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1 Introduction

Equational logic is one of the most important domains of research in computer science. Specifications of

types of data structures and assertions about the behaviour of programs are naturally written in equational

form. Programs made of equations are called equational programs and appear in functional programming, logic

programming and in most combinations of high level programming paradigms [19, 23]. First order logic can be

expressed equationally [20]. This formulation makes it possible to express logic programming equationally and

to employ the computational model of equational languages in logic programming [7]. Set theory can also be

expressed equationally [33], enabling one to reason about query languages and optimization in data bases [11].

Such a wide range of applications, not to mention the traditional applications to algebra, makes automated

deduction in equational logic an important subject of research. However, the seemingly insurmountable search

space caused by the symmetry and replacement properties of the equality predicate had been a serious obstacle

which baffled researchers in automated deduction for several decades. It is not until very recently that methods

capable of effectively reason with equations have been designed and successfully applied to an interesting range

of challenging problems. These methods are based on the term rewriting approach to equational reasoning,

which was started in [24].

The key idea in term rewriting based theorem proving is to regard a derivation as a process of proof reduction.

Equations are oriented into rules according to a well-founded ordering, and equational replacement is performed

only in one direction. When an expression (term, equation, clause) is simplified by a rule, the old expression is

discarded and replaced by the new one, which is smaller in the ordering. The generation of new lemmas, the

superposition process, is also done according to the ordering. By keeping every piece of data fully simplified at

all time, the search space is drastically reduced.

Section 2 presents in greater detail the simplification-based theorem proving approach, according to the

theoretical framework which we have proposed in [8]. Section 3 describes our theorem prover SBR3, which

implements the simplification-based methodology. Section 4 relates some original proofs obtained automatically

with SBR3. The last section is devoted to some discussion on our current work on distributed theorem proving.
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2 Simplification-based automated deduction

A theorem proving problem consists in finding a proof of a given sentence ϕ in a given set of axioms S. The

set S is a presentation of the theory Th(S) of all the theorems of S, Th(S) = {ψ | S |= ψ}. For instance, in

equational logic, S is a set of equations E, the axioms for an equational theory. The sentence ϕ to be proved

is the target or goal. In equational theorem proving, the target is an equation ∀x̄s ≃ t, where all variables are

universally quantified. We write (S;ϕ) to denote the problem of proving ϕ from S.

The first component of a theorem proving strategy C is a set I of inference rules. An application of an

inference rule to (S;ϕ) transforms it into another problem: (S;ϕ)⊢I(S
′;ϕ′). Clearly, the two problems must

be equivalent. This is ensured by requiring that for all inference steps (S;ϕ)⊢I(S
′;ϕ′), the theory of S′ is not

larger than the theory of S, i.e. Th(S′) ⊆ Th(S), and ϕ ∈ Th(S) if and only if ϕ′ ∈ Th(S′). We have termed

these two properties monotonicity and relevance respectively.

An inference mechanism I defines for every given input (S0;ϕ0) the space of all the problems or states

(S;ϕ), which can be derived from (S0;ϕ0) by I in zero or more steps. This space can be represented as a

tree, where the nodes are labeled by pairs (S;ϕ), the root is labeled by (S0;ϕ0) and there is an arc from node

(S;ϕ) to node (S′;ϕ′) if and only if (S;ϕ)⊢I(S
′;ϕ′). We call this tree the I-tree rooted at (S0;ϕ0), because it is

determined by the inference mechanism I and the input problem (S0;ϕ0). Accordingly, a sequence of inference

steps (S;ϕ)⊢I(S
′;ϕ′) is an I-path. In general, the I-tree is a directed graph, rather than a tree, since a node

(S;ϕ) may be reachable starting from the root by more than one I-path. However, it is always possible to

transform it into a tree by allowing different nodes to have the same label.

If ϕ0 is indeed a theorem of S0, i.e. ϕ0 ∈ Th(S0), the inference mechanism I should be able to prove it. This

is the intuitive meaning of the refutational completeness of an inference system. Refutational completeness can

be described on the I-tree as follows: I is refutationally complete if and only if, whenever ϕ0 ∈ Th(S0), the

I-tree rooted at (S0;ϕ0) contains at least a node labeled by a successful state (S; true), i.e. a state where the

target is proved.

If our theorem proving strategy C has a refutationally complete inference mechanism, we know that for

every true input target, we can find a proof. However, ensuring that the inference rules are sufficiently powerful

to prove all theorems is just the beginning. We now face the problem of searching the I-tree to reach a solution.

Thus, the second component of a strategy C is a search plan Σ: C =< I; Σ >. Given the input state (S0;ϕ0), Σ

selects an inference rule f in I and a tuple of premises x̄ in S0 ∪ {ϕ0}. The first step consists then in applying

f to x̄, generating a new state (S1;ϕ1). Choosing an inference step corresponds to choosing one of the arcs

leaving node (S0;ϕ0) in the I-tree. The process is repeated, generating a derivation

(S0;ϕ0)⊢C(S1;ϕ1)⊢C . . . (Si;ϕi)⊢C . . .,

where at each step an inference is performed according to the search plan. The derivation computed by C on

input (S0;ϕ0) is the unique I-path selected by Σ in the I-tree rooted at (S0;ϕ0). A derivation is successful if

it reaches a successful node (S; true).

The refutational completeness of I guarantees that successful derivation exist. We need another property

to ensure that the specific derivation computed by C is successful. This property is the fairness of the search

plan: Σ is fair if and only if, whenever the I-tree rooted at (S0;ϕ0) contains successful nodes, the derivation

controlled by Σ finds one. The refutational completeness of the inference rules and the fairness of the search

plan together imply the completeness of the strategy C: whenever ϕ0 ∈ Th(S0), the computation by C halts
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successfully. In other words, C is a semidecision procedure for theorem proving.

Meeting the completeness requirement alone is not difficult. Many refutationally complete inference systems

are known and a search plan which tries exhaustively all steps is trivially fair. The more challenging question of

automated deduction is to obtain a strategy which is both complete and efficient: not only should the strategy

succeed, but it should also do it by consuming “reasonable” amounts of resources, i.e. time and memory. The

notion of efficiency is clearly not an absolute one. Rather, it can be used for comparisons. Informally, given

two complete strategies C1 and C2, a problem (S0;ϕ0) and a fixed amount of memory (elapse of time), C1 is

more efficient in time (in memory) than C2 on problem (S0;ϕ0), if it reaches a solution in shorter time (using

a smaller amount of memory).

The issue of efficiency can, and in fact should, be considered at both the inference level and the search level.

At the inference level, the goal is to devise inference mechanisms which generate “small” search spaces, while

preserving refutational completeness. It is desirable that the search space is small, since searching a small space

is intuitively easier than searching a large one, but not at the expense of losing all the solution nodes! Similarly,

at the search level, the goal is to design search plans which find “fast” solutions, while preserving fairness.

We attack these problems as follows. We have seen that a theorem proving derivation transforms a theorem

proving problem into equivalent problems. Intuitively, it is desirable that a problem is reduced to one which

is in some sense “smaller”. In fact, at the end of a successful derivation we have a solved problem (S; true),

where the dummy target “true” simply indicates that the original target has been proved. Thus, we need to

identify what is being reduced during a theorem proving derivation. We observe that if a target ϕ0 is indeed

a theorem of the input set S0, then there exist some proofs of ϕ0 in S0. On the other hand, the proof of the

dummy target “true” is empty. At any stage (Si;ϕi) in between there is a (non-unique) minimal proof of ϕi in

Si, which represents the least amount of work which still needs to be done in order to prove ϕi from Si. If the

derivation gets closer to a solution, a minimal proof of the target gets reduced, i.e. the amount of work which

is left becomes smaller. When the problem is solved, no more work needs to be done. Therefore, we regard

theorem proving as reduction of a minimal proof of the target to the empty proof.

In order to compare proofs and to have a notion of minimal proofs, we need an ordering of proofs. Fur-

thermore, this ordering needs to be well founded, having as bottom element the empty proof. A notion of well

founded orderings on proofs, called proof orderings, has been introduced in [5, 6] and used to prove that Knuth-

Bendix type completion procedures generate confluent systems of rewrite rules [16]. We use the same notion

for a different purpose. Given a proof ordering >p, at each stage (Si;ϕi) of a derivation, we consider the set

Π(Si, ϕi) of the minimal proofs of ϕi in Si, according to the ordering >p. A successful derivation progressively

reduces a proof in Π(Si;ϕi) to the empty proof.

This view has several advantages, both theoretical and practical. On the theoretical side, it has allowed us

to give a coherent mathematical foundation to theorem proving. All concepts in theorem proving are defined

and related to each other by using proof orderings and proof reduction with respect to such orderings. For

instance, the above informal notions of refutational completeness and fairness can be formalized in terms of

proof reduction [8, 9].

On the practical side, we require that the inference rules are proof-reducing. As we derive (Si+1;ϕi+1)

from (Si;ϕi), the set Π(Si, ϕi) is replaced by Π(Si+1, ϕi+1). Clearly, we need to forbid all inference steps

which would replace a proof P in Π(Si, ϕi) by a proof Q in Π(Si+1, ϕi+1) such that Q >p P . Such steps

certainly do not help. On the other hand, we cannot impose that at every step a minimal proof of the target
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be reduced. This is impossible, since theorem proving is a process of search and therefore many steps generally

do not contribute to the final result. We require that for every step (Si;ϕi)⊢C(Si+1;ϕi+1), every proof P in

Π(Si, ϕi) is either preserved, i.e. P is also in Π(Si+1, ϕi+1), or reduced, i.e. P is replaced by a proof Q in

Π(Si+1, ϕi+1) such that Q <p P . This condition is still not sufficiently general, since inference steps may not

affect immediately any minimal proof of the target and still be necessary to prove it eventually. Therefore, we

need to extend our attention to a larger set of theorems, which we call the domain T of the derivation. A step

(Si;ϕi)⊢C(Si+1;ϕi+1), such that Π(Si, ϕi) = Π(Si+1, ϕi+1), is also proof-reducing, provided that for all ψ in

T , every minimal proof is either preserved or reduced and for at least a ψ in T a minimal proof is reduced.

Intuitively, we would like the domain T to be as small and as “related” to the target as possible. In practice,

for the known simplification-based strategies, the domain is the set of all ground equations.

2.1 The simplification-based inference engine UKB

The most significant characteristic of inference rules in simplification-based strategies is that they are proof-

reducing [8]. As an example, we present in the following the ones which are used in our prover SBR3, an

automated deduction system for equational theories. Collectively, they form the unfailing Knuth-Bendix

completion procedure, or UKB for short. UKB is a semi-decision procedure for the validity problem of

equational theory.

The most important one is Simplification [28] itself. If we consider a derivation in equational logic, a

presentation is a set of equations E and a target is an equational theorem ∀x̄s ≃ t. We write the target as

ŝ ≃ t̂ to denote that it contains only universally quantified variables and therefore can be regarded as a ground

equality. The definition of simplification involves two orderings. The first one is a well founded ordering on

terms ≻ which is used to ensure that simplification replaces an equation by a smaller equation [15]. The second

one is the encompassment ordering •≥ which is defined as follows: t •≥s if t|u = sσ for some position u and

substitution σ, i.e. an instance sσ of s occurs as a subterm in t. We write t •>s if t •≥s and either u is not the

root position or σ is not just a renaming of variables [16].

Simplification applies to the presentation:

(E ∪ {p ≃ q, l ≃ r}; ŝ ≃ t̂)
(E ∪ {p[rσ]u ≃ q, l ≃ r}; ŝ ≃ t̂)

p|u = lσ p ≻ p[rσ]u
p •>l ∨ q ≻ p[rσ]u

and to the target:

(E ∪ {l ≃ r}; ŝ ≃ t̂)
(E ∪ {l ≃ r}; ŝ[rσ]u ≃ t̂)

ŝ|u = lσ

ŝ ≻ ŝ[rσ]u.

Intuitively, a simplification step replaces an equation by a smaller equation and therefore it reduces all the

proofs where the replaced equation occurred.

The second basic inference rule, a deductive inference rule called Superposition [21], is also proof-reducing:

(E ∪ {p ≃ q, l ≃ r}; ŝ ≃ t̂)
(E ∪ {p ≃ q, l ≃ r, p[r]uσ ≃ qσ}; ŝ ≃ t̂)

p|u 6∈ X (p|u)σ = lσ

pσ 6� qσ, p[r]uσ

where X is the set of variables and σ is the most general unifier of (p|u) and l. The key point is that the step

is performed only if pσ 6� qσ and pσ 6� p[r]uσ. This conditions guarantee that the rule is proof-reducing.

An operator f is said to satisfy the right cancellation law if for every x, y, z, f(x, z) = f(y, z) implies x = y.

The left cancellation law is defined symmetrically. Cancellation laws can be incorporated as inference rules,
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which may reduce considerably the size of the equations. We present two such inference rules here. A complete

list can be found in [22].

Cancellation 2:

(E ∪ {f(d1, d2) ≃ y}; ŝ ≃ t̂)
(E ∪ {f(d1, d2) ≃ y, d1σ ≃ x}; ŝ ≃ t̂)

y ∈ V (d1) σ = {y 7→ f(x, d2)}

y 6∈ V (d2) x is a new variable

Cancellation 4:

(E ∪ {f(p, u) ≃ f(q, u)}; ŝ ≃ t̂)
(E ∪ {p ≃ q}; ŝ ≃ t̂)

where the function f is right cancellable. In Cancellation 2, if the substitution σ = {y 7→ f(x, d2)} is applied

to the given equation, it becomes f(d1σ, d2) ≃ f(x, d2), since y does not occur in d2. The cancellation law

reduces this equation to d1σ ≃ x. Cancellation 4 is not necessary for the purpose of completeness, but it helps

in improving efficiency.

Simplification-based strategies also feature rules such as Functional subsumption,

(E ∪ {p ≃ q, l ≃ r}; ŝ ≃ t̂)
(E ∪ {l ≃ r}; ŝ ≃ t̂)

(p ≃ q) •≥(l ≃ r)

which delete equations subsumed by other equations, and Deletion

(E ∪ {s ≃ s}; ŝ ≃ t̂})
(E; ŝ ≃ t̂)

which delete trivial equations. These rules do not reduce any minimal proofs, but they delete equations, which

are redundant, in the sense that they do not contribute to any minimal proofs and therefore are not needed in

the derivation. Deletion also applies to the target

(E; ŝ ≃ ŝ})
(E; true)

in order to detect that the target is proved.

Another inference on the target is superposition of an un-orientable equation onto a target equality ŝ ≃ t̂

to generate a new target equality. A newly generated target equality is first simplified as much as possible and

then it is kept only if it is smaller than ŝ ≃ t̂. This rule is called Ordered saturation [1]:

(E ∪ {l ≃ r};N ∪ {ŝ ≃ t̂})
(E ∪ {l ≃ r};N ∪ {ŝ ≃ t̂, ŝ′ ≃ t̂′})

ŝ|u = lσ ŝ[rσ]u →
∗
E ŝ

′ t̂→∗
E t̂

′

{ŝ′, t̂′}≺mul{ŝ, t̂}

Ordered saturation applies if ŝ ≺ ŝ[rσ]u, since if ŝ ≻ ŝ[rσ]u holds, simplification would apply. The target

equality ŝ′ ≃ t̂′ might have a shorter proof than the other target equalities. Ordered saturation allows us to

generate more than one target in order to broaden our chance of reaching the proof as soon as possible.

Rules such as simplification, subsumption and deletion are called contraction inference rules, because they

delete equations or replace them by smaller equations. Rules like superposition and ordered staturation instead

are expansion inference rule, because they generates new equations and add them to E or to the target. Roughly

speaking, a step which deletes a sentence also deletes the portion of the search space which depends on that

sentence, i.e. all the inferences which could be applied to that sentence. On the contrary, an expansion step

expands the data base and therefore the search space. It follows that in order to keep the size of the search

space manageable, it is desirable to apply as much as possible the contraction rules and to restrict as much
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as possible the application of the expansion rules. This is in fact the philosophy of the simplification-based

strategies. First of all, these strategies adopt simplification-first search plans [21], i.e. search plans which

give priority to contraction inference rules. Under such search plans, expansion rules are applied only if no

contraction rule applies. Consequently, the current set of equations and therefore the current search space

is always kept as reduced as possible. Secondly, simplification-based strategies impose strong ordering based

restrictions on the expansion rules, such as those embedded in the definitions of superposition and ordered

saturation. Such restrictions make the inference rules proof-reducing and limit their applicability, thereby

reducing their capability of expanding the search space. These choices have turned out to be very successful

in practice, up to the point of bringing within reach unsolved challenge problems, as described in the following

section.

3 Putting theory into practice

We have developed a family of theorem provers for equational theories whose design strictly adheres to the

aforementioned methodology. The latest versions is SBR3, written in CLU and runs on Sun3. A new version

in C++, SBR4, with the same functionalities is being developed. SBR4 runs on any machines that supports

C++, and is much faster than SBR3. On the problems which we have tested on both SBR3 and SBR4 (the

latter on a Sparcstation), the latter is usually at least ten times faster.

SBR3 takes as inputs an equational theory E and an equation s ≃ t and tries to prove that s ≃ t is a

theorem of E. It proves a theorem the refutational way. That is, it replaces all variables in s ≃ t by new Skolem

constants and tries to find a contradiction to E ∪{ŝ 6= t̂}) where ŝ and t̂ are the skolemization of s and t. Then

the prover will try to deduce an instance of x 6= x which yields the contradiction.

In addition to the theory and the equation, the user should also provide an ordering for comparing the

terms. Usually the ordering should be a complete simplification ordering (a simplification ordering which is

total on ground terms). In SBR3 the user has the choice of assigning a precedence among the operators in

the theory and choose an ordering from a list implemented in the system. However, SBR3 will not check

the totality for the user. The lack of totality on ground terms may actually be turned into a powerful search

strategy similar to Ordered Saturation described in the previous section.

The backbone of SBR3 is a variation of unfailing Knuth-Bendix completion, mentioned in the previous

section, which also incorporates the commutative and associative (AC) axioms of an operator into the unification

algorithm. We term this procedure AC-UKB. Although the AC axioms can be handled simply as equations, it

is advantageous to treat them implicitly in the unification process to the number of unnecessary Superposition

inferences.

What differ SBR3 from the other provers, in addition to the simplification-based inference system, are

its simple yet extremely powerful search plans. Search plans are usually treated in theorem proving in an ad

hoc and incomplete way – anything that produces proofs is allowed. Fairness (thus completeness of the proof

strategy) is usually compromised by the concern for greater efficiency. Using the notion of proof reduction,

we have demonstrated that it is possible to achieve both completeness (fairness of the search plan) as well

as efficiency. In SBR3, only fair search plans are implemented. Our experiments showed that they, if done

properly, can indeed be both complete and very efficient.

The most important design choice common to all the search plans in SBR3 is that they are simplification-
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first plans. That is, no superposition step is ever performed if there are still simplification steps and functional

subsumption steps to be done. This search plan, coupled with cancellation, controls the growth of the number

and size of equations sufficiently enough to obtain proofs for simple to moderately difficult problems. For more

difficult problems, however, the search space quickly grows to an unmanageable size.

The first question we tackle is one of finding a shorter path to a solution. UKB, being complete, guarantees

the existence of a proof through simplification and superposition should there be one. It does not, however,

guarantee to provide a short proof. Suppose the prover can look at several different inequalities and tries to

find a contradiction simultaneously1, then conceivably one can find a proof faster. On the other hand, one

should also keep in mind not to inundate the search space with irrelevant inequalities.

SBR3 provides a facility for maintaining a reasonable number of inequalities, to check for shorter proofs,

by modifying the ordered saturation rule. When an un-orientable equation is generated, we superimpose it into

an existing inequality (say A) to create a new inequality if possible. Then the new inequality is simplified using

the rest of the equations and rules into B. The inequality B is kept, without deleting A, if A 6≤ B according

to the ordering. We term this method the inequality ordered-saturation strategy. This strategy is indispensable

for proving some of the more difficult problems which we experimented [1].

Another challenge is to eliminate redundant critical pairs. This problem is especially serious in AC-rewriting

due to the potentially astronomical number of AC-unifiers. In the term rewriting literature there are a handful

of critical pair criteria, whose purpose is to eliminate unnecessary critical pairs. However, all of them are

designed not to destroy the confluence property of any given two terms. In refutational theorem proving, on

the other hand, we are only interested in the confluence of the two terms of the targeted theorem. Therefore a

critical pair can be deleted or suspended as long as it does not destroy the confluence of the intended terms.

Taking advantage of this property, we employed a notion of measure in SBR3. A measure is defined

syntactically on the structure of terms: for example, the number of occurrences of a specific operator may be a

measure. The measure estimates the likelihood of whether a critical pair may contribute to an eventual proof of

the intended theorem. Critical pairs are ordered according to the measure which decides the next equation to

be chosen to perform superposition. Certain measures even allow us to delete critical pairs if they are deemed

irrelevant for producing a proof. This search strategy is called filtration-sorted strategy and its details can be

found in [2]. Three different types of measure are implemented in SBR3.

4 Experimental results: automatic proofs by SBR3

We have conducted extensive experiments on SBR3. We tested the prover on all the examples in equational

theorem proving which we could find, as well as some new ones. The experiments we performed showed a

dramatically small search space, just as expected. As a simple example, for the well-known Salt and Mustard

puzzle of Lewis Carroll, first suggested by the Argonne Theorem Proving Group as a challenge problem for

theorem provers, the Argonne prover Otter [25] generated more than 32,000 clauses before finding the solution

while ours succeeded after generating less than 2000 rewrite rules.

The performance of SBR3 on serious mathematical problems is even more impressive. The celebrated

Jacobson’s Theorem of ring theory for n = 3 [31], the independence of ternary algebra axioms [27], etc., have

all been proved in a few minutes. In the following we describe some of the problems for which SBR3 provided

1The basic UKB only looks at one.
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the first computer proofs.

Classical Regular Languages

In [14], there is an equational formulation of classical regular languages by Yanov (page 108 of [14]) which

completely axiomatize regular languages containing the empty string. The axioms are:

x+ x == x

z.(x+ y) == (z.x) + (z.y)

(x+ y).z == (x.z) + (y.z)

(x∗)∗ == x∗

x∗.x∗ == x∗

x+ (x+ y)∗ == (x+ y)∗

(x+ y)∗ == (x∗ + y)∗

(x+ y)∗ == (x.y)∗

(x.y)∗.x == (x.y)∗

x.(x.y)∗ == (x.y)∗

y + (x.y) == x.y

x+ (x.y) == x.y

x+ y == y + x

(x.y).z == x.(y.z)

(x+ y) + z == x+ (y + z)

where “.” is concatenation. SBR3 proved that

(
n∑

i=1

Ai)
∗ = (

n∑

i=1

Ai.Ai
∗
.Ai)

∗(1 +
n∑

i=1

Ai.Ai
∗
)

where Ai = A1 + · · · + Ai−1 + Ai+1 + · · · + An, for n = 3 and n = 4, and the languages contain the empty

strings2. In [14], Conway used an entire chapter to introduce a new technique to prove these two problems and

remarked (page 119) that “. . . even for n = 3 it is difficult to produce a proof without using the general ideas of

this chapter, and for n = 4 I doubt if a completely written out proof could be fitted into 10 pages”. The direct

proof, produced by SBR3, needs no more than five new critical pairs, in addition to the simplication steps!

The cpu time needed for n = 3 is about 4 minutes and 42 minutes for n = 4.

Dependency of Lukasiewicz’s fifth axiom

Lukasiewicz’s many-valued logic is defined using the following four axioms:

true⇒ x == x

(x⇒ y) ⇒ ((y ⇒ z) ⇒ (x⇒ z)) == true

2The equations are not true in classical regular algebra when n ≥ 5.
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(x⇒ y) ⇒ y == (y ⇒ x) ⇒ x

(not(x) ⇒ not(y)) ⇒ (y ⇒ x) == true.

The problem is whether the fifth axiom x ⇒ y ∨ y ⇒ x == true is necessary [17]. The conjecture of its

dependency was given by Lukasiewicz in the 20’s, as reported in [32], and proved many years later [13, 26].

The proof by SBR3 is done by first deriving a few lemmas from the axioms, one of which leads to the

definition of an additional operator or. Then SBR3 proves that or is AC. Finally, the conjecture is proved in

about 2 minutes. For the final session, the inputs are

true⇒ x == x

x⇒ x == true

x⇒ true == true

(x⇒ y) ⇒ ((y ⇒ z) ⇒ (x⇒ z)) == true

not(not(x)) == x

(x⇒ y) ⇒ y == (y ⇒ x) ⇒ x

or(not(x), y) == x⇒ y

x ∨ y == (x⇒ y) ⇒ y

Declared AC-operator: or.

Theorem proved: x⇒ y ∨ y ⇒ x == true.

A detailed description of the experiments in Lukasiewicz logic can be found in [3, 4, 10].

Moufang identities in alternative rings

Alternative rings are rings with the associativity of ∗ replaced by two alternative axioms. The Moufang

identities are a set of equational theorems of alternative rings. The Moufang identities as a challenge to

theorem provers was first suggested in [30], although no automated proof was given. They were later proved

automatically using a special-purpose theorem prover designed for ring theory [35]. SBR3 is the first syntactic

theorem prover which proved them automatically.

Alternative rings are defined by

0 + x == x

0 ∗ x == 0

x ∗ 0 == 0

g(x) + x == 0

g(x+ y) == g(x) + g(y)

g(g(x)) == x

x ∗ (y + z) == (x ∗ y) + (x ∗ z)

(x+ y) ∗ z == (x ∗ z) + (y ∗ z)

(x ∗ y) ∗ y == x ∗ (y ∗ y)
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(x ∗ x) ∗ y == x ∗ (x ∗ y)

g(x) ∗ y == g(x ∗ y)

x ∗ g(y) == g(x ∗ y)

a(x, y, z) == ((x ∗ y) ∗ z) + g(x ∗ (y ∗ z)

where a is an auxiliary operator.

SBR3 proved the following properties (the middle alternative law and two skew-symmetries of a) within 20

seconds:

(x ∗ y) ∗ x == x ∗ (y ∗ x)

a(y, x, z) == g(a(x, y, z))

a(z, y, x) == g(a(x, y, z))

The Moufang identities are defined as:

(((x ∗ y) ∗ x) ∗ z) = (x ∗ (y ∗ (x ∗ z))) (left Moufang)

(((z ∗ x) ∗ y) ∗ x) = (z ∗ (x ∗ (y ∗ x))) (right Moufang)

((x ∗ y) ∗ (z ∗ x)) = ((x ∗ (y ∗ z)) ∗ x) (middle Moufang)

and they are proved in 49, 55, and 41 minutes respectively.

By adding the left and right Moufang into the input set, we are able to give a direct proof of

a(x ∗ x, y, z) == ((a(x, y, z) ∗ x) + (x ∗ a(x, y, z)))

in 13 minutes. A full account of our experiments in alternative rings is given in [1].

Another series of problems which we are working on now is to verify the theorems of the book A Formal-

ization of Set Theory without Variables by Tarski and Givant. As pointed out in [11], this will have direct

implication on the design and optimization of query languages in relational data bases and program synthesis.

Our experiments are encouraging. They show us that high performance automated deduction is feasible even

with our current knowledge and technology. We believe that the philosophy of simplification underlying our

prover is the most significant reason for the dramatic reduction of search space, which made all our automatic

proofs possible.

5 Distributed theorem proving

We are currently working on the design of a simplification-based strategy for parallel automated deduction in a di-

stributed multi-processing environment. We feel that simplification-based theorem proving is an ideal candidate

for application of parallel computation, because the rewriting approach couples a strong and elegant theoretical

foundation with an extremely encouraging experimental record. A deep understanding of the problem at hand

is necessary to design an architecture that exploits successfully the increased computing power of a parallel
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environment. It would also open a new perspective of application for parallel computation which has not been

investigated before.

Relatively little work has been done in this area so far. Parallelizing a simplification-based strategy is

significantly different from parallelizing a conventional, space consuming theorem proving strategy. The latter

uses mostly expansion inferences and it is relatively easy to perform expansion steps in parallel, because

expansion steps are more or less independent from each other. More precisely, any two inference steps which

do not have premises in common are trivially independent and can proceed concurrently, at least in principle.

For expansion inferences, two steps which share one or more premises are also independent, because expansion

steps do not modify their premises. Expansion steps simply need to be granted read-access to their premises.

Since concurrent read can be safely admitted, the parallelization of expansion inferences does not raise basic

conceptual problems. In a simplification-based strategy, however, inference rules are intertwined. The reason

is that contraction inferences do modify their premises. A contraction step needs not just read-access, but also

write-access to its premises. Therefore, two contraction steps which share premises may cause a write-write

conflict if they attempt to modify concurrently the same data. Also, contraction steps may have read-write

conflicts with concurrent expansion steps.

Even this very basic analysis of the problem shows that the presence of contraction rules makes the design

of a parallel strategy harder. However, we think that the gain is well worth the additional effort. Firstly, there

is ample empirical evidence that sequential strategies with contraction rules are much more powerful than those

without contraction. This behaviour is also justified theoretically by our proof reduction view. Based on this,

it is reasonable to foresee that the same pattern of behaviour will appear when comparing parallel strategies.

In fact, we expect an even much better improvement. By grossly simplifying the problem, let C0 be a sequential

strategy without contraction rules and let t be the time spent by C0 to prove a given input (S;ϕ). Let C1 be

the sequential strategy obtained by adding contraction to C0 and let t/s, for some s > 1, be the time required

by C1 on (S;ϕ). Furthermore, let C2 and C3 be respectively a parallel version of C0 and a parallel version of C1.

We expect that if C2 takes time t/n, n > 1, to prove ϕ, C3 will take time t/p, where p > n · s. In other words,

we expect the speedup of a parallel simplification-based strategy to be much higher than the mere combination

of the speedup induced by simplification and the speedup induced by parallelism. This may not be true for

all inputs, but we expect it to hold for most targets. The intuitive reason for our expectation is the following.

Roughly speaking, if we execute in parallel an expansion-only strategy, we will be able to perform expansion

steps by batches rather than one by one. The equations will be generated faster and the derivation will succeed

at an earlier stage than the sequential one. However, the solution obtained is in some sense the same, as the

same equations are generated. On the other hand, if we execute in parallel a simplification-based strategy,

powerful simplifiers may be generated much sooner than in the sequential derivation. In a simplification-first

strategy, the early application of such simplifiers may trigger the early generation of other simplifiers and an

eventual radical modifications of the data base, leading the prover to find a different and much faster successful

path than the one found by the sequential execution.

Problems related to those of parallel deduction have been addressed by the study of parallel and distributed

implementations of the Buchberger algorithm [34, 29, 18]. The Buchberger algorithm works on polynomials,

equated to 0 and treated as oriented equations. It takes as input a set of polynomials and gives as output a basis

for the ideal generated by the input polynomials. The basis has the property that it reduces to 0 all and only

the polynomials belonging to the ideal [12]. The Buchberger algorithm is related to the simplification-based

strategies because it features an expansion inference rule which is similar to superposition and a contraction
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rule which is similar to simplification. There are also substantial differences, because the Buchberger algorithm

has a much less general purpose than a theorem proving strategy. The Buchberger algorithm is an algorithm,

whereas the theorem proving strategies are semidecision procedures. Its inferences do not use unification, since

there are no variables, as the “variables” in the polynomials are constants logically. It follows that expansion

steps are much less expensive than in theorem proving. Also, the equations are all trivially oriented into rewrite

rules, because they are obtained by equating polynomials to 0. Nonetheless, parallel implementations of the

Buchberger algorithm need to deal with the problem of the coexistence of expansion and contraction inferences.

The three approaches presented in [34, 29, 18] address the problem within three different models of parallel

computation: a shared memory multi-processor in [34], a data-flow machine in [29] and a distributed memory

multi-processor in [18]. All three algorithms have interesting features. However, none of them implements a

simplification-first methodology. In fact, the data base of polynomials is not maintained fully simplified by any

of these three implementations. In particular, very little backward contraction, i.e. simplification of formerly

existing equations by newly generated ones, is performed. As a consequence, expansion rules are applied

to equations which are not fully reduced, unnecessary equations are generated and the search space swells.

It seems that this phenomenon has prevented these three implementations from achieving better speedups.

The trouble is that requiring equations to be fully simplified, before they are allowed to expand, introduces

some sequentiality. An expansion process cannot be granted read-access to an equation until all simplification

processes have had write-access to it. We have then two at least partially conflicting desiderata: on one hand,

we would like to simplify as much as possible before expanding, while in the meantime we would like to perform

as many steps in parallel as possible. The problem is to find a satisfactory trade-off between these two.

We have kept this issue in mind since the early stages of our project. So far, we have settled on a few

basic choices. The first one is coarse grain versus fine grain parallelism or, equivalently, coarse granularity of

protection versus fine granularity of protection. For the purpose of this discussion, we regard as fine granularity

the term level and as coarse granularity the equation (or clause) level. Thus, fine granularity means that every

term is a grain of memory with its own access rights. Fine granularity allows parallel processes to access

different subterms of the same term. Parallel matching, parallel rewriting and parallel unification are examples

of fine grain parallelism. On the other hand, coarse granularity means that if a process is granted access to

an equation, no other process can access any part of it. Fine grain parallelism is well suited for equational

programs, where just one term needs to be reduced by a static set of equations. In theorem proving we have

a dynamic set of equations where every single term is subject to simplification. It seems to us that under

these conditions the overhead of handling fine granularity would be unreasonably high. Therefore, we choose

to concentrate ourselves on coarse grain parallelism, although some fine grain parallelism might be considered

at a later stage.

The second basic choice is shared memory versus distributed memory. This choice is related to the previous

one. Fine grain parallelism leads in general to adopt a shared memory, since it does not seem realistic to scatter

the terms of an equation over a distributed memory. Coarse grain parallelism can be implemented in principle

in both a shared memory and a distributed memory. However, we are oriented toward distributed memory, for

the following reasons. Theorem proving is basically search for solutions in a generally huge search space. We

expect parallelism to help in two ways: by keeping the search space small by eager, parallel simplification and

by searching it in parallel along different paths. In order to realize this intuitive idea of parallel search, we need

the parallel processes to be rather independent. Thus, the processors should be rather loosely coupled, with no

shared memory. We envision a situation where each processor has in its own memory a set of equations Si and
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the union of all the Si’s form the current data base S. The Si’s are initially disjoint, but in general they do

not remain disjoint during the derivation. Also, each processor is originally given a copy of the input target ϕ0.

Since different processors perform different steps, ϕ0 may be reduced to different, yet equivalent targets, one

per processor. Each processor performs its own inference steps searching for a proof. However, the processors

do communicate by broadcasting their equations to all the other processors. When receiving equations from

the outside, a processor uses them to perform inferences with its own equations. The simplification-first

methodology is strictly enforced at the local level. Each processor maintains its own data base fully reduced,

including the equations received as messages. No expansion step is performed if the equations involved are

not fully reduced, at least locally. Clearly, they are not guaranteed to be reduced with respect to the global

data base. However, our strategy is fair in the sense that it guarantees that any two equations generated at

remote sites will be able to interact through messages, if they are not simplified locally beforehand. The cost of

handling such messages is the price to pay for the high degree of independence of the processors. In addition,

this scheme induces a certain amount of redundancy, as the data bases at different sites are not guaranteed to

be disjoint and therefore it may happen that a same step is executed by more than one processor.

This is just a very brief sketch of a few basic ideas in our work. We are currently studying the details, trying

to minimize redundancy and the cost of message passing. Based on the investigations conducted so far and on

the observation that the implementations in [34, 29, 18] obtained significant speedups even in the absence of

full simplification, we expect that this on going research will ultimately increase the speed of a theorem prover

like SbReve by at least a hundred times.
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