stage, transforms these feature vectors into scalar scores, represent-
ing the likelihood of each site containing a TFBS. To mitigate overfitting, a dropout layer is frequently
introduced at this stage, randomly masking portions of the neural network output. The output layer
typically comprises two fully connected neurons, indicating the model predictions for ”bound” or ”un-
bound” sequences. Backpropagation and gradient descent are commonly employed to iteratively estimate
and optimize the CNN parameters. One of the pioneering proposals utilizing CNN for motif discovery on
ChIP-seq, HT-SELEX, and PBM is DeepBind (Alipanahi et al., 2015). The DeepBind architecture intro-
duces two variations to the basic CNN architecture: a rectification layer and the inclusion of averaging
and maximization steps in the pooling layer. The rectification layer identifies sequences that align well
with the convolutional kernel by shifting the response by some nucleotides and masking poorly matched
positions. In the pooling layer, DeepBind calculates both maximum and average kernel responses, allow-
ing for the identification of cumulative effects of short motifs and the determination of the locations of
longer TFBS, respectively. To visualize the discovered motifs, DeepBind computes weighted ensembles of
PWMs, obtained by aligning the sequences activating the kernels, centered around the position with the
maximum response. Basset (Kelley et al., 2016) enhances the basic CNN architecture by incorporating
three additional convolutional layers after the pooling stage, followed by two fully connected neural net-
works. The model’s parameters are initialized randomly and subsequently adjusted adaptively through
backpropagation. Basset represents the identified motifs using PWMs. BPNet (Avsec et al., 2021a) in-
troduces further modifications to the CNN architecture to address the limitations observed in methods
like DeepBind and Basset. By integrating nine dilated convolutional layers and eliminating the pooling
stage, BPNet preserves the spatial and base resolution of the input data, capturing the intricacies of the
discovered motifs. In its original implementation, BPNet utilizes ChIP-exo signal intensity values instead
of binary labels during model training, enhancing the precision of predictions. BPNet also incorporates
multitask learning, enabling the simultaneous discovery of multiple motifs. By integrating control ex-
periment data, BPNet mitigates overfitting and enhances overall model performance. Considering that
TF-DNA interactions involve complex long-term and short-term dependencies, recurrent neural networks
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(RNNs) prove suitable for modeling such intricate relationships. RNNs were initially introduced to model
sequential signals exhibiting stationary features over time. Long Short-Term Memory Networks (LSTMs)
(Hochreiter and Schmidhuber, 1997), a variant of RNNs, adeptly capture both long-term and short-term
dependencies by learning the positional dynamics of sequential signals. Bi-directional long/short-term
memory (BLSTMs) networks represent variations of standard LSTMs, amalgamating the outputs of two
RNNs—one analyzing sequential data from left to right and the other from right to left (corresponding
to the forward and reverse strands in a genomic context). DeeperBind (Hassanzadeh and Wang, 2016)
proposes a hybrid CNN-LSTMs architecture that effectively captures long-term and short-term positional
dependencies. DeeperBind omits the pooling layer to prevent the loss of positional information concerning
subregions activating the kernels in the convolutional stage. DanQ (Quang and Xie, 2016) introduces a
hybrid architecture by incorporating CNNs and BLSTMs. The BLSTM layer replaces the fully connected
neural network, followed by a dense layer of rectified linear units and a multi-task sigmoid output stage.
Situating the BLSTM layer between the pooling and the dense rectified stages enables DanQ to capture
the positional dynamics of the input sequences. The parameters of DanQ can be initialized with either
random values or known motifs. The identified motifs are represented as PWMs, computed by aligning
the sequences that activate the kernels. FactorNet (Quang and Xie, 2019) extends the DanQ framework
by integrating additional features during model training, such as DNase-seq signals. To mitigate over-
fitting and reduce training complexity, FactorNet employs a Siamese architecture that accounts for the
reverse complement. The Siamese architecture employs identical networks sharing weights for both the
forward and reverse strands, ensuring consistent outputs and reducing the amount of required training
data.

B.2 Catalogue of Motif discovery algorithms and software for
discover Transcription Factor Binding sites in DNA sequences

Table B.2. Motif discovery algorithms and software for discover Transcription Factor Bind-
ing sites in DNA sequences. The table in this section lists the algorithms discussed in Section 4.2.2,
and provides information for each algorithm, including associated publications (Refs.), the original data
type used for development and testing in the original publication (Original input data type), the motif
model returned (Output), theoretical advantages (Pros), drawbacks (Cons), the year of publication
(Year), a link to the code or website (Availability), and details on how each software is distributed to
the community (Availability type).

Motif discovery
method Algorithm Refs Original input data Output Pros Cons Year

SPLASH Califano (2000) DNA sequences
(unspecified source)

Regular
Expression Simple output Fixed mismatch

positions 2000

Weeder Pavesi et al. (2001)
Pavesi et al. (2004b)

DNA sequences
(unspecified source)

PWM/
Consensus
sequence

Simple output;
use biological data
as background dataset

Not scalable on
large datasets 2001

SMILE Marsan and Sagot (2000) DNA sequences
(unspecified source)

Consensus
sequence Simple output Not scalable on

large datasets 2000

MDScan Liu et al. (2002) ChIP-on-Chip PWM Use 3rd-order MMs
as background

Based on word
enumeration
(computationally
intensive)

2002

Amadeus Linhart et al. (2008) ChIP-on-Chip PWM Use hypergeometric
test to evaluate motifs

Based on word
enumeration
(computationally
intensive)

2008

Enumerative DREME Bailey (2011) ChIP-seq
PWM/
consensus
sequence

Detailed output;
use Fisher’s exact test
to evaluate motifs

Based on regular
expression 2011

Trawler Ettwiller et al. (2007) ChIP-on-Chip PWM

Use STs for fast motif
search; use binomial
distribution to evaluate
motifs

Method performance
rely on suitable
background

2007

HOMER Heinz et al. (2010) ChIP-seq
PWM/
consensus
sequence

Detailed output;
use ST for fast motif
search;
use hypergeometric
distribution to evaluate
motifs; well maintained

Motif statistical
significance not
reported

2010
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Motif discovery
method Algorithm Refs Original input data Output Pros Cons Year

STREME Bailey (2021) ChIP-seq
PWM/
consensus
sequence

Detailed output;
use ST and seed words
evaluation for fast motif
search

Assumes that each
sequence contains one
or zero motif occurrences;
requires that more than one
sequence contains the motif
the report results

2021

CONSENSUS Hertz and Stormo (1999)
DNA sequences
(unspecified source) PWM Simple approach Method performance

rely on motif conservation 1999

MEME

Bailey et al. (1994)
Bailey and Elkan (1995)
Bailey et al. (2006)

DNA sequences
(unspecified source)

PWM/
consensus
sequence

Detailed output;
fast motif search;
well maintained

EM may converge
prematurely 1994

Motif Sampler Neuwald et al. (1995) DNA sequences
(unspecified source)

Consensus
sequence

Overcome EM
limitation

Not scalable on large
datasets;
stochastic nature of Gibbs
sampling

1995

Align-ACE Hughes et al. (2000) DNA sequences
(unspecified source) PWM Overcome EM

limitation

Not scalable on large
datasets;
stochastic nature of Gibbs
sampling

2000

ANN-spec Workman and Stormo (1999) DNA sequences
(unspecified source) PWM Overcome EM

limitation

Not scalable on large
datasets;
use ANN replacing to
replace alignment profiles
(computationally intensive)

2000

BioProspector Liu et al. (2000) ChIP-on-Chip PWM Use 3rd-order MMs
as background

Not scalable on large
datasets;
stochastic nature of Gibbs
sampling

2002

Alignment-based MotifSampler Thijs et al. (2001) DNA sequences
(unspecified source) PWM Use 3rd-order MMs

as background

Not scalable on large
datasets;
stochastic nature of Gibbs
sampling

2001

GLAM2 Frith et al. (2004a)
Frith et al. (2008)

DNA sequences
(unspecified source) PWM

Estimate optimal
alignment length;
allow gapped motifs;
well maintained

Not scalable on large
datasets;
stochastic nature of Gibbs
sampling

2008

GADEM Li (2009) ChIP-on-Chip;
ChIP-seq PWM Overcome EM

limitation

Not scalable on large
datasets;
genetic algorithms are
computationally intensive

2009

MEME-ChIP Machanick and Bailey (2011) ChIP-seq PWM Scalable on large datasets;
well maintained

Consider random
subsamples of the input
dataset 2011

STEME Reid and Wernisch (2011) ChIP-on-Chip;
ChIP-seq PWM

Scalable on large datasets;
faster MEME-like EM
motif search

Computationally intensive
ST construction 2011

ChIPMunk Kulakovskiy et al. (2010) ChIP-seq PWM

Scalable on large datasets;
accounts for ChIP-seq peaks
shape during motif search;
well maintained

EM may converge
prematurely 2010

XXmotif Hartmann et al. (2013) ChIP-on-Chip;
ChIP-seq PWM

Integrate enumerativa and
alignment-based motif
search

May be computationally
intensive on large
datasets

2013

ProSampler Li et al. (2019b) ChIP-seq PWM Scalable on large datasets;
ultra-fast motif search

Stochastic nature of Gibbs
sampling 2019

Dimont Grau et al. (2013)
ChIP-seq;
ChIP-exo;
PBM

Consensus
sequence/
High-order
PWM

Scalable on large
datasets;
include dependencies
during motif search

Ignore non-neighboring
dependencies 2013

diChIPMunk Kulakovskiy et al. (2013a) ChIP-seq High-order
PWM

Include dependencies
during motif search;
well maintained

Not scalable on large
datasets 2013

TFFM Mathelier and Wasserman (2013) ChIP-seq
PWM/
High-order
PWM

Scalable on large
datasets;
include dependencies
during motif search;
accomodate variable
motif length

Depend on MEME
motif discovery results 2013

Probabilistic
graphical models Discrover Maaskola and Rajewsky (2014) ChIP-seq PWM

Scalable on large
datasets;
use HMMs

Ignore non-neighboring
dependencies 2014

Slim Keilwagen and Grau (2015) ChIP-seq;
PBM

High-order
PWM

Include neighboring
and non-neighboring
variable-order
dependencies

Computationally
intensive 2015

BaMMotif Siebert and Söding (2016)
Ge et al. (2021) ChIP-seq High-order

PWM

Include high-order
dependencies;
avoid model overfitting

Computationally
intensive motif search;
depends on XXmotif
motif discovery results

2016
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Motif discovery
method Algorithm Refs Original input data Output Pros Cons Year

Kmer-SVM Lee et al. (2011)
Fletez-Brant et al. (2013) ChIP-seq

PWM/
k-mer-based
model

Scalable on large
datasets

Limited to short
motifs;
Computationally
intensive;
rely on suitable
background

2011

Support Vector
Machines Agius et al. Agius et al. (2010) ChIP-seq;

PBM

PWM/
k-mer-based
model

Scalable on large
datasets

Limited to short
motifs;
Computationally
intensive;
rely on suitable
background

2010

Gkm-SVM Ghandi et al. (2014a) ChIP-seq
PWM/
k-mer-based
model

Scalable on large
datasets;
consider long motifs
using gapped k-mers

Computationally
intensive;
rely on suitable
background

2014

LS-GKM Lee (2016) ChIP-seq
PWM/
k-mer-based
model

Improve Gkm-SVM
perfomance on large
datasets;
introduce additional
kernels

Rely on suitable
background 2016

DeepBind Alipanahi et al. (2015)
ChIP-seq;
HT-SELEX;
PBM

PWM/
DNN-based
model

Scalable on large
datasets;
integrate different
genomic data

Computationally
intensive training;
ignore kernel
dependencies during
motif reconstruction

2015

Basset Kelley et al. (2016) ChIP-seq;
DNase-seq

PWM/
DNN-based
model

Scalable on large
datasets;
integrate different
genomic data

Computationally
intensive training;
ignore kernel
dependencies during
motif reconstruction

2016

BPNet Avsec et al. (2021a) ChIP-seq;
ChIP-exo

PWM/
DNN-based
model

Scalable on large
datasets;
integrate different
genomic data;
account for kernel
dependencies during
motif reconstruction;
well maintained

Computationally
intensive training 2021

Deep Neural
Networks DeeperBind Hassanzadeh and Wang (2016) PBM

PWM/
DNN-based
model

Scalable on large
datasets;
integrate short-range
dependencies in
sequences

Computationally
intensive training;
not maintained

2016

DanQ Quang and Xie (2016) ChIP-seq;
DNase-seq

PWM/
DNN-based
model

Scalable on large
datasets;
integrate different
genomic data;
integrate long- and
short-range dependencies
in sequences

Computationally
intensive training;
weights differently
sequences on positive
and reverse strands

2016

FactorNet Quang and Xie (2019) ChIP-seq;
DNase-seq

PWM/
DNN-based
model

Scalable on large
datasets;
integrate different
genomic data;
weights identically
positive and reverse
strands

Computationally
intensive training 2019
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