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ABSTRACT
Chronic lymphocytic leukemia (CLL) is characterized by an extremely variable clinical course. Although several parameters
have been shown to be associated with clinical outcomes in patients with CLL, there remains substantial intragroup clinical
heterogeneity in otherwise molecularly and staging homogeneous CLL subgroups. We have recently shown that high catalase
(CAT) expression identifies patients with an aggressive clinical course and that higher CAT expression is associated with the
presence of the rs1001179 single nucleotide polymorphism (SNP) T allele in the CAT promoter. Herein, we genotyped CLL
patients for CAT rs1001179 SNP in an exploratory study (n = 235) and in a sequential independent validation study (n = 531).
Time‐to‐event modeling analyses for time‐to‐first‐treatment (TTFT) from the two patients' cohorts showed that TT genotype was
associated with a shorter TTFT, independently of other currently used prognostic parameters in CLL. Moreover, the TT ge-
notype identifies CLL patients with a faster clinical progression even within subgroups of patients with low‐risk biological and
clinical hallmarks. In conclusion, our data show that the TT genotype identifies CLL patients with a shorter TTFT, pointing to
this SNP as a possible prognostic factor, which can improve patients' risk stratification leading to better patient management
and personalized therapeutic choices.
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1 | Introduction

Chronic lymphocytic leukemia (CLL), the most prevalent form
of leukemia in Western countries, is an incurable disease
characterized by an extremely variable clinical course and
response to treatment [1–3]. Over the last decades, several pa-
rameters have been shown to be associated with clinical out-
comes in patients with CLL. They are used to stratify patients
into those with a more indolent course not requiring therapy for
a prolonged period versus patients with a more aggressive form
of the disease and a reduced time to first treatment (TTFT) [4,
5]. These parameters include Binet staging system, the presence
or absence of somatic mutations within the immunoglobulin
variable heavy chain genes (IGHV), specific chromosomal ab-
normalities and gene mutations, the expression of the zeta
chain of T‐cell receptor associated protein kinase 70 (ZAP‐70),
and the expression of the CD38 [6–10]. However, there remains
substantial intragroup clinical heterogeneity in otherwise
molecularly and staging homogeneous CLL subgroups [11]. We
have recently shown that higher levels of catalase (CAT)
identify a more aggressive disease course in CLL whereas lower
catalase expression is associated with an indolent clinical
behavior [12, 13]. Therefore, differential catalase expression in
CLL supports the existence of two main prognostic subtypes,
probably because of differences not only in underlying genetic
lesions, epigenetic changes, and interactions with the micro-
environment, but also in the redox machinery. Lower catalase
activity may cause an escalated accumulation of reactive oxygen
species (ROS) within leukemic cells, which in turn promotes
antitumor signals such as cell death or susceptibility to
apoptosis in CLL, thus accounting for a less aggressive behavior
of cancer cells [12, 14–16]. We recently identified genetic and
epigenetic mechanisms underlying differential expression of
CAT [13]. Specifically, we showed that CLL cells harboring the
rs1001179 single nucleotide polymorphism (SNP) T allele
within the CAT promoter exhibit lower methylation levels and
a higher CAT expression compared with cells bearing the CC
genotype [13].

In this study we investigated the genetic‐based prognostic sig-
nificance of the CAT rs1001179 SNP in CLL. We showed that TT
genotype of CAT rs1001179 SNP identifies CLL patients with a
shorter TTFT and provides prognostic information indepen-
dently of other currently used prognostic parameters in CLL.

2 | Material and Methods

2.1 | Cell Samples

Peripheral blood mononuclear cells (PBMCs) from 235 un-
treated CLL patients and 123 age‐matched healthy donors (HDs)
were collected and cryopreserved at the Hematology Units of
the Azienda ULSS 8 Berica, Vicenza (CLL patients, n = 172),
and the Azienda Ospedaliera Universitaria Integrata (AOUI) of
Verona (CLL patients, n = 63; HD, n = 123). For the validation
study, PBMCs from 531 CLL patients were collected and cry-
opreserved at the Hematology Units of the Azienda Ospedaliero‐
Universitaria Maggiore Della Carità of Novara. Clinical anno-
tations at diagnosis are summarized in Tables S1 and S2.

2.2 | DNA Extraction and Genotyping

Genomic DNA extraction was performed using salting‐out
method. Genotyping for CAT rs1001179 SNP was assessed by
Restriction Fragment Length Polymorphism (RFLP)‐PCR, as
previously described [13].

2.3 | Software and Statistical Analyses

Hardy–Weinberg equilibrium was validated by χ2 test. Fisher's
exact test, and log‐rank (Mantel‐Cox) test were used as appro-
priate. Univariate, bivariate and multivariate models for TTFT
were generated using Cox proportional hazards regression.
TTFT was defined as the interval between CLL diagnosis and
date of first treatment or last follow‐up [12]. Differences were
considered statistically significant for p‐values < 0.05. Graphing
and statistical analyses were performed using GraphPad Prism
software (v. 7.03, GraphPad Software Inc., CA, USA).

3 | Results

3.1 | Exploratory Study

3.1.1 | Patients' Characteristics and CAT rs1001179 SNP
Genotype Distribution

In the exploratory study, we genotyped 235 patients with a
median age at the CLL diagnosis of 64 years old and a preva-
lence of male gender. Data on TTFT were available for more
than half of the patients (133 of 235 patients). Of the 132 pa-
tients for whom the Binet stage was available, about 70% were at
the Binet stage A disease (Table S1).

Distribution of CAT rs1001179 SNP genotypes was consistent
with the Hardy–Weinberg equilibrium among the 235 CLL pa-
tients and the 123 HDs (for CLL patients' rs1001179 poly-
morphism, χ2 = 0.1566, p > 0.05; for HDs' rs1001179
polymorphism, χ2 = 0.0999, p > 0.05). Genotype and allele fre-
quencies among CLL patients and HDs were not significantly
different (Table S3). Hence, the CAT rs1001179 polymorphism
was not associated with CLL risk in the analyzed cohort.

3.1.2 | Association With the CAT rs1001179 SNP Genetic
Variant With Disease Progression

To investigate the ability of CAT rs1001179 SNP to stratify CLL
patients, we analyzed the relationship between the SNP geno-
types and leukemia progression. We observed significant dif-
ferences in TTFT between samples bearing CC, CT, or TT
genotypes (median TTFT was 40 months for CC‐genotype pa-
tients; 53 months for CT‐genotype ones; 22 months for patients
bearing TT genotype; p = 0.0060; Figure 1A). Moreover, a
significant difference in TTFT was observed in Kaplan‐Meier
curves between patients bearing the CC/CT genotypes and
the mutant TT genotype (median TTFT was 44 months for CC/
CT genotype patients while 22 months for patients bearing TT
genotype; p = 0.0096; Figure 1B). Next, we investigated the
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association between the CAT rs1001179 SNP and TTFT in
subsets of patients with early‐stage disease. Forest plot showed
significant differences in TTFT between patients bearing the
CC/CT genotypes and the mutant TT genotype within the
Binet A subset of patients (p = 0.0383; Figure 1C). Significant
differences were also observed within the subgroup of pati-
ents characterized by low ZAP70 expression (p < 0.0001;
Figure 1C) and among patients with favorable/neutral cytoge-
netics (p = 0.0004; Figure 1C). Furthermore, we documented a
trend toward significant association of TT genotype with a
shorter TTFT within subgroups of patients characterized by
lower CD38 expression (p = 0.0514; Figure 1C), and WT TP53
(p = 0.0560; Figure 1C).

These data show that the TT genotype of CAT rs1001179 SNP
identifies CLL patients with a poor prognosis within the whole
set of patients and among patients with early‐stage disease.

3.1.3 | Univariate and Multivariate Analysis of
Association of CAT rs1001179 SNP With Clinical
Progression

We investigated Cox proportional hazard models for TTFT
utilizing the CAT rs1001179 SNP and the available currently
used prognostic parameters. Univariate time‐to‐event analysis
identified the rs1001179 TT genotype (LR test p = 0.0236,
Table 1, Figure 1); increased age at diagnosis (LR test
p = 0.0377); Binet stage B/C (LR test p < 0.0001); unmutated
(UM) IGHV (LR test p = 0.0009); and mutated TP53 (LR test
p = 0.0059) as significant predictors of shorter TTFT (Table 1).
In a bivariate time‐to‐event analysis, models combining the
rs1001179 TT genotype with increased age at diagnosis (LR test
p = 0.0205); Binet stage B/C (LR test p < 0.0001); ZAP70
positivity (LR test p = 0.0326); UM‐IGHV (LR test p = 0.0011);
mutated TP53 (LR test p = 0.0050); unfavorable cytogenetics

FIGURE 1 | Association between theCAT rs1001179 SNP genotypes and disease progression in the exploratory study. Kaplan‐Meier curves of time to
first treatment (TTFT) for subgroups of CLL patients distinguished by CAT rs1001179 SNP CC (n = 68), CT (n = 54) and TT (n = 11) genotypes (A) and
CC/CT (n = 122) and TT (n = 11) genotypes (B). Forest plot of TTFT (C) for Binet A stage (CC/CT: n = 86; TT: n = 7), low ZAP70 expression (CC/CT:
n = 43; TT: n = 3), favorable/neutral cytogenetic (CC/CT: n = 67; TT: n = 4), low CD38 expression (CC/CT: n = 78; TT: n = 5) and WT TP53 (CC/CT:
n = 71; TT: n = 7) subgroups of CLL patients distinguished by CAT rs1001179 SNP CC/CT or TT genotypes. p values are from the log‐rank test.
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(LR test p = 0.0010) were statistically significant (Table S4a).
Interestingly, the LR value increased for each prognostic
parameter when combined with rs1001179 TT while the sta-
tistical significance improved for increased age at diagnosis and
mutated TP53 combined with the TT genotype (Table S4a).
Moreover, although ZAP70 positivity and unfavorable cytoge-
netic were not significantly associated with TTFT in the uni-
variate analysis, models combining each of these parameters
with the rs1001179 TT genotype were statistically significant
(Table S4a). Remarkably, in multivariate time‐to‐event anal-
ysis, a model combining all significant variables identified in
the univariate analysis was statistically significant (LR test
p = 0.0206, Table 1). Next, we investigated Cox proportional
hazard models for TTFT utilizing the CAT rs1001179 SNP and
the available currently used prognostic parameters in an un-
selected subset of Binet A‐stage patients. Although the
rs1001179 TT genotype was not significantly associated with
TTFT in a univariate time‐to‐event analysis (Table 2), in a
bivariate analysis model combining the rs1001179 TT genotype
with unfavorable cytogenetics was statistically significant
(LR test p = 0.0057; Table S4b). Moreover, the LR value
increased for each prognostic parameter when combined with
rs1001179 TT (Table S4b). We could not perform multivariate
analysis in the Binet A‐stage subgroup of patients due to the
lack of some clinical information specifically in those patients
bearing the TT genotype. Then, we considered the CAT
rs1001179 SNP genotypes in relation to biological and clinical
parameters. Fisher's test showed no association between the
CC/CT or TT genotypes and age, gender, Binet staging, CD38
and ZAP70 expression, IGHV and TP53 mutational status and
cytogenetics (Table S5), thus revealing that the CAT rs1001179
SNP genotypes are independent of clinical and biological
parameters.

Taken together, these data identify the rs1001179 TT genotype
as a significant predictor of disease progression that provides
complementary information to the currently used CLL prog-
nostic parameters.

3.2 | Validation Study

3.2.1 | Patients' Characteristics and CAT rs1001179 SNP
Genotype Distribution

In the validation study, the median age at the CLL diagnosis was
70 years old with a predominance of male gender. TTFT data
were available for 464 CLL patients of the 531 (87%) analyzed
for CAT rs1001179 SNP. Among the 506 patients with available
Binet stage information, approximately 82% were diagnosed
with Binet A disease (Table S2). Consistently with results from
the exploratory study, genotype frequencies among patients
from the validation study were 55.9% for CC, 38% for CT and
6.1% for TT whilst the allele frequencies were 75% for the major
C allele and 25% for the minor T allele.

3.2.2 | Association With the CAT rs1001179 SNP Genetic
Variant With Disease Progression

In the validation cohort, although we observed no significant
differences in TTFT between samples bearing CC, CT, or TT
genotypes (median TTFT was 84.7 months for CC‐genotype
patients; 132 months for those with CT genotype; 49.7 months
for TT‐genotype patients; p = 0.0657; Figure 2A), we confirmed
a significant difference in TTFT between patients bearing the

TABLE 1 | Univariate and multivariate models for TTFT in the explorative study.

Variable βs SE FP HR (95% CI) LR p Harrell's C
rs1001179 (TT genotype) 0.849 0.337 0.012 2.337 (1.133–4.308) 5.125 0.0236 0.532

Age 0.019 0.009 0.037 1.020 (1.001–1039) 4.321 0.0377 0.550

Binet B/C 1.220 0.220 < 0.0001 3.389 (2.180–5.182) 26.61 < 0.0001 0.627

CD38 positivea 0.151 0.243 0.534 1.163 (0.707–1.845) 0.377 0.5394 0.514

ZAP70 positiveb −0.070 0.280 0.803 0.933 (0.529–1.594) 0.063 0.8032 0.482

UM‐IGHVc 0.701 0.215 0.0011 2.015 (1.330–3.093) 11.05 0.0009 0.601

Mutated TP53d 1.246 0.398 0.002 3.477 (1.485–7.203) 7.584 0.0059 0.547

Cytogenetics (unfavorable)e 0.409 0.217 0.059 1.506 (0.977–2.296) 3.443 0.0635 0.551

rs1001179 (TT genotype) 3.112 1.791 0.082 22.46 (0.529–1041)

Age 0.025 0.038 0.500 1.026 (0.951–1.108)

Binet B/C 1.050 0.986 0.287 2.857 (0.300–17.13)

UM‐IGHVc 0.348 0.570 0.541 1.417 (0.464–4.546)

Mutated TP53d 2.729 1.247 0.028 15.32 (1.589–344) 13.32 0.0206 0.697
Note: The significant values were shown in boldface (p < 0.05).
Abbreviations: βs, beta coefficients; FP, feature‐specific p‐value; Harrell's C, concordance index to evaluate the predictive performance of a survival model; LR, likelihood
ratio; p, global p‐value; SE, standard error of estimated coefficients.
aCD38 was determined using a 30% cut‐off.
bZAP70 was determined using a 20% cut‐off.
cIGHV sequencing utilized a 2% cut‐off to discriminate mutated from unmutated IGHV.
dTP53 sequencing utilized a 10% cut‐off to discriminate mutated from wild‐type TP53.
ePatients were stratified into major cytogenetic categories, based on NCCN CLL Guidelines: 3 favorable (del 13q as a sole aberration), neutral (normal karyotype, trisomy
12q), and unfavorable (11q and/or 17p deletion).
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TABLE 2 | Univariate model for TTFT in Binet A stage patients included in the explorative study.

Variable βs SE FP HR (95% CI) LR p Harrell's C
rs1001179 (TT genotype) 0.870 0.433 0.044 2.387 (0.915–5.146) 3.234 0.0721 0.530

Age 0.032 0.012 0.006 1.032 (1.009–1.057) 7.505 0.006 0.612

CD38 positivea 0.068 0.307 0.824 1.071 (0.564–1.904) 0.049 0.825 0.517

ZAP70 positiveb −0.172 0.325 0.596 0.841 (0.433–1.569) 0.286 0.593 0.497

UM‐IGHVc 0.851 0.262 0.0011 2.342 (1.411–3.955) 10.86 0.0010 0.636

Mutated TP53d 1.797 0.478 0.0002 6.029 (2.160–14.57) 10.17 0.0014 0.577

Cytogenetics (unfavorable)e 0.439 0.272 0.106 1.552 (0.899–2.630) 2.522 0.1123 0.553
Note: The significant values were shown in boldface (p < 0.05).
Abbreviations: βs, beta coefficients; FP, feature‐specific p‐value; Harrell's C, concordance index to evaluate the predictive performance of a survival model; LR, likelihood
ratio; p, global p‐value; SE, standard error of estimated coefficients.
aCD38 was determined using a 30% cut‐off.
bZAP70 was determined using a 20% cut‐off.
cIGHV sequencing utilized a 2% cut‐off to discriminate mutated from unmutated IGHV.
dTP53 sequencing utilized a 10% cut‐off to discriminate mutated from wild‐type TP53.
ePatients were stratified into major cytogenetic categories, based on NCCN CLL Guidelines: 3 favorable (del 13q as a sole aberration), neutral (normal karyotype, trisomy
12q), and unfavorable (11q and/or 17p deletion).

FIGURE 2 | Association between the CAT rs1001179 SNP genotypes and CLL progression‐validation study. Kaplan‐Meier curves of time to first
treatment (TTFT) for subgroups of CLL patients distinguished by CAT rs1001179 SNP CC (n = 258), CT (n = 177) and TT (n = 29) genotypes (A) and
CC/CT (n = 435) and TT (n = 29) genotypes (B). Forest plot of TTFT (C) for Binet A stage (CC/CT: n = 343; TT: n = 22), low ZAP70 expression (CC/
CT: n = 99; TT: n = 7), favorable/neutral cytogenetic (CC/CT: n = 338; TT: n = 26), low CD38 expression (CC/CT: n = 157; TT: n = 13), WT TP53 (CC/
CT: n = 386; TT: n = 26), M‐IGHV (CC/CT: n = 266; TT: n = 14) subgroups of CLL patients distinguished by CAT rs1001179 SNP CC/CT or TT
genotypes. p values are from the log‐rank test.
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CC/CT genotypes and the mutant TT genotype (median TTFT
was 107.1 months for patients with CC/CT genotypes while
49.7 months for TT‐genotype patients; p = 0.0294; Figure 2B).
Moreover, in patients with indolent disease, we documented
a trend toward significant association of TT genotype with a
more aggressive disease within subgroups of patients charac-
terized by Binet A stage (p = 0.0590; Figure 2C); low ZAP70
expression (p = 0.1054; Figure 2C); favorable/neutral cyto-
genetics (p = 0.0759; Figure 2C); lower CD38 expression
(p = 0.1980; Figure 2C); and WT TP53 (p = 0.0754; Figure 2C).
We documented no significant differences in TTFT between
patients bearing the CC/CT genotypes and the mutant TT ge-
notype in the subgroup of patients characterized by somatic
mutations within the immunoglobulin variable heavy chain
genes (M‐IGHV) (p = 0.5108; Figure 2C).

3.2.3 | Univariate and Multivariate Analysis of
Association of CAT rs1001179 SNP With Clinical
Progression

Univariate time‐to‐event analysis identified the rs1001179 TT
genotype (LR test p = 0.044, Table 3; Figure 2); Binet stage B/C,
CD38 positivity, UM‐IGHV, mutated TP53, and unfavorable cy-
togenetic (LR test p < 0.0001); ZAP70 positivity (LR test
p = 0.0005) as significant predictors of shorter TTFT (Table 3). In
bivariate time‐to‐event analysis, models combining the
rs1001179 TT genotype with Binet stage B/C, CD38 positivity,

UM‐IGHV, mutated TP53, or unfavorable cytogenetics were sta-
tistically significant (LR testp< 0.0001 for eachmodel; Table S6a).
Also, the rs1001179 TT genotype combinedwith ZAP70 positivity
was statistically significant (LR test p = 0.0011; Table S6a).
Interestingly, as for exploratory study the LR value increased for
each prognostic parameter when combined with rs1001179 TT
(Table S6a). Moreover, increased age at diagnosis reached the
statistical significance when combined with the TT genotype (LR
testp= 0.057; Table S6a). Remarkably, as in the exploratory study,
in multivariate time‐to‐event analysis, a model combining all
significant variables identified in the univariate analysis was
statistically significant (LR test p = < 0.0001, Table 3). Next, we
tested Cox proportional hazard models for TTFT combining the
CAT rs1001179 SNP and the available currently used prognostic
parameters in a subset of Binet A‐stage patients included in the
validation study (Table 4). Consistently with the explorative
study, the rs1001179 TT genotypewas not significantly associated
with TTFT in univariate time‐to‐event analysis. Moreover,
although the LR value increased for each prognostic parameter
when combined with rs1001179 TT, the statistical significance of
association between TTFT and each prognostic parameters did
not significantly differ from the univariate analysis (Table S6b).
Remarkably, in multivariate time‐to‐event analysis within the
subset of BinetA‐stage patients, amodel combining all significant
variables identified in the univariate analysis was statistically
significant (LR test p < 0.0001, Table 4). Then, we considered the
CAT rs1001179 SNP genotypes in relation to biological and clin-
ical parameters in the validation cohort. Consistently with the
exploratory study, we documented no association between the

TABLE 3 | Univariate and multivariate models for TTFT in the validation study.

Variable βs SE FP HR (95% CI) LR p Harrell's C
rs1001179 (TT genotype) 0.505 0.235 0.031 1.658 (1.014–2.556) 4.052 0.044 0.518

Age 0.008 0.006 0.188 1.009 (0.995–1.022) 1.748 0.186 0.537

Binet B/C 2.036 0.154 < 0.0001 7.661 (5.635–10.32) 131.9 < 0.0001 0.672

CD38 positivea 1.021 0.190 < 0.0001 2.775 (1.898–4.012) 25.60 < 0.0001 0.612

ZAP70 positiveb 0.639 0.186 0.0006 1.895 (1.321–2.746) 12.16 0.0005 0.59

UM‐IGHVc −1.366 0.140 < 0.0001 0.255 (0.193–0.335) 93.81 < 0.0001 0.665

Mutated TP53d 0.975 0.201 < 0.0001 2.652 (1.752–3.869) 18.63 < 0.0001 0.549

Cytogenetics (unfavorable)e 1.041 0.172 < 0.0001 2.833 (1.996–3.933) 29.52 < 0.0001 0.568

rs1001179 (TT genotype) 0.406 0.310 0.190 1.501 (0.775–2.651)

Binet B/C 1.953 0.238 < 0.0001 7.053 (4.367–11.14)

CD38 positivea 0.538 0.220 0.014 1.713 (1.106–2.625)

ZAP70 positiveb 0.194 0.210 0.357 1.214 (0.805–1.843)

UM‐IGHVc 1.136 0.239 < 0.0001 3.116 (1.949–4.981)

Mutated TP53d 1.263 0.327 0.0001 3.536 (1.814–6.579)

Cytogenetics (unfavorable)e −0.1789 0.304 0.556 0.836 (0.451–1.494) 133.7 < 0.0001 0.773
Note: The significant values were shown in boldface (p < 0.05).
Abbreviations: βs, beta coefficients; FP, feature‐specific p‐value; Harrell's C, concordance index to evaluate the predictive performance of a survival model; LR, likelihood
ratio; p, global p‐value; SE, standard error of estimated coefficients.
aCD38 was determined using a 30% cut‐off.
bZAP70 was determined using a 11% cut‐off.
cIGHV sequencing utilized a 2% cut‐off to discriminate mutated from unmutated IGHV.
dTP53 sequencing utilized a 10% cut‐off to discriminate mutated from wild‐type TP53.
ePatients were stratified into major cytogenetic categories, based on NCCN CLL Guidelines: favorable (del 13q as a sole aberration), neutral (normal karyotype, trisomy
12q), and unfavorable (11q and/or 17p deletion).
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CC/CT or TT genotypes and age, gender, Binet staging, CD38 and
ZAP70 expression, IGHV and TP53 mutational status or cytoge-
netics (Table S7).

4 | Discussion

In this study, we show that the CAT rs1001179 SNP within the
catalase promoter is of clinical relevance in CLL since it is asso-
ciated with more aggressive disease in both the exploratory and
the independent validation study. Although several biological
parameters enable the classification of CLL patients into risk
groups, predicting which patients will progress remains a signif-
icant clinical challenge [11]. We propose that the CAT rs1001179
SNP could provide information independent from standard
prognostic markers in predicting disease progression risk in CLL.

The CAT rs1001179 SNP is a common functional polymorphism
within the promoter of the CAT gene, substituting allele C with
T at position 330 relative to the ATG on chromosome 11 [16,
17]. Herein, we show that the TT genotype of CAT rs1001179
SNP is a significant predictor of a more aggressive clinical
behavior in CLL; in contrast, the CC and CT genotypes are
associated with a more indolent disease course. Remarkably,
time‐to‐event models for TTFT show that the CAT rs1001179
SNP provides independent information of currently used prog-
nostic parameters, pointing to this SNP as a relevant genetic
marker that can improve the currently used prognostic tests.

The TT genotype identifies CLL patients with a faster clinical
progression even within subgroups of patients with low‐risk
biological and clinical hallmarks, highlighting the prognostic

significance of the TT genotype also in these subsets of patients,
who will mostly benefit from an improved prognostic system.
Indeed, although many patients with favorable prognostic
markers never progress to the point of therapeutic intervention,
others experience a more accelerated course and require therapy
[11]. The accurate identification of these patients in the initial
state of the disease would strongly improve their clinical
management.

In agreement with our data, the CAT rs1001179 SNP has been
proposed as a prognostic factor in ovarian cancer patients,
resulting the CT and TT genotypes associated with poor survival
[18]. Furthermore, this polymorphism has been shown to be
associated with the incidence risk to develop prostate cancer,
hepatocellular carcinoma, skin cancer, and cervical cancer [19–
22]. A recent comprehensive metanalysis also revealed a sig-
nificant correlation of CAT rs1001179 SNP with susceptibility to
blood‐ and bone‐marrow‐related cancers, skin cancers,
gastrointestinal‐tract‐related cancers, prostate cancer, and gy-
necologic cancers [23]. Herein, we report that CLL and HD
samples show comparable genotypes and allele frequencies,
thus excluding the association between the CAT rs1001179 SNP
and susceptibility to CLL risk in the analyzed cohort. Our
finding is in line with previous results showing that the CAT
rs11001179 is not a risk factor for non‐Hodgkin lymphoma
development [24]. Consistently, previously large scale genome‐
wide association studies (GWAS) did not identify the CAT
rs1001179 as a SNP for CLL risk [25–30]. Taken together, these
data suggest that the impact of this SNP on cancer risk may be
influenced by specific cancer‐cell contexts.

The CAT rs1001179 SNP has been associated with higher levels
of CAT in healthy blood cells [17]. In line with this finding, we

TABLE 4 | Univariate and multivariate models for TTFT in Binet A stage patients included in the validation study.

Variable βs SE FP HR (95% CI) LR p Harrell's C
rs1001179 (TT genotype) 0.544 0.291 0.062 1.723 (0.926–2.934) 3.011 0.082 0.519

Age 0.011 0.008 0.207 1.011 (0.994–1.028) 1.608 0.204 0.548

CD38 positivea 0.778 0.238 0.001 2.179 (1.342–3.433) 9.431 0.002 0.573

ZAP70 positiveb 0.485 0.215 0.024 1.624 (1.066–2.491) 5.100 0.023 0.578

UM‐IGHVc 1.329 0.176 < 0.0001 3.778 (2.671–5.343) 53.35 < 0.0001 0.652

Mutated TP53d 0.858 0.293 0.003 2.360 (1.266–4.033) 6.871 0.008 0.534

Cytogenetics (unfavorable)e 1.034 0.234 < 0.0001 2.813 (1.731–4.364) 15.40 < 0.0001 0.556

rs1001179 (TT genotype) 0.502 0.361 0.1644 1.652 (0.759–3.183)

CD38 positivea 0.580 0.256 0.023 1.787 (1.065–2.918)

ZAP70 positiveb 0.102 0.235 0.661 1.108 (0.699–1.764)

UM‐IGHVc 1.246 0.263 < 0.0001 3.477 (2.070–5.819)

Mutated TP53d 1.031 0.403 0.0105 2.805 (1.202–5.920)

Cytogenetics (unfavorable)e −0.043 0.354 0.902 0.957 (0.463–1.874) 46.54 < 0.0001 0.692
Note: The significant values were shown in boldface (p < 0.05).
Abbreviations: βs, beta coefficients; SE, standard error of estimated coefficients; FP, feature‐specific p‐value; LR, likelihood ratio; p, global p‐value; Harrell's C,
concordance index to evaluate the predictive performance of a survival model.
aCD38 was determined using a 30% cut‐off.
bZAP70 was determined using a 11% cut‐off.
cIGHV sequencing utilized a 2% cut‐off to discriminate mutated from unmutated IGHV.
dTP53 sequencing utilized a 10% cut‐off to discriminate mutated from wild‐type TP53.
ePatients were stratified into major cytogenetic categories, based on NCCN CLL Guidelines: 3 favorable (del 13q as a sole aberration), neutral (normal karyotype, trisomy
12q), and unfavorable (11q and/or 17p deletion).
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have recently shown that CLL cells harboring the rs1001179
SNP T allele exhibit significantly higher CAT expression levels
compared with cells bearing the CC genotype [13]. Catalase is a
ubiquitous antioxidant enzyme that works cooperatively with
other antioxidant enzymes to protect cells from an excess of
ROS derived from endogenous metabolism or external micro-
environment [16]. The expression of catalase and other antiox-
idant enzymes is often altered in cancer, resulting in aberrant
levels of ROS, and catalase as well as other antioxidant enzymes
play an important dichotomous role in cancer [16]. Specifically,
while catalase can protect cells from tumor initiation and pro-
gression [31–34] due to its role in preventing the accumulation
of dangerous levels of oxidants, many cancer cells require high
oxidant detoxifying systems and upregulation of catalase for
tumor progression and metastasis to compensate for high ROS
production and prevent the action of cell death processes [15,
35–38]. Consistently with the catalase protumor role, we have
recently documented that higher levels of catalase and
decreased levels of cellular ROS are associated with a faster
progression of CLL [12, 13]. Therefore, the mechanistic expla-
nation of the finding that the CAT rs1001179 SNP is a deter-
minant of a dismal outcome in CLL could rely on the
antioxidant role of catalase in regulating ROS and ROS‐
mediated cell death. Elevated catalase levels, decreasing ROS
cellular levels, could reduce antitumor signals in leukemic cells,
that is, cell death or susceptibility to apoptosis, thereby influ-
encing disease progression [16]. Although this hypothesis de-
serves further investigation to be validated, our study could lead
to the development of new therapeutic strategies targeting redox
pathways that could implement the effectiveness of current
therapies and overcome drug resistance in CLL.

In conclusion, our data show for the first time that the TT ge-
notype of CAT rs1001179 SNP identifies CLL patients with a
shorter TTFT, pointing to this genetic polymorphism as a
possible prognostic factor in CLL. In addition, the rs1001179
SNP can improve risk stratification of patients with early‐stage
disease, which can lead to better patient management and
personalized therapeutic choices.
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