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Abstract

This paper describes a methodology for parallel theorem proving in a distributed en-

vironment, called deduction by Clause-Diffusion. This methodology utilizes parallelism at

the search level, by having concurrent, asynchronous deductive processes searching in par-

allel the search space of the problem. The search space is partitioned among the processes

by distributing the clauses and by subdividing certain classes of inferences. The processes

communicate by exchanging data. Policies for distributing the clauses and for scheduling

inference and communication steps complete the picture. A distributed derivation is made

of the collection of the derivations computed by the concurrent deductive processes and

it halts successfully as soon as one of them does.

While the Clause-Diffusion methodology applies to theorem proving in general, it has

been designed to provide solutions to the problems in the parallelization of contraction-

based strategies, such as rewriting-based methods. We identify backward contraction,

i.e. the task of maintaining clauses reduced in a dynamically changing data base, as

the main obstacle in parallel theorem proving with contraction. In parallel implemen-

tations of contraction-based strategies in shared memory, this difficulty appears as a

write-bottleneck, which we have termed the backward contraction bottleneck. The Clause-

Diffusion approach avoids this problem by adopting a mostly distributed memory and

distributed global contraction schemes.

We conclude by reporting some of our results with an implementation of Clause-

Diffusion.

1 Introduction

The subject of this paper is a methodology for distributed theorem proving, called

distributed deduction by Clause-Diffusion and appeared first in [7].

A theorem proving problem consists in deciding, given a set of clauses S and a

clause ϕ, whether ϕ is a theorem of S. A theorem proving strategy C is specified by

a set of inference rules I and a search plan Σ. The expansion inference rules, such as

resolution and paramodulation, generate new clauses from existing ones and add them

to the data base. The contraction inference rules delete clauses, e.g. by subsumption,
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or replace them by smaller ones, e.g. by simplification (term rewriting). The search

plan Σ chooses the inference rule and the premises for each step, so that the repeated

application of Σ and I generates a derivation. A derivation is successful if it reaches a

solution of the input problem. If the strategy is complete, the derivation is guaranteed

to succeed whenever the input goal is indeed a theorem.

In practice, a complete strategy often fails to prove a theorem, because it generates so

many clauses that it exhausts the available memory before succeeding. In other words,

it generates too large a portion of the search space of the problem. One way to tackle this

problem is to employ contraction inference rules, such as rewriting and subsumption,

which keep the data base, and thus the search space, as reduced as possible. Contraction

inferences can be classified into forward contraction and backward contraction. Forward

contraction contracts newly generated clauses, before they are fully introduced in the

data base and made available for expansion steps. Backward contraction contracts

existing clauses, that have been already stored in the data base, used in expansion

steps and possibly as simplifiers. The application of backward contraction, and thus

the possibility of contracting any clause, is a distinguishing feature of contraction-based

strategies. These strategies, as implemented for instance in the provers Otter [25], RRL

[22] and SBR3 [1], have obtained impressive results.

In this paper we present a methodology for parallelizing contraction-based deduction

strategies. The main feature of contraction-based strategies is that existing data may

be deleted or replaced by others through contraction. For instance, an equation may

be reduced to another equation via rewriting. Although such a behaviour is the main

reason why contraction-based strategies are effective, it is also the major source of

difficulty in parallelization. To illustrate this point, we consider the parallelization

of Prolog technology theorem proving (PTTP) methods, e.g. [10, 15, 27]. In goal-

reduction methods such as PTTP, the set of axioms remains static during the course

of the derivation. Thus, it is possible to pre-process all the axioms into elaborate data

structures before the derivation starts. Such structures can be used in turn to exploit

parallelism of different granularities. The cost of building them is limited to the pre-

processing phase. Contraction-based strategies, on the other hand, are not likely to

take advantage of such approaches, because axioms will be added and deleted during

the derivation, so that pre-processing is not sufficient.

The basic idea of the Clause-Diffusion methodology, which we present here, is to

parallelize a strategy at the search level, by partitioning the search space among many

concurrent, asynchronous deductive processes, which search in parallel for a solution.

As soon as one of them succeeds, the whole distributed derivation succeeds. In order to

subdivide the search task, we notice that the search space is determined by the given

clauses and the inference rules. The Clause-Diffusion method partitions the clauses

among the processes and the inferences are partitioned consequently in a data-driven

fashion. The deductive processes are largely independent: each process has its own local

data base, constructs its own derivation and interacts with the others by exchanging

clauses. Because of the coarse granularity of parallelism at the search level, the Clause-

Diffusion methodology targets a distributed environment, e.g. a high-speed network

2



of computers or a loosely coupled asynchronous multiprocessor. In such a system,

each of the theorem proving processes is executed at a different processor node, and

communication of clauses is implemented via message-passing. Clause-Diffusion may

also use a mixed shared-distributed environment, e.g. with separate memories at the

nodes and a shared memory component: a subset of the clauses may be shared, while

the remaining communication is achieved through messages.

The Clause-Diffusion approach has a few features which we consider as new:

• It is a general methodology intended for implementing contraction-based strategies

in distributed environments.

• It realizes parallelism at the search level as a form of coarse grain parallelism in

deduction. This is a fairly new approach, since most of the existing methods

introduce parallelism in the inference mechanism, thus at a finer granularity.

• The problem of keeping data inter-contracted is dealt with through a notion of

image set – an approximation of the global data base. This avoids the difficulty

of the backward contraction bottleneck which often occurs in shared memory im-

plementation of contraction-based strategies, e.g. [24, 33].

• It is a general methodology not confined to a specific architecture, topology or

inference system. Depending on the parameters chosen, our method can be easily

adopted in different environments.

The remaining sections of this paper are organized as follows. First, we illustrate

how a given strategy C is executed according to the Clause-Diffusion methodology in

a distributed system and we define the distributed derivations generated by Clause-

Diffusion strategies. Second, we address the parallelization of contraction in Clause-

Diffusion. We describe the backward contraction bottleneck, which may arise especially

in parallel implementations of term-rewriting based methods in shared memory. Our

solution of the backward contraction bottleneck problem are a few schemes for dis-

tributed global contraction, that is, contraction with respect to the distributed global

data base (the union of the clauses of all the concurrent processes). Since the back-

ward contraction bottleneck is observed primarily in equational problems, we discuss

in detail how to perform “simplification of the simplifiers”, i.e. how to update with

respect to simplification the copies, or “images”, of the equations used as simplifiers.

The following section is devoted to the policies for distributed allocation of clauses, i.e.

the criteria to assign clauses to processes. These policies serve two very important

purposes: partitioning the search space of the theorem proving problem among the de-

ductive processes and balancing their work-load, so that it does not happen that some

are idle while others are overcharged. We conclude the detailed description of Clause-

Diffusion with some guidelines for the scheduling of inferences and communication steps

performed by the concurrent deductive processes. The last technical section is devoted

to some experiments with the Clause-Diffusion prover Peers1.

1Peers was written jointly by the first author and Dr. Bill McCune of the Argonne National Laboratory.
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Related papers are [4, 5, 8, 9]: [4] and [5] are dedicated to specific problems, dis-

tributed fairness and distributed subsumption respectively; [8] and [9] describe the

specific strategies and the implementation details of the Clause-Diffusion prototypes

Aquarius and Peers. This paper is a comprehensive description of the Clause-Diffusion

methodology after [7], which we refer to for the few components or variants of Clause-

Diffusion strategies that are not covered here.

2 The Clause-Diffusion methodology

Contraction-based strategies are theorem proving methods developed from the studies

in term rewriting theory. Intuitively, a contraction-based strategy assumes the exis-

tence of a well-founded ordering on either the set of formulas or on the proof structure

(depending on the logic and the inference system). Based on this notion of order-

ing, contraction-based strategies are characterized by three basic properties. First, the

inference system includes contraction rules such as simplification via term rewriting,

conditional or constrained simplification, clausal and functional subsumption, which

replace redundant data by smaller ones. Second, the search plan generally gives priority

to contraction rules over expansion rules, so that the data set can be kept to a minimal.

Third, the expansion rules may be refined to resolve upon only the maximal elements

in the data involved. Knuth-Bendix completion and its extensions are typical examples

of contraction-based strategies. We refer to [18] for an introductory survey. Examples

of contraction-based strategies for first order logic and beyond can be found in [3, 26].

A formal treatise of contraction-based strategies is given in [6], where also a larger set

of references to works on contraction-based strategies is provided.

The Clause-Diffusion methodology was designed with contraction-based strategies in

mind, although it applies to other types of strategies as well. We assume then to have a

complete theorem proving strategy C =< I; Σ > and we describe how C is parallelized by

the Clause-Diffusion methodology. The strategy will be executed by multiple concurrent

deductive processes p1, . . . pn. We envision a distributed environment, such as a network

or a loosely coupled, asynchronous multiprocessor, where each deductive process runs

on a node of the system. Since there is a one-one correspondence between the deductive

processes and the nodes, we shall use p1 . . . pn to denote ambiguously both the deductive

processes and the nodes. The basic principle of the Clause-Diffusion methodology is

to partition the search space among the concurrent deductive processes p1, . . . pn. In

order to partition the search space, the input and the generated clauses are distributed

among the processes. After a clause ψ is fully simplified (contracted), it is assigned to a

process pi and becomes a resident of pi. For this purpose, a Clause-Diffusion strategy

features an allocation algorithm, which decides where to allocate a clause. In this

way, each process pi is allotted a subset Si of the global data base. The union of all

the Si’s, which are not necessarily disjoint, forms the current global data base. Process

pi is responsible for applying the inference rules in I to the clauses in Si, according to

the search plan Σ.

Because the global data base is partitioned among the nodes, no node is guaranteed
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to find a proof using only its own residents. To assure that a solution will be found

when one exists, the nodes need to exchange information, by sending each other their

residents in form of messages, called inference messages. Each process sends the

inference messages for its own residents and uses the received inference messages to

perform inferences with its residents. The inference messages issued by a process pi
let the other processes know which clauses belong to pi, so that they can use them for

inferences. The local data base at each node contains at any stage of the derivation

both resident clauses and visiting clauses, which came in as inference messages. Thus,

one should keep in mind that the physical subdivision of the data set, i.e. whether a

clause is stored at a node, is different from the logical subdivision, i.e. whether a clause

belongs to a process.

The communication of inference messages may be realized in different ways. In

a purely distributed system, inference messages are implemented as messages, which

may be routed or broadcast. If it is desirable to have all the nodes receiving the

inference messages as soon as possible, then the inference messages should be broadcast.

Depending on the broadcasting algorithm, a node may forward copies of the inference

message to different nodes, while still retaining a copy for its own inferences. Thus,

there may be several inference messages, all carrying the same clause, active at different

nodes. In a distributed system with a shared memory component, the exchange of

clauses may be implemented also through the shared memory. A process pi “sends”

its resident ψ by storing a copy of ψ in the shared memory. All the other processes

“receive” ψ by reading it from the shared memory.

The separation of residents and inference messages is also used to partition the

search space at the inference level. Using paramodulation as an example of expansion

inference rule, we can require that the inference messages are paramodulated into the

residents, but not vice versa. This restriction has two purposes. First, it distributes the

expansion inference steps among the nodes. Second, it prevents a systematic duplication

of steps: if this restriction were not in place, then each paramodulation step between

two residents ψ1 of p1 and ψ2 of p2 would be performed twice, once when ψ1 visits p2
and once when ψ2 visits p1. Other expansion inference rules fit naturally in this pattern

(see Section 5.3).

Unlike expansion steps, contraction steps are not subdivided based on ownership

of clauses. Since the motivation behind contraction is to keep the data base always

at the minimal, we allow each node to use all available simplifiers, e.g. both residents

and received inference messages, to perform as much contraction as possible. The

contraction task comprises both forward and backward contraction. Forward contraction

is contraction of the clauses newly generated from expansion steps. We call such clauses

raw clauses. After being fully contracted, a raw clause becomes a new settler and

is entitled to become a resident at a processor. The allocation algorithm is used to

assign a new settler to some node. Every process executes the allocation algorithm for

its new settlers: it may decide either to retain a new settler or to send it to another

node. The purpose of the allocation algorithm is to partition the search space and keep

the work-load balanced as much as possible.
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Backward contraction is contraction of the clauses already established in the data

base and being used as premises of expansion steps and as simplifiers. Backward con-

traction is essential in contraction-based strategies, because such strategies should only

perform an expansion step when the premises are fully reduced. In Clause-Diffusion,

backward contraction is contraction of the residents: each deductive process keeps

its residents as reduced as possible. In addition, a process may reduce the inference

messages it receives, before using them as simplifiers and as premises for expansion.

Contraction of received inference messages is also backward contraction, because an in-

ference message received by one process is a resident at some other node. Both forward

and backward contraction need to be done with respect to the global data base. Thus,

our methodology features a number of distributed global contraction schemes to

enable a node to perform contraction with respect to a distributed set of clauses.

This is the basic working of the Clause-Diffusion methodology: local contraction

and local expansion inferences at the nodes among residents and inference messages,

distributed global contraction, allocation of new settlers and mechanisms for passing

inference messages. By specifying the inference mechanism I, the search plan Σ to

schedule inference steps and communication steps, the allocation algorithm, the dis-

tributed contraction scheme and the mechanisms for the communication of messages,

one obtains a specific strategy.

The above elements are summarized in the following notion of distributed derivation:

every deductive process pk, 1 ≤ k ≤ n, computes a derivation

(S;M ;CP ;NS)k
0
⊢
C
(S;M ;CP ;NS)k

1
⊢
C
. . . (S;M ;CP ;NS)ki ⊢

C
. . .

where

• Sk
i is the set of residents at pk at stage i,

• Mk
i is the set of inference messages at pk at stage i,

• CP k
i is the set of raw clauses at pk at stage i and

• NSk
i is the set of new settlers at pk at stage i.

A distributed derivation is given by the family of the asynchronous derivations com-

puted by the deductive process. The tuple (S;M ;CP ;NS)ki represents the state of

the derivations at processor pk and stage i. Depending on the specific strategy, more

components may be needed. The distributed derivation succeeds as soon as a deriva-

tion at one node finds a proof. Each step in a distributed derivation can be either an

expansion step or a contraction step or a communication step. For instance, sending

an inference message for ψ ∈ Sk from node pk to an adjacent node pj can be writ-

ten as (Sk ∪ {ψ},M j) ⊢ (Sk ∪ {ψ},M j ∪ {ψ}). Settling a new settler at node pk can

be written as (Sk, NSk ∪ {ψ}) ⊢ (Sk ∪ {ψ}, NSk). This representation assumes that

communication between any two adjacent nodes is instantaneous. It does not assume,

however, that communication between any two nodes is instantaneous. If an inference

message sent by pi reaches pj through px1
. . . pxm

, it appears first in Mx1 , then in Mx2
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and so on. The time elapsed in going from the source to the destination is captured in

our description, by showing the message stored, at successive stages, in the appropriate

component of all the nodes in the path.

3 Distributed global contraction

This section treats the parallelization of contraction in Clause-Diffusion. The distinction

between forward contraction and backward contraction is critical in understanding the

difficulty of parallelizing strategies with contraction:

1. Forward contraction is the normalization of raw clauses before they are inserted

in the data base: if a raw clauses has a non-trivial normal form, it is added to

the data base, otherwise it is deleted. Thus, a forward contraction step does not

induce other contraction steps. On the other hand, backward contraction is the

inter-reduction of the clauses in the data base: if a clause already in the data base

is simplified by a newly added clause, its reduced form should be tested for further

contraction and normalized with respect to all the other clauses in the data base.

If the new normal form is not trivial, it should be applied in turn to try to reduce

every other clause in the data base. Therefore, a backward-contraction step may

trigger many backward-contraction steps, each of which in turn may induce more.

2. In forward contraction there is a clear distinction between the clauses to be nor-

malized – the raw clauses – and the clauses to be used as simplifiers – the clauses

already in the data base. On the contrary, in backward contraction, there is no

such distinction, because all the clauses in the data base are at the same time

simplifiers and subject to being contracted.

3. Concurrent inference steps may incur conflicts in trying to access common premi-

ses. Concurrent forward contraction steps may cause write-write conflicts if they

try to reduce concurrently the same term. This problem has been studied already

in parallel term rewriting (see [7] for a survey of various approaches and references).

In addition to write-write conflicts, concurrent backward contraction may generate

read-write conflicts between contraction steps (one step tries to read a clause to

use it as simplifier, while another step tries to rewrite it) and between expansion

and contraction steps (the expansion step tries to read a clause to use it as a

parent, while the contraction step tries to rewrite it). Forward contraction does

not induce these conflicts, because the clauses being rewritten, the raw clauses,

are not yet being used as simplifiers or as premises for expansion. The read-

write conflict between expansion and backward contraction steps is the worst

type of conflict from the point of view of the design of parallel contraction-first

strategies: parallelism would require to let expansion and contraction proceed in

parallel, whereas priority to contraction would require to sequentialize contraction

and expansion in such a way that expansion is attempted only if contraction has

completed.
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These elements show that the efficient parallelization of backward contraction is much

harder than forward contraction. Indeed, some parallel theorem provers, e.g. [16, 21],

did not implement backward contraction; others, e.g. [24, 33], found in backward

contraction a major obstacle for implementations of parallel theorem proving in shared

memory. In a related area, parallel implementations of the Buchberger algorithm [31,

28, 20] also suffered from this problem (see [7] for survey and comparison of these

methods).

The above characteristics of backward contraction cause the following dilemma.

Assume that concurrent backward contraction and concurrent expansion are to be im-

plemented in shared memory. If unrestricted concurrent inferences are allowed, conflicts

arise. Thus, it is necessary to use special control structures, e.g. locks and critical re-

gions, to control write-access and avoid the conflicts. One such approach is described in

[33]. This type of solution involves a high amount of fine-grain control on instructions

and data structures and is resemblant of the techniques for parallel term rewriting

of one given term. In theorem proving, millions of terms need to be rewritten and

the “rippling” effect of backward contraction (each step inducing many) may cause

an avalanche growth of contraction steps. For instance, this happens if a simplifier

that reduces most of the clauses in the data base is generated. In these conditions,

backward contraction causes a write-bottleneck, because all the backward contraction

processes ask write-access to the shared memory. Since write-access is controlled in or-

der to prevent conflicts, a sequentialization is imposed. This is an instance of backward

contraction bottleneck.

In order to avoid this scenario, one may forbid concurrent backward contraction:

multiple parallel processes are allowed to perform expansion in parallel accessing the

main data base of clauses in shared memory, whereas only one process does backward

contraction working on a separate data structure accessed only by this process. When-

ever a clause in the data base needs to be tested for normalization, it is moved from

the data base to the separate data structure. This is the approach of [24]. The prob-

lem of this solution is that backward contraction causes the number of clauses in need

of backward contraction to surge, so that the single backward contraction process is

swamped, the main data base is depleted and the expansion processes are forced to be

idle. In other words, the single backward contraction process becomes a bottleneck,

another instance of backward contraction bottleneck.

We use backward contraction bottleneck to indicate this problem, including the

two scenarios described above as instances. In order to avoid this bottleneck we chose to

work with coarse grain parallelism in distributed memory. The clauses are distributed

among the nodes, each process works in its own local memory and therefore there are

no conflicts. In this context, the issue becomes how to perform global contraction, that

is, how to enable each process to normalize a clause not only with respect to its own

local data base, but with respect to the global distributed data base, without incurring

excessive costs of duplication and communication. In the rest of this section, we describe

several schemes for achieving global contraction in distributed memory.
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3.1 Distributed global contraction schemes

Global contraction by travelling and global contraction at the source are the

two types of mechanisms for distributed global contraction in Clause-Diffusion. In

global contraction by travelling, no node has access to the global data base: global con-

traction uses messages. In global contraction at the source, every node has access to an

“approximation” of the global data base and uses it to contract its clauses. The selec-

tion of the appropriate global contraction scheme depends on the available resources:

global contraction at the source requires either sufficiently large local memories or a

shared memory component to provide access to the global data base, whereas global

contraction by travelling needs very fast communication. In this paper we focuse on

global contraction at the source, referring to [7] for global contraction by travelling.

In global contraction at the source, each node pi has access to an approximated

version of the global data base, called an image set. The name “image set” says that

such set contains “images”, i.e. copies, of residents in the system. We describe global

contraction at the source in two scenarios, depending on the availability of a shared

memory.

• Global contraction at the source by localized image sets: we assume that

the local memory of each node pi is large enough to hold an approximated version

SH i of the global data base
⋃n

i=1
Si. The SH i’s are called localized image sets.

Each node pi uses its localized image set SH i as set of simplifiers to perform global

contraction of residents, raw clauses and incoming messages. The localized image

sets can be built by utilizing the inference messages: whenever a node pi receives an

inference message, it stores the clause carried by the message in SH i. A localized

image set is an approximation of the global data base. However, each of the SH i’s

is logically equivalent to the global data base
⋃n

i=1
Si, if all the persistent residents,

i.e. those not deleted by contraction, are broadcast as inference messages. The

sets SH i can also be used only to contain those intended to be used as simplifiers.

• Global contraction at the source by global image set in shared memory:

we assume that a shared memory is available and a single approximated version

SH of the global data base
⋃n

i=1
Si is stored in the shared memory. The set SH is

called global image set. Each process accesses SH to get the simplifiers to perform,

at each node, global contraction of residents, raw clauses and incoming messages.

The global image set SH can be formed as follows: whenever a new settler ψ

settles down at a node pi as a resident, node pi also takes care of adding ψ to SH

in shared memory. Similar to the previous case, the identity SH =
⋃n

i=1
Si is not

strictly true, so that the global image set is just an approximation of the global

data base. However, SH and
⋃n

i=1
Si are logically equivalent, if an image of every

persistent resident is included in SH .

The backward contraction bottleneck does not appear in our schemes, because the

clauses being rewritten by contraction are stored in the local memories of the nodes.

Therefore, concurrent contractions are done independently in the local memories at
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the nodes, with no need to wait to get write-access to a shared memory. Even when

our schemes employ a shared memory, the latter is only used to store clauses used as

simplifiers, while the clauses subject to contraction are kept in the individual nodes.

Therefore, concurrent contractions can always be done at the nodes without creating any

global bottleneck, as long as the architecture supports concurrent reads on the shared

memory. An additional advantage of using image sets, either in shared memory or with a

copy per node, is that such large sets of simplifiers can be implemented as discrimination

nets [14, 29] for the purpose of fast simplification. A drawback of using (localized) image

sets is that the image sets will typically grow to be almost as large as
⋃n

i=1
Si, especially

in purely equational problems where all equations may act as simplifiers. We remark

that even if the SH i’s are very similar, the derivations generated by the deductive

processes remain different, because of the partition of expansion inference steps based

on the ownership of clauses.

3.2 Maintenance of the image sets

A fundamental issue in global contraction at the source is whether contraction of the

simplifiers in the SH i’s (or in SH) should be allowed. The main question is whether the

advantage of maintaining the SH i’s (SH) fully reduced is worth the cost of rewriting

them. In the following, we propose and compare different policies.

Maintenance by direct contraction

A simple policy, with no sophisticated record-keeping, is to keep the members in SH i

fully and inter-contracted using SH i and Si within pi. We call this policy “maintenance

by direct contraction”. A negative side is the redundancy of contraction steps, since

the contraction of a datum ψ may be performed at all nodes which have a copy of

ψ. A more serious problem is that in the case of SH in shared memory, maintenance

by direct contraction may re-introduce the backward contraction bottleneck, since the

members of the global image set SH need to be contracted in the shared memory. This

problem can be avoided by updating SH in shared memory with respect to contraction

at the nodes, without resorting to apply contraction to the shared memory itself, as we

shall see later.

No contraction of image sets

The “no contraction” policy forbids contraction on the SH i’s (on SH) and only allows

insertion of new clauses. The rationale for this policy is that if ψ ∈ SHj − Sj is

reducible, it may be reduced at its home node pi (such that ψ ∈ Si) and a reduced

form of ψ will be added to SHj eventually. The “no contraction” policy is especially

indicated if the image sets are used only as a data base of simplifiers. In such case,

the presence of both ψ and a reduced form ψ′ does not represent a serious redundancy.

In fact, if the image sets are implemented as discrimination nets, frequent updates of

the elements in the net may not be cost-effective. On the other hand, if the clauses in
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the image sets are used for expansion steps, the presence of redundant clauses would

induce the generation of more redundant clauses. Therefore, we need to design other

mechanisms to update the image sets with respect to contraction.

Maintenance by direct update

In Clause-Diffusion, every resident of a node has a unique global identifier and a birth-

time. At each node pi, every resident ψ of pi is given an identifier a, so that a is the

unique identifier of ψ within the local data base at pi. Then, < pi, a > is the unique

global identifier of ψ. The birth-time of ψ is the time at pi’s clock when ψ was stored

as a resident at pi. Overall the format of a resident is < ψ, a, x >∈ Si, where a is the

identifier and x is the birth-time. The global identifiers of the residents can be used to

index the clauses in SH . The global image set SH may be implemented as a hash table,

with the global identifier as key. When a resident < ψ, a, x >∈ Si is deleted or replaced

by < ψ′, a, y >, where y > x is the current time at pi’s clock, node pi also retrieves

index < pi, a > in SH and deletes ψ or replaces it by ψ′ in SH as well. This technique

is called “maintenance by direct update”. Although not as severe as in “maintenance

by direct contraction”, a potential risk of this approach is still that it may turn out

to mimic too closely the direct application of contraction to the shared memory. The

replacement of ψ by ψ′ still requires a write-access and if a very high number of such

accesses is generated, the conditions for a backward contraction bottleneck in shared

memory might develop.

Maintenance by delayed update with garbage collection

To prevent the phenomenon mentioned above, we may adopt a mechanism of “delayed

update with garbage collection”. When < ψ, a, x > is replaced by < ψ′, a, y >, y > x,

in Si, node pi does not retrieve and delete ψ in SH , but simply add ψ′ to the bucket

with key < pi, a > in the hash table SH . Therefore there is only minimal write-conflict.

In general, although not necessarily, the element which was inserted most recently in a

bucket is the most reduced one. Thus, each bucket may be organized as a last-in-first-

out list, so that the most recently added element is easily retrieved at the top to be

used as simplifier. Note that different processes may use as simplifiers different elements

from the same bucket, without incurring in a read-write conflict, because all the data

with the same key (< i, a >) are logically equivalent. Periodically, a garbage collection

process visits all the buckets of the hash table and delete all the elements in each bucket

except the top-most one. It may be determined empirically how often garbage collection

should be executed, keeping into account the amount of shared memory available. The

major potential drawback is that the garbage collection process may block the access to

the shared memory. This should not be a serious problem since the top element of each

bucket, the only datum which needs to be accessed by the processors, will be preserved

by the garbage collection process anyway.
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Update by inference messages

Identifiers and birth-times of residents also help in case of localized image sets. As-

sume that an inference message carries a clause together with its global identifier

and birth-time, then an inference message for a resident < ψ, a, x >∈ Si has the

form < ψ, pi, a, x >. These additional fields allow a node to recognize that an infer-

ence message is carrying a reduced form of a previously received clause. If a resident

< ψ, a, x > at pi is reduced to < ψ′, a, y >, at time y > x, then a new inference message

< ψ′, pi, a, y > will be broadcast eventually. The localized image sets can also be imple-

mented as hash tables with the global identifier of the clauses as key. Whenever a node

pj receives an inference message, e.g. < ψ′, pi, a, y >, it checks whether an element ψ

with the same global identifier < pi, a > is stored in SHj. If this is the case, node pj
compares ψ and ψ′ according to the ordering on clauses and saves the smaller in SHj.

If the two clauses are not comparable, the one with more recent birth-time is saved.

We call this scheme “update by inference messages”. Such an immediate replacement

is more reasonable in the distributed memory configuration than in the one with shared

memory, because an access to SHj is just an access to the local memory of pj .

Update by inference messages does not help if < ψ, a, x >∈ Si is deleted, rather than

rewritten, by a contraction step, because no more messages with identifier < pi, a > will

be issued. Therefore, localized image sets may never be updated. However, inference

messages may still be useful: whenever an inference message < ψ, pi, a, x > is deleted

at a node pk, it is possible to check whether SHk contains any clause with identifier

< pi, a > and delete it. This is not sufficient in general to update all the localized

image sets, because clause ψ may not be deleted at pk. If the performance is damaged

by not updating the localized image sets with respect to deletions, one may consider

broadcasting special deletion messages: a deletion message with identifier < pi, a >

informs all the nodes that the resident at < pi, a > was deleted.

Different policies may be integrated in order to combine their positive features.

Both our implementations of Clause-Diffusion (see [8] and Section 6) apply first update

by inference messages and then direct contraction. If direct contraction is preceeded

by update by inference messages, fewer direct contraction steps will be performed in

general and deletion messages are not needed.

4 Policies for the distribution of new settlers

After a raw clause ψ generated at pi has undergone the global forward contraction

phase, it needs to be allocated at a node as a resident. Node pi executes the allocation

algorithm to determine a final destination pq and it creates the new settler < ψ, pq >.

The allocation algorithm has the double objective of partitioning the search space and

balancing the work-loads of the processors. In this section, we present and compare a

few allocation policies.
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4.1 Best-fit allocation of clauses

A best-fit allocation algorithm identifies a node pq where the work-load is minimum and

sends the new settler to pq. This requires to execute a distributed selection algorithm

to select a node pq where the work-load is minimum. The work-load of pi may be

measured by the number of residents at pi or by the global number of clauses at pi. These

measures may be refined to take into account also the size of the clauses. Without loss of

generality, we assume that the work-load is measured by the number of residents. Then,

each processor pi maintains a counter wi for the number of its residents. Whenever a

resident is deleted from Si or inserted in Si, wi is decremented or incremented. If

global contraction at the source in shared memory is adopted, we may require that the

work-loads wi of all nodes are stored in the shared memory, so that they are accessible

to all the processes. Each pi is responsible for periodically updating the value of wi in

shared memory. If there is no shared memory, each node pj may compute and keep in

memory an estimate of the work-load wi of any other node pi, by counting the inference

messages it receives from pi or by saving the greatest value among the identifiers of the

inference messages received from pi. When a processor pj needs to determine the final

destination of a new settler, it computes the minimum wq among all wi’s and generates

the new settler < ψ, pq >.

4.2 Alternate-fit allocation of clauses

Under an alternate-fit policy, each node pi saves the most recently used destination, i.e.

the identifier q of the node pq, where pi sent its most recent new settler. When pi needs to

determine the destination for the next new settler, pi picks (q+1) mod n, where n is the

total number of processors. A variant of alternate-fit, which we called half-alternate-fit,

works as follows: each node pi saves the two most recently used destinations q1 and q2,

where q1 is the most recent one. If q1 is pi itself, pi chooses (q2 + 1) mod p. Otherwise,

i.e. q1 6= pi, the new settler is allocated to pi itself. Then q2 and q1 are updated.

In other words, half-alternate-fit consists in applying alternate-fit to every other new

settler and keep the remaining ones. Switching from alternate-fit to half-alternate-fit

may be useful when doing experiments, if one observes that the nodes would profit from

keeping for themselves more of their output. If we push this idea to the extreme, we

obtain a first-fit allocation policy, according to which the raw clauses become residents

at their birth-places. We remark that if first-fit allocation were applied to the input

clauses, all input clauses and all their descendants, i.e. all the clauses generated during

the derivation, would become residents at the node which read the input, so that the

distributed derivation collapses onto a sequential derivation. The alternate-fit and first-

fit policies may be combined in the alternate-first-fit policy, where the input clauses are

distributed according to the alternate-fit policy and all successively generated clauses

are assigned to the nodes where they are generated. More generally, the nodes may

switch back and forth between alternate-fit and first-fit: use alternate-fit m times, then

first-fit m times and so on, where m is a threshold parameter of the allocation strategy.
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4.3 Discussion

Since the assignment of clauses to processors determines the work-load at the proces-

sors, one would like the allocation policy to distribute the clauses as evenly as possible,

so that the work-load is well-balanced. On the other hand, deciding the allocation of

clauses to nodes is part of the overhead of working in a distributed environment. An

allocation algorithm which diffuses clauses evenly but is very time-consuming may not

be reasonable, because the advantage of maintaining the work-load balanced may be

negated by the cost of computing a complex allocation algorithm for each and every

new settler. The best-fit algorithm has the advantage of being adaptive, as it takes into

account how the work-loads at the nodes evolve during the computation. In this way,

it ensures a well-balanced work-load among the processors. However, simple policies

such as alternate-fit may fare better in practice than more refined allocation algorithms,

which guarantee an even distribution of clauses at the cost of an higher overhead. Com-

plicated allocation algorithms may be worthwhile in applications where it is possible

that some processors are idle for a long time while others are overwhelmed with work.

In theorem proving work is anything but scarce. According to the observation of our ex-

periments and others’, e.g. [15], it seems unlikely that processors be idle in distributed

theorem proving. Thus, simple allocation algorithms may be sufficient. Our choice has

been to implement more than one allocation policy, so that it is possible to experiment

with them on different problems.

5 Inferences on residents and inference messages

When a new settler < ψ, pi > has reached its final destination pi, it settles down as a

resident at pi. Each resident is assigned two attributes: an identifier and a birth-time.

A clause ψ is given an identifier a never used before at pi, so that a is the unique

identifier of ψ within the local data base at pi and < pi, a > is the unique identifier of ψ

within the global data base. The birth-time of ψ is the current time at pi’s clock, when

ψ settles as resident at pi. The format of a resident is then < ψ, a, x >, where a is the

identifier and x is the birth-time. Identifier and birth-time are employed to keep track

of the modifications of residents, as we shall see shortly. If < ψ, a, x > is not simplified

later at pi, pi will eventually send a message < ψ, pi, a, x > informing other nodes of

the existence of ψ as a resident at pi.

5.1 Contraction

Contraction has been already largely covered by the description of the schemes for dis-

tributed global contraction. In addition, a Clause-Diffusion strategy may feature local

contraction tasks, which involve only the local data base at each node. The distinction

between global and local contraction depends in fact on the global contraction scheme

the strategy uses. In case of global contraction at the source with localized image sets,

there is no difference between global and local contraction steps, because any contrac-

tion task performed at a node may be done with respect to an approximation of the
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global data base. In case of global contraction at the source in shared memory, instead,

there is a distinction, because global contraction requires to access the shared memory,

whereas local contraction does not. Thus, local contraction is less expensive. Typically,

a strategy would first try to reduce a clause by local contraction and access the shared

memory for global contraction only if the clause was not deleted by local contraction.

The amount of local contraction in a strategy depends on the effectiveness of the

global contraction scheme. The more effective the global contraction scheme is, the less

stringent is the need of local contraction. In a strategy that features global contraction

at the source it may be decided not to normalize received inference messages and in-

coming new settlers, because it can be assumed that such clauses have been normalized

with respect to an approximation of the global data base at the sender.

If a resident is simplifed by a backward contraction step, it should be tested again

for global contraction. This can be implemented simply by treating a simplified resident

as a raw clause. A better alternative, however, is to reset the birth-time to the current

clock. That is, if a resident < ϕ, a, x > is reduced to ϕ′ at time y at node pi, then

< ϕ′, a, y > replaces < ϕ, a, x > in Si. In this way the simplified resident ϕ′ is regarded

as a new settler at pi, and undergoes global contraction. This scheme not only saves

the cost of allocating the new clause ϕ′, but also let ϕ′ retain the identifier of ϕ. The

latter is sound since ϕ′, a contracted form of ϕ, is logically equivalent to ϕ. If a resident

is deleted, e.g. by subsumption, both its identifier and birth-time are erased. In the

special case of rewrite rules, i.e. oriented equations in the form l → r, it is possible to

stipulate that the birth-time is updated only when the left hand side is modified, since

a reduction on the right hand side does not induce new inference steps.

5.2 Communication

A resident < ψ, a, x > at pi needs to be emitted eventually as an inference message

< ψ, pi, a, x >. If a resident < ψ, a, x > is replaced by < ψ′, a, y >, where y > x,

through contraction, the resident with identifier a should be re-scheduled for broad-

casting eventually. Intuitively, ψ′ is a different clause and thus it deserves to be sent

again. This is part of the policies which may be adopted to fulfill the requirement of

fairness of a distributed derivation (see Appendix A and [4, 7]). It follows that more

than one inference message may be issued for the resident with global identifier < pi, a >

during a derivation. Updating the birth-times of reduced residents, as we have seen in

the previous section, allows us to know for which residents the inference messages need

to be repeated.

Nodes receiving inference messages forward them according to the message-passing

algorithm used. The presence of contraction, however, poses the problem of how to

handle contraction of messages. There are two basic possibilities, depending on whether

reduced messages are forwarded:

• No communication of contracted messages: in this scheme the message is

deleted if the clause carried by an inference message is reduced. For instance,

if node pj receives < ψ, pi, a, x > and reduces ψ to ψ′, pj simply deletes <
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ψ, pi, a, x >. This decision is taken on the ground that, since ψ is reducible,

it will be reduced eventually at pi to some ψ′′, possibly ψ′′ = ψ′, and pi will emit

< ψ′′, pi, a, y >. Thus, the message < ψ′, pi, a, x > is redundant. The choice of not

to forward reduced messages will therefore help to contain redundancy. There is,

however, another issue. If ψ′ happens to be a very useful clause, not forwarding

it may delay success considerably. The consideration that reduced clauses should

be diffused as soon as possible is the rationale for the opposite policy.

• Communication of contracted messages: if the clause carried by an inference

message is reduced, the message is forwarded with the reduced form of the clause.

More precisely, if node pj receives < ψ, pi, a, x > and reduces ψ to ψ′, pj forwards

< ψ′, pi, a, x >. The choice of forwarding an inference message even if it has

been reduced has the advantage of diffusing a reduced clause as soon as possible.

The disadvantage is the potential higher level of redundancy represented by the

circulation of inference messages carrying different reduced forms of the same

clause.

Because of the combination of contraction and communication, distinct inference

messages, e.g. m =< ψ, pi, a, x > and m′ =< ψ′, pi, a, y >, with the same global

identifier < pi, a > but different clauses and/or different time-stamps (birth-times of

the carried clauses) may be circulating. This phenomenon may be the result of one

of the two scenarios: one possibility is that the message-passing algorithm forwards

distinct copies of the same inference message along different paths. Then the copies

which originally carry identical clauses are reduced to different forms by contraction

on different paths. Another possibility is that a resident < ψ, a, x > at pi issues an

inference message < ψ, pi, a, x >, then the resident is reduced to < ψ′, a, y > and it

emits another message < ψ′, pi, a, y >. Regardless of their origin, we call inference

messages which have the same global identifier, but differ in the other components,

generalized duplicates. If a node pj receives two generalized duplicates, one of them

is redundant: the two messages carry clauses which are logically equivalent and thus

pj should not use them both for inferences. Generalized duplicates may be deleted by

contraction of the clauses they carry. In addition, we gave in [4, 7] specific inference

rules to detect and delete generalized duplicates based on the fields in the messages.

The choice between forwarding or deleting contracted messages rests ultimately on

experimental practice. In our prototypes, inference messages are broadcast in one hop,

without forwarding at intermediate nodes. Received and possibly reduced inference

messages are saved in the image sets. In case of a copy-and-forward broadcasting

algorithm, it may be advisable to experiment with both the options given above.

5.3 Expansion

A node pi executes two types of expansion inferences: expansion steps between two

residents and expansion steps where a clause from an inference message paramodulates

into a resident. An inference message paramodulates into a resident, but not vice versa.

This restriction, which distributes expansion inferences among the nodes and prevents
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duplications of expansion steps, can be applied to expansion inference rules other than

paramodulation as follows. For binary resolution, we say that the clause which provides

the positive literal resolved upon “paramodulates into” the clause which provides the

negative literal resolved upon. For hyperresolution, negative hyperresolution and unit-

resulting resolution, we say that the satellites “paramodulate into” the nucleus. Thus,

negative literals of inference messages are not resolved upon and inference messages

serve as satellites, not as nuclei. For expansion inference rules with just one premise,

such as factoring, one may establish that each node applies the rule to its residents

only.

This distribution of expansion inferences, however, causes a problem with respect

to the requirement that all expansion steps between persistent residents are considered

(this property is part of the uniform fairness of a derivation, see Appendix A). A

node pj sends an inference message for every one of its residents, unless the resident is

contracted beforehand. If a resident ϕ is reduced to some ϕ′ at pj , after having been

sent, a new inference message for ϕ′ will be generated eventually. Let ϕ be a persistent

resident: ϕ becomes a resident with identifier a and birth-time y at pj, and it is never

reduced afterwards. As part of its treatment as a resident, ϕ is broadcast as an inference

message < ϕ, pj, a, y >. Let ψ be an equation which becomes a resident at some other

node pi , after pi has received, processed and discarded the inference message with ϕ. It

is guaranteed that paramodulation of ψ into ϕ will be tried, when ψ is sent as inference

message by pi and reaches pj . However, ϕ will not have a chance to paramodulate

into ψ, because a message for ϕ has been already generated and consumed. Since ϕ is

persistent, it will not be simplified and thus it will never be the case that an inference

message for a reduced form of ϕ is issued.

This problem may be solved in different ways depending on whether the processes

have access to some approximation of the global data base. In they do, regardless

of whether the nodes can access SH in shared memory or the SH i’s at the nodes

themselves, the solution is immediate: the persistent resident ϕ which is missing in the

above scenario is stored eventually in all the SH i’s (or in SH). Thus, it is sufficient to

allow the clauses in SH i − Si (or SH − Si) to paramodulate into the clauses in Si at

each node pi. If the processes do not have access to an approximation of the global data

base, we may address the problem by introducing a type of control messages, termed

wake-up calls. The purpose of a wake-up call directed to a node pj is to induce node

pj to issue again an inference message for one of its residents. The disadvantage of

this approach is that it may generate a large amount of communication. Although by

carefully analyzing the routing algorithms one can eliminate some messages [7], it may

still worsen the computation/communication ratio quite significantly. On the other

hand, if the architecture under consideration has very limited amount of local memory

for each node and has low latency and high throughput in communication, then this

scheme may be considered. Since in this paper we have focused on global contraction

at the source, thereby assuming that the nodes have access to an approximation of the

global data base, we do not elaborate on wake-up calls and refer to [7] for more details.
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5.4 Guidelines for the schedule of the operations at a node

In this section we outline briefly some basic priorities between classes of operations

at a node, for a contraction-based strategy. The schedule of the operations at a node

should first of all be fair, i.e. ensure that no needed step is postponed indefinitely

(see Appendix A). Provided fairness is preserved, the general philosophy is that the

operations which reduce the amount of data stored at the node have higher priority than

those which increase it. The only exception to this rule is represented by the operation

of receiving a message from the outside, since such an operation is determined by an

external event which the node should perform as soon as possible.

Then, contraction has higher priority than expansion and communication. The goal

of this rule is to make sure that each process uses as parents in expansion steps and

sends/forwards to other processes clauses which have been reduced as much as possible

at that node. Furthermore, contraction steps may delete clauses, eliminating the need

of communication steps for them. Among contraction steps, a good rule is to give

forward contraction priority over backward contraction. It is known since [23] that

performing forward subsumption before backward subsumption is sufficient to prevent

certain violations of fairness, which may result from the uncontrolled application of

backward subsumption of variants. This issue becomes significantly more complicated in

distributed deduction and we refer to [5] for a detailed study of distributed subsumption.

Communication steps have higher priority than expansion inferences, in order to

enhance parallelism. Otherwise, if a processor does not forward an inference message

until after its expansion phase, the broadcasting process may be delayed too severely.

6 Experiments

The Clause-Diffusion methodology has been implemented in two prototypes, the Aquar-

ius theorem prover, developed at SUNY Stony Brook, and the Peers theorem prover,

developed at the Argonne National Laboratory, in cooperation with Dr. Bill McCune.

Both provers implement global contraction by localized image sets in distributed mem-

ory. Aquarius is written in C and PCN [19] for a network of workstations and features

strategies for first order logic with equality. Peers is entirely written in C, using the

p4 library of routines for communication [11] and focussing on strategies for equational

logic. It has been developed on a network of workstations and ported on a shared mem-

ory machine (a Sequent Symmetry). On the latter, shared memory is used to simulate

distributed memory and message-passing. We refer to [7, 8] for a full description of

Aquarius and its experimental results and we give in the following the performances of

Peers on a few problems.

The next two tables refer to our experimentation with Peers at the Argonne National

Laboratory and at INRIA-Lorraine, which was also reported in [9]. At both locations,

Peers ran on Sun Sparc 2 workstations communicating over Ethernet. The workstations

used for our experiments were not isolated from the rest of the network and were

simultaneously used by other users. In the tables, n-Peers is Peers with n nodes. The
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run-time of n-Peers is the CPU time expressed in seconds of the first Peer to succeed.

The other Peers run till either they receive a halting message or also find a proof,

whichever comes first.

Problem 1-Peers 2-Peers 4-Peers 6-Peers 8-Peers

x3 96.45 50.29 43.28 30.66 7.51

r2 40.04 16.51 18.74 34.97 22.31

sa1 15.99 7.30 16.06 12.96 9.65

sa2 24.28 20.09 12.76 81.05 20.34

Problem x3 consists in proving that x3 = x implies commutativity in ring theory.

Problem r2 is a problem in Robbins algebra. A Robbins algebra is an algebra that

satisfies the axiom −(−(x + y) + (−(x + (−y)))) = x, called Robbins’ axiom, where

the operator + is associative and commutative. It is known that if a Robbins algebra

also satisfies Huntington’s axiom −(−x+ y) + (−(−x+ (−y))) = x, then it is Boolean

[32]. Thus, one may want to investigate which axioms imply Huntington’s axiom and

thus are sufficient to make a Robbins algebra Boolean. Problem r2 consists in proving

that the hypothesis that there exists an element C such that C + C = C, if added to

Robbins’ axiom, implies Huntington’s axiom. Problems sa1 and sa2 are “single axioms

problems” in group theory. The goal is to prove that a given single axiom is sufficient

to axiomatize group theory. Problem sa1 consists in proving that the single axiom

f(x, g(f(y, f(f(f(z, g(z)), g(f(u, y))), x)))) = u implies f(f(x, y), z) = f(x, f(y, z)),

i.e. associativity of the product f . Similarly, problem sa2 shows that the single axiom

f(x, f(f(e, f(f(x, f(x, f(f(x, f(y, z)), z))), z)), z)) = y implies associativity2. In some

cases, e.g. x3, the run-time decreases somewhat regularly, albeit not linearly, as the

number of nodes increases. In others, e.g. sa1, the run-time first improves and then

gets worse with 6 and 8 nodes.

Peers features many options: different configurations of the options define different

Clause-Diffusion strategies. The following table shows the run-times for five runs on

the problem x3, denoted a, b, c, d, e, where each run corresponds to the selection of a

different Clause-Diffusion strategy:

Problem 1-Peers 2-Peers 4-Peers 6-Peers 8-Peers

x3-a 96.28 53.58 46.87 54.04 25.95

x3-b 96.45 50.29 43.28 30.66 7.51

x3-c 96.06 51.37 44.06 43.52 28.06

x3-d 95.86 49.16 44.52 31.65 8.60

x3-e 96.36 87.64 38.34 24.93 31.02

The five strategies differ mainly in the treatment of residents reduced by backward

contraction and in the distributed allocation of clauses. In strategies a and b, residents

reduced by backward contraction are treated as raw clauses, while in strategies c, d

and e, their birth-time is updated, but their identifier is not changed and they are not

2Problems r2, sa1 and sa2 were provided by Bill McCune.
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re-allocated. In strategies a and c, clauses are allocated according to the alternate-fit

policy of Section 4. In strategies b and d, clauses are allocated based on their syntax:

each symbol in the signature is identified by a number in the symbol table of the prover.

The destination of a clause is determined as the sum of the numbers associated to its

symbols modulo the number of nodes3. In strategy e, clauses are allocated according

to the best-fit policy of Section 4, where each process estimates the work-load of the

other processes based on the identifiers of the inference messages it receives from the

other nodes.

The third table contains a few results from the experiments conducted more recently

at the University of Iowa on a network of HP workstations:

Problem 1-Peers 2-Peers 4-Peers 6-Peers 8-Peers

kbcomm 5.14 1.62 0.55 0.55 0.58

x3 62.42 49.40 24.09 23.80 14.03

sa1 25.84 10.05 20.32 4.60 5.29

sa2 12.97 20.73 2.24 1.56 2.15

The problem kbcomm is the commutator problem in group theory, a well known example

for (Knuth-Bendix) completion-based strategies4. For these experiments the worksta-

tions were not homogeneous: the first node is an HP 715/75 with 64M of memory, the

second node is an HP 715/50 with 64M of memory, the third node is an HP 715/33

with 32M of memory and the remaining five nodes are HP 705 with 16M of memory.

In this third table the run-times decrease smoothly, except on problem sa1 with three

nodes and problem sa2 with two nodes.

The main problem with our first Clause-Diffusion prover Aquarius was communica-

tion [8]. Our current understanding is that implementation of communication in C and

better design have reduced the cost of communication in Peers. On the other hand we

feel that redundancy, that is excessive overlap among the derivations at the nodes, is

still a problem. The analysis of the experimental results and therefore the identification

of the weaknesses of the prover (and the method) is made very difficult by the puzzling

variability of the run-times: different executions of Peers on the same input clauses

may exhibit different performances even for the same configuration of options. Similar

unstability was displayed by Aquarius and by other distributed programs for symbolic

computation, e.g. the distributed Buchberger algorithm of [12]. Some non-determinism

is expected of a distributed program with asynchronous processes: it is sufficient that

messages are delivered in a different order to differentiate the derivations. However,

the non-determinism of Peers is higher than we had expected and it is an obstacle to

improve and even to debug this type of program. Unstability is a general problem in

distributed processing, but it is a new issue in theorem proving. We think that future

work in distributed theorem proving will need to study non-determinism systematically.

The experimentation with Peers, together with the previous experimentation with

3This allocation policy is due to Bill McCune.
4Throughout this paper we use “contraction-based” as a general term that subsumes “completion-based”,

“simplification-based” and “rewriting-based”.
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Aquarius, encourages us to think that Clause-Diffusion has the potential of achieving

significant speed-up’s on some non-trivial class of problems. Much more work is needed

in order to obtain more regular and more satisfactory performances. It will entail not

only the fine-tuning and optimization of the implementation, but also the refinement

of the Clause-Diffusion method itself, for instance in terms of better allocation policies,

improved global contraction schemes and new search plans.

7 Discussion

We summarize our contributions and we suggest directions for further work.

7.1 The Clause-Diffusion methodology

The main contribution of this paper is the Clause-Diffusion methodology itself. Al-

though our approach to parallelization applies to theorem proving in general, we focused

on contraction-based strategies. This choice has two reasons. First, these strategies

proved to be more powerful than strategies without contraction on significant classes of

problems. Second, the presence of contraction rules makes the parallelization more dif-

ficult. As it has been often observed, those features which make a sequential algorithm

or procedure more efficient than others, are also those which may make its paralleliza-

tion harder. Thus, the study of strategies without contraction can be regarded as a

special case of the study of strategies with contraction.

Our Clause-Diffusion methodology realizes a notion of parallelism at the search level:

the search space is partitioned among deductive processes, which search concurrently

and cooperatively for a solution. The search space is determined by the input problem,

i.e. the clauses, and the inference rules. One may partition the set of clauses or the

set of rules or a combination of the two. The first approach amounts to data-driven

parallelism: each concurrent process is given a subset of the data and it is in charge

of all the operations on its data. The second one is operations-driven parallelism: each

concurrent process is given a subset of the operations, e.g. the inference rules, and it is

responsible for applying them to all the data. In theorem proving applications, there

are many more data items than inference rules and therefore data-driven parallelism is

more natural.

Accordingly, the Clause-Diffusion methodology partitions the clauses among the

processes, so that each one of them owns a portion (its residents) of the data base of

clauses. The expansion inferences are subdivided based on the ownership of the clauses.

Contraction inferences are not subdivided, so that each process can perform as much

contraction as possible. Exactly because each process is assigned just a portion of the

search space, the processes need to communicate, in order to find a proof whenever

there exists one. Communication is realized via message-passing: the processes send

their residents to the other processes in form of messages, termed inference messages.

In a distributed environment each deduction process runs at a different node and they

exchange messages over the links interconnecting the nodes.
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Specific Clause-Diffusion strategies are obtained by selecting several components,

beside the inference rules and the search plan, such as the distributed global contraction

scheme, the distributed allocation algorithm and the algorithms for message-passing.

Also, the search plan to be executed by each deduction process needs to schedule both

inference and communication steps. For most of these components we analyzed the

underlying problems and proposed several solutions:

• Schemes for distributed global contraction: global contraction by travelling and

global contraction at the source, either by localized image sets or by a global image

set in shared memory.

• Policies to maintain the image sets with respect to contraction: direct contraction,

no contraction, direct update, delayed update with garbage collection or update

by inference messages.

• Criteria for distributed allocation: best-fit, alternate-fit, half-alternate-fit, first-fit

or alternate-first-fit.

7.2 Distributed global contraction

We formulated the problem of global contraction in parallel automated deduction, clar-

ifying the differences between forward global contraction and backward global contrac-

tion. We indicated in the bottleneck of backward contraction a critical problem in the

shared memory approaches to parallel theorem proving. This source of inefficiency was

not identified before. We proposed schemes for distributed global contraction, which

represent our solution to the backward contraction bottleneck problem.

Global contraction at the source by localized image sets represents a dis-

tributed, duplication-oriented approach, which requires a sufficiently large amount of

memory at the nodes. It is duplication-oriented, because parallel inferences are made

possible by forming the localized image sets, i.e. by duplicating the clauses.

Global contraction at the source by global image set represents a mixed

shared-distributed approach, which relies on a fast shared memory and also sufficient

memory at the nodes. This is a hybrid approach. It reduces the amount of communi-

cation, because exchange of messages may be replaced in part by access to the shared

memory. It still involves duplication, since all the clauses in the shared memory are

duplicates of the residents at the nodes. But duplication is reduced with respect to

the previous approach, because just one shared global image set, rather than many

localized image sets, is maintained.

In all our schemes, the clauses to be rewritten by contraction are held in the local

memories of the nodes. This is the key feature which prevents the backward contrac-

tion bottleneck. The main costs of our solutions are represented by memory and/or

communication requirements as indicated above. In particular in the mixed approach,

the backward contraction bottleneck does not appear, even if a shared memory is used,

because the clauses in shared memory are used as simplifiers only. They are not subject

to contraction themselves, while the residents at the node are. The negative sides are
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the duplication of clauses and the delay in updating the shared memory with respect

to the nodes.

This mixed approach seems to be especially appealing. The general wisdom is that

distributed memory may be more convenient for intrinsically independent, asynchronous

activities, while shared memory may be more appropriate for concurrent activities which

cooperate closely and synchronously. We feel that parallel deduction processes with

contraction involve activities of both types. Expansion and local contraction may be

considered as belonging to the first category, while global contraction may fall in the

second one. Indeed, the repeated contraction of a clause with respect to a given set of

simplifiers may be conceived as a single inference step, rather than a combination of

steps. Under such view, it becomes apparent that it may be convenient to have all the

simplifiers in one place. Our scheme for global contraction at the source with shared

memory seems promising because it allows to share the simplifiers, without incurring

in the backward contraction bottleneck of other purely shared memory approaches.

7.3 Comparison with related work

Most previous works in parallel deduction do not apply to contraction-based strategies

(see [30] for a survey). The pure shared memory approaches of [24] and [33] have been

applied to contraction-based strategies, with the backward contraction bottleneck. The

transition-based philosophy of [33] has been applied also to an implementation of the

Buchberger algorithm in distributed memory [13]. The theorem prover ROO of [24]

performs very well and scales regularly with the number of processors on problems

solved by hyperresolution, i.e. problems suitable for expansion-oriented strategies, but

it has displayed the backward contraction bottleneck on equational problems, where

backward contraction plays a key role.

The approach proposed in [2, 17] addresses contraction-based strategies and does

not cause the backward contraction bottleneck. This method, called the Team-Work

method, also features concurrent, deductive processes which develop their derivations in

a largely indipendent way. However, there are more differences than similarities between

Team-Work and Clause Diffusion. First, in the basic Team-Work method the search

space is not partitioned: each deductive process owns all the clauses in its data base and

executes all the inferences5. The different deductive processes start with identical sets

of clauses and inference rules. The difference among the deductive processes is made

by having them executing different search plans. Second, the Team-Work method has

no message-passing. Third, the deductive processes are not completely asynchronous.

Periodically, the processes halt their deductive work and evaluate their current data

bases as “referees”. One of the processes plays the role of “supervisor”: based on these

evaluations, it forms a “best” data base and gives it to all the processes, which then may

re-start the deduction. Thus, the processes communicate by periodical synchronizations

and re-constructions of a common data base, rather than by message-passing between

asynchronous processes as in Clause-Diffusion.

5There are variants of the Team-Work method where some processes – the “non-fair experts” of [2, 17] –

do only some type of inference and do not need to have all the clauses.
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The most fundamental difference, however, is in the way the two methods try to

obtain speed-up over a sequential strategy. The Team-Work method tries to achieve

speed-up by interleaving of search plans. Suppose that clause ψ and clause ϕ yield

a proof. Assume that search plan A generates ψ very early and ϕ much later and

search plan B generates ϕ very early and ψ much later. Thus, if either A or B are

executed sequentially, this proof is not obtained till both clauses are generated. In

the Team-Work method, A and B are executed in parallel. If the common data base

is reconstructed after A has generated ψ and B has generated ϕ, and if both ψ and

ϕ are saved in the new data base, then the process executing A (or B) will have ϕ

(or ψ) much earlier than it would in a sequential execution, and thus will find that

proof much faster. In this sense, the Team-Work method realizes interleaving of search

plans. Computations generated by interleaving, however, are not regarded as “truly

concurrent”, since they can be naturally simulated by sequential executions. Indeed, a

sequential strategy, which executes first A for at least as many steps as it is necessary to

generate ψ and then B for at least as many steps as it is necessary to generate ϕ, would

yield a derivation very similar to that of the Team-Work method. The Team-Work

method has been implemented for equational logic. The experimental results in [2, 17],

are not sufficient to establish how the Team-Work method scales with the number of

processors, because they refer only to the case of two nodes.

Clause-Diffusion, on the other hand, tries to achieve speed-up by subdividing the

problem, i.e. the search space, so that each deductive process faces a smaller search

task than the sequential process. The effect of partitioning the search space and of

asynchronous communication by message-passing is that the deductive processes gen-

erate portions of the search space which may be radically different from those generated

sequentially. Since the portions of the search space can be different, a Clause-Diffusion

process may find a much faster proof than the sequential one. If this happens, the result

is very good. Because of this dramatic changes in the search spaces, the derivations

by Clause-Diffusion may be very different from the sequential ones and it is not at all

obvious how to simulate a Clause-Diffusion derivation by a sequential method. In this

sense, we feel that Clause-Diffusion represents a “truly concurrent” approach, and takes

a bolder step in parallelization of theorem proving than other methods. There is, of

course, the potential drawback that a Clause-Diffusion strategy may not partition the

search space properly. Then the speed-up may be disappointing, as the Clause-Diffusion

prover may generate a proof similar to the sequential one by searching different frag-

ments of the search space, rather than the whole space seen by the sequential prover.

This type of phenomena explains in part the irregularity of some experiments with both

Aquarius, see [8], and Peers.

7.4 Directions for future research

Many directions for ongoing and future work can be envisioned. On the practical

side, we plan to continue the development and fine-tuning of our prototypes. The

experimentation conducted so far has led already to variations and enhancements. For

instance, in Aquarius the nodes may execute different search plans and select different
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subsets of the available inference rules. Indeed, the Clause-Diffusion method does not

require to have the same strategy at all sites. We expect that most of the room for

improvement is at the level of the search plans, i.e. the criteria to allocate and sort

clauses and inference/communication steps. The experimentation done so far has shown

that the allocation algorithm plays an especially important role in determining the

performances of a Clause-Diffusion prover. Therefore, we shall consider the problem of

designing better criteria to decide where to allocate a given clause during the derivation.

Such criteria may keep into account statistics about the derivations developed so far

at the nodes. Examples of statistics are the number of clauses stored at a node, the

number of clauses of a certain type, e.g. simplifiers, the time spent so far in performing

a certain type of inference and so on. Another possibility is to design criteria based on

the syntax of the clauses, e.g. distributing the clauses according to some partition of

the signature. Our second prototype Peers features a simple criterion of this nature.

Aquarius and Peers implement a distributed duplication oriented approach, since

global contraction is done by localized image sets. Another direction is to develop in

detail and implement the mixed shared-distributed approach, with a global image set

in shared memory. This will require an environment where each node, while still having

a fairly large local memory, may access a shared memory component.

On the theoretical side, we may work on the design of parallel search plans. In the

present work, we assumed a sequential search plan for the local inferences at a single

node. Such a search plan is simply extended to incorporate communication according

to the priorities dictated by the Clause-Diffusion methodology. The next phase is to

study how to develop intrinsically parallel search plans, i.e. search plans which keep

into account that the strategy is executed in a distributed environment.
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A Uniform fairness of distributed derivations

In this appendix we extend the definition of uniform fairness for sequential theorem

proving derivations to distributed derivations by Clause-Diffusion; we give a charac-

terization of distributed uniform fairness in three conditions and we prove that these

conditions are sufficient for the uniform fairness of a distributed derivation. These

conditions are more concrete than the general definition of uniform fairness and are

therefore useful to establish the fairness of specific Clause-Diffusion strategies6.

Given n deductive processes p1 . . . pn, we define the local data base at node pk at

stage i as the union Gk
i = Sk

i ∪M
k
i ∪CP

k
i ∪NS

k
i . Then, the local limit at processor pk is

Gk
∞ =

⋃
i≥0

⋂
j≥iG

k
j . The global data base at stage i is the union of the local data bases,

i.e. Gi =
⋃n

k=1
Gk

i , and the global limit is G∞ =
⋃n

k=1
Gk

∞. Local and global limits may

6This material appeared already in [7, 4]. Therefore it is reported here only as an appendix for the sake of

completeness of the treatment of Clause-Diffusion in this paper.
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be defined similarly for each component of the states in a distributed derivation, e.g.

Sk
∞ and S∞, Mk

∞ and M∞.

Then, we apply to distributed derivations the definition of uniform fairness in the

sequential case. A few (related) definitions of uniform fairness in theorem proving have

been given over the years (citations and comparisons can be found in [7]). Here we

apply the definition given in [3]. In this definition, the notation R(S) denotes the set

of clauses that are redundant in S based on the redundancy criterion R of the given

strategy (see [3] and [7] for details). The notation Ie(S) denotes the set of clauses that

can be inferred from premises in S in one expansion step of the given strategy.

Definition A.1 A distributed derivation

(S;M ;CP ;NS)k
0
⊢C(S;M ;CP ;NS)k

1
⊢C . . . (S;M ;CP ;NS)ki ⊢C . . .,

for all k, 1 ≤ k ≤ n, is uniformly fair if Ie(G∞ − R(G∞)) ⊆
⋃n

k=1

⋃
j≥0G

k
j .

This means that all the clauses that can be generated from persistent and non-redundant

premises are considered eventually. The following three conditions form a more concrete

specification of uniform fairness of distributed derivations.

1. All messages should be processed eventually and thus there are no persistent mes-

sages:

∀k, 1 ≤ k ≤ n, Mk
∞ = CP k

∞ = NSk
∞ = ∅.

2. Given k and ψ ∈ Sk
∞, we define the abstract birth-time of ψ in k to be the smallest

index i ≥ 0 such that ψ ∈
⋂

j≥i S
k
j .

7 Then for every node pk and for every

persistent, non-redundant resident ϕ at pk, all persistent, non-redundant residents

at the other nodes will eventually appear as inference messages at pk, after the

birth of ϕ:

∀k, 1 ≤ k ≤ n, ∀ϕ ∈ (Sk
∞ − R(Sk

∞)), if i is the abstract birth-time of ϕ, then ∀h,

1 ≤ h 6= k ≤ n, ∀ψ ∈ (Sh
∞ − R(Sh

∞)), there exists an l > i such that ψ ∈Mk
l .

Notice that i and l are stages of the same derivation, i.e. the derivation at pk.

3. The derivation is uniformly fair with respect to the local inferences at each node.

That is, every clause that can be generated from persistent, non-redundant clauses

at pk will be generated: ∀k, 1 ≤ k ≤ n, Ie(G
k
∞ − R(Gk

∞)) ⊆
⋃

i≥0CP
k
i .

Conditions 1 and 2 take care of the distributed part of the derivation, by guarantee-

ing that a clause which can be generated from two persistent non-redundant clauses ϕ1

and ϕ2 residing at two different nodes, will be considered. Condition 2 ensures that ϕ1

and ϕ2 will eventually meet each other through inference messages. Condition 1 makes

sure that all inference messages be processed (M∞ = ∅), all raw clauses (those that, in

the presence of contraction rules, remain non-trivial after having been fully contracted)

become new settlers (CP∞ = ∅) and all new settlers become residents at some place

7The adjective abstract indicates that i is an index in the abstract view of the derivation, and not a time of

any processor’s clock.
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(NS∞ = ∅). Condition 3 takes care of fairness of the local derivation at each node.

The following theorem shows that these three conditions imply Definition A.1:

Theorem A.1 If a distributed derivation is such that

1. ∀k, 1 ≤ k ≤ n, Mk
∞ = CP k

∞ = NSk
∞ = ∅,

2. ∀k, 1 ≤ k ≤ n, ∀ϕ ∈ (Sk
∞ −R(Sk

∞)), if i is the abstract birth-time of ϕ, then, ∀h,

1 ≤ h 6= k ≤ n, ∀ψ ∈ (Sh
∞ − R(Sh

∞)), there exists an l > i such that ψ ∈Mk
l and

3. ∀k, 1 ≤ k ≤ n, Ie(S
k
∞ −R(Sk

∞)) ⊆
⋃

i≥0CP
k
i .

then Ie(G∞ −R(G∞)) ⊆
⋃n

k=1

⋃
i≥0G

k
i , i.e. the distributed derivation is uniformly fair.

Proof: let ϕ be any clause in Ie(G∞ − R(G∞)) with parents ψ1 and ψ2. Since M∞ =

CP∞ = NS∞ = ∅, G∞ = S∞, i.e. ψ1, ψ2 ∈ S∞. It follows that ψ1 ∈ (Sk
∞ −R(S∞)) and

ψ2 ∈ (Sh
∞ − R(S∞)) for some 1 ≤ k, h ≤ n.

If k = h, then ϕ ∈ Ie(S
k
∞ − R(S∞)). Since Sk

∞ ⊆ S∞, by the monotonicity of the

redundancy criterion (see [3]), R(Sk
∞) ⊆ R(S∞) and thus Ie(S

k
∞ − R(S∞)) ⊆ Ie(S

k
∞ −

R(Sk
∞)). By Condition 3, there exists an i such that ϕ ∈ CP k

i ⊆ Gk
i ⊆

⋃n
k=1

⋃
i≥0G

k
i .

If k 6= h, let i1 and i2 be the abstract birth-times of ψ1 at pk and ψ2 at ph respectively.

By Condition 2, we have ψ1 ∈ Mh
l1

for some l1 > i2 and ψ2 ∈ Mk
l2

for some l2 > i1.

Since M∞ = ∅ by Condition 1, we know that the inference message ψ1 does not persist

at ph and the inference message ψ2 does not persist at pk. An inference message may

be deleted before performing expansion steps, by a contraction step. Since ψ1 and

ψ2 are in G∞ − R(G∞), i.e. they are globally persistent and non-redundant, this is

impossible. It follows that the inference messages ψ1 ∈ Mh
l1
and ψ2 ∈ Mk

l2
are deleted

only after having been processed. Thus, paramodulation of ψ1 into ψ2 is tried at ph and

paramodulation of ψ2 into ψ1 is tried at pk. Either one of these two steps generates ϕ,

i.e. either ϕ ∈ CP h
i or ϕ ∈ CP k

i at some stage i, i.e. ϕ ∈
⋃n

k=1

⋃
i≥0G

k
i . ✷

By this theorem, the abstract definition of uniform fairness is reduced to more concrete

requirements. Given a complete sequential strategy C =< I; Σ > (the inference system

I is refutationally complete and the search plan Σ is uniformly fair), its parallelization

by Clause-Diffusion is also complete, provided that the above conditions are satisfied:

Corollary A.1 Let C =< I; Σ > be a complete sequential theorem proving strategy and

D be a Clause-Diffusion strategy with inference system I and search plan Σ at each

node. If the algorithms and policies handling messages satisfy Conditions 1 and 2, then

D is a complete distributed theorem proving strategy.

We review briefly how the Clause-Diffusion strategies described in this paper satisfy
Condition 2 (see [7, 4] for more details). Condition 2 requires that for every non-
redundant, persistent resident ψ1 at any node pk, any other non-redundant, persistent
resident ψ2 appear at pk as inference messages, after the abstract birth-time of ψ1. We

assume that ψ1 is born “before” ψ2, i.e. i1 ≤ i2 for i1 and i2 the birth-times of ψ1 and
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ψ2 respectively. The case where i2 ≤ i1 is clearly symmetrical. In order to make sure
that the “younger” clause ψ2 paramodulates into the “older” clause ψ1, it is sufficient

that ψ2 is broadcast and reaches all nodes. For this purpose, we have required that any
new settler ψ, which settles down at a node, be emitted as inference message eventually,
unless it is deleted before hand. However, it is not sufficient to consider new settlers,
because residents are subject to backward contraction. Thus we have introduced the
policy that whenever a resident is reduced, its birth-time is updated and thus will be

re-scheduled for emission as inference message (see Section 5.2). Of course this means
that in practice also non-persistent residents are broadcast, since it is not possible to
predict which clauses will be persistent. In order to ensure that the “younger” equation
ψ2 is paramodulated into by the “older” clause ψ1, we may use either the image sets or
the wake-up calls, as explained in Section 5.3.
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