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In this survey we describe the notion of the Krull–Gabriel dimension KG(R) of
a ring R (or more generally of a small preadditive category) and how it relates to
notions of purity and the Ziegler spectrum of a module category.

The dimension was first defined in this form by Geigle [?Gei] as a variation of
the Krull dimension of an abelian category A defined by Gabriel in [?Gab] (this
has subsequently been referred to as the Gabriel dimension of A). When R is a
finite-dimensional algebra, the Krull–Gabriel dimension of R is zero if and only
if R is of finite representation type [?Aus]. In this context, it seems reasonable
to consider the Krull–Gabriel dimension as a measure of how far R is from finite
representation type, however the precise connection between representation type
and Krull–Gabriel dimension is far from well-understood.

In order to define KG(R), we consider a transfinite filtration of the category
F = Ffp(R) of finitely presented functors from mod-R to the category Ab of abelian
groups. The initial part of the filtration is given by the sequence

0 = F−1 ⊆ F0 ⊆ F1 ⊆ F2 · · · ⊆ Fn ⊆ · · ·

of Serre subcategories Fn of F consisting of the objects that become finite length
in F/Fn−1 for n ≥ 0. By taking unions at limit ordinals, this process may be
continued transfinitely in the obvious way. We define KG(R) := min{α | Fα = F}
if such an ordinal exists and KG(R) = ∞ otherwise.

There is a close relationship between the Serre localisations of Ffp(R) and the
Ziegler spectrum Zg(R-Mod) of R-Mod. The Ziegler spectrum is a topological
space with its underlying set given by isomorphism classes of indecomposable pure-
injective objects in R-Mod. Both the closed subsets of Zg(R-Mod) and the Serre
localisations of Ffp(R) are parametrised by the hereditary torsion pairs of finite type
in the category F(R) of all functors from mod-R to Ab. In particular, if the Krull–
Gabriel dimension of R is defined then it coincides with the Cantor–Bendixson rank
of Zg(R-Mod).

Throughout this paper we will consider modules over a skeletally small preaddi-
tive category R. One motivation for this level of generality is that it encompasses
the theory of purity in a compactly generated triangulated category. See Example
?? for more details. References will often be given for the case where R is a ring
as well as the more general case.

The paper is organised as follows. In the first section we outline notions of
purity in categories of R-modules. There are many equivalent ways of giving these
definitions but we favour the definitions given in terms of the embedding of R-Mod
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into F(R). Similarly, we follow the definition of the Ziegler spectrum with an
explanation of how the topology can be seen in terms of localisations of F(R).
In the second section we define the Krull–Gabriel dimension of R and explain the
connections between this dimension and the Cantor–Bendixson rank of Zg(R-Mod).
Finally, in Section 3 we give some examples where the Krull–Gabriel dimension ofR
has been calculated. We first give examples whereR is a ring: serial rings, Dedekind
domains, tame hereditary algebras, string algebras and canonical algebras. We also
give examples of compactly generated triangulated categories where the dimension
has been calculated; these include derived and homotopy categories of derived-
discrete algebras, and derived categories of hereditary algebras.

1. Purity in categories of modules

Throughout this survey, let R denote a skeletally small preadditive category. In
this section we introduce pure-exact sequences in the category of R-modules. We
then discuss the theory surrounding the pure-injective R-modules i.e. the injective
objects relative to the pure-exact structure. In particular, we consider the Ziegler
spectrum of the module category.

Definition 1.1. A left R-module is a covariant (additive) functor M : R → Ab
where Ab denotes the category of abelian groups. A left R-module M is finitely
presented if there exists an exact sequence

n⊕
i=1

HomR(ri,−) →
m⊕
j=1

HomR(si,−) →M → 0

for objects ri, sj ∈ R. We will denote the category of left R-modules by R-Mod
and the full subcategory of finitely presented left R-modules by R-mod.

A (finitely presented) right R-module is a (finitely presented) left Rop-
module. We will denote the category of right R-modules by Mod-R and the full
subcategory of finitely presented right R-modules by mod-R.

Note that if R has a single object r, then EndR(r) is a unital ring and the above
are equivalent to the usual definitions.

Notation 1.2. The category mod-R is a small preadditive category and we will of-
ten consider the category of left (mod-R)-modules. To avoid cumbersome notation
we will fix the following notation for these particular module categories:

F(R) := (mod-R)-Mod C(R) := Mod-(R-mod)

Ffp(R) := (mod-R)-mod Cfp(R) := mod-(R-mod)

Since it will always be clear from the context which category we are working in,
we will denote representable functors HomR(r,−) and HomR(−, r) by (r,−) and
(−, r) respectively.

LetM be an object in Mod-R. We will also use the notation (M,−) and (−,M)
for the representable functors HomMod-R(M,−) and HomMod-R(−,M) restricted
to mod-R.

1.1. The pure-exact structure. Next we introduce the pure-exact structure on
R-Mod. There are many equivalent definitions of a pure-exact sequence; we place
an emphasis on those given by embedding R-Mod into a category of functors since
this is in line with the perspective taken in the subsequent sections.
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Definition 1.3 (See, for example, [?JL, Lemma 1.2.13]). Let 0 → X
f→ Y

g→ Z → 0
be a short exact sequence in R-Mod. If the following equivalent statements are
satisfied, then the sequence is called a pure-exact sequence, the morphism f is
called a pure monomorphism and g is called a pure epimorphism.

(1) The sequence

0 → −⊗R X→−⊗RY→−⊗RZ → 0

is exact in F(R).
(2) The sequence

0 → (−, X) → (−, Y ) → (−, Z) → 0

is exact in C(R).

(3) The sequence 0 → X
f→ Y

g→ Z → 0 is isomorphic to a filtered colimit of
split exact sequences.

The first two conditions in Definition ?? allude to the following fully faithful
embeddings of R-Mod into larger module categories.

The (restricted) tensor embedding: Consider the functor Φ: R-Mod → F(R)
defined by M 7→ − ⊗R M and f 7→ − ⊗R f for all R-modules M and
morphisms f . The functor Φ has the following properties.

• Φ induces an equivalence between R-Mod and the full subcategory
of fp-injective objects in F(R) i.e. those functors F such that
Ext1(X,F ) = 0 for all X in Ffp(R).

• Φ takes pure-exact sequences to exact sequences.
• A functor F in F(R) is right exact if and only if F ∼= Φ(M) for some
left R-module M .

The proof of these assertions can be found in [?JL, Theorem B.16] for
when R is a ring. Note that the argument given in [?CB, Theorem 3.3,
Remark 3.3(2)] extends this result to the general case since there is a duality
Ffp(R) → Ffp(Rop) for any R, see [?PSL, Theorem 10.3.4].

The (restricted) Yoneda embedding: Consider the functor Ψ: R-Mod → C(R)
defined by M → (−,M) and f → (−, f) for all R-modules M and all mor-
phisms f . Then Ψ has the following properties.

• Ψ induces an equivalence between R-Mod and the full subcategory of
flat objects in C(R) i.e. those F such that F ⊗− is exact.

• Ψ takes pure-exact sequences to exact sequences.
• A functor F in C(R) is left exact if and only if F ∼= Ψ(M) for some
left R-module M .

The proof of these assertions can be found in [?JL, Theorem B.11] for when
R is a ring. For the general case, see [?CB, Theorem 1.4(2)].

We can therefore see the pure-exact structure on R-Mod as a reflection of the exact
structure on the full subcategories of fp-injective objects in F(R) or equally the
exact structure on the full subcategory of flat objects in C(R).

Definition 1.4. A module M in R-Mod is called pure-injective if M is injective
with respect to pure monomorphisms. That is, for every pure monomorphism
f : A → B and morphism g : A → M , there exists a morphism h : B → M such
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that the following diagram commutes.

0 // A
f

pure
//

g

��

B

h~~
M

The definition of a pure-projective module is given dually.

The following theorem was originally proved in [?GJ] for the case where R is a
ring. The general case follows by combining [?CB, Lemma 3.5.1, Remark 3.3] with
[?PSL, Theorem 10.3.4].

Theorem 1.5. The functor Φ: R-Mod → F(R) induces an equivalence

Φ: P.inj(R-Mod)
∼−→ Inj(F(R))

where P.inj(R-Mod) denotes the full subcategory of pure-injective modules in R-Mod
and Inj(F(R)) denotes the full subcategory of injective functors in F(R).

Similarly, the contravariant Yoneda embedding induces an equivalence between
the pure-projective modules in R-Mod and the projective functors in C(R) (see
[?JL, Theorem B.11]).

1.2. The Ziegler spectrum. The set of isomorphism classes of indecomposable
pure-injective modules carries with it a natural topology. We introduce this space
here and describe how it connects to localisations of the functor category F(R).

Definition 1.6. Define the Ziegler spectrum Zg(R-Mod) to be the topological
space with points and basic open sets given by the following data:

Points: The isomorphism classes of indecomposable pure-injective modules inR-Mod.
Topology: The following sets define a basis of open sets for the topology on

Zg(R-Mod):

(F ) := {M ∈ Zg(R-Mod) | (F, −⊗R M) ̸= 0}
where F ranges over functors in Ffp(R) and (F, −⊗RM) denotes the group
of natural transformations from F to −⊗R M .

The topology on Zg(R-Mod) was originally defined in [?Z] in terms of pairs of pp-
formulas (ϕ/ψ) and encodes much of the model theoretic information inR-Mod. For
an account of how the model theoretic definition of the Ziegler spectrum connects
with the perspective given here see [?PSL].

Definition 1.7 ([?CB2, §2.3]). Let X be a full subcategory of R-Mod. Then X is
called a definable subcategory if the following equivalent statements are satisfied.

(1) There exists a set S of functors in Ffp(R) such that

X = {M ∈ R-Mod | (F, −⊗R M) = 0 for all F ∈ S}.
(2) The subcategory X is closed under direct products, direct limits and pure-

submodules i.e. submodules where the canonical inclusion is a pure monomor-
phism.

There is a bijection between definable subcategories of R-Mod and the closed
subsets of Zg(R-Mod) given by X 7→ X ∩ Zg(R-Mod) and X 7→ ⟨X⟩ where ⟨X⟩ is
the smallest definable subcategory containing X [?Z].
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1.3. The Ziegler spectrum via localisations. Since the closed subsets of Zg(R-Mod)
are parametrised by the Serre subcategories of Ffp(R), it is natural to consider lo-
calisations of this category. In fact, there is also a bijective correspondence between
the Serre subcategories and hereditary torsion pairs of finite type in F(R). In this
section we consider the Ziegler spectrum from the perspective of localisations of
F(R) at hereditary torsion classes of finite type.

Let B be a class of objects in F(R), then we will use the notation B⊥ to denote
the class {F ∈ F(R) | (G,F ) = 0 for all G ∈ B} and the notation ⊥B to denote the
class {G ∈ F(R) | (G,F ) = 0 for all F ∈ B}.

Definition 1.8. Let (T ,F) be a pair of subclasses of the objects of F(R). Then we
say that (T ,F) is a torsion pair if the following equivalent conditions are satisfied.

(1) F = T ⊥ and T is closed under quotient objects, extensions and arbitrary
direct sums.

(2) T = ⊥F and F is closed under subobjects, extensions and arbitrary prod-
ucts.

We call T a torsion class and F a torsion-free class. A torsion pair is heredi-
tary if T is closed under subobjects, or equivalently, if F is closed under injective
envelopes. For any F ∈ F(R), let t(F ) :=

∑
{G ∈ T | G is a subobject of F}.

This induces a functor t : F(R) → F(R) called the torsion functor of (T ,F). If t
commutes with direct limits, then (T ,F) is said to be of finite type. Let E be a
class of objects in F(R). Then (⊥E , (⊥E)⊥) is a torsion pair and is cogenerated
by E .

If T is a torsion class of a hereditary torsion pair, then T is a Serre subcategory
of F(R). That is, for any short exact sequence 0 → X → Y → Z → 0 in F(R), we
have that X,Z ∈ T if and only if Y ∈ T .

Theorem 1.9 ([?Kr1, Corollary 4.3]). Let T be a class of objects in F(R). Then
the following statements are equivalent.

(1) The pair (T , T ⊥) is a hereditary torsion pair of finite type.
(2) There exists a closed subset X of Zg(R-Mod) such that (T , T ⊥) is the

torsion pair cogenerated by the set E := {− ⊗R M |M ∈ X}.

There is a bijective correspondence between hereditary torsion pairs of finite type
in F(R) and Serre subcategories of Ffp(R) given by the following mutually inverse
bijections:

(T ,F) 7→ T ∩ Ffp(R) and S 7→ (lim−→S, (lim−→S)⊥)

where lim−→(S) is the class of objects obtained by taking all direct limits of objects

in S. This can be found in [?Kr1, Corollary 2.10].

Definition 1.10. Let A be an abelian category. For any Serre subcategory S of A,
we define the quotient category A/S to be the category with the same objects
as A and morphisms given by

HomA/S(X,Y ) := lim−→HomA(X
′, Y/Y ′)

whereX ′ and Y ′ range over subobjects ofX and Y respectively such thatX/X ′, Y ′ ∈
S. For each quotient category, there is a localisation functor q : A → A/S defined
on objects to be q(X) = X. For more details see, for example, [?pop].
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Theorem 1.11 ([?Kr1, Theorem 2.6], [?Gab, III.4, Corolaire 2]). Let (T ,F) be
a hereditary torsion pair of finite type in F(R) and let S = T ∩ Ffp(R) be the
corresponding Serre subcategory of Ffp(R). Then the following statements hold.

(1) There is an equivalence of categories

Ffp(R)/S ∼−→ fp(F(R)/T )

where fp(F(R)/T ) is the full subcategory of finitely presented objects in
F(R)/T .

(2) The functor q : F(R) → F(R)/T has a right adjoint (i.e. T is a localising
subcategory) denoted s : F(R)/T → F(R).

(3) The (indecomposable) injective objects in F(R)/T are exactly those that are
isomorphic to q(E) for some (indecomposable) injective object E in F .

(4) For any injective object E in F we have E ∼= s ◦ q(E).

Remark 1.12. Combining the previous theorem with Theorems ?? and ??, we
have that the Ziegler spectrum Zg(R-Mod) is homeomorphic to the topological
space with points given by the set I(R) isomorphism classes of indecomposable
injective objects in F(R) and the closed sets given by the sets of indecomposable
injective objects in F(R)/T for hereditary torsion pairs (T ,F) of finite type (or,
equivalently by the sets F ∩ I(R)).

Given a closed set X in Zg(R-Mod), the full subcategory of Ffp(R) with objects
ann(X) := {F ∈ Ffp(R) | (F,−⊗R M) = 0 for all M ∈ X} is a Serre subcategory.
The compact open sets (F ) ∩X of the relative topology on X are parametrised by
the objects F in Ffp(R)/ann(X).

Example 1.13. Finite-dimensional algebras. Let R be a finite-dimensional
algebra. Then Zg(R-Mod) is a compact topological space (in fact, this is the case
whenever R is a ring). Every indecomposable module in R-mod is pure-injective
and hence a point of Zg(R-Mod) and they enjoy some particular nice properties.
For example, every indecomposable module M in R-mod, the set {M} is open
and closed. Moreover, the open set U := R-mod ∩ Zg(R-Mod) contains all of the
isolated points in Zg(R-Mod) and is dense in Zg(R-Mod). That is, for every non-
empty open set V , the set U ∩ V is non-empty. It follows directly that Zg(R-Mod)
is finite if and only if R is of finite representation type.

For some classes of finite-dimensional algebras, the Ziegler spectrum has been ex-
plicitly described. Examples include, tame hereditary algebras [?Pr1,?Ri1], domes-
tic string algebras [?PP,?LPP], and canonical algebras of tubular type (the topology
has been described but the algebraic structure of some of the points is not known)
[?HP], [?LG].

Example 1.14. Compactly generated triangulated categories. Let C be
a compactly generated triangulated category and let Cc be the full subcategory of
compact objects in C. For definitions and more details on such categories see [?Nee].

The theory of purity and the Ziegler spectrum of compactly generated triangu-
lated categories is well-developed (see [?Bel, ?GP, ?Kr2, ?Kr3]). Let Zg(C) denote
the Ziegler spectrum of C as it is defined in [?Kr2]. Then this topological space is
homeomorphic to a closed subset of Zg(Mod-Cc) and all the definitions surrounding
the theory of purity in C coincide with those given in the preceding sections. This
is explicitly proved in [?ALPP]; we give a brief account here.
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Recall that a right Cc-module N is fp-injective if Ext1(M,N) = 0 for all finitely
presented right Cc-modules M . The full subcategory D of fp-injective modules in
Mod-Cc is a definable subcategory and so Z := D ∩ Zg(Mod-Cc) is a closed subset
of the Zg(Mod-Cc). In fact, Z = {(−, N) ∈ Mod-Cc | N ∈ Zg(C)} and these
are exactly the indecomposable injective objects of Mod-Cc [?Kr3, Corollary 1.9].
Although the following result is not explicitly stated, much of the preliminary work
needed for this result is contained in [?Kr3].

Theorem 1.15 ([?ALPP, Theorem 1.9]). The closed subset Z of Zg(Mod-Cc) with
the relative topology is homeomorphic to Zg(C). Moreover there is an equivalence

Ffp(Cc)/ann(Z)
∼−→ (mod-Cc)op

yielding the following description of the compact open sets of Z:

(M) := {(−, N) ∈ Z | (M, (−, N)) ̸= 0}
where M is a module in mod-Cc.

There are some examples of compactly generated triangulated categories where
the Ziegler spectrum is known. For example, the homotopy category K(ProjΛ) of
projective modules over a derived discrete algebra [?ALPP]; the derived category
D(R-Mod) where R is a right hereditary ring [?GP, Theorem 8.1]; and the derived
category D(R-Mod) where R is Von Neumann regular [?GP, Theorem 8.5].

2. The Krull–Gabriel dimension of R

In this section we define the Krull–Gabriel dimension of R. We begin by defining
the more general notion of the Krull–Gabriel dimension of an abelian category A
and then consider the special case where A = Ffp(R); we refer to this dimension
as the Krull–Gabriel dimension of R. We then discuss the connections between the
Krull–Gabriel analysis of Ffp(R) and the Ziegler spectrum of R-Mod.

2.1. The Krull–Gabriel dimension of an abelian category. Let A be an
abelian category. The following filtration of A was introduced by Gabriel in [?Gab,
IV.1]. Let A0 be the Serre subcategory of A generated (as a Serre subcategory)
by the simple objects in A. For each ordinal α, we define a Serre subcategory Aα

via the following transfinite induction. For β < α, let qβ : A → A/Aβ denote the
corresponding localisation functor.

• If α = β + 1, then define Aα to be the Serre subcategory of A generated
by objects X such that qβ(X) is zero or simple in A/Aβ .

• If α is a limit ordinal, then define Aα :=
⋃

β<α Aβ .

Definition 2.1. Let A be an abelian category. If A = Aα for some ordinal α,
then we define the Krull–Gabriel dimension KG(A) to be α. If no such ordinal
exists then the Krull–Gabriel dimension of A is undefined and this is denoted
KG(A) = ∞.

Note that Gabriel and many subsequent authors refers to this as the Krull di-
mension of A. The name Krull–Gabriel dimension was adopted later.

Example 2.2. In [?baer, Theorem 3.9, Theorem 4.3], Baer shows that if P (respec-
tively R) is the preprojective (respectively regular) component of the Auslander-
Reiten quiver of R-mod where R is a hereditary connected Artin algebra of infinite
representation type, then KG(P-mod) is undefined if and only if KG(R-mod) is
undefined if and only if R is wild.
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Definition 2.3. Let a be an object in an abelian category A. The Krull–Gabriel
dimension KG(a) of a is defined to be the greatest ordinal such that qα(a) ̸= 0.
If no such ordinal exists then the Krull–Gabriel dimension of a is undefined and
this is denoted KG(a) = ∞.

Let L(a) denote the modular lattice consisting of subobjects of a. Let ∼ denote
the congruence relation on L(a) generated by the relations: b ∼ c whenever b < c
and, for all d ∈ L(a) such that b < d < c, either b = d or c = d. Let L′(a) denote
the modular lattice consisting of the ∼-congruence classes in L(a).

Then let L0(a) := L′(a) and for each ordinal α we define a modular lattice Lα(a)
as follows.

• If α = β + 1, then define Lα(a) := L′
β(a).

• If α is a limit ordinal, then define Lα(a) := lim−→β<α
Lβ(a).

The following lemma follows directly from the definitions.

Lemma 2.4. Let a be an object in an abelian category A. Then, for every ordinal
α, we have Lα(a) ∼= L(qα(a)).

This allows us to understand an important distinction between abelian categories
A with defined Krull–Gabriel dimension and those with undefined Krull–Gabriel
dimension.

Definition 2.5. A dense chain in a lattice L is a non-empty sublattice C such
that, for all ordered pairs x < y with x, y ∈ C, there exists some z ∈ C such that
x < z < y.

Proposition 2.6 (See, for example, [?Kr4, Lemma B.8]). For an abelian category
A, the following conditions are equivalent.

(1) There exists an object a in A such that L(a) contains a dense chain.
(2) There exists an object a such that KG(a) = ∞ if and only if KG(A) = ∞.

2.2. The Krull–Gabriel dimension of R. The Krull–Gabriel dimension of R,
denoted KG(R), is defined to be the Krull–Gabriel dimension of the category
Ffp(R). The dimension was first studied in [?Gei]. Let F be a functor in Ffp(R).
By definition there exists an exact sequence of functors

(B,−)
(f,−)−→ (A,−) −→ F −→ 0

where f : A→ B is a morphism in mod-R. That is, we have F ∼= (A,−)/im(f,−).
Moreover, it is well-known that the finitely presented subfunctors of (A,−) are of
the form im(g,−) for some g : A → C (see, for example, [?PSL, Lemma 10.2.2]).
It follows that subfunctors of F are of the form im(g,−)/im(f,−) where f = hg
for some h : C → B. For a careful treatment of this approach see, for example,
[?Pr-Sch].

With this description of subfunctors of F ∈ Ffp(R) in mind, it is clear that the
next result is a direct application of Proposition ??.

Theorem 2.7 ([?Pr2]). Let R be a skeletally small preadditive category. The
Krull–Gabriel dimension of R is undefined if and only if there exist n ≥ 1 and
a collection of finitely presented n-pointed modules {(Mi,m

(i)) | i ∈ Q≥0, m
(i) =

(m
(i)
1 , ...,m

(i)
n ) ∈ Mn

i } together with a collection of morphisms {fij : Mj → Mi |
i < j ∈ Q≥0} such that the following conditions are satisfied for each i < j and
1 ≤ k ≤ n.



KRULL–GABRIEL DIMENSION AND THE ZIEGLER SPECTRUM 9

(1) The morphism fij : Mj →Mi is such that fij(m
(j)
k ) = m

(i)
k .

(2) There is no g : Mi →Mj such that g(m
(i)
k ) = m

(j)
k .

2.3. Krull–Gabriel dimension and the Ziegler spectrum. Since every sim-
ple object in F(R) has an indecomposable injective hull, we have a direct connec-
tion between the first stage of the Krull–Gabriel filtration and Zg(R-Mod) via the
equivalence induced by the tensor embedding (see Theorem ??). The following
proposition tells us that this connection also exists for the latter stages.

Proposition 2.8. Let R be a small preadditive category. Consider a closed subset
X in Zg(R-Mod) with TX the torsion class in F(R) associated to X under the
correspondence in Theorem ??. Let S be a functor in Ffp(R) such that qX(S) is
simple in F(R)/TX where qX : F(R) → F(R)/TX is the corresponding localisation
functor. Then the following statements hold.

(1) The injective envelope E(qX(S)) of qX(S) in F(R)/TX is indecomposable.
(2) There is a pure-injective R-module N ∈ Zg(R-Mod) such that E(qX(S)) is

isomorphic to qX(−⊗R N) and (S) ∩X = {N}.

Proof. It is clear that E(qX(S)) is indecomposable because qX(S) is uniform i.e.
any pair of non-zero subobjects of qX(S) have non-zero intersection (see [?Sten,
Proposition 2.8]). By the uniqueness of injective envelopes, as well as Theorem
?? and the last part of Theorem ??, there is a unique N ∈ Zg(R-Mod) such that
E(qX(S)) = qX(− ⊗R N). By Remark ??, N is isolated in X by the open set
corresponding to S. □

Definition 2.9. If all isolated points in a closed set X of Zg(R-Mod) arise as
injective envelopes of finitely presented simple functors in F(R)/TX, then we say
that X satisfies the isolation condition.

Note that Jensen and Lenzing prove the following theorem in the case where R
is a ring but the argument works equally well in the general case.

Theorem 2.10 ([?JL, Proposition 8.52, Theorem 8.53]). If the Krull–Gabriel di-
mension of R is defined, then every pure-injective module has an indecomposable
direct summand and, for every ordinal α, the closed subset Xα of Zg(R-Mod) cor-
responding to Ffp(R)/Ffp(R)α satisfies the isolation condition.

Remark 2.11. If the isolation condition holds for Zg(R-Mod) (e.g. if KG(R)
is defined), then the Krull–Gabriel dimension of R coincides with the Cantor–
Bendixson rank of Zg(R-Mod) which is defined as follows.

For a topological space Z we define Z′ to be the closed subset of Z consisting of
non-isolated points. Setting Z0 = Z, we define Zα+1 := Z′

α for each ordinal α and
let Zλ :=

⋂
α<λ Zα for each limit ordinal λ. The Cantor–Bendixson rank of Z

is defined to be the least α such that Zα+1 = ∅. If no such ordinal exists then the
Cantor–Bendixson rank of Z is said to be undefined.

Thus a description of the open neighbourhoods in Zg(R-Mod) gives rise to a
description of the functors in Ffp(R)/Ffp(R)α for each ordinal α. This was the
strategy employed by the authors of [?LPP]; for a description of the simple functors
see [?L].

There are no known examples of rings R where the isolation condition does
not hold for Zg(R-Mod). In other words, it is an open question as to whether
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the Krull–Gabriel dimension of R and the Cantor–Bendixson rank of Zg(R-Mod)
always coincide.

Remark 2.12. Let R be a ring. In [?Z], Ziegler shows that if every pure-injective
module in R-Mod has an indecomposable direct summand or if R is countable then
Zg(R-Mod) satisfies the isolation condition.

Remark 2.13. As Jensen and Lenzing point out in [?JL, Remark 8.54], if the
Krull–Gabriel dimension of R is defined, then the classification of indecompos-
able pure-injective modules amounts to the classification of simple functors in
F(R)α+1/F(R)α for each ordinal α < KG(R).

This procedure is demonstrated in [?JL] for Dedekind domains and the Kronecker
algebra. This is also the method employed by the authors of [?ALPP] in order to
classify the indecomposable pure-injective objects in K(ProjΛ) where Λ is a derived-
discrete algebra.

3. Examples

In this final section we give some examples where the Krull–Gabriel dimension
of R has been calculated.

3.1. Serial rings. Let R be a unital ring. Then R is a serial ring if it is serial
when considered as both a left and a right R-module. Equivalently there exists a
collection e1, . . . en of pairwise orthogonal idempotents in R such that e1+. . . en = 1
and the modules eiR and Rei are uniserial for each 1 ≤ i ≤ n, i.e. the lattice of
submodules for each module is a chain.

In [?Pun], Puninski proves the following about the Krull–Gabriel dimension of
R when R is a serial ring. For the definition of Krull dimension see, for example,
[?McC-Rob, Chapter 6].

Theorem 3.1. Let R be a serial ring. Then the following statements hold.

(1) The Krull–Gabriel dimension KG(R) is defined if and only if the Krull
dimension of R is defined.

(2) If α is the Krull dimension of R, then KG(R) ≤ α ⊕ α where ⊕ denotes
the Cantor sum.

(3) The Krull–Gabriel dimension KG(R) is not equal to 1.

Puninski also shows that the isolation condition holds for such rings. There are
classes of serial rings where the Cantor–Bendixson rank has been calculated and
so, by Remark ??, the Krull–Gabriel dimension can be given exactly in terms of
the Krull dimension of R. A ring R is called Krull–Schmidt if every finitely
presented R-module is a finite direct sum of indecomposable modules with local
endomorphism ring.

Corollary 3.2 ([?Pun, Proposition 5.8, Corollary 5.9], [?Pun2], [?Rey]). Let R be
either:

• a Krull–Schmidt uniserial ring;
• a Krull–Schmidt serial ring with finite Krull dimension; or
• a commutative valuation domain.

If the Krull dimension of R is α, then the Krull–Gabriel dimension of R is α⊕ α.
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3.2. Dedekind domains. Let R be an integral domain, then R is a Dedekind
domain if every non-zero proper ideal can be written as a product of prime ideals.
Examples include Z or k[T ] for a field k.

Theorem 3.3. Let R be a Dedekind domain that is not a field. Then the Cantor–
Bendixson rank of Zg(R-Mod) is equal to the Krull–Gabriel dimension of R is equal
to 2.

Proof. It follows from Ziegler’s description of Zg(R-Mod) [?Z] that the isolation
condition is satisfied so, by Remark ??, the Krull–Gabriel dimension of R is equal
to the Cantor–Bendixson rank of Zg(R-Mod). Thus, by [?Z], both dimensions are
equal to 2. □

Remark 3.4. There is an explicit description of the Krull–Gabriel filtration of
Ffp(R) in [?JL, Chapter 8] for R a Dedekind domain that is not a field. Following

the notation in [?JL], for any R-module M , let M denote the unique functor that
vanishes on all finite length modules and satisfies M(R) = 0.

Let m denote a maximal ideal in R. Then the functors (R/mn,−)/rad(R/mn,−)
are shown to be simple in Ffp(R) and the images of the functors (R/m,−) are

simple in Ffp(R)/Ffp(R)0. One should note that the images of functors R/m are

actually simple in Ffp(R)/Ffp(R)0. Moreover the image of the functor R is simple
in Ffp(R)/Ffp(R)1. To see why this is the case, consider, for example, that there is
a non-zero, non-surjective morphism

(−⊗R R/m
n) → R/m

and that −⊗R R/m
n is a finitely presented functor for each n ≥ 1. Moreover, the

following is a chain of proper embeddings.

0 → −⊗R R/m → −⊗R R/m
2 → −⊗R R/m

3 → . . . .

3.3. Finite-dimensional algebras. For a finite-dimensional algebra R, the only
known values of KG(R) are finite or undefined. We give examples of both cases
and state some open questions and conjectures concerning the connections between
Krull–Gabriel dimension and other notions of complexity in a module category.

The first examples we will consider are those with finite Krull–Gabriel dimension.

Theorem 3.5 ([?Aus, Corollary 3.14]). Let R be a finite-dimensional algebra. Then
KG(R) = 0 if and only if R is of finite representation type.

Theorem 3.6 ([?Kr5, Corollary 11.4],[?Herz2, Theorem 3.6]). Let R be an Artin
algebra. Then KG(R) ̸= 1.

The first example of Krull–Gabriel dimension being explicitly calculated in the
functor category Ffp(R) was carried out by Geigle in [?Gei] for R a tame hereditary
algebra of infinite representation type. He described both the simple functors at
each level of the filtration and the factor categories Aα+1/Aα.

Theorem 3.7 ([?Gei]). Let R be a tame hereditary algebra of infinite representation
type. Then KG(R) = 2.

Since the Krull–Gabriel dimension of R is defined, we have that R satisfies the
isolation condition. Thus, by Remark ?? the above result for tame hereditary
algebras is implicit in the descriptions of the Ziegler spectrum given in [?Pr1] and
[?Ri1].
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The Krull–Gabriel dimension of many other algebras closely related to tame
hereditary has been shown to equal 2. For example, [?Gei2] covers the tame tilted
algebras, algebras which are stably equivalent to tame hereditary algebras and
domestic one relation algebras. Other examples of KG(R) = 2 can be found in
[?FS], [?W], [?Mal], [?Skow].

It has been known for some time that, for every n ∈ N, there exists a domestic
string algebra R of Krull–Gabriel dimension n ≥ 2.

For example, the algebra with the quiver

•
x1
((

y1

66 •
z1 // •

x2
((

y2

66 •
z2 // • · · · • zn // •

xn+1

((

yn+1

66 •

and relations zixi = yi+1zi = 0 has Krull–Gabriel dimension n+ 2.
This was shown in [?PreBur] by describing the Ziegler spectrum of these algebras

and then proving explicitly that the isolation condition holds.
This result was proved simultaneously in [?Sch] by making use of connections to

the transfinite radical of mod-R.

Definition 3.8. Let I be an ideal in mod-R. Then the finite powers of I are
defined in the usual way:

In :=

{
m∑
i=1

fin . . . fi1 | fij ∈ I and m < ω

}
.

Then for any limit ordinal λ let Iλ =
⋂

β<λ Iβ and for any ordinal α := λ + n

where λ is a limit ordinal and n < ω let Iα := (Iλ)n+1. We refer to the ideals Iα

for ordinals α as the transfinite powers of I. Also let I∞ :=
⋂

α Iα.

For an Artin algebra R, we will denote the Jacobson radical of mod-R by radR.
That is, radR is the ideal of mod-R generated by the non-isomorphisms between
indecomposable modules.

Proposition 3.9. Let R be an Artin algebra and let Xα denote the closed subset
of Zg(R-Mod) containing points with Cantor–Bendixson rank greater than or equal
to α.

If R has Krull–Gabriel dimension β, then radωβ+n = 0 for some n ∈ N. More-
over, for each successor ordinal α, every element of radωα

R factors through a finite
direct sum of modules in Xα.

Proof. The first statement is [?Kr4, Corollary 8.14]. Since the Krull–Gabriel di-
mension is defined, the isolation condition holds and the Cantor–Bendixson rank is
therefore defined. The latter result then follows immediately from [?PreRad] since,
in any topological space where the Cantor–Bendixson rank is defined, the isolated
points in the space are dense (see, for example, [?PSL, Lem. 5.3.57]). □

Open question 3.10 ([?PSL, Question 9.1.13]). If radωα+n
R = 0 for some ordinal

α, is the Krull–Gabriel dimension of R less than or equal to α?

Conjecture 3.11 ([?Sch2]). Let n ≥ 2 and let R be a finite-dimensional algebra.

Then the Krull–Gabriel dimension of R is equal to n if and only if rad
ω(n−1)
R ̸= 0

and radωn
R = 0.
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Theorem 3.12. Let R be a domestic string algebra over an algebraically closed
field. Then the following statements hold.

(1) The Krull–Gabriel dimension of R is finite.
(2) Conjecture ?? holds.

Proof. The Krull–Gabriel dimension was shown to equal the length of the longest
path in a finite graph known as the bridge quiver in [?LPP]. In [?Sch] Schröer has

previously shown that this is also the value of n such that rad
ω(n−1)
R ̸= 0 and

radωn
R = 0. □

There are also large classes of finite-dimensional algebras with undefined Krull–
Gabriel dimension. The dividing line between algebras with defined and undefined
Krull–Gabriel dimension is still unclear but it is conjectured to be connected with
the representation type of the algebra.

Theorem 3.13 ([?Kr4, Proposition 8.15]). Let R be a finite-dimensional algebra.
If R is of wild representation type, then KG(R) = ∞.

One might guess, given the above, that the Krull–Gabriel dimension of an algebra
being undefined is equivalent to being of wild representation type. However there
are examples of tame algebras with undefined Krull–Gabriel dimension. Examples
include non-domestic string algebras [?Sch] and non-domestic canonical algebras
[?Gei2]. A different conjecture is therefore natural.

Conjecture 3.14 ([?Pr-Sch, Conjecture 1.5]). Let R be a finite-dimensional alge-
bra. Then the following are equivalent.

(1) R is of tame domestic representation type.
(2) The Krull–Gabriel dimension of R is defined.
(3) The Krull–Gabriel dimension of R is finite.

3.4. Compactly generated triangulated categories. In Example ?? we saw
that when considering a compactly generated triangulated category C with compact
generators Cc we should analyse the category (mod-Cc)op.

A Krull–Gabriel filtration of this category yields the same connections with the
morphisms in Cc (as in Section ??) and the Cantor–Bendixson rank of Zg(C) (as in
Remark ??).

The first two results in the following theorem follow from [?Bob]; the latter is
explicitly contained in [?ALPP]. The third result follows from [?GP, Theorem 8.1]
combined with the corresponding results for KG(R).

Theorem 3.15. Let A = (mod-Cc)op.

(1) Let R be a derived-discrete algebra and let C = D(R-Mod) with compact
generators Cc ∼= Kb(R-proj). Then

KG(A) =

{
1 if gl.dim(R) = ∞
2 if gl.dim(R) <∞

(2) Let R be a derived-discrete algebra and let C = K(R-Proj) with compact
generators Cc ∼= Db(R-mod). Then KG(A) = 2.

(3) Let R be a finite-dimensional hereditary algebra over an algebraically closed
field and let C = D(R-Mod) with compact generators Cc ∼= Kb(R-proj).
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Then

KG(A) =


0 if R is of finite representation type

2 if R is of tame representation type

∞ if R is of wild representation type
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