
Citation: Inguscio, C.R.; Cisterna, B.;

Carton, F.; Barberis, E.; Manfredi, M.;

Malatesta, M. Modifications of Blood

Molecular Components after

Treatment with Low Ozone

Concentrations. Int. J. Mol. Sci. 2023,

24, 17175. https://doi.org/10.3390/

ijms242417175

Academic Editor: Lamberto Re

Received: 30 October 2023

Revised: 4 December 2023

Accepted: 4 December 2023

Published: 6 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Modifications of Blood Molecular Components after Treatment
with Low Ozone Concentrations
Chiara Rita Inguscio 1 , Barbara Cisterna 1 , Flavia Carton 1 , Elettra Barberis 2,3, Marcello Manfredi 3,4,† and
Manuela Malatesta 1,*,†

1 Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8,
37134 Verona, Italy; chiararita.inguscio@univr.it (C.R.I.); barbara.cisterna@univr.it (B.C.);
flavia.carton@univr.it (F.C.)

2 Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale T. Michel 11,
15121 Alessandria, Italy; elettra.barberis@uniupo.it

3 Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale,
Corso Trieste 15/A, 28100 Novara, Italy; marcello.manfredi@uniupo.it

4 Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
* Correspondence: manuela.malatesta@univr.it
† These authors contributed equally to this work.

Abstract: The ex vivo treatment of a limited volume of blood with gaseous oxygen–ozone (O2–O3) mix-
tures and its rapid reinfusion into the patient is a widespread medical procedure. O3 instantly reacts
with the blood’s antioxidant systems, disappearing before reinfusion, although the molecules formed
act as messengers in the organism, inducing multiple antioxidant and anti-inflammatory responses.
An appropriate dose of O3 is obviously essential to ensure both safety and therapeutic efficacy, and
in recent years, the low-dose O3 concept has led to a significant reduction in the administered O3

concentrations. However, the molecular events triggered by such low concentrations in the blood
still need to be fully elucidated. In this basic study, we analysed the molecular modifications induced
ex vivo in sheep blood by 5 and 10 µg O3/mL O2 by means of a powerful metabolomics analysis
in association with haemogas, light microscopy and bioanalytical assays. This combined approach
revealed increased oxygenation and an increased antioxidant capacity in the O3-treated blood, which
accorded with the literature. Moreover, original information was obtained on the impact of these low
O3 concentrations on the metabolic pathways of amino acids, carbohydrates, lipids and nucleotides,
with the modified metabolites being mostly involved in the preservation of the oxidant–antioxidant
balance and in energy production.

Keywords: low-dose ozone; oxidative stress; antioxidant response; antioxidant capacity; interleukins;
metabolomics; haemogas

1. Introduction

Ozone (O3) is an unstable gas occurring in the Earth’s atmosphere, where it naturally
forms from oxygen (O2) due to the action of ultraviolet light and electrical discharges and
then rapidly decomposes into O2. Its high oxidation power makes O3 harmful to organisms;
however, if appropriately applied, it may be used as a therapeutic agent. The beneficial
properties of O3 have been known since the 18th century and, starting from the 19th century,
its use in medicine has progressively expanded for the treatment of an increasing number
of diseases through different administration routes [1].

The ex vivo treatment of a limited volume (100–200 mL) of whole blood with gaseous
O2–O3 mixtures and rapid reinfusion into the patient via the venous route is a widespread
medical procedure first described by the Austrian physician H. Wolff in the 1970s [2]. This
procedure was initially applied on an empirical basis but, starting from the 1990s, with the
advent of O3 generators able to produce photometrically-measured O3 concentrations in
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real time and in a given gas volume, the administration protocols were refined via precisely
determining the actually administered O3 dosages. Notably, this also allowed conducting
accurate scientific investigations into the effect of O3 on blood components, thus unveiling
the basic molecular mechanisms involved in its therapeutic potential [3–5].

Scientific research has demonstrated that, if administered to blood at appropriate
(low) doses, the deleterious oxidising effect of O3 can be neutralised by the plasmatic
antioxidant factors, such as uric acid, ascorbic acid, glutathione (GSH), albumin and
lipophilic molecules, as well as by the great reservoir of GSH and other antioxidant enzymes
located in the erythrocytes [4,6]. In the blood, the O2–O3 mixture immediately dissolves
into the water of the plasma: O2 fully oxygenates haemoglobin while O3 instantly reacts
with hydrophilic antioxidants and polyunsaturated fatty acids (PUFA), giving rise to the
formation of H2O2 and a variety of lipid oxidation products (LOPs) [7–9]. Since these
reactions take place in a few seconds, the O3 present in the administered gas mixture
disappears in 2–5 min from the blood contained in the bottle before its reinfusion, thus never
entering circulation after blood reinfusion. However, as a result of these reactions, O3 causes
a small and transient depletion of antioxidants and a plasmatic increase in reactive oxygen
species (ROS) and LOPs [10], which after blood reinfusion act as messengers in the whole
organism, activating biochemical and immunological pathways and initiating cascades
of biological events (e.g., production of growth factors and cytokines, upregulation of
many antioxidant enzymes) in various tissues and organs (exhaustive reviews in [3,4,6,11]).
Therefore, the therapeutic potential of blood ozonation observed in multiple diseases
(recent publications in [11–17]) relies on biological events triggered by O3 ex vivo in the
drawn blood and then accomplished in the organism by the O3 derivatives generated as a
physiological response to the mild oxidative stress [3–5,18].

An appropriate dose of gaseous O3 is essential to ensure both safety and therapeutic
efficacy because it must not exceed the blood antioxidant potential but, at the same time,
it must generate enough molecular messengers to induce beneficial biological effects. A
concentration window of 20–80 µg O3/mL O2 was identified as suitable in the 1990s [19,20]
but, during the last decade, the clinical experience and the scientific evidence led to a
significant reduction in the concentration of the administered O3 while maintaining its
therapeutic efficacy, according to the low-dose O3 concept [21,22], although the molecular
effects of such low concentrations on blood still need to be fully elucidated.

In light of this, in order to provide additional knowledge of the molecular events
triggered by O3 in blood, we conducted a basic study analysing the molecular modifica-
tions induced ex vivo by gaseous O2–O3 mixtures at O3 concentrations of 5 µg and 10 µg.
To ensure highly controlled experimental conditions when administering such low O3
concentrations, a next-generation O3 generator was used and a powerful metabolomics
analysis was applied in association with haemogas analysis, light microscopy and bioana-
lytical assays.

2. Results
2.1. Haemogas Analysis

The haemogas analysis showed that both 5 µg O3 and 10 µg O3 induced a significant
increase in pO2 (p = 0.036 and p = 0.027, respectively) (Figure 1a) and pH (p = 0.028 and
p = 0.026, respectively) (Figure 1c) compared to the controls. On the contrary, a decrease
in pCO2 was observed in the 5 µg O3- and 10 µg O3-treated samples in comparison to the
controls (p = 0.028 for both concentrations) (Figure 1b).
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The blood haemolysis assessment, carried out via a colorimetric assay for the haemo-

globin evaluation, revealed no statistically significant difference in the O2- and 10 µg O3-

treated samples in comparison to the control values, while a significant increase in hae-

molysis was found in the blood sample treated with 5 µg O3 (p = 0.008) (Figure 2).  

 

Figure 1. Mean value ± SE of pO2 (a), pCO2 (b) and pH (c) in the blood samples after gas treatment
(n = 3). The asterisk (*) indicates a significant difference in comparison to the control (CTR).

2.2. Haemolysis

The blood haemolysis assessment, carried out via a colorimetric assay for the haemoglobin
evaluation, revealed no statistically significant difference in the O2- and 10 µg O3-treated
samples in comparison to the control values, while a significant increase in haemolysis was
found in the blood sample treated with 5 µg O3 (p = 0.008) (Figure 2).

The blood smears showed in all the samples well-preserved erythrocytes with no
evident morphological sign of damage (Figure 3).
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2.4. Interleukins 

The amounts of the interleukins IL-2 and IL-6 were found to be unchanged by any 

treatment in comparison to the control samples (Figure 5).  

Figure 3. The blood smears collected from the control (CTR) and gas-treated samples show well-
preserved erythrocytes. Bar = 10 µm.

2.3. Total Antioxidant Capacity

The total antioxidant capacity, evaluated via a colorimetric assay for the measurement
of the antioxidant proteins and/or small molecules, significantly increased in the 5 µg
O3- and 10 µg O3-treated blood samples in comparison to the controls (p = 0.004 for both
concentrations); conversely, O2 significantly reduced the antioxidant capacity in comparison
to the control (p = 0.011) (Figure 4). In addition, the antioxidant capacity of the 5 µg O3- and
10 µg O3-treated samples was significantly higher than in the O2-treated samples (p = 0.003
and p = 0.004, respectively).
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(n = 3). The asterisk (*) indicates a significant difference in comparison to the control (CTR); the
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2.4. Interleukins

The amounts of the interleukins IL-2 and IL-6 were found to be unchanged by any
treatment in comparison to the control samples (Figure 5).
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2.5. Metabolomics

Untargeted metabolomic analysis showed that both the 5 µg O3 and 10 µg O3 treat-
ments induced significant molecular changes compared to the controls. Principal compo-
nent analysis (PCA) and the hierarchical clustering heatmap (Figure 6) clearly highlighted
the presence of a metabolic signature associated with O3 treatment. In addition, both PCA
and clustering analysis showed the high reproducibility of the treatment, since all the
resultant replicates were well grouped together.
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A total of 572 metabolites were identified (Table S1). Since O3 was administered as
an O2–O3 mixture, the metabolites showing a difference in comparison to the control after
treatment with pure O2 were not considered.

In comparison to the control, 25 metabolites showed statistically significant modifi-
cations after treatment with 5 µg O3, and 89 metabolites after treatment with 10 µg O3;
31 metabolites showed a statistical difference with the control after treatment with both
5 µg O3 and 10 µg O3. Among these metabolites, only those showing a fold change ≥ 1.3
or ≤0.769 were considered. Moreover, metabolites corresponding to exposomes or specific
food components were excluded.

As the final result of this selection process, a list of molecules involved in protein,
carbohydrate, lipid and nucleotide metabolism was obtained: some of them underwent a
decrease while others increased (Table 1).

Table 1. Quantitative changes (decrease/increase: ↓/↑) in the metabolites of interest, as a consequence
of the biological effects of O3.

5 µg O3 10 µg O3 5 µg O3 and 10 µg O3

(8Z,11Z,14Z)-Icosa-
8,11,14-trienoate

(↓)
1-Deoxypentitol (↓) 2-Butenedioic acid (↑)

Aceturic acid (↑) 2,4-Pyridinedicarboxylic acid (↑) 5-Hydroxytryptophan (↑)

D-Glucose (↓) 2-Hydroxy-3-methylbutyric acid
(↑)

9(E),11(E)-Conjugated linoleic
acid, trimethylsilyl ester (↑)

Erythrono-1,4-lactone (↑) 3-Octenoic acid (↑) Adenine (↓)

4-Hydroxybenzeneacetic acid (↓) Arabinofuranose,
1,2,3,5-tetrakis-O- (↓)

9H-Purin-6-ol (↓)

Benzenepropanoic acid,
3,5-bis(1,1-dimethylethyl)-4-

hydroxy-, methyl ester
(↓)

9-Octadecen-1-ol (↓) L-Glutamic acid,
bis(trimethylsilyl) ester (↑)

Arachidic acid (↓) Malic acid (↑)
Behenic acid (↓) Niacinamide (↓)
Butanoic acid,

2,4-bis[(trimethylsilyl)oxy]-,
trimethylsilyl ester (↑)

Ornithine (↑)

Campesterol (↓) Pentanedioic acid (↓)
Decanoic acid (↑) Picolinic acid (↑)
Glucuronolactone,

trisO-(trimethylsilyl)- (↓) Pyrrole-2-carboxylic acid (↑)

Glyceric acid (↑) Stearic Acid (↓)
3-Indoleacetic acid (↑) Tartaric acid (↓)
Indole-3-lactic acid (↑)
Lanopalmitic acid (↓)

L-Proline (↑)
L-Threonine (↑)
L-Tyrosine (↓)
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Table 1. Cont.

5 µg O3 10 µg O3 5 µg O3 and 10 µg O3

N-Acetyl-L-alanine (↑)
N-Isobutyrylglycine (↑)

Oleic acid (↑)
Pentanoic acid (↑)

Pimelic acid (↑)
S-Carboxymethyl-L-cysteine (↑)

Uridine (↓)

3. Discussion

The molecular modifications observed in the whole blood exposed to 5 µg O3 or 10 µg
O3 demonstrate that these low O3 concentrations are able to significantly act on multiple
chemical features and metabolic pathways.

3.1. The Impact on Blood Oxygenation and Haemolysis

According to the well-known effects of blood ozonation, pO2 increased in both the O3-
treated blood samples [23–25], whereas pCO2 decreased [25]. The increase in the pH value
in the O3-treated samples is consistent with the concomitant increase in pO2. The reason for
the higher pO2 value observed in the O3-treated samples in comparison to the O2-treated
samples remains unclear. However, it should be underlined that the hyperoxygenation of
ozonated blood occurring in the bottle is considered clinically irrelevant because this limited
amount of blood (100–200 mL) is reinfused via the venous route during the following
15–20 min and is heavily diluted in the venous blood, which has a pO2 of about 40 mmHg,
so that the final venous pO2 is hardly modified [3–5,24].

A limited but statistically significant increase in haemolysis was found in the blood
samples treated with 5 µg O3, in the absence of microscopically detectable damage to the
erythrocytes. Accordingly, a slight increase in haemolysis has been frequently reported
after O3 treatment and has been always considered negligible [10,20,23,24,26].

3.2. The Increase in Blood Antioxidant Capacity

The increase in the antioxidant capacity has been considered for decades the rationale
behind the therapeutic efficacy of blood ozonation [5,19], and the evidence in our O3-
treated blood samples is consistent with previous results obtained in different experimental
models. It has been reported that the treatment of blood with therapeutic doses of O3, after
causing an initial slight and transient decrease in the antioxidant capacity of the plasma
(fully reconstituted within a few minutes) [5], gives rise to a prompt plasmatic and cellular
antioxidant response [4,18] that is likely responsible for the increased antioxidant capacity
in our O3-treated samples. In particular, it has already been experimentally demonstrated
that an O3 concentration of 10 µg is able to stimulate an antioxidant cytoprotective response
through the activation of the Keap1-dependent nuclear factor erythroid 2-related factor 2
(Nrf2) pathway [27–35]. Interestingly, in the present study, we found that also the very low
concentration of 5 µg O3 is able to induce a significant increase in the antioxidant capacity.
On the other hand, pure O2 not only is unable to increase the antioxidant capacity but even
induces its significant decrease, demonstrating that the O2-derived oxidative stress cannot
activate an antioxidant response as low O3 doses actually do.

3.3. The Unchanged Levels of IL-2 and IL-6

Under our experimental conditions, O3 treatment did not modify the plasmatic
amounts of IL-2 and IL-6, both characterized by a wide range of actions in the immune re-
sponse. The literature data on the effect of therapeutic doses of O3 on cytokine secretion are
heterogeneous: some studies described a stimulating action on leukocytes with increased
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IL-2 and IL-6 secretion [10,33,36], whereas others reported unchanged levels of IL-2 and
IL-6 [37]. These discrepancies could be related to the different experimental conditions
used, such as the O3 concentration, the treatment in vitro or in vivo, and the detection
techniques. Moreover, it has been reported that the ability of low O3 concentrations to
stimulate IL-2 secretion from T lymphocytes is related to their activation status [33].

3.4. The Modifications of Amino Acid, Carbohydrate, Lipid and Nucleotide Metabolites

Metabolomic analysis provided original demonstrations of still unknown effects of low
O3 concentrations on various amino acid, carbohydrate, lipid and nucleotide metabolites,
whose modifications may be interpreted in the frame of the biological effects induced
by O3 in blood. As discussed below, some of these metabolites underwent a quantitative
decrease after O3 treatment, maybe due to their involvement as “sacrificial” molecules in the
maintenance of the oxidant–antioxidant balance [5] or as substrates for energy production;
on the other hand, other metabolites showed a significant increase after O3 treatment as
factors required for the protective response against oxidative stress.

The modifications of the molecules following O3 exposure are mainly due to the oxi-
dation of amino acids in the free amino group [38,39] and their quantitative changes in the
plasma are often related to the role of these molecules in the antioxidant response triggered
by the oxidative effect of O3. N-acetyl-L-alanine is a biologically available N-terminal
capped form of L-alanine, an amino acid that exerts an antioxidant action by promoting the
expression of the proteins heme oxygenase-1 (HO-1) and ferritin [40]; therefore, the increase
in N-acetyl-L-alanine after O3 treatment could be due to its antioxidant role. Similarly,
tryptophan metabolites play a role in the cellular redox response: 5-hydroxytryptophan
was found to increase after O3 treatment, and it has been demonstrated that this compound
acts as an antioxidant by transferring electrons to free radicals and directly scavenging
H2O2, which is the precursor of −OH in the Fenton reaction system [41,42]. Tryptophan
plays an important regulatory role in restoring the antioxidant system, enhancing the levels
of GSH and glutathione peroxidase (GPx) in tissues [43], and the observed increase in pi-
colinic acid, indoleacetic acid and indolelactic acid after O3 exposure is probably due to the
enhanced catabolism of tryptophan [35]. The increase in ornithine and L-glutamic acid may
contribute to the GSH synthesis, which is a key player in the cellular antioxidant response;
its crucial role in the blood antioxidant response to O3 treatment is well-known [3,4,18] and
an increase in GSH was reported after treatment with low O3 doses [44]. Modifications of
the blood levels of L-threonine and 2-butenedioic acid (also known as maleic acid) have
been reported under treatment with anti-inflammatory agents acting through the Nrf2/HO-
1 signalling pathway [45]; on this basis, the increase in these metabolites found in the
O3-treated samples could be related to the anti-inflammatory action of low O3 doses [5,46].
Similarly, S-carboxymethyl-L-cysteine (also known as carbocysteine) exhibits free-radical
scavenging and anti-inflammatory properties [47,48] and shows an increase in ozonated
blood. Finally, proline and its related metabolite, pyrrole-2-carboxylic acid, are involved in
redox homeostasis, and the increased levels of these molecules after O3 treatment are likely
linked to their protective effects against oxidative stress [49,50].

The modifications of molecules involved in carbohydrate metabolism are probably
related to the stimulating effect of O3 on the glycolytic pathways. In fact, the D-glucose de-
crease agrees with the O3 ability to transiently increase the glycolysis rate with a consequent
increase in the intracellular adenosine triphosphate (ATP) in erythrocytes [51]. Accordingly,
also the glucose derivative glucuronolactone decreases in ozonated blood. Deoxypentitol
and arabinofuranose are sugar-derived plant compounds, and their decrease may again be
related to their use as energetic substrates. In this way, the reduction in pentanedioic acid
(also known as glutaric acid) and tyrosine could be due to their consumption to supply
the tricarboxylic acid cycle. The increase in malic acid, an intermediate of the Krebs cycle,
may be due to the increased energy metabolism; in addition, malic acid is able to exert
an antioxidant action by inhibiting the superoxide anion and downregulating the tumour
necrosis factor α [52,53]. Aceturic acid (also known as N-acetyl glycine) is known to play
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a role in glucose metabolism, with its increase in blood having a strong correlation with
oxidative metabolism, GSH biosynthesis and monosaccharide metabolism [54]; this could
explain its increase in our O3-treated samples.

Lipid molecules as well can be used as energy sources in the ATP production process,
so the reduction in some lipid metabolites observed after O3 treatment may be due to their
use as energy substrates. For instance, behenic and stearic acid (dietary fatty acids), campes-
terol (a phytosterol with a chemical structure similar to cholesterol), benzenepropanoic acid,
and 3,5-bis(1,1-dimethylethyl)-4-hydroxy-methyl ester (a carboxylic ester derivative of a
fatty acid) undergo reductions in O3-treated blood. Moreover, it is known that plasmatic
unsaturated fatty acids are optimal substrates for O3, generating lipid peroxides that act
as messengers to activate the Nrf2 response [11]. In this context, we found an increase in
2-hydroxy-3-methylbutyric acid (also known as 3-hydroxyisovaleric acid), involved in lipid
peroxidation and β-oxidation [55], and in pimelic acid, a product of partially β-oxidized di-
etary odd-chain fatty acids [56]. Moreover, increased fatty acid oxidation has been found to
increase the serum levels of oleic acid and linoleic acid [57], thus providing an explanation
also for the observed increase in 9(E),11(E)-conjugated linoleic acid, trimethylsilyl ester (a
linoleic acid derivative) in the O3-treated samples. Many lipid metabolites are involved in
the antioxidant and anti-inflammatory pathways. Erythrono-1,4-lactone is an erythronic-
acid-derived compound that is known to increase under oxidation conditions [58], and we
can hypothesise that its increase in the O3-treated samples is related to this mechanism.
Similarly, the increase in 3-octenoic acid (also known as carylic acid) could be related to its
anti-inflammatory properties [59]. Butanoic acid, 2,4-bis[(trimethylsilyl)oxy]-, trimethylsilyl
ester [60] and N-isobutyrylglycine [61] have been found to be upregulated under oxidative
stress conditions, similarly to what was observed in our O3-treated samples. A decrease in
(8Z,11Z,14Z)-icosa-8,11,14-trienoate (also known as 8,11,14-eicosatrienoic acid) has already
been reported under oxidant–antioxidant altered conditions [62,63], probably due to its
antioxidant activity [64,65]. Similarly, 4-hydroxybenzeneacetic acid, a carboxylic acid (also
known as mandelic acid) has been demonstrated to have antioxidant properties [66], and
9-octadecen-1-ol (also known as linolenyl alcohol), a long chain fatty primary alcohol, acts
as an antibacterial [67] and anti-inflammation agent [68]: all these molecules decreased in
ozonised blood. Arachidic acid (also known as eicosanoid acid) is a lipid mediator involved
in haemodynamics and inflammation with both anti-inflammatory and protective proper-
ties [69,70] and lanopalmitic acid (also known as hydroxyhexadecanoic acid) is involved
in the Nrf2/HO-1 signalling pathway [45]: both of them have been found to decrease in
O3-treated blood. Similarly, the tartaric acid reduction may be due to its utilisation as an
antioxidant agent [71]. On the other hand, oleic acid, which has anti-inflammatory and
antioxidant properties [72], and decanoic acid (also known as capric acid) able to reduce
inflammatory cytokine production and oxidative stress [73] were found to increase in
our O3-treated blood samples. Also, pentanoic acid (also known as valeric acid) that has
antioxidant and anti-inflammatory properties [74] was found to increase in ozonated blood.

Concerning the nucleotide metabolites, our results showed a decrease in niacinamide
(also known as nicotinamide or vitamin B3) and adenine, which are both precursors of
nicotinamide adenine dinucleotide (NAD). More specifically, NAD may generate from
two different pathways, one using tryptophan and the other using niacinamide [75]. NAD
has the capability of heightening the production of nicotinamide adenine dinucleotide
phosphate (NADPH), in order to have reducing equivalents to enhance the antioxidant
capacity and increase the GSH levels [76]. The role of niacinamide in the blood antioxidant
response has already been reported [3], and its decrease in ozonated blood could also be
related to its antioxidant property [77]. Glyceric acid, which we found to increase in the
O3-treated samples, is a NAD/NADPH upregulator [78]. It has been demonstrated that
9H-purin-6-ol (also known as hypoxantine) tends to increase in hypoxic conditions [79];
since in our O3-treated samples hypoxantine decreased, we may assume that this effect
could be due to the hyperoxygenation induced by O3. The uridine decrease may be related
to its capability to stabilise energy metabolism as well as to its antioxidant capacity [80,81].
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2,4-pyridinedicarboxylic acid is known to repress the hypoxia-inducible factor 1 (HIF-1)
under normoxic condition, and ROS stimulate HIF-1 stabilisation [82]; it is therefore likely
that the O3-derived oxidative stress induces an increase in 2,4-pyridinedicarboxylic acid.

4. Materials and Methods
4.1. Blood Ozonation

Due to the high amount of blood required for each experimental treatment (100 mL/sample),
commercially available blood was used for this study. Sterile sheep blood was purchased
from Microbiol Snc (Uta, CA, Italy). Coagulation was prevented via mechanical defibrina-
tion and the blood was used within 24 h from the collection. Before experimentation, the
blood was heated to a temperature of 37 ◦C in a sterile incubator and then submitted to
gaseous treatments. Aliquots of 100 mL were exposed to O2–O3 gas mixtures produced
from medical-grade O2 by using an ECO3 apparatus (Ozoline, Brandizzo, TO, Italy). This
apparatus operates at room temperature and allows photometric real-time control of the
O3 concentration. The apparatus is connected to a system for blood treatment (Tecnoline,
Concordia sulla Secchia, MO, Italy), which is composed of (i) a sterile and apyrogenic
circuit made of tubes for blood draw, (ii) hollow fibres for continuous mixing of blood with
gas, and (iii) a bag for collection of the ozonised blood. The whole system is internally
coated with phosphorylcholine to minimise the interaction of blood with plastics. Through
a peristaltic pump, the blood was ozonised at a constant flow of 20 mL/minute and then,
reversing the rotation direction, recovered from the bag. The whole procedure required
20 min. O3 was used at the concentrations of 5 µg O3 and 10 µg O3/mL O2 (for a total
of 50 µg O3 and 100 µg O3 administered to each blood sample, respectively). Pure O2
was administered to discern the effect induced by O3 from the O2-induced one. After gas
treatment, the blood samples were submitted to different analyses (see below). The control
samples did not undergo any treatment and were maintained at room temperature for the
same time (20 min) required for the treatment with the O3 generator. All experiments were
conducted in triplicate.

4.2. Haemogas Analysis

After gas treatment, 1 mL of blood was collected from each sample and then analysed
with an Edan i15 Vet blood gas analyser (Scil Animal Care Company S.r.l., Treviglio, BG,
Italy) following the manufacturer’s instructions to obtain the pO2, pCO2 and pH values.
Each sample was analysed in triplicate.

4.3. Haemolysis Assay

To evaluate the haemolysis in the blood samples, the haemoglobin concentration was
evaluated using a haemoglobin colorimetric assay kit (ab234046, Abcam, MA, USA) at
the end of the gas treatment. Briefly, 20 µL of blood and plasma were incubated with
180 µL of haemoglobin detector buffer at room temperature for 15 min in 96-well plates.
The absorbance was detected at 570 nm using a Stat Fax® 4300 ChroMate® (Awareness
Technology, Inc., Palm City, FL, USA) and the haemolysis was expressed as the percentage
of plasma haemoglobin over the total blood haemoglobin. Each sample was analysed
in triplicate.

4.4. Total Antioxidant Capacity Assay

The antioxidant capacity of the blood samples was measured using a Total Antioxidant
Capacity Assay kit (ab65329, Abcam, MA, USA) at the end of the gas treatment. Briefly,
blood was diluted 1:2500 in bidistilled water and incubated according to the manufacturer’s
instructions in 96-well plates. The absorbance was detected at 570 nm using a Stat Fax®

4300 ChroMate® (Awareness Technology, Inc., Palm City, FL, USA). The total antioxidant
capacity was then calculated based on the absorbance of the samples with the standard
curve. Each sample was analysed in triplicate.
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4.5. Light Microscopy Analysis

Morphological analysis of the erythrocytes was performed on blood smears by means
of brightfield microscopy. Ten µL of control and treated blood samples were smeared
on a slide and air-dried under a sterile hood. The smears were then stained with the
May–Grunwald–Giemsa technique and observed with an Olympus BX51 microscope
(Olympus Italia S.r.l., Segrate, MI, Italy) equipped with a QICAM Fast 1394 Digital 116
Camera (QImaging, Surrey, BC, Canada) for image acquisition. Each sample was analysed
in triplicate.

4.6. Interleukin Assessment

The amounts of IL-2 and IL-6 were evaluated in the defibrinated plasma of the control
and treated blood samples after blood cell sedimentation. The samples were maintained in
a sterile incubator at 37 ◦C in a 5% CO2 humidified atmosphere for 2 h; then, 200 µL aliquots
of plasma were stored at −80 ◦C until analysis. Interleukin quantitation was conducted
via enzyme-linked immunosorbent assay (ELISA) on a Victor 3V mod. 1420 plate reader
(Perkin Elmer, Waltham, MA, USA). Briefly, 200 µL aliquots of plasma were put onto a
96-well plate and the FineTest ELISA kits ESH0013 and ESH0019 (FineTest Biotech Inc.,
Boulder, CO, USA) were used as per the manufacturer’s recommendations to detect the
sheep IL-2 and IL-6, respectively. The absorbance was read at 450 nm and the concentration
of the target antigen in the sample was quantified. Samples were run in duplicate.

4.7. Metabolomics

Metabolomic analyses were performed on plasma aliquots obtained as described in
Section 4.6. The plasma samples were prepared as previously reported [83]. Briefly, plasma
metabolites were obtained via protein precipitation with cold acetonitrile/isopropanol/water,
followed by derivatisation with methoxamine and BSTFA. Small molecules were analysed
using a LECO Pegasus BT 4D GCXGC/TOFMS instrument (Leco Corp., St. Josef, MI,
USA) equipped with a LECO dual stage quad jet thermal modulator. The GC part of the
instrument was an Agilent 7890 gas chromatograph (Agilent Technologies, Palo Alto, CA,
USA) equipped with a split/splitless injector. The first dimension column was a 30 m
Rxi-5Sil (Restek Corp., Bellefonte, PA, USA) MS capillary column with an internal diameter
of 0.25 mm and a stationary phase film thickness of 0.25 µm, and the second dimension
chromatographic column was a 2 m Rxi-17Sil MS (Restek Corp., Bellefonte, PA, USA) with
a diameter of 0.25 mm and a film thickness of 0.25 µm. High-purity helium (99.9999%)
was used as the carrier gas, with a flow rate of 1.4 mL/minute. One µL of sample was
injected in splitless mode at 250 ◦C. The temperature programme was as follow: the initial
temperature was 100 ◦C for 2 min, then ramped 20 ◦C/minute up to 330 ◦C and then held
at this value for 2 min. The secondary column was maintained at +5 ◦C relative to the GC
oven temperature of the first column. The programming rate was the same for the two
columns. Electron impact ionisation was applied (70 eV). The ion source temperature was
set at 250 ◦C, the mass range was 25 to 550 m/z with an extraction frequency of 32 kHz.
The acquisition rates were 200 spectra/s. The modulation period for the bi-dimensional
analysis was 4 s for the entire run. The modulator temperature offset was set at +15 ◦C
relative to the secondary oven temperature, while the transfer line was set at 280 ◦C.

The chromatograms were acquired in total ion current mode. Peaks with a signal-to-
noise (S/N) value lower than 500.0 were rejected. ChromaTOF version 5.31 was used for
the raw data processing. Mass spectral assignment was performed by matching with the
NIST MS Search 2.3 libraries and the FiehnLib. An in-house library of standards was also
used for the small molecule identification.

4.8. Statistical Analysis

Data for each variable were presented as the mean ± standard error (SE). The Mann–
Whitney test was used for the statistical comparison between the gas-treated samples
and controls as well as between the O3-treated samples and O2-treated ones. Statistical
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significance was set at p ≤ 0.05. MetaboAnalyst 5.0 software (www.metaboanalyst.org
accessed on 5 December 2023) was used for the statistical analysis of the metabolomics data.

5. Conclusions

Our basic study on the molecular modifications induced in blood ex vivo by low O3
concentrations provides original information on the impact of mild ozonation on multiple
metabolic pathways. The modified metabolites are mostly involved in the preservation of
the oxidant–antioxidant balance and in energy production, according to the well-known
effects of low O3 doses as enhancers of both the antioxidant/anti-inflammatory response
and metabolic activity [5,19].

Remarkably, our findings demonstrate the ability of 5 µg O3/mL O2 to induce modifi-
cations in pO2, pCO2, pH, total antioxidant capacity, and many metabolites similarly to
10 µg O3/mL O2. The larger number of metabolites affected by 10 µg O3 in comparison to
5 µg O3 obviously suggests the stronger action of the higher O3 concentration; however,
the effects of 5 µg O3 cannot be considered negligible and deserve attention, opening
interesting perspectives to investigate, also in vivo, the therapeutic potential of very low
O3 concentrations presently considered unsuitable because of the neutralising antioxidant
potential of blood [4]. Blood treatment with reduced O3 concentrations would represent a
further advancement of the clinical application of medical O3 in line with the low-dose O3
concept [21]. Moreover, the use of reduced O3 concentrations would be especially beneficial
for patients with a chronically high level of oxidative stress: in these patients, mild O3
treatment would allow the restoration of a correct oxidant–antioxidant balance, avoiding
the negative effect of high O3 concentrations on their blood antioxidant capacity.
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