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a b s t r a c t 

Human pose estimation (HPE) through deep learning-based software applications is a trend topic for 

markerless motion analysis. Thanks to the accuracy of the state-of-the-art technology, HPE could enable 

gait analysis in the telemedicine practice. On the other hand, delivering such a service at a distance re- 

quires the system to satisfy multiple and different constraints like accuracy, portability, real-time, and 

privacy compliance at the same time. Existing solutions either guarantee accuracy and real-time (e.g., 

the widespread OpenPose software on well-equipped computing platforms) or portability and data pri- 

vacy (e.g., light convolutional neural networks on mobile phones). We propose a portable and low-cost 

platform that implements real-time and accurate 3D HPE through an embedded software on a low-power 

off-the-shelf computing device that guarantees privacy by default and by design. We present an extended 

evaluation of both accuracy and performance of the proposed solution conducted with a marker-based 

motion capture system (i.e., Vicon) as ground truth. The results show that the platform achieves real- 

time performance and high-accuracy with a deviation below the error tolerance when compared to the 

marker-based motion capture system (e.g., less than an error of 5 ◦ on the estimated knee flexion dif- 

ference on the entire gait cycle and correlation 0 . 91 < ρ < 0 . 99 ). We provide a proof-of-concept study, 

showing that such portable technology, considering the limited discrepancies with respect to the marker- 

based motion capture system and its working tolerance, could be used for gait analysis at a distance 

without leading to different clinical interpretation. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Human pose estimation (HPE) is a key component for hu- 

an motion analysis from RGB images and videos [1] . Among the 

any application fields, such as, sport performance analysis, hu- 

an computer interaction, and action recognition, there is a grow- 

ng interest in applying such a computer vision technology for 

he analysis of pathological gait detection [2–6] . The interest is 

ainly due to the fact that, differently from other solutions like 

ulti-camera motion capture systems, multiple inertial measure- 

ent units (IMU), force plate, and pressure insoles, HPE does not 
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equire participants to wear markers or specialized sensors and can 

e rapidly applied without complicated setup. 

Thanks to the advances in the convolutional neural networks 

CNNs), there have been significant improvements in the accuracy 

f the 3D HPE. Different techniques rely on the training of end- 

o-end CNNs to predict the 3D human pose from each image (i.e., 

ideo frame) [7] . Other techniques achieve comparable accuracy by 

stimating the 2D pose first and then lifting the 2D pose to view- 

nvariant 3D pose [8] . 

On the other hand, long latencies of the image processing (i.e., 

xecution time of the inference phase) lead the system to work at 

ow frequency and, as a consequence, to a sensible decrease in 

he overall estimation accuracy [9] . As both direct (3D) and indi- 

ect (2D + Depth) methods are computationally demanding, they 

equire well-equipped and advanced architectures (i.e., multi-core 

PUs supported by a GPU accelerator) to achieve accuracy and real- 

ime processing . 
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One of the main challenges is to adopt markerless gait analy- 

is through CNN-based software (SW) applications in telemedicine. 

elemedicine comprises medical care and professionals that adopt 

nformation and communication technologies in order to provide 

ssessment, diagnosis, goal setting, treatment education, and mon- 

toring through remote devices [10,11] . As to motion analysis, tele- 

ealth approaches are useful to provide evaluations in the man- 

gement of conditions affecting movement (for example orthope- 

ic or neurologic diseases, including, fractures, amputations, stroke, 

arkinson disease, multiple sclerosis) and their follow-up. Further- 

ore, telehealth technologies for motion analysis may be useful 

or rehabilitation in order to assess body function limitations due 

o posture or movement alterations as well as to monitor execu- 

ion and effects of physical exercises in patients suffering from dis- 

bling conditions. 

Nevertheless, delivering gait analysis at a distance through cam- 

ras and HPE software requires the system to satisfy, beside accu- 

acy and real-time, also portability and privacy compliance at the 

ame time [12] . Addressing all these non-functional constraints in 

 seameless way requires the HPE software to execute on Internet- 

f-Things (IoT) devices at the edge [13] , by which the video streams 

i.e., the sensitive information) is elaborated close to the input sen- 

or (i.e., the camera), while only the process results can be stored 

r sent over the communication network (i.e., Ethernet, WiFi) [14] . 

In this context, IoT devices for edge computing are resource- 

onstrained architectures , in which memory and computing ca- 

ability are bounded to guarantee portability, energy efficiency, 

nd low-power consumption. State-of-the-art software solutions 

or HPE either do not run on these devices due to memory limi- 

ations or they achieve very low working frequencies (i.e., far from 

eal-time) 1 , which can lead to very low accuracy in the kinetic gait 

nalysis. Although some solutions have been proposed to apply 

PE on mobile devices [16] , they achieve real-time performance at 

he cost of coarse pose estimation (i.e., not adapt for clinical gait 

nalysis) due to memory or computing power limitations [17] . 

In this work, we address the problem of satisfying multiple and 

ifferent non-functional constraints like real-time computing, ac- 

uracy, privacy compliance, and portability for remote gait analysis. 

e present a portable embedded system (see Fig. 1 (a)) that imple- 

ents a real-time accurate 3D HPE SW application with a low-cost 

amera and a low-power computing device. 

The main contributions of the work, which are the key ele- 

ents of the proposed system, are the following: 

• We reimplemented a 2D HPE engine to take advantage of the 

heterogeneous computing elements (i.e., CPU and integrated 

GPU) of an off-the-shelf portable computing device (i.e., NVIDIA 

Jetson board) to achieve real-time computation at the edge . 
• We combined the inference phase with different image elabo- 

ration blocks to improve the accuracy while guaranteeing real- 

time and reduced memory footprint of the software. We se- 

lected a set of spatio-temporal filters and an interpolation pro- 

cedure to extend the HPE from 2D to 3D and we implemented 

them thorough optimized parallel code to take advantage of 

multi-level parallelism on the device. 
• We present a quantitative analysis of the proposed platform ac- 

curacy in extrapolating both the 3D positions of human joints 

and the joint angles. We present an extended comparison with: 

(i) an infrared marker-based motion capture system (i.e., Vicon), 

and (ii) the OpenPose software application executed on a high- 

performance computing server to evaluate the applicability of 
the platform for gait analysis. 

1 The most widespread HPE software, OpenPose [15] , elaborates 6.3 frames per 

econd over the 60 frames per second of the input camera on the most powerful 

VIDIA embedded platform (NVIDIA Xavier AGX). 
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The article is organized as follows. Section 2 presents the 

nalysis of the related work. Section 3 presents the proposed 

ortable HPE platform. Section 4 reports the experimental results. 

ection 5 presents the discussion of the obtained results, while 

ection 6 is devoted to the conclusions. 

. Related Work 

Measuring gait variables using computer vision has been in- 

reasingly applied in the recent years to assess mobility and risks 

f fall [5,18] as well as to identify gait features in parkinsonism 

nd other neurological diseases [19,20] . Quantifying gait pathology 

ith commodity cameras increases access to quantitative motion 

nalysis in clinics and at home and enables researchers to con- 

uct large-scale studies of neurological and musculoskeletal disor- 

ers [21] . The same technology has been applied to measure the 

ait changes over time in hospitalized older adults with advanced 

ementia [22] . In [23] , the authors combine expertise and per- 

pectives from physical therapy, speech-language pathology, move- 

ent science, and engineering to provide insight into applications 

f pose estimation in human health and performance. 

Several solutions have been also proposed to combine human 

ose estimation with CNN architectures for classification between 

ormal and pathological gait in humans, with ability to provide in- 

ormation about the detected alterations from the extracted skele- 

al [24] . To achieve high accuracy, the majority of these solutions 

ely on OpenPose [15] , an open source framework that uses a non- 

arametric representation (i.e., part affinity fields - PAFs) to asso- 

iate body parts with individuals in the image. 

Although all these solutions have demonstrated strong benefits 

nd applicability in real-life situations, they are limited from the 

wo-dimensional HPE. Some solutions adopt the Kinect sensor to 

stimate the 3D skeleton. In [25] , the authors compared the ac- 

uracy of the new Azure Kinect DK and shown that such a sen- 

or is highly accurate in tracking upper body movements. In [26] , 

he authors applied Kinect v2-based gait analysis for children with 

erebral palsy. 

More advanced solutions have been recently proposed to imple- 

ent 3D HPE with RGB cameras. An example is the mobile system 

resented by Guo et al. [6] to track humans and analyze their gait 

n canonical coordinates based on a single RGB-D camera. To alle- 

iate the effects of viewpoint diversity, Wei et al. proposed a view- 

nvariant 3D HPE module [9] . Zimmermann et al. demonstrated 

hat HPE by leveraging both RGB and depth images performs better 

han using depth data alone [27] . 

In [22] , the authors compared the accuracy of three different 

D HPE software (AlphaPose, OpenPose, Detectron) for gait analy- 

is by considering a 3D motion capture system as golden model. 

hey underlined that there are important opportunities to evalu- 

te models capable of 3D pose estimation in video data, improve 

he training of pose-tracking algorithms for older adult and clinical 

opulations, and develop video-based 3D pose trackers specifically 

ptimized for quantitative gait measurement. A similar compari- 

on between 2D HPE with Openpose and the Vicon motion capture 

ystem has been presented in [28] . The authors evaluated the soft- 

are accuracy to measure pelvic segment angles, hip, knee, and 

nkle joint angles during treadmill walking and running. An or- 

hogonal analysis of the 2D HPE accuracy has been conducted in 

29] . The results underline that such a CNN-based method for ex- 

raction of gait parameters from video appears suitable for valid 

nd reliable quantification of gait. 

All the previous 3D HPE solutions requires well equipped and 

owerful computing architectures (i.e., high-performance comput- 

ng servers with multi-core CPUs supported by GPU accelerators) 

o work in real-time. They do not run on resource constrained 
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Fig. 1. (a): The proposed portable system ( MAEVE ) implemented with a 3D HPE software application, an RGB+Depth Intel Realsense camera, and an NVIDIA Jetson Xavier 

device. (b): Example of the output results represented by a 3D virtual skeleton (top) and a detailed temporal representation of the right ankle position (keypoint) in the 

three dimensions (bottom). 

Fig. 2. Overview of the MAEVE platform 
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omputing devices or they achieve very low accuracy due to sub- 

ampling of the input signal. 

Some platforms have been proposed to apply 2D HPE on mobile 

evices [16,17] . Nevertheless, they achieve real-time performance 

t the cost of low accuracy. 

The platform proposed in this article implements real-time 3D 

PE on a low-power low-cost portable platform. We provide an 

nalysis of the HPE accuracy when used on a off-the-shelf embed- 

ed device to understand the reliability of such a marker-less so- 

ution for the analysis of pathological gait detection. 

. Method 

Fig. 2 shows an overview of the proposed platform ( MAEVE ). It 

onsists of communicating and concurrent elaboration nodes that 

mplement a pipeline of computer vision primitives and inference- 

ased applications. The pipeline allows for an efficient processing 

f the frame sequence (i.e., video stream), which are generated by 

 RGB-D cameras and elaborated, in real time, on the heteroge- 

eous computing elements of the embedded boards (i.e., CPU and 
3

PU). The result is a set of 3D keypoints ( KP 3 D ), one set per frame,

epresenting the joints of the human body. 

The infrastructure has been implemented compliant to the 

tandard ROS2 [30] to allow for the integration of post-processing 

odules such as keypoints elaboration and monitoring in the em- 

edded device or, through the network, on mobile phones, tablets 

r laptops. 

.1. RGB-D stream extraction 

The first node implements a synchronized reading of inputs 

rom the cameras (i.e., RGB and Depth) and the input distribution 

o the heterogeneous computing elements of the edge device (CPU 

nd GPU). The node reads an image ( I 0 (X I × Y I ) in Fig. 2 ) from the

GB camera, which consists of a 3-channel matrix (8-bit pixels for 

he Intel RealSense D415 camera adopted in our experimental re- 

ults) and a depth image from the D camera ( D 0 (X D × Y D )), which

epresents the depth information (16-bit pixels for the adopted 

epth camera). The node also combines color and depth infor- 

ation with the intrinsic parameters of the input camera, which 

onsist of focal length ( f x , f y ) and principal point coordinates 
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Fig. 3. Comparison of MAEVE/Openpose keypoints, and the Mocap markers. The 

BODY _ 25 keypoint set consists of the blue+green points in the front view + the 

two points representing the heels in the lateral view. 
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 pp x , pp y ). They are required for the 3D keypoint interpolation, as 

xaplined in Section 3.4 . 

.2. Bilateral, temporal, and holes filling filters 

One of the main problem for the 3D accuracy of the system is 

he intrinsic noise generated by the depth camera [31] . In MAEVE , 

he noisy depth information undergoes three filtering algorithms. 

he filters have been selected and implemented to improve the 

verall result accuracy without compromising the real-time com- 

uting performance: 

• Spatial edge-preserving filter (bilateral) . Since the platform tar- 

gets human bodies (i.e., smooth surfaces), we selected a low- 

pass 2D edge-preserving filter. MAEVE implements the algo- 

rithm proposed in [32] for CPU, which complexity is linear in 

time with negligible memory footprint. 
• Temporal filter . Since HPE is not characterized by very sharp 

pose variations in short-term time-frames, we selected a 

temporal-consistent filter to improve the depth data persis- 

tency. The implementation is based on the algorithm proposed 

in [33] , which elaborates per-pixel values by using depth infor- 

mation of previous frames. The filter implemented by MAEVE 

performs a single pass on the data by adjusting the depth val- 

ues and updating the tracking history. When the pixel data is 

missing or invalid, the filter uses a persistency mode by which 

a missing value is rectified with stored data if the pixel was 

valid in two out of the last 4 frames. 
• Holes filling filter . It aims at rectifying missing data in the re- 

sulting image by using information from the neighboring pixels 

(similarly to the approach proposed in [34] ). In MAEVE , the fil- 

ter selects the neighboring pixel as the farthest from the sensor. 

It is implemented and run through parallel threads on the CPU 

cores. 

.3. 2D keypoints extraction 

This node extracts the 2D keypoints from the RGB image, which 

epresent the key joints of the human skeleton. We started from 

he framework proposed in [35] , which implements 2D HPE as a 

upyter Notebook demo. We reimplemented such a CNN-based in- 

erence application in C++ and CUDA to take fully advantage of 

he GPU accelerator of the device. The application relies on a pre- 

rained CNN (MSCOCO dataset), which can be selected by the user 

etween Resnet18 and Densnet18 in [35] ). Both models provide 

he same set of 18 keypoints (blue squares in Fig. 3 ), while they

rovide slightly different accuracy and real-time performance (see 

ection 4 ). Each keypoint is represented as kp j = [ u j , v j , c] , where

 u j , v j ] is the 2D pixel coordinates and c represents the prediction

robability of the joint. 

To guarantee real-time performance, differently from the state- 

f-the-art approaches (e.g., Openpose [36] ), the 2D keypoints ex- 

raction node does not implement the sliding window process to 

upport rectangular input frames [36] . The node directly imple- 

ents joint recognition and supports only quadratic images (i.e., 

24x224 px with ResNet, 256x256 px with DensNet CNN). MAEVE 

upports rectangular frames by implementing cropping/padding 

i.e., depending on the image orientation) of the input images. The 

mplementation is in CUDA and allows for two levels of paral- 

elism. The first at thread level, by which GPU threads perform 

he image manipulation in parallel. The second is at node level, 

y which cropping/padding and resizing are run in parallel to the 

ilateral, temporal, and holes filter computation. 

It is important to note that the 2D HPE proposed in [35] does 

ake advantage of the GPU. Nevertheless, this is not enough as the 

riginal core software design and communication protocols are not 
4 
uited to achieve the aimed real-time performance and accuracy. 

e translated the whole CNN model from Pytorch to TensorRT and 

he corresponding interface from Python in C++. This allowed us: 

• To re-implement the CPU-GPU communication protocol at the 

basis of the inference step. We conducted an extended profiling 

activity to identify the best CPU-GPU communication between 

standard copy (always adopted in the original framework) and 

zero-copy . Zero copy allows data (RGB images) to be exchanged 

between CPU and GPU through shared memory and pointers, 

with no need of physical copies. On the other hand, the zero- 

copy mechanism switches off both CPU and GPU caches and 

this often eludes the advantages of such a virtual copy [37] . 

We conducted a profiling phase to identify when and where to 

adopt one communication mechanisms or the other. 
• To have the complete control of the pipeline tasks across the 

heterogeneous computing elements (i.e., CPU and GPU) and to 

implement the pipeline with different levels of parallelism (i.e., 

on the CPU threads and between CPU and GPU beside the GPU 

threads). 

.4. 3D keypoint interpolation and filtering 

To extract the 3D coordinates in space of each keypoint, this 

ode combines the 2D coordinates (in pixels) received from the 

D keypoint extraction node ( KP 2 D ) with the filtered depth matrix 

 D (X D × Y D ) ). The node implements the alignment of the RGB and

epth cameras by using the extrinsic parameters of the two sen- 

ors. In particular, the node aligns the depth image to the RGB im- 

ge through a parallel OpenMP implementation. This allows such a 

omputation to run in parallel on the CPU cores of the embedded 

latform. 

The node then implements a back-projection of the 2D points 

nto the 3D space as kp j = [ X j , Y j , Z j ] based on the pinhole cam-

ra model [38] by using the intrinsic parameters of the sensors ( K). 

he final complete information of each keypoint consists of the 3D 

oordinates in space, the 2D coordinates in pixels and the predic- 

ion probability of the keypoint (joint). 
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Finally, the platform implements an optimized version of the 

avitzky-Golay filter [39] to smooth the sequence of the 3D key- 

oints. 

Although the pipeline to extrapolate 3D keypoints from RGB-D 

ata is well established, a platform that implements the pipeline 

or real-time computation in low-cost portable devices is still 

issing. In particular, the existing solutions either achieve high 

ccuracy but require high-performance computing platforms, or 

hey achieve very low accuracy. With a motion capture system 

s ground through, we studied the best trade-off among several 

ombinations of CNN models, image filters, and their correspond- 

ng (parallel) implementations for heterogeneous architectures (i.e., 

ulti-core CPUs and GPUs) to reach enough accuracy for motion 

nalysis at a distance. Section 4 shows the obtained results. 

. Experimental results 

We evaluated MAEVE in terms of real-time computing perfor- 

ance on different off-the-shelf embedded boards. In every con- 

guration, the input camera consists of an Intel RealSense D415 

920x1080 RGB frame + 1280x720 depth frame running at 60 

rames per second (FPS). We then evaluated the MAEVE accuracy 

n two ways. First, by comparing the absolute 3D coordinates of 

he joint keypoints extrapolated by MAEVE and the marker coordi- 

ates extrapolated by an infra-red motion capture system during 

he gait cycles. Then, by comparing the angular displacements for 

he joint flexion extrapolated by the HPE systems. 

.1. Results of real-time computation 

We compared the runtime computing performance of MAEVE 

both with the Resnet18 and Densnet 18 CNNs for the 2D key- 

oint extraction) with 3D Openpose . For Openpose , we adopted the 

ODY25 CNN model since the fastest and most accurate CUDA ver- 

ion for GPUs, as suggested by the authors [40] . Since the crop- 

ing/padding and resizing nodes are not necessary with Openpose 

see Section 3.3 ), they have been turned off to save CPU band- 

idth. 

We evaluated the HPE software ( MAEVE and Openpose ) on three 

ifferent embedded devices: An Nvidia Jetson Nano (4-cores CPU, 

28-cores GPU, 4 GB RAM), an Nvidia Jetson TX2 (6-cores CPU, 

56-cores GPU, 8 GB RAM), and an Nvidia Jetson Xavier AGX (8- 

ores CPU, 512-cores GPU, 32 GB RAM). 

Table 1 reports the runtime performance of the HPE nodes and 

f the overall HPE application running on the different embedded 

evices. As expected, the 2D keypoint extraction is the heaviest 

ode of the platform and strongly characterizes the overall perfor- 

ance of the 3D HPE platform. 

Openpose does not run on the Nano and TX2 devices due to 

emory limitations. In the most powerful embedded device (i.e., 

avier AGX), Openpose achieves very low working frequency and, 

s a consequence, it leads to sensible subsampling of video frames 

i.e., 6.3 FPS vs. 60 FPS of the input cameras). 

With MAEVE , the Resnet CNN model provides performance 

igher than Densnet at the cost of slightly lower accuracy in the fi- 

al 3D HPE (see the accuracy evaluation sections). The communica- 

ion overhead marginally impacts on the overall performance. The 

epth filters, which are of paramount importance for the overall 

ccuracy, are the second heaviest node of the platform. However, 

ince they are implemented to run on the board concurrently to 

he Cropping/Padding+resizing and 2D keypoints extraction, they 

re not in the critical path of the system execution and their la- 

ency is hidden in the overall system performance. MAEVE leads to 

ensible subsampling when run on the very low-power and low- 

ost Jetson Nano. It achieves real-time performance (i.e., 60 FPS) 

n the Jetson Xavier. 
5 
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Fig. 4. MAEVE keypoints and Mocap markers positions. 

Table 2 

Median standard deviation of the euclidean distance between MAEVE 

3D keypoints, 3D Openpose keypoints, and Mocap markers. 

Keypoint OpenPose 3D MAEVE Densenet MAEVE Resnet 

LSH 1.275 cm 0.833 cm 1.550 cm 

RSH 1.276 cm 1.368 cm 1.522 cm 

LE 1.355 cm 1.528 cm 1.873 cm 

RE 1.898 cm 1.582 cm 1.898 cm 

LW 1.879 cm 1.903 cm 2.053 cm 

RW 2.215 cm 2.210 cm 1.815 cm 

LH 1.197 cm 1.016 cm 0.998 cm 

RH 1.551 cm 1.522 cm 1.495 cm 

LK 2.297 cm 2.643 cm 2.767 cm 

RK 2.396 cm 2.240 cm 2.050 cm 

LA 4.308 cm 4.340 cm 5.267 cm 

RA 4.063 cm 3.863 cm 5.187 cm 
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.2. Spatial accuracy of the 3D keypoint coordinates 

We evaluated the accuracy of MAEVE first by comparing the 

eypoints provided when run in real-time on the Jetson AGX with 

hose extrapolated by an 8-camera marker-based motion capture 

ystem (Mocap) (MX 13, VICON, Oxfordshire, UK). Through the Mo- 

ap, kinematic data were collected at 100 Hz and reflective mark- 

rs ( 14 mm in diameter) were placed over the following bony land- 

arks bilaterally: Cheekbones, acromion, medial and lateral epi- 

ondyle of the humerus, radial and ulnar styloid processes, dor- 

um of hand, greater trochanter, lateral and medial epicondyle of 

he femur, lateral and medial malleolus ankle, heel, tip of the big 

oe and the 5th metatarsal of the foot. 

Considering the experimental setting of this study and its aims, 

e decided to use the marker set showed by Fig. 3 in order to es-

imate joint positions as the midpoint between the lateral and me- 

ial landmarks of wrist, elbow, knee and ankle. This was because 

he goal was to compare at best the MAEVE and Mocap evaluations 

y positioning reflective markers as near as possible to the key- 

oints estimated by the portable system. Data were digitized and 

rocessed using Nexus (VICON, Oxfordshire, UK). Measures derived 

rom the Mocap were filtered by a lowpass digital Butterworth fil- 

er (4th-order, cutoff frequency 15 Hz) 

In addition, it is worth noting that in a previous study [41] no 

ignificant test-retest differences were observed in the sagittal 

lane knee joint center location among different techniques: a) 

emoral epicondyle, b) femoral condyle, c) tibial ridge, d) plug- 

n-gait, and f) functional. The femoral epicondyle technique de- 

ned the joint center position as the radius of the lateral femoral 

picondyle marker + 0.5 × knee width. In the same manner, the 

emoral condyle technique defined the joint center position as the 

adius of the lateral femoral condyle marker + 0.5 × knee width. 

A group of five healthy adults (three males, two females; 26 . 8 ±
 . 6 years; 1 . 77 ± 0 . 1 m height; 75 . 2 ± 17 . 1 kg weight), were asked

o walk on a treadmill at 4 . 0 km/h for 35 seconds. We collected

ata from both the Mocap system and the RGB-D systems simul- 

aneously. The RGB-D camera (Intel Realsense D415) was placed 

 . 30 m away from the center of the treadmill, recording the coro- 

al plane of the subjects. All measurements were performed con- 

ecutively, so that the setup did not change between each acquisi- 

ion. To ensure a complete temporal synchronization between the 

ideo cameras and the Mocap, we implemented the solution pro- 

osed in [42] , by which an electrical signal was connected to a led

amp. The (manual) change of the electrical source was recorded 

y the Mocap system and, simultaneously, turned on the led lamp 

ositioned in the field of view of all RGB sensors. 

For a correct matching of the 3D coordinates, we considered the 

eypoints/markers mapping proposed in Fig. 3 , which shows the 

8 keypoints common to the three RGB-D-based systems ( MAEVE 

ith Resnet, MAEVE with Densnet, and 3D Openpose ) thorugh blue 

quares. The green squares represent the additional keypoints ex- 

rapolated by Openpose . The red dots represent the position of the 

ocap markers. 

We also included Openpose in the accuracy comparison. Since it 

annot correctly run in real-time in the portable device, we evalu- 

ted the best accuracy of Openpose by running the software off-line 

i.e., to avoid any input frame dropping) on a high-performance 

omputing server equipped with an Intel i5 7400 CPU, 2xNvidia 

TX 2070 GPUs (SLI), 16GB DDR4 RAM, and Ubuntu 18.04 LTS op- 

rating system. 

We measured the Euclidean distance between each keypoint 

nd the corresponding Mocap marker ( d in the rightmost side of 

ig. 4 ) and then extrapolated the standard deviation of such a 

alue. In case the Mocap relies on two markers to identify the 

oint center (i.e., wrist, elbow, knee and ankle), we considered the 
6 
oordinates of the midpoint between the lateral and medial land- 

arks), as shown in the leftmost side of Fig. 4 . 

Fig. 5 shows the average standard deviation referred to the 

ubjects of the test. A Friedman non-parametric test for repeated 

easures did not show significant effects for the pose estimation 

ethods ( χ2 (2) = 3 . 10 , p = 0 . 212 ) on the standard deviation (SD),

hat is, not significant difference was found in the spatial accuracy 

mong the three pose methods related to the joints coordinates 

easured with the Mocap. On average, the standard deviation was 

.1, 2.4 and 2.1 cm for Openpose, MAEVE with resnet and MAEVE 

ith densenet respectively (see Table 2 ). Conversely, a significant 

ffect was found for the keypoints ( χ2 (11) = 117 , p < 0 . 001 ) on

he standard deviation. The Durbin-Conover test for multiple com- 

arisons reported lower standard deviations related to the most 

tationary keypoints during the gait cycle (shoulder, elbow and hip 

oints). The difference increases on the less stable joints (i.e., knees 

nd ankles). In particular, the further the keypoints are away from 

he trunk, the higher is the relative distance between keypoints 

nd the Mocap markers. 

The experimental results in Fig. 5 represent the complete eval- 

ation of the platform accuracy in measuring the 3D spatial posi- 

ion of the human joints depicted in Fig. 3 w.r.t. the MoCap. This 

s the first primary focus of the work, i.e., comparing keypoints 

iven by a markerless platform (which allows for privacy-aware 

otion analysis in telemedicine) and the corresponding marker- 

ased points given by the MoCap. 

.3. Accuracy of joint angle displacement 

Starting from the 3D spatial position of the keypoints, we also 

xtrapolated, geometrically, the joint angles. The aim was to eval- 

ate the impact of the deviation between couples of 3D keypoints 

marker-less vs. marker-based) on the extrapolation of joint angles. 

he joint angles were extrapolated geometrically from triples of 

eypoints (e.g., ankle, knee, and hip keypoints for the knee angle), 

ccording to [43] . The impact on other marker setups (e.g., plugin 

ait) are part of our current and future work. 
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Fig. 5. Distribution of the standard deviation between MAEVE 3D keypoints, 3D Openpose keypoints, and Mocap markers. 

Fig. 6. Knee angular displacement of MAEVE (real-time on Jetson AGX), 3D Open- 

pose (off-line on server), and Mocap. 
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Fig. 7. Distribution of PCC and MAE between MAEVE 3D keypoints, 3D Openpose 

keypoints, and Mocap markers. 
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For the sake of space, we report the results obtained for two 

epresentative joint angles. First, the knee joint angle as (i) it is one 

f the most representative and clinically meaningful in the context 

f walking, and (ii) its extrapolation relies on one of the most sen- 

itive 3D keypoints (i.e., the ankle keypoint). The magnitude and 

olarity of the angle was described such that when the knee was 

ully extended, it was described as 0 degrees flexion, and when the 

hank moved to a posterior direction relative to the thigh, the knee 

oint angle was said to be in flexion (knee angle > 0 ). Two vectors

ere generated from these points in order to get the orientation 

f the knee articulation. The hip keypoint was then defined in the 

nee reference system. In this way, the angle corresponding to the 

agittal plane was derived through standard trigonometric formu- 

as. 

Fig. 6 shows the correlation among the knee angle extrapolated 

y MAEVE in real-time on the embedded board, Openpose off-line 

n the server, and the Mocap. The three traces match in almost the 

hole gait cycle, with the most markable difference in the knee 

exion. To measure the correlation degree between curves, a cross 

orrelation at 0 lag was computed between the knee angles calcu- 

ated with Mocap and the pose estimation methods. There was a 

igh similarity of the knee angles measured with Mocap and the 
7 
ose estimation methods for all subjects ( Table 3 ). The Friedman 

on-parametric test for repeated measures did not show signif- 

cant differences for the pose estimation methods ( χ2 (2) = 3 . 00 ,

p = 0 . 223 ) and body side factors ( χ2 (1) = 3 . 00 , p = 0 . 083 ) on the

orrelation coefficient. To measure the correlation degree of the 

wo curves, we used the Pearson Correlation Coefficient (PCC) as 

t is invariant under changes in location and scale. The estimation 

rror is given by the Mean Absolute Error (MAE). 

The Friedman test did not find significant difference for the 

ose estimation methods ( χ2 (2) = 0 . 800 , p = 0 . 670 ) and the body

ide (left vs right) ( χ2 (1) = 0 . 600 , p = 0 . 439 ) on the knee joint an-

le MAE ( Fig. 7 ). 

To sum up, Table 3 (upper box) reports the correlation (PCC) 

nd MAE of the RGB-D systems w.r.t. the Mocap system in mea- 

uring the knee angle. We found that both the correlation and 

AE values between MAEVE and Mocap are comparable to those 

etween 3D OpenPose and Mocap. On the other hand, differently 

rom 3D Openpose, MAEVE provides such values by running on the 

ortable device in real-time. 

Table 3 also reports the results obtained in measuring the hip 

ngles (lower box). The results underline that, in general, the plat- 

orm achieve more accurate measures of angles starting from more 

ccurate keypoints. In the CNN model adopted in this version of 

he platform, the forefoot keypoints are not included. As a conse- 

uence, the platform cannot extrapolate the ankle angles. The ex- 

ension of the model with a larger set of keypoints (including fore- 

oots) and the corresponding evaluation is part of our future work. 
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Table 3 

Value of Pearson Correlation Coefficient (PCC) and Mean Absolute Error (MAE) between MAEVE 3D keypoints, 3D Openpose keypoints, 

and Mocap markers. 

Subject 

Left Knee Right Knee 

OpenPose 3D MAEVE Densenet MAEVE Resnet OpenPose 3D MAEVE Densenet MAEVE Resnet 

PCC MAE PCC MAE PCC MAE PCC MAE PCC MAE PCC MAE 

s0 0.942 3.038 0.928 2.812 0.928 4.865 0.971 2.96 0.927 2.998 0.97 3.196 

s1 0.899 3.378 0.91 4.452 0.797 5.71 0.936 3.932 0.956 3.43 0.941 3.853 

s2 0.949 3.562 0.97 2.616 0.951 3.591 0.955 2.858 0.96 2.243 0.955 2.941 

s3 0.905 4.489 0.906 4.256 0.827 5.627 0.969 2.603 0.968 3.003 0.92 3.553 

s4 0.963 3.859 0.865 4.603 0.966 5.151 0.951 3.139 0.897 4.569 0.945 5.104 

Subject Left Hip Right Hip 

OpenPose 3D MAEVE Densenet MAEVE Resnet OpenPose 3D MAEVE Resnet MAEVE Densenet 

PCC MAE PCC MAE PCC MAE PCC MAE PCC MAE PCC MAE 

s0 0.955 3.719 0.936 2.546 0.920 4.472 0.937 2.686 0.906 2.303 0.983 3.787 

s1 0.904 3.671 0.922 3.394 0.892 4.932 0.969 2.415 0.935 3.153 0.968 3.234 

s2 0.932 2.351 0.905 2.377 0.934 3.041 0.988 2.011 0.905 2.969 0.937 2.054 

s3 0.938 2.982 0.871 3.051 0.969 3.602 0.951 3.209 0.917 2.402 0.894 2.169 

s4 0.968 2.968 0.902 2.266 0.931 2.077 0.915 2.379 0.953 2.195 0.912 2.424 
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. Discussion 

In our experimental analysis, the HPE software at the state of 

he art (i.e., Openpose ) has shown to achieve very high accuracy at 

he cost of high computational load and memory footprint. This is 

ue to the fact that, to achieve high accuracy, the core of the pose

stimation framework requires a deep and convolutional neural 

etwork architecture. As a consequence, such an inference applica- 

ion either does not run on memory bounded portable devices or, 

hen run on the most efficient and powerful devices (e.g., NVIDIA 

etson Xavier AGX), it achieves very low working frequency (e.g., it 

an process 6.3 video frames per second on the Jetson AGX). Even 

hough each set of keypoints extrapolated by Openpose is accurate, 

he overall real-time results are very inaccurate due to subsam- 

ling of the input video frames. Fig. 8 a shows, as an example, the

ffect of such a subsampling on the knee angle obtained by Open- 

ose on the Jetson AGX and its correlation with the same trace ob- 

ained with the Mocap. 

For the same reason, the Jetson Nano does not allow MAEVE to 

chieve enough accuracy and real-time computation (see Fig. 8 b). 

ven though the Jetson TX2 device improves the supported work- 

ng frequency ( Fig. 8 c), further investigation is required to identify 

hich movements in the gait analysis can be evaluated without 

eading to different clinical interpretations. 

In contrast, MAEVE achieves the best accuracy on the Jetson 

avier AGX device. In this configuration, it achieves real-time com- 

utation and supports the frame rate (60 FPS) of the input cameras 

see Fig. 8 d). 

As far as it is concerned the spatial accuracy of the coordi- 

ates, the estimation of the keypoints with three pose methods 

i.e., Openpose off-line on the server, MAEVE Densnet and Resnet 

n real-time on the Jeston AGX) showed comparable spatial dis- 

ersions of the Euclidian distance compared to the coordinates 

easured with the Mocap. On average, the standard deviation of 

he Euclidian distance was 2.2 cm, approximately 70% of the tri- 

ls were < 2 . 5 cm. The larger values referred to the less stable

oints (i.e., knee and ankle joints). Our results suggest a higher 

onsistency of keypoints estimation compared to previous results 

uring walking, countermovement jump and ball throwing move- 

ents [44] . The different spatial accuracy across keypoints ( Fig. 5 ) 

s due to the different speeds of the keypoints during the gait 

ycle (e.g., hips vs. ankles). This suggests that such a high accu- 

acy of the measures that include the ankles (e.g., knee angle) is 

uaranteed at medium walking speeds ( � 4 Km/h). It could lead 
b

8

o less accurate measures in applications outside the gait analysis 

ontext. 

We then focussed in the accuracy of the platform in mea- 

uring the flexion-extension knee joint angle. Although this mea- 

ure alone does not represent a full gait analysis evaluation, it 

s a key step towards for enabling the human motion measure- 

ents for gait analysis at a distance. The knee joint angle patterns 

omputed from the keypoints estimated with our pose methods 

emonstrated a very strong correlation (on average, ρ > 0 . 94 ) with 

he knee angles time profiles measured with the Mocap. More- 

ver, a negligible estimation error in the knee angle profile was 

bserved (less than 3 . 49 ◦ ± 1 . 05 ◦) for all three pose methods in

omparison to the ground truth knee joint angle. To sum up, the 

D pose estimation accuracy achieved by the three pose methods 

i.e., Openpose off-line on the server, MAEVE Densnet and Resnet in 

eal-time on the Jeston AGX) for measuring the keypoints position 

nd the joint angles are comparable. 

Previous work showed limited accuracy of markerless motion 

apture gait analysis compared to IMU or Mocap methods and rec- 

mmended caution in using these systems in clinical movement 

nalysis [44,45] . Specifically, D’Antonio et al. [45] found that the 

nee flexion estimation with an Openpose-based system was sig- 

ificantly different from a measure obtained with a previously val- 

dated IMU apparatus. However, they did not use depth cameras, 

nd video acquisition was provided by simple webcams. Although 

e observed differences in the spatial accuracy of the 3D keypoints 

oordinates, our results showed negligible discrepancies in knee 

oint range of motion estimations between MAEVE and Mocap. It 

s conceivable that this should not lead to different clinical inter- 

retations. 

. Conclusion 

One of the main challenges of RGB-D based on 3D HPE is to 

chieve accuracy for clinical applications. Even more challenging 

s the HPE applied in the telemedicine practice, which requires 

he system to satisfy, beside accuracy, also portability, real-time, 

nd privacy compliance constraints at the same time. In this arti- 

le, we presented MAEVE, a 3D HPE that runs in real-time on a 

ff-the-shelf portable computing board. The experimental results 

emonstrated that MAEVE achieves real time performance on such 

evices with comparable accuracy w.r.t. OpenPose run on a well 

quipped CPU+GPU server, and a deviation w.r.t. a Mocap system 

elow the errore tolerance of such a marker-based system. The 
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Fig. 8. Representative gait traces of MAEVE, 3D Openpose, and Mocap for the right 

knee joint angle. 
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reliminary results of this study lay the foundation for feasible 

pplications of portable embedded systems for motion analysis, 

nd serve as promising tools for home-based monitoring of gait 

nd tele-rehabilitation aimed to improve walking ability and mo- 

or functions. 
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