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Abstract
We propose a model-based reinforcement learning method using Monte Carlo Tree
Search planning. The approach assumes a black-box approximated model of the envi-
ronment developed by an expert using any kind ofmodeling framework and it improves
the model as new information from the environment is collected. This is crucial in
real-world applications, since having a complete knowledge of complex environments
is impractical. The expert’s model is first translated into a neural network and then it
is updated periodically using data, i.e., state-action-next-state triplets, collected from
the real environment. We propose three different methods to integrate data acquired
from the environment with prior knowledge provided by the expert and we evalu-
ate our approach on a domain concerning air quality and thermal comfort control in
smart buildings. We compare the three proposed versions with standard Monte Carlo
Tree Search planning using the expert’s model (without adaptation), Proximal Pol-
icy Optimization (a popular model-free DRL approach) and Stochastic Lower Bounds
Optimization (a popular model-based DRL approach). Results show that our approach
achieves the best results, outperforming all analyzed competitors.
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1 Introduction

Reinforcement Learning (RL) has recently proved to have strong potentials in applica-
tions where agents must operate in unknown environments adapting to unexpected (or
partially specified) situations. The goal of RL algorithms is to learn optimal policies,
namely, functions that map system states to actions that allow the agent to reach its
goal. Model-free RL focuses, in particular, on algorithms that learn the policy with-
out making any assumption about the dynamics of the environment. These methods
directly learn the policy from relationships among states, actions and rewards observed
in the environment while the agent acts. On the other hand, model-based RL leverages
interactions with the environment to learn a model that is used in the computation
of the policy. This approach provides a richer formalism allowing to integrate prior
knowledge about the environment, hence achieving better performance, however, it
requires information about the model of the dynamics (e.g., the form of that model),
often unavailable in real-world applications.

In this work, we aim at addressing this limitation by proposing a model-based
RL approach that improves an expert-defined approximate model of the dynamics
according to the information gathered online from the environment. The technique
employs Artificial Neural Networks (ANN) (Goodfellow et al. 2016) to represent the
model of the dynamics and Monte Carlo Tree Search (MCTS) (Browne et al. 2012)
as an internal planner using the ANN to perform simulations. The approach first
transforms the approximate model provided by the expert into a neural network. In
this way it allows the usage of any kind of expert-defined model of the dynamics (e.g.,
rule-based, probability-based, data-driven, etc.). Then, it uses the ANN model as a
simulator in MCTS to compute action Q-values in the visited states. Third, it performs
optimal actions (i.e., optimal according to the current model of the environment and
the number of simulations used by MCTS) in the real environment (which is typically
different from the current model) and collects the observed next states and reward
signals. Finally, it uses information about next states and rewards to update the ANN
model of the dynamics, which will be used by MCTS to compute optimal actions in
the following steps.

The online nature of MCTS well suits the online update of the ANN model. The
choice of MCTS as a planner is related to its capability to compute the Q-function
online and locally (i.e., only for the states actually visited by the agent), which allows
scaling to very large domains typical of real-world applications. Furthermore, MCTS
sampling does not require a full transition matrix, as needed by several RL methods,
but it only requires a black-box simulator, namely, a function providing the next state
given the current state-action pair (notice that this function can be also stochastic).
Thus, the expert is assumed to provide only such a function, which is simpler than
providing a transitionmatrixwith probabilities for all triplets (state, action, next-state).

A key point of our approach is related to how it integrates new information in
the current model. We propose a method for solving this problem and three ways
to perform the integration. The first version, MCP_Real, simply updates periodically
the weights of the copy neural network using environment data as a training set. The
second version,MCP_Mix, merges data (i.e., triplets state-action-next-state) generated
by the original expert’s model with data from the environment and periodically re-
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trains the copy neural network using this dataset as a training set. The third version,
MCP_Select, keeps the copy neural network of the expert’s model unchanged and
trains a separate neural network with data from the environment, then during Monte
Carlo simulations it selects the best model to perform each step according to how close
is the current state-action pair to the training set by which the model has been trained.

To evaluate our approach we consider a real-world application related to air quality
and thermal comfort control in smart buildings. In our domain (Bianchi et al. 2023;
Capuzzo et al. 2022) the planner acquires online information about internal temper-
ature, external temperature, CO2 level, Volatile Organic Compounds (VOC) level,
and people occupancy, and suggests at each step the best action to perform among
activation/deactivation of ventilation, activation/deactivation of sanitization, open-
ing/closing windows. These actions should consider future presence in the room and
future evolutionof external temperature (which are considered available throughout the
current day) hence the planning component is crucial to achieve good performance.
We evaluated the performance of the three versions of our method and compared
them to three baseline approaches, namely, (i) MCTS using the expert’s model with
no adaptations to the real environment; (ii) Proximal Policy Optimization (PPO), a
popular model-free approach (Schulman et al. 2017) representing the state-of-the-art
among model-free approaches; (iii) Stochastic Lower Bounds Optimization (SLBO),
a recent and popular model-based approach (Luo et al. 2019). The second version of
our approach, called MCP_M in the following, achieved the best performance among
the proposed versions. More important, this version outperformed the three state-of-
the-art competitors, in terms of discounted return, in our reference domain.

In summary, the contributions of this work are threefold:

– we propose an adaptive model-based approach to compute and improve a policy
considering an approximated model of the environment. The approach is based on
MCTS for planning and on ANN for model adaptation.

– We apply our approach to a real-world domain concerning air quality and thermal
comfort control in an indoor environment.

– We successfully compare our approach with state-of-the-art model-based and
model-free RL methods showing that our approach outperforms state-of-the-art
methods in terms of return and sample efficiency in a domain concerning air quality
control in indoor environments.

2 Related work

Ourwork has connections withmodel-based RL,MCTS-based planning and continual
learning. Here, we analyze the shared features and highlight the original elements of
the proposed method.

2.1 Model-based RL

RL algorithms (Sutton and Barto 2018) can be categorized in model-free (Kaelbling
et al. 1996) and model-based (Moerland et al. 2023; Luo et al. 2022). Model-free
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methods have been significantly improved in the last decade achieving very good
performance where two of the most prominent approaches are Trust Region Pol-
icy Optimization (TRPO) (Schulman et al. 2015) and Proximal Policy Optimization
(PPO) (Schulman et al. 2017). These algorithms can be applied to domains inwhich the
model of the environment (i.e., transition and rewardmodels) are completely unknown,
which is very useful in some contexts. In several real-world applications, however, the
environment is known or partially known and using a model of the environment can
significantly improve sample efficiency of RL approaches (i.e., reduce the number of
interactions with the environment) hence yielding better policies.

In the landscape of model-based RLmethods, a well known approach is Dyna (Sut-
ton and Barto 2018; Sutton 1991, 1990) which however uses tabular Q-learning that
has scaling problems and cannot be applied to real-world domains with large and
continuous state and action spaces. Dyna-Style algorithms (Luo et al. 2019; Clav-
era et al. 2018; Kurutach et al. 2018), improve the policy by using rich imagined
data (Wang et al. 2019). Contrarily, policy search with backpropagation trough time
algorithms (Chebotar et al. 2017; Finn et al. 2016; Deisenroth et al. 2015; Heess et al.
2015; Tassa et al. 2012; Deisenroth and Rasmussen 2011) leverage the model deriva-
tives to improve the policy (Wang et al. 2019).Model-based shooting algorithms (Chua
et al. 2018; Nagabandi et al. 2018; Rao 2009; Richards 2005), approximately solve
horizon problems ofModel Predictive Control (MPC) in the case of non-linear dynam-
ics and non-convex reward functions (Wang et al. 2019). In the context of dynamical
systems the problem of model learning (i.e., the inverse problem) has been inves-
tigated from several perspectives and using different modeling frameworks. In case
the system dynamics is represented by a set of differential equations, most established
approaches rely, for instance, on deep neural networks (Raissi 2018) and gaussianmix-
ture models (Khansari-Zadeh and Billard 2011). When a more complex mathematical
formalization for the system dynamics is required, e.g. cellular automata (Dennunzio
et al. 2023, 2019), graph neural architecture can be used to learn the corresponding
model (Grattarola et al. 2021). An important difference between these state-of-the-
art model-based RL methods and the approach that we propose is that our method
uses MCTS to compute the policy online. Moreover, we aim to improve the model of
the dynamics leveraging both approximated data, used as prior knowledge about the
model, and real-world observations.

2.2 MCTS planning

MCTS planning (Browne et al. 2012) and UCT (Kocsis and Szepesvári 2006) are
approaches that compute the policy online and locally (i.e., only for the states actually
visited by the agent). Hence they allow to mitigate the scaling problem using sam-
pling based strategies. A recent popular result obtained with these approaches is that of
AlphaGo (Silver et al. 2016, 2017), a programwhich defeated a world champion in the
game of Go. There exists also extensions ofMCTS-based planning to partially observ-
able environments. A keywork in this area proposes PartiallyObservableMonte-Carlo
Planning (Silver and Veness 2010), a technique for scaling planning to large environ-
ments. However, the technique assumes a known model of the environment. Some
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methods have been proposed to learn different elements of the environment during the
agent-environment interaction. For instance, in (Zuccotto et al. 2023, 2022; Castellini
et al. 2021, 2019) some state-variable relationships are learned to improve belief ini-
tialization and update, in (Mazzi et al. 2023a, b, 2021) logic specifications are learned
for introducing soft policy guidance and shielding in POMCP, and in (Giuliari et al.
2021; Wang et al. 2020) visual elements of the unknown environments are learned
for solving the problem of Active Visual Search. In the context of Bayesian adaptive
learning in POMDPs (Ross et al. 2011), Katt et al. (2017) present an elegant method
to learn the transition and reward models in which authors extend the POMCP algo-
rithm to the Bayes-Adaptive case, proposing the Bayes-Adaptive Partially Observable
Monte Carlo Planning (BA-POMCP) approach that, however, learns the parameters
of the transition model. However, to the best of our knowledge the only attempt to
perform model learning in MCTS-based planning on observable environment is that
of Bayesian Adaptive Monte Carlo Planning (Guez et al. 2013). This approach per-
forms Bayesian learning that leads to a significant, often prohibitive, computational
complexity since it considers all possible models according to a belief (i.e., a proba-
bility distribution) over their parameters. The technique proposed in this paper instead
performs standard learning based on a neural network model, providing a simple and
sample efficient alternative. Finally, a methodology for safely improving a baseline
policy using MCTS has been recently proposed (Castellini et al. 2023). It assumes the
transition model to be initially unknown, while the baseline policy and a dataset of tra-
jectories to be available. The approach learns transitions probabilities from the dataset,
which is collected using the baseline policy, but the learning phase is performed offline
and the model has a tabular form.

2.3 Continual learning

Continual Learning (CL) (Lesort et al. 2020) shares some similar concepts with our
work since training data are not available at once and need to be integrated by keeping
the most representative data, as rehearsal approaches do (Lesort et al. 2019; Rebuffi
et al. 2017). However, CL algorithms aim at learning new tasks preserving the knowl-
edge of previously learned tasks, considering that old tasks were correctly learned.
Our technique instead starts with an expert’s model of the environment which is
approximated and partial, and it updates the model in the parts that do not fit the
observations taken from the real environment. Furthermore, in our approach model
adaptation/update is inserted in a process of policy improvement typical of RL meth-
ods.

3 Background

We introduce the main tools used in this work, namely, Markov Decision Process
(MDP), MCTS-based planning and artificial neural networks.
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3.1 MDPs

An MDP (Russell and Norvig 2010) is a tuple (S,A, T , R, γ ) where S is a finite
set of states, A is a finite set of actions, T : S × A → �(S) is the transition
model (�(S) space of probability distributions over states), R : S × A → R is
the reward function, and γ ∈ [0, 1) is the discount factor. The agent’s goal is to
maximize the expected discounted return, namely, the sum of weighted rewards over
long runsE[∑∞

t=0 γ tR(st , at )]. The solution of anMDP is a policy, namely, a function
that specifies the action the agent should perform in any reachable state. A policy is
optimal if it maximizes the expected discounted return.

3.2 MCTS planning

MCTS (Browne et al. 2012) is a popular heuristic search algorithm that recently
achieved very important results in board games, such as Go and Chess. It progressively
builds the search tree descending from the root node guided by the results of previous
descents. The UCT (Kocsis and Szepesvári 2006) strategy is used to address the
exploration-exploitation dilemma. The MCTS algorithm repeats a sequence of four
steps (Browne et al. 2012): selection in which the tree policy is recursively applied
starting from the root node to descend the tree and determine the best node to expand;
expansion that expands the selected node with a child chosen among the available
actions; simulation in which a default policy is applied to simulate a run from the
expanded node and produce a reward; backpropagation that propagates the reward
and updates the statistics of the visited nodes up to the root node. The simulation step
uses the model of the environment to generate the trajectories on which the reward
values, and therefore the policy, are computed. Thus, it is important to use an accurate
model of the environment to obtain high accuracy in the computation of the reward
values and, as a consequence, of a good policy.

3.3 Artificial neural networks

An Artificial Neural Network (ANN) (Goodfellow et al. 2016) is a computational
model that consists of information-processing units, neurons, interconnected by links,
synapses, characterized by a real-valued weight representing their strength. Each node
aggregates its input signals and applies to the resulting one a nonlinear function, the
activation function (e.g. Sigmoid, ReLU), producing node’s output. The activation
function parameters are the weights of network’s connection. Typically, to learn the
weights an ANN uses stochastic gradient methods (e.g., SGD and Adam), that adjust
the direction of each weight to improve the overall network performance according
to the minimization, or maximization, of an objective function. A typical function in
supervised learning is the expected error, used as a loss function and computed over
labeled training data.
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4 Methodology

We introduce the two main steps of our methodology and the three variants that
characterize the second step.

4.1 Proposed approach

The methodology here proposed is composed of two main steps (points 1 and 2 in
Fig. 1). In the first step, we assume an expert provides amathematical model to approx-
imate the dynamics of the real environment. This model is a black box function (we
do not need to have any knowledge about its implementation) that receives a state
and an action and returns the next state. We perform random sampling on the overall
state and action spaces, and for each state-action pair we provide it to the model and
store the related next state returned by the model. In this way, we generate a dataset D̂
containing a large amount of triplets state-action-next-state for different environment
conditions (i.e., states) and actions. Then, we generate a ANN-copy T̂ AN N of the
approximated model by training the ANN on dataset D̂. The function approximation
capabilities of ANN allow us to work with any type of expert’s model. This first step,
described in detail in the next section and shown in the horizontal rectangle on top
of Fig. 1, is performed only once. In the second step, described in detail in the sub-
sequent section, we use the network T̂ AN N inside MCTS to perform simulations and
we update the network as new observations are collected from the environment. Three
versions of this step are proposed (see the three vertical rectangles in Fig. 1) that merge
in different ways the prior knowledge in the ANN and the information in the collected
data.

4.1.1 Generation of ANN-Copy of the Expert’s Model

We use the expert’s model T̂ to generate the dataset D̂ of simulated data (see the cylin-
der on top of Fig. 1), i.e., a collection of triplets (s, a, s′) where s and a, respectively,
represent a state of the environment and an action performed by the agent, and s′ is
the state of system after performing the action. More precisely, we randomly choose
an initial state and run the expert’s model performing actions randomly sampled over
the action space to generate the (s, a, s′) triplets for that day. Then, we train a neural
network T̂ AN N on D̂ obtaining a copy of the expert’s model. Technical details about
the architecture of the ANN and the amount of data needed to learn it depends on the
properties of the expert’s model (examples are given in Sect. 6.1).

4.1.2 Transition model update

The approximated transition model T̂ AN N can be updated in several ways as the
agent acts in the environment and collects information about its dynamics and reward.
The three approaches here proposed, named MCP_R, MCP_S and MCP_M, integrate
in three different ways the knowledge in the expert’s model with the information
gathered step-by-step by the agent as it observes true values of state-variables (i.e.,
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Fig. 1 Two main steps of the proposed methodology. The green horizontal rectangle shows the generation
of an approximated transition model (the expert’s model); the pink, light blue and purple vertical rectangles
show the three versions of the model update procedure

sensor readings in real-world applications). The three model adaptation strategies are
explained in the following and a flow chart for each of them is depicted in the bottom
of Fig. 1.

MC P_Real(MC P_R) : updateo f T̂ AN N using only data from the environment.
This version stores in a dataset Ḋ the triplets (ṡ, ȧ, ṡ′) of state, action and next state
observed by the agent in the real-world environment. Every n time-steps MCP_R
performs a re-training of the neural network T̂ AN N updating the current weights of
the network using data in Ḋ as a training set. The updated network is used in MCTS
simulations for the next n time-steps (i.e., until the next update). This update strategy
has the advantage of being simple but it suffers the risk of catastrophic forgetting since
the re-training is based only on data from the environment, hence the knowledge in
the expert’s model, stored in the weights of the initial network, can be quickly lost as
weights are updated. This issue could be particularly harsh when observations from
the real-world environment are very concentrated on small parts of the state-action
space, as in the first update stages when Ḋ contains a few observations. In these cases,
the expert’s knowledge about unobserved parts of the state-action space could be lost
by updating the weights only considering data from the observed part of the space. The
update strategies presented in the following aim to mitigate this problem, preserving
expert’s knowledge in parts of the state-action domains not already visited by the
agent.

MC P_Mix(MC P_M) : updateof T̂ AN N using data from both the environment
and the original expert’s model. This version stores in dataset Ḋ the triplets (ṡ, ȧ, ṡ′)
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collected from the real-world environment during the last n steps. Then, every n time-
steps, it inserts into D̂ (i.e., the dataset generated by the original expert’s model) the
triplets in Ḋ and removes from D̂ the triplets that are “close enough” to the triplets
just inserted. Finally, MCP_M re-trains T̂ AN N on the updated D̂ to adapt the network
weights according to both triplets observed from the environment (in parts of the
state-action space where they are available) and triplets generated by the original
expert’s model (in parts of the state-action space where observations from the real-
world environment are still not available). After the update T̂ AN N is used in MCTS
simulations for the next n time-steps (i.e., until the next update).

The set of triplets in D̂ “close enough” to a state-action pair (ṡ, ȧ) ∈ Ḋ is defined,
given the set of thresholds X = {x0, . . . , xv} on state-variables (i.e., a threshold for
each state-variable), as

Û((ṡ, ȧ, ṡ′),X ) = {(̂s, â, ŝ′) ∈ D̂|(ȧ = â) ∧
∧(ṡ0 ∈ [̂s0 ± x0]) ∧ · · · ∧ (ṡv ∈ [̂sv ± xv])}.

Notice that we do not consider ṡ′ and ŝ′ to compute the set of “neighbors” of a
triplet since they depend on the specific transition models. Given the dataset Ḋ
of the last n triplets observed from the real-world environment we therefore intro-
duce them in D̂ and remove from D̂ the set Û = ⋃

(ṡ,ȧ,ṡ′)∈Ḋ Û((ṡ, ȧ, ṡ′),X ).

MC P_Select(MC P_S) : updateo f T̂ AN N using only data from the environment
and usage of the original T̂ AN N for simulated state-action pairs far from observed
state-action pairs. This version works as MCP_R in the first two steps. Namely, it
stores in Ḋ the triplets (ṡ, ȧ, ṡ′) observed in the real-world environment, and every
n time-steps performs a re-training of T̂ AN N using only data in Ḋ. Afterwards, it
uses two different transition models in the MCTS simulations of the subsequent n
time-steps. Namely, it uses the expert model T̂ AN N or the re-trained model Ṫ AN N ,
depending on the closeness of the current state-action pair in the simulation (s̃, ã) to
the state-action pairs of the triplets in Ḋ. Therefore, given a state-action pair (s̃, ã)

from a simulation and a set of thresholds X = {x0, . . . , xv} on state-variables, we
compute the set of triplets in Ḋ close enough to (s̃, ã) as

U̇((s̃, ã),X ) = {(ṡ, ȧ, ṡ′) ∈ Ḋ|(ã = ȧ) ∧
∧(s̃0 ∈ [ṡ0 ± x0]) ∧ · · · ∧ (s̃v ∈ [ṡv ± xv])}.

Notice that, also in this case, we do not consider ṡ′ and ŝ′ to compute the set of
“neighbors” of a triplet since they depend on the specific transition models. If U̇(s̃, ã)

is not empty, we use the network-copy of the expert’s model Ṫ AN N as a transition
model, otherwise we use the network computed from observed triplets T̂ AN N . This
selection of the transition model is repeated at each step of the MCTS simulation
process, apart in the first n time-steps when only the network-copy of the expert’s
model T̂ AN N is available.
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5 Application domain

We evaluate the proposed approach on a simulated version of a real-world problem
concerning air quality and thermal comfort control in smart buildings (Bianchi et al.
2023; Capuzzo et al. 2022). Let’s consider a room (e.g. a meeting room in a company
or a classroom in a school/university) provided with sensors measuring carbon dioxide
(CO2) and volatile organic compounds (VOC) concentration, indoor and outdoor tem-
perature. Ventilation and air sanification devices are used to manage air renewal and
sanitization over time to avoid exceeding threshold limits. In particular, the environ-
ment has actuators for opening/closing windows or turning on/off vents and sanitizers.
We also assume to have in advance the current daily occupation schedule of the room
(i.e. number of persons present in the room at each hour of the day). Some examples
of environments with these features are university lecture halls, in which students
attend pre-scheduled lectures during the day, or meeting rooms, that must be booked
in advance with the number of participants. Taking inspiration from (Teleszewski and
Gładyszewska-Fiedoruk 2019; Tang et al. 2016) we developed a simulator of the envi-
ronment described above to test our framework in silico. We formalized the problem
as an MDP whose main elements are listed in the following.

5.1 State space

The state contains: (i) the number of persons currently present in the room, (ii) the
current concentration of CO2 in the room, (iii) the current concentration of VOC in
the room, (iv) the current indoor temperature, (v) the current outdoor temperature.

5.2 Action space

Actions are related to ventilation system, namely stack ventilation (open/close win-
dows) or mechanical ventilation (turn on vents at low/high speed or turn off),
sanitization system (turn on/off sanitizers) and combinations of them (see the sup-
plementary material for full details on the action space).

5.3 Transitionmodel

The transition model represents the model of the dynamics of the environment that we
aim to improve.1 For each state-action pair the model returns the new state reached
by performing the action from the state. The model consists of three sub-models
used to describe the evolution of CO2 concentration, VOC concentration and indoor
temperature, respectively. Each action is characterized in the transition model by a
specific value called (ACH) represented with δa , which indicates the number of times
the entire room air volume is replaced in one hour with that action. This characteristic
allows actions to affect the environment air quality (which is part of the reward function

1 In the following we describe themodel we used as a true environment, then in Sect. 6.1 we briefly describe
the error that we introduced into the expert’s model.
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as detailed later) since the air renewal process acts on the concentrations of CO2 and
VOC. In the following, we provide an overview of the model. Full equations and the
Python code are available in the supplementary material.

Evolution of CO2 concentration. It considers both stack andmechanical ventilation
systems. For stack ventilation we consider the model proposed in (Teleszewski and
Gładyszewska-Fiedoruk 2019) that computes the next value of CO2 concentration i.e.,
ci+1

C O2
, as a function of the ACH, the room volume, the number of its occupants, the

concentration of CO2, and the time difference between two time-steps. Formechanical
ventilation the value of ci+1

C O2
is computed as a function of the ACH, the maximum

occupancy of the room and the number of persons in the room.We also consider active
stack ventilation in unpopulated rooms. In this case ci+1

C O2
depends on the concentration

of CO2 and the difference between the indoor and outdoor CO2 concentrations at time
i . Model equations are available in the supplementary material and in the Python code
attached.

Evolution of VOC concentration. The estimated concentration of VOC depends on
the concentration of VOC that each person emits in the room, the VOC removed by
the sanitizer, the number of persons present in the room at time i , the room volume,
the VOC concentration at time i and the relative variation of CO2 concentration.

Evolution of internal temperature. The next value for internal temperature T i+1
in

is computed as a function of the difference between the indoor and the outdoor tem-
perature, the time difference between two subsequent time-steps, the current indoor
temperature and the heat generated by people and by sanitizers in operation. The tem-
perature course depends on the value of the difference between the indoor and the
outdoor temperature.

Evolution of room occupancy and outdoor temperature. We assume their values
over time are given by occupation schedule of the room and weather forecast.

5.4 Reward function

The reward function considers four components: air quality, comfort, energy con-
sumption and the energy factor. The air quality component corresponds to the mean
between the reward due to CO2 concentration and the reward due to VOC concentra-
tion when there are occupants, otherwise it is set to 1. The values of the rewards due
to CO2 and VOC concentrations linearly decrease when the values of cC O2 and cV OC

are below their maximum acceptable concentration values. Conversely, these rewards
quadratically decrease when their values are below themaximum concentration values
we suppose the environment could reach, otherwise they are set to 0. The value of the
comfort component is computed as a weighted mean between temperature and noise
rewards when there are persons in the room, while it is set to 1 where there are no
occupants. The temperature reward is expressed as exponential function of the indoor
temperature, while the noise reward and the value of the energy consumption reward
are constant values associated to the action performed by the agent. Thus, the noise
reward represents a measure of noise pollution. Full details about the reward model
are reported in the supplementary material and the code attached.
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6 Experiments

Wefirst introduce the experimental setting and then present the results of the empirical
analysis performed on the air-quality control domain.

6.1 Experimental setting

We aim to compare the performance of our method with respect to that of baseline
model-free and model-based algorithms on the air-quality control domain assuming
the availability of an approximated expert’s model of the environment. Since tests
are performed on a simulated environment, we need a model representing the true
environment (not known by the algorithm) and a second model (i.e., a modification of
the first model) representing the expert’s model.

6.1.1 True environment and expert’s model

The transition model described in Sect. 5.3 (and supplementary material) is used as
a true environment (i.e., correct transition model). As an approximated model (i.e.,
expert’s model) we instead use inaccurate transition functions adding some errors to
the real-world model. In particular, the expert’s model used for the evolution of CO2
concentration overestimatesCO2 decrease and underestimatesCO2 increase. Contrary
to the true environment model for the evolution of VOC concentration, the expert’s
model considers the effect of the action performed in terms of ACH, and it underesti-
mates the concentration of VOC produced by each person in the room. Moreover, the
expert’s model does not consider the relative variation of CO2 concentration. Finally,
in the evolution of internal temperature the expert’s model does not consider the heat
produced by people in the room and by the sanitizers in operation, considered instead
by the true model. Full details about the expert’s transition models can be found in the
supplementary material and in the Python code attached.

6.1.2 Baseline algorithms for performance comparison

In our experiments we compare the three versions of our approach against algorithms
that represent the state-of-the-art about MCTS-based planning (two versions), model-
free RL and model-based RL. The four baseline algorithms are briefly described in
the following.

MCP_O: MCTS planning with the true transition model (oracle). This algorithm
uses standard MCTS with UCT and performs simulations with a transition model
identical to the true transition model. This planning method is proved to converge
to the optimal policy for a large enough number of simulations and it represents a
reference that we would like to reach by adapting our inaccurate model to the real
model of the environment.

MCP_E: MCTS planning with the expert’s transition model (without adaptation).
This algorithm uses standard MCTS with UCT and performs simulations with the
expert’s model, which is different from the true transition model, and it does not
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perform any form of adaptation. Hence, this method provides a sub-optimal policy,
with actions biased by the simulation error.

PPO: Proximal Policy Optimization (model-free DRL). This algorithm uses the
state-of-the-art actor-critic method in which the “actor” learns the policy given the
state as input, while the “critic” learns the value of the state, i.e. it receives as input
a state and it learns the value of the state given the policy that it is training. Both the
“actor” and the “critic” are parametrized as neural networks.

SLBO: Stochastic Lower Bound Optimization (model-based DRL). This algorithm
trains a neural network to learn the model of the environment leveraging real-world
observations. Then SLBO uses the estimated model to produce samples on which it
learns the policy with TRPO.

6.1.3 Implementation details

The generation of the expert’s dataset is achieved by running the expert’s model with a
time interval of 5min for 800 days (considering different randomoccupation schedules
in different days). We first generate a dataset containing 96,000 state-action-next-state
triplets i.e., data for 800 days. Then, this dataset is used to generate the network-copy
of the expert’s model in our method.

PPO and SLBO do not use the expert’s model in their original framework, hence,
to make a fair comparison we pre-trained them using the expert’s model of the envi-
ronment as a simulator of the real environment for the same 800 days in the expert’s
dataset used by our method. Moreover, in SLBO, we used the same structure of neural
network used in our method to represent the model of the environment. Since we used
an expert’s model which has some similarities with the correct one, this process does
not negatively impact the performance of PPO and SLBO but it allows them to start
from higher performance. We repeated the pre-train process using 5 random seeds
and kept the expert’s network with the lowest validation loss to be used in MCP_R,
MCP_S, and MCP_M, while for PPO and SLBO we chose the model with the highest
mean cumulative reward.

After generating the expert’s model and pre-training PPO and SLBO with it, we
evaluate the performance of the methods and compare them. We consider 10 rooms,
eachwith a specific100-day-profile (i.e., occupation schedule and external temperature
forecast). For each day, we consider a time interval from 8:00 to 18:00 with 12 samples
per hour (i.e., a sampling interval of 5min). Thus, each day corresponds to 10×12=120
samples, and each 100-day-profile has 12,000 samples for room occupancy, 12,000
samples for external temperature, and an initial value per day for internal temperature.
After pre-training, the PPO agent is retrained at the end of each day of execution
(i.e., after 120 steps), considering only real-world data acquired during that day, while
the SLBO agent is retrained on samples of real-world data collected until the current
time instant. Then, both the agents use the new model during the following day of
execution (i.e., for 120 steps), namely until the next re-training. It is important to
note that PPO, SLBO, and the MCP-based approaches are all trained for a specific
number of iterations, not until convergence to avoid overfitting. To quickly simulate
yearly executions, we assume each season has a length of 25 days. In different seasons
we change the average external temperature. In the testing phase, for MCP_M and
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MCP_S, we tested 17 combinations of threshold values (i.e., sets X , as defined in
Sect. 4.1.2), and we kept the ones with the highest discounted return. As a stopping
criterion, we used a threshold on the number of simulations in MCTS and a threshold
for the number of iterations in PPO and SLBO. In particular, we stopped MCTS after
10,000 simulations, PPO after 10 epochs for actor and critic, and SLBO after 75
iterations for dynamics and 50 for TRPO.

6.2 Performancemeasures

On the 10 rooms described above (100 days per room) we compute the average dis-
counted return (ρd ) and the average difference between the discounted returns of
different methods (�ρd ). Averages are computed across rooms. We define ρd as the
sum of the rewards collected in all time-steps of episode d. The episode is in gen-
eral a set of steps between two transition model updates, but in our tests we consider
episodes of 1 day since we update the transition model every day. The average dis-
counted return of episode d (i.e., ρd ) is then computed as the mean of values ρd across
all rooms, i.e., ρd = (

∑z
y=1 ρd,y)/z where ρd,y represents discounted return obtained

in room y during episode d and z is the total number of rooms. The average difference
between the discounted return of two methods (e.g., MCP_R and MCP_E) in episode
d is instead computed as �ρd = (

∑z
y=1 �ρd,y)/z where z is the total number of

rooms, and �ρd,y represents the difference between the discounted returns of the two

methods during episode d in room y, namely,�ρd,y = ρ
M1
d,y −ρ

M2
d,y , where M1 and M2

represent the two methods. The samemeasure is used to compare any pair of methods.

6.3 Hardware and software

We performed our tests using a Python 3.9 simulator (PyPy and CPython interpreters)
on an AMD Ryzen 9 6900HX CPU @ 3.3GHz with 16 GiB of RAM, an Intel Core
i7-8750H CPU@ 2.2 GHz with 16 GiB of RAM and an Intel Core i7-10700 CPU@
2.90 GHz with 16 GiB of RAM.

6.4 Results

We present our results in a top-down way. First we rank the performance of the three
versions of our method to identify the best ones. Then we compare the average per-
formance of the best versions with that of MCP_O, MCP_E, PPO and SLBO. Finally,
we provide insight on the functioning of the proposed method and the motivation of
the improvement.

6.4.1 Identification of the best versions of our approach

We compute the average difference between the discounted return obtained with each
version of our approach and that achieved withMCP_E (averages are computed across
the 10 rooms on which the algorithms are tested). The worst performance is achieved
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Table 1 Performance
comparison between pairs of
variants, namely MCP_R,
MCP_M and MCP_S

Variant �ρd p-value

MCP_R-MCP_M −0.951 6.101 ∗ 10−5

MCP_R-MCP_S −0.881 2.341 ∗ 10−4

MCP_S-MCP_M −0.070 7.380 ∗ 10−1

by MCP_R (i.e., �ρd = 12.116). This variant forgets the expert’s knowledge at the
first retrain of T̂ AN N and it requires several days to collect enough observations from
the environment to learn a transition model not over-specialized on a small states-
action subspace. MCP_S performs better (i.e., �ρd = 12.997). A motivation for this
improvement is that it merges the network-copy of the expert’s model with the network
Ṫ AN N trained on observed data, in a more precise way, considering different networks
in different state-action subspaces, according to the strategy described in Sect. 4.1.2.
The best performance is achieved by MCP_M (�ρd = 13.067). This version is more
efficient in merging the information acquired step-by-step from the environment with
the knowledge in the expert’smodel, since itworks at a training set level, i.e., it removes
samples from the dataset D̂ as new samples from the real-world environment become
available. We performed Student’s t-test to verify that these average differences are
statistically different from zero obtaining, in all three cases, p-values lower than 0.05.

In Table 1 we show the average difference of discounted return between each pair
of versions of our approach (i.e, MCP_R vsMCP_M,MCP_R vsMCP_S andMCP_S
vs MCP_M). It emerges that both MCP_M and MCP_S perform better than MCP_R
(see the first two lines of the table in which the p-value is less than 0.05), while there
is no significant difference between the performance of MCP_M and MCP_S (see the
third line of the table in which the p-value is 0.738 hence larger than 0.05). In the
following, we fully analyze the functioning and performance of MCP_M and then
briefly describe the main differences with MCP_S.

6.4.2 Comparison of average performance: MCP_M vs MCP_E, PPO and SLBO

In this test, we compare the performance of MCP_M against baseline approaches.
Figure2a compares pairs of algorithms in terms of distribution of �ρd and �ρd ,
where distributions and averages are computed across the 10 rooms on which the
algorithms are evaluated. The figure confirms that MCP_M outperforms MCTS with
the expert’s transitionmodel (MCP_E) with an average difference of discounted return
�ρd = 13.067 (as shown in the previous subsection). This is due to the improvement
MCP_M introduces into the transition model over time. Figure2b shows that, on
average, MCP_M performs better than PPO (�ρd = 15.151). This is a reasonable
result since PPO is a model-free algorithm used in a non-trivial scenario, thus even
though PPO adapts to the environment (and it was pre-trained using the expert’s model
as a simulated environment), its performance are still worse than the performance of
MCP_M, that can leverage the knowledge in the transition model. Finally, Fig. 2c
shows that, on average, MCP_M performs better than SLBO (�ρd = 18.432). This
is an important result which shows that the proposed approach can outperform also
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Fig. 2 Density of difference in discounted return between a MCP_M and MCP_E, b MCP_M and PPO. c
MCP_M and SLBO. dDiscounted return over time in 10 rooms obtained byMCP_E, PPO, SLBO,MCP_O,
MCP_M, MCP_S. e Density of cumulative reward obtained by MCP_E, PPO, SLBO, MCP_O, MCP_M,
MCP_S during Spring, Summer, Autumn and Winter

state-of-the-art model-based approaches (notice that the same neural network structure
was used in the two methods to represent the transition model).

6.4.3 Comparison of performance over time: MCP_M vs MCP_O, MCP_E, PPO and
SLBO

Figure 2d shows the average discounted return ρd (where the average is computed
across the 10 rooms) of MCP_E, MCP_O, MCP_M, PPO, and SLBO, along the 100
days executions on which we performed our tests. The dash-dotted red line, represent-
ing the daily discounted return of MCTS with the true transition model (MCP_O),
highlights the high performance of the method, which converges to the optimal policy
when enough simulations are used. This result is clearly visible in Fig. 2e, that shows
the average discounted return ρd of each approach, grouped by season. In Fig. 2d the
solid green line of MCP_M starts below the dotted blue line of MCP_E. This trend
reverses for the first time at day 6, confirming the result showed in Fig. 2a. In Fig. 2d
we also show that the solid green line ofMCP_Mmanages to reach the dash-dotted red
line of MCP_O, stabilizing on the same values from day 50. Figure2e confirms this
result, showing that MCP_M performance increase through seasons until stabilizing
on that of MCP_O during autumn (median ρd of 104.6 and 105.3, respectively) and
winter (median ρd of 104.3 and 104.8, respectively). Moreover, Fig. 2d shows that, at
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the beginning, the performance of PPO (dashed pink line) are the worst, but they grad-
ually improve until they outperformMCP_E (dotted blue line) for the first time at day
64. However, PPO never reaches the performance of MCP_O (dash-dotted red line),
as MCP_M does, due to a slow performance improvement. This trend is also visible
in Fig. 2e, where PPO starts with a median ρd of 75.3 and it gradually increases until
reaching the value of 88.6 in winter. According to Fig. 2d SLBO (dashed orange line
with marker o) achieves the worst performance in this test. It outperforms PPO during
spring and summer with median ρd of 85.0 and 86.7 respectively (Fig. 2e), then its
performance decreases making SLBO the worst performing approach in autumn and
winter achieving median ρd of 80.6 and 64.2, respectively (Fig. 2e). To the best of our
knowledge, we attribute the poor performance of SLBO to the use of TRPOwhich uses
a second-order optimization, which increments the overhead in the training possibly
resulting in poor performance (Schulman et al. 2015). These results confirm the aver-
age improvement of Fig. 2b, c and provide insight on the origin of this improvement
over time. Finally, Fig. 2d shows that, on average, MCP_M, PPO and SLBO usually
present a performance decrease as the season changes (vertical black lines) due to the
environment change and the need of several days to learn the new environment.

6.4.4 Performance of MCP_S

After analyzing in depth the performance of MCP_M, here we briefly analyze the
performance of MCP_S (which are slightly lower than but not statistically different
from that of MCP_M). We compared the performance of MCP_S against baseline
approaches in terms of distribution of �ρd , computed across the 10 rooms on which
the algorithms are evaluated. This test confirms that MCP_S outperforms MCP_E
with an average difference of discounted return�ρd = 12.997 due to the improvement
MCP_S introduces into the transition model over time. Moreover, MCP_S performs
better than PPO (�ρd = 15.081) and SLBO (�ρd = 18.362) showing that our approach
can outperform both state-of-the-art model-free and model-based approaches.

In Fig. 2d we show that the performance of MCP_S (dotted purple line with marker
o) and MCP_M (solid green line) are very similar in terms of average discounted
return along the 100 days executions. Figure2e confirms this result, highlighting the
similarity with MCP_M in each season.

6.4.5 Additional comparison of performance over time: MCP_M vs PPO

In this section, we present the results obtained by comparing the performance of MCP,
PPO updated considering only the last day’s data, and PPO updated considering all
data up to that instant, first over 100 days and then over 500 days.

Performance over 100 days. Focusing on the comparisonwith PPO, we performed
a test by retraining PPO agents each day on all real-world data collected up to that
day, over 100 days (PPO_A). Then, we compare its performance with that obtained
by retraining agents considering only the data of the last day (PPO_L). As shown in
Fig. 3, the performance of PPO trained on all real-world data collected up to that day,
PPO_A, is improved only in the first season, but it does not reach the performance of
MCP_M anyway. PPO, and other model-free RL methods, require larger amounts of
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Fig. 3 Discounted return over time in 10 rooms obtained by MCP_M, PPO trained with only the data of
the last day (PPO_L), and PPO trained with all data until the current time instant (PPO_A)

Fig. 4 Difference in discounted return between MCP_O and MCP_M, MCP_O and PPO over a trajectory
of 500 days training PPO with a only last day data, b all data until the current time instant

data to compute an optimal policy. As Fig. 2d shows, PPO’s performance improves
slower than MCP-based proposed approaches, since they can leverage the explicit
representation of the transition model.

Performance over 500 days. PPO manages to reach the same performance as
MCP_M after many steps, showing that we used it in a fair way. To confirm this
point, Fig. 4a shows the difference in performance between MCP_O and PPO (dashed
pink line) and between MCP_O and MCP_M (solid green line) on a trajectory of
500 days. Clearly, both MCP_M and PPO achieve good performance at the end of
the trajectory, but MCP_M achieves it earlier than PPO. The theoretical basis of this
improvement can also be explained by a parallelism with Dyna-Q, a known model-
based RL algorithm. Dyna-Q outperforms Q-learning (a model-free RL algorithm) if
an approximated but meaningful transition model is used at the beginning and then
updated, because DynaQ can exploit the knowledge in the approximate model. Our
method can be seen as an extension of DynaQ in which the model is represented by a
neural network and the Q-values are computed by MCTS (which explicitly uses the
model and mixes planning and learning) instead of Q-learning. We repeated the same
test training PPO with all real-world data collected up to the current time instead of
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using only data from the last day, but PPO obtains lower performance and it does not
converge to good performance, as we can see in Fig. 4b.

7 Conclusions and future work

The approach presented in this work allows to use MCTS planning also when only
an approximated transition model is available. Standard MCTS would generate sub-
optimal policies in this case due to the bias introduced by the transition model in
the simulations. The proposed method transforms the approximated model in a neu-
ral network and improves it as observations about the true dynamics are collected
from the environment. Three versions are proposed and compared to state-of-the-art
model-free and model-based reinforcement learning techniques on a domain concern-
ing air-quality control. We identified the best version of our method and shown that it
outperforms both standard MCTS planning using the approximated transition model
and state-of-the-art reinforcement learning methods. Future work mainly concerns the
application of the proposed methodology to other domains in order to further evaluate
it and possibly extend its capabilities. In particular, the domain on which we tested
the approach in this work has continuous state space and discrete action space. We
are interested in investigating the applicability to domains with discrete state/action
spaces and continuous state/action spaces. Finally, we would like to develop more
sophisticated techniques to decide when the retrain of the model is necessary (e.g.
change-point detection, conformal prediction) and to test several expert’s models to
analyze how their accuracy impacts the performance.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11081-024-09896-2.
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