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Abstract: Background and Objectives: Hypertension and vascular damage can begin in adolescents
affected by Autosomal Dominant Polycystic Kidney Disease (ADPKD). This study aimed to evaluate
markers of vascular damage and left ventricular geometry in a sample of children with ADPKD.
Materials and Methods: Several vascular measurements were obtained: ambulatory blood pressure
monitoring (ABPM), carotid intima-media thickness (cIMT), carotid distensibility coefficient (cDC),
pulse wave velocity (PWV), and echocardiographic measurements (relative wall thickness (RWT) and
left ventricular mass index (LVMI)). Results: Eleven ADPKD children were recruited (four females
and seven males, mean age 9.5 ± 3.2 years). Four children were hypertensive at the ABPM, five were
normotensive, and for two ABPM was not available. RWT was tendentially high (mean 0.47 ± 0.39).
Eight patients had concentric cardiac remodeling, while one patient had cardiac hypertrophy. cIMT
was above the 95◦ percentile for sex and height in 80% of the children (0.5 ± 0.005 mm). The
average PWV and cDC were between the normal range (5.5 ± 4.6 m/s and 89.6 ± 16.1 × 10−3/KPa,
respectively). We observed a positive correlation between the PWV and RWT (r = 0.616; p = 0.044)
and a negative correlation between cDC and RWT (r = −0.770; p = 0.015). Cardiovascular damages
(cIMT > 95◦ percentile) were found in normotensive patients. Conclusions: Increased RWT and high
cIMT, indicating subclinical organ damage, are already present in ADPKD children. RWT was
significantly correlated to that of cDC and PWV, implying that vascular stiffening is associated
with cardiac remodeling. None of the children had an alteration in renal function. Subclinical
cardiovascular damage preceded the decline in glomerular filtration rate.

Keywords: ADPKD; hypertension; vascular damages; cardiac remodeling; cardiac hypertrophy

1. Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is a disorder occurring in
about 1 in every 400 to 1000 live births [1,2]. Most patients with ADPKD have an abnor-
mality on chromosome 16 (PKD1 locus) [3], although other defects are reported [4,5]. In
approximately eight percent of families, no mutation is detected. The disease leads to
several cysts in the renal tubule, affecting its function over time. Renal ultrasonography
is usually used for screening. A genetic diagnosis can be performed when a definitive
diagnosis is required [6]. Usually, the renal manifestation is predominant: hematuria [7],
proteinuria [8], nephrolithiasis [9], and finally renal insufficiency, although a prognostic
model has been developed for identifying high-risk patients setting renal end-stage ear-
lier [10]. Nevertheless, extra-renal manifestations such as cerebral aneurysms, hepatic and
pancreatic cysts, and valvular abnormalities have also been reported [11–14]. Hypertension
is another common disease present in these patients [15]. Still, although hypertension is
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common in most chronic progressive kidney diseases, the pathogenesis is somewhat differ-
ent because it correlates to endothelial dysfunction, especially for a reduction in nitric oxide
and an over-activation of the renin-angiotensin-aldosterone system [16–18]. Most patients
with ADPKD die from cardiovascular causes [19–21]. An increase in arterial stiffness, left
ventricular hypertrophy, and increased carotid intima-media thickness have been reported
in the adult population, and therefore strictly correlated to cardiovascular events [22–25].
Childhood cardiac and vascular damage data are partial and very limited [26,27]. Identi-
fying early cardiovascular dysfunctions during childhood, such as hypertension, cardiac
remodeling or hypertrophy, arterial stiffness, and carotid intima-media thickness, could
be important to prevent future cardiovascular events. Thus, the aim of this study is the
evaluation of markers of early vascular damage and left ventricular geometry in a sample
of children affected by ADPKD.

2. Materials and Methods

Patients with ADPKD were recruited from October to December 2018. These patients
were referred to the Unit of Pediatric Nephrology of the University Hospital of Verona. The
study was approved by the Ethical Committee of the University Hospital of Verona (CESC
n.9427), and written informed consent was obtained from each participant’s parents.

Several vascular measurements were obtained. Specifically, ambulatory blood pres-
sure monitoring (ABPM), office blood pressure (OBP), carotid intima-media thickness
(cIMT), carotid distensibility (DC), pulse wave velocity (PWV), and echocardiographic
measurements (relative wall thickness (RWT) and left ventricular mass index (LVMI)).

2.1. Blood Pressure Measurement and Vascular Exams

An oscillometric device recorded ABPM (Intermed A&D TM-2430). It was placed on
the non-dominant arm and was set such that measurements were taken every 15 min during
the day and every 30 min throughout the night, adapting “day” and “night” according
to the diary form completed by the child or parents. All the values derived from the
blood pressure (BP) measurements were also Z-score transformed according to normative
values [28,29].

cIMT was assessed with an ultrasound of the carotid arteries (LogiQ P5 Pro, Bimedis,
Kissimmee, FL, USA). The cIMT was estimated by tracking the artery wall in the last
centimeter of the common carotid artery and calculated using dedicated hardware (Carotid
studio, Quipu, Pisa, Italy). The relative z-scores and percentiles were calculated using
reference values [30].

The cDC was calculated as cDC = ∆A/(A × ∆P), where A is the diastolic lumen
area, ∆A is the stroke change in lumen area, and ∆P is pulse pressure (PP). Changes in
diameters were detected using ultrasound B-mode image sequences of the right and left
common carotid arteries acquired at different steps. These changes were analyzed using the
above-mentioned automatic system [31]. The relative z-score and percentile were calculated
according to reference values [32].

PWV was measured with SphygmoCor XCEL (AtCor Medical Pty Ltd.; Unit 11, West
Ryde Corporate Centre, 1059–1063 Victoria Road, West Ryde, NSW 2114, Australia). To
conduct a carotid–femoral PWV measurement, a cuff was placed around the femoral artery
of the child to capture the femoral waveform, and a tonometer was used to capture the
carotid waveform. The distance between the carotid and femoral arteries was measured,
and the velocity was automatically determined by dividing the distance by the pulse transit
time. The subtraction method calculated the distance between the carotid measurement
site and the cuffed site. The distance was calculated from the sternal notch to the top
edge of the femoral cuff (distal distance) and from the carotid artery to the sternal notch
(proximal distance). To assess the above, the proximal distance was subtracted from the
distal distance to determine the aortic lative z-score, and the percentile was calculated
according to reference values [33].
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A single sonographer performed transthoracic echocardiography (Esaote MyLabTM40,
Roma, Italy) in all participants. In the parasternal long-axis view, the 2D method was
used to measure interventricular septum thickness end-diastole (IVSd), left ventricular
end-diastolic diameter (LVEDd), and left ventricular posterior wall thickness at end-
diastole. The Relative Wall Thickness (RWT) was calculated through the following formula:
(IVSd + LVPWd/LVEDd). The Devereux equation was used to obtain left ventricular mass
(LVM = 0.80 * 1.04 [(tele-diastolic diameter + PW + IVS)3 − tele-diastolic diameter3] + 0.6 gr).
LVM was indexed (LVMI) to height (m2.7) [34]. Left ventricular hypertrophy (LVH) was
defined as the presence of an LVMI greater or equal to the 95th percentile, specific for age
and sex [35]. The threshold for increased RWT (adjusted) was 0.375; the 95th percentile
was specific for age [36]. Normal geometry was defined by normal LVMI and normal
RWT, concentric remodeling by normal LVMI and increased RWT, concentric hypertrophy
by increased LVMI and RWT, and eccentric hypertrophy by increased LVMI and normal
RWT [37].

2.2. Laboratory Exams

Venous blood and urinary samples were collected after an overnight fast. Biochemical
parameters such as triglycerides, total cholesterol, HDL cholesterol, LDL cholesterol, non-
HDL cholesterol, uric acid, creatinine, cystatin C, microalbuminuria (spot urine sample),
and proteinuria (24 h urine collection) were analyzed in a single reference centralized
laboratory with standard methods on routine clinical chemistry instrumentation (Cobas
8000, Roche Diagnostics GmbH, Mannheim, Germany). The estimated glomerular filtration
rate (eGFR) was calculated using the Schwartz equation.

2.3. Anthropometric Parameters

Anthropometric parameters were also assessed. Body weight was measured using
a calibrated balance, and height was measured using a calibrated stadiometer. The body
mass index (BMI) was calculated as weight (kg) divided by the square of height (m).
Overweight and obesity were defined as BMI ≥ 85th and 95th percentile for sex and age,
respectively [38]. The WHO reference for BMI categorizes children into the overweight and
obese groups [39].

2.4. Statistical Analysis

For the statistical analysis, data were expressed as mean ± standard deviation for
continuous variables or percentages for categorical ones. The Spearman correlation co-
efficient (rS) was used to quantify the linear relationship between variables. Statistical
analyses were performed using SPSS software (IBM Corp. Released 2015. IBM SPSS
Statistics for Windows, Version 23.0. Armonk, NY, USA: IBM Corp). Graphs were created
with GraphPad Prism version 7.00 for Windows, GraphPad Software, La Jolla, CA, USA
(www.graphpad.com).

3. Results

Patients’ characteristics are reported in Table 1.
Eleven patients, seven males and four females, were included in the study. The mean

age of the population was 9.5 ± 3.2 years. The median BMI was 18.9 ± 3.4 kg/m2. Three
children were overweight (>85th), and eight were normal weight. None of the subjects had
altered glomerular filtration rate (GFR), and the mean GFR was 109.6 ± 13.5 mL/min/m2.
The mean microalbuminuria measured by the albumin mg/mmol ratio was 1.1 ± 1.3. The
cardiovascular parameters according to the percentile reference values are reported in
Table 2.

www.graphpad.com
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Table 1. ADPKD patients’ characteristics stratified by sex and high versus normal blood pressure.

Female Male High BP at
ABPM/OBP

Normal BP at
ABPM/OBP

(n = 4) (n = 7) (n = 5) (n = 6)

Mean ± SD Mean ± SD p-Value Mean ± SD Mean ± SD p-Value

Age, years 8.8 ± 3.4 9.9 ± 3.3 0.612 8.6 ± 2.6 10.2 ± 3.8 0.453

BMI, kg/m2 19.8 ± 2.8 18.4 ± 3.8 0.544 18.1 ± 3.0 19.7 ± 3.8 0.473

Percentile BMI for age 84 ± 12.6 52.8 ± 27.4 0.030 65.2 ± 34.9 63.3 ± 22.6 0.913

Office SBP, mmHg 110.0 ± 13.6 105.3 ± 14.5 0.610 107.8 ± 11.1 106.3 ± 16.6 0.870

Percentile SBP, mmHg 76.6 ± 23.1 59.5 ± 28 0.330 72.0 ± 19.7 60.4 ± 32.0 0.500

Office DBP, mmHg 70.3 ± 6.2 59.4 ± 8.2 0.039 67.6 ± 7.0 59.8 ± 9.5 0.166

Percentile DBP, mmHg 77.2 ± 13.9 39.9 ± 13 0.005 62.7 ± 24.8 45.7 ± 19.5 0.233

24 h SBP,
mmHg 116 ± 3.6 119.2 ± 6.1 0.384 119.6 ± 7.2 116.2 ± 1.8 0.337

Percentile 24 h-SBP 83.8 ± 16.9 82.2 ± 15.9 0.880 88.0 ± 21.2 81.1 ± 4.9 0.302

24 h DBP, mmHg 66.5 ± 3.3 67.8 ± 3.4 0.559 67.8 ± 4.1 66.8 ± 2.6 0.656

Percentile 24 h-DBP 53.7 ± 27.3 54.9 ± 22.8 0.941 58.9 ± 28.0 49.9 ± 19.2 0.573

cIMT,
mm 0.48 ± 0.05 0.49 ± 0.05 0.675 0.48 ± 0.05 0.49 ± 0.04 0.702

Percentile c-IMT for height 97.1 ± 3.4 96.5 ± 5.4 0.849 97.0 ± 3.0 96.4 ± 6.0 0.848

cDC,
kPA-1 52.3 ± 9.2 59.6 ± 18.9 0.556 54.6 ± 9.4 51.2 ± 20.7 0.701

Percentile cDC for height 26.7 ± 14 44.7 ± 32 0.411 35.0 ± 17.5 45.3 ± 36.0 0.349

PWV,
m/s 4.4 ± 0.4 4.7 ± 0.7 0.525 4.6 ± 0.61 4.5 ± 0.71 0.835

Percentile PWV for height 31.8 ± 17.2 59.5 ± 31.9 0.156 44.4 ± 19.3 52.5 ± 39.2 0.694

RWT 0.40 ± 0.03 0.39 ± 0.07 0.869 0.39 ± 0.05 0.39 ± 0.07 0.985

LVM/BSA,
g/m2 25.8 ± 4.8 33.9 ± 9.9 0.102 27.4 ± 6.1 34.0 ± 10.6 0.249

HDL cholesterol, mg/dL 54.3 ± 8.8 55.1 ± 8.0 0.867 52.2 ± 8.9 57.0 ± 6.9 0.340

LDL cholesterol, mg/dL 73.0 ± 12.9 57.3 ± 18.4 0.171 74.7 ± 13.3 53.3 ± 15.5 0.036

Triglycerides, mg/dL 86.3 ± 17.6 76.3 ± 64.7 0.774 72.4 ± 24.8 86.2 ± 0.09 0.681

Uric Acid (mg/dL) 3.8 ± 1.0 3.0 ± 0.7 0.147 3.2 ± 1.2 3.4 ± 0.6 0.832

Albumin/creatinine,
mg/mmoL creat.) 1.8 ± 1.9 0.56 ± 0.15 0.143 0.17 ± 2.0 0.62 ± 0.23 0.176

Schwartz eGFR, ml/min 110.8 ± 9.9 109.0 ± 16.0 0.849 119 ± 13.4 101.8 ± 7.1 0.026

Cystatin-c,
mg/L 0.85 ± 0.05 0.87 ± 0.10 0.707 0.86 ± 0.09 0.86 ± 0.09 0.921

Proteinuria, g/die 0.07 ± 0.04 0.11 ± 0.06 0.067 75.6 ± 3.4 72.6 ± 4.7 0.277

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; cIMT, carotid intima-media
thickness; cDC, carotid distensibility coefficient: PWV, pulse wave velocity; RWT, relative wall thickness; LVM,
left ventricular mass; BSA, body surface area; HDL, high density lipoprotein; LDL, low density lipoprotein.
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Table 2. Patients’ cardiovascular parameters stratified according to the specific 95th percentile.

Total Population
(n = 11)

n (%)

Percentile BMI for age < 95th 8 (72.7%)
90th ≤ Percentile BMI for age < 95th 3 (27.3%)
Percentile BMI for age ≥ 95th 0

Percentile Office SBP and DBP < 95th 9 (81.8%)
Percentile Office SBP or DBP ≥ 95th 2 (18.2%)

Percentile ABPM SBP and DBP < 95th 5 (55.6%)
Percentile ABPM SBP or DBP ≥ 95th 4 (44.4%)

Percentile cIMT for height < 95th 2 (20%)
Percentile cIMT for height ≥ 95th 8 (80%)

Percentile cDC for height ≥ 5th 8 (100%)
Percentile cDC for height < 5th 0

Percentile PWV for height < 95th 9 (100%)
Percentile PWV for height ≥ 95th 0

RWT < 0.375 3 (27.3%)
RWT ≥ 0.375 8 (72.7%)

Percentile LVM < 95th 10 (90.9%)
Percentile LVM ≥ 95th 1 (9.1%)

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; cIMT, carotid intima-media
thickness; cDC, carotid distensibility coefficient; PWV, pulse wave velocity; RWT, relative wall thickness; LVM,
left ventricular mass.

Two ABPM, one cIMT, three cDC, and two PWV measurements were unavailable.
Four children had high blood pressure (HBP) according to ABPM, five were normotensive,
and only two patients were hypertensive at office blood pressure (OBP) measurement,
consistent with the possible diagnosis of masked hypertension. One child was already
under chronic therapy with an ACE inhibitor. RWT was, on average, higher concerning
the cut-off for remodeling (mean 0.39 ± 0.05). In particular, eight patients had concentric
cardiac remodeling, while one had cardiac concentric hypertrophy. cIMT was above the
95th percentile for sex and height in 80% of children (0.5 ± 0.005 mm), while average
PWV and cDC were within the normal range (5.5 ± 4.6 m/s and 89.6 ± 16.1 × 10−3/KPa,
respectively). We observed a positive correlation between the PWV and RWT (rS = 0.616;
p = 0.044; Figure 1a) and a negative correlation between cDC and RWT (rS = −0.770;
p = 0.015; Figure 1b), suggesting a close relationship between vascular dysfunction and
initial cardiac damage.

Of note, cardiovascular damages were also found in normotensive patients; three
patients already had cardiac remodeling, one had cardiac concentric hypertrophy, and four
were in the IMT ≥ 95◦ percentile. Probably, because of the early age of our population,
we found more concentric remodeling than cardiac hypertrophy. No correlations between
cardiovascular parameters and either proteinuria or GFR were found.
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4. Discussion

This study showed the prevalence of early organ damage in children affected by
ADPKD. Nowak et al. [26] demonstrated vascular dysfunction measured by brachial artery
flow-mediated dilation and arterial stiffness, measured as carotid–femoral pulse wave
velocity. Still, it was measured in young adults with a mean age of 21. In addition, they
did not assess cardiac parameters. In the only other paper conducted on children, Karava
et al. [27] demonstrated in 21 adolescents a high PWV and increased cIMT in comparison
with matched controls, indicating an increase in arterial stiffness and hypertrophic vas-
culopathy. They also found that around 10% of patients had left ventricular hypertrophy
(but only in patients on antihypertensive treatment) and a linear correlation between LVH
and PWV and LVH and cIMT. Patients with LVH were older, suggesting that arterial
dysfunction precedes cardiac damage. Cardiac remodeling RWT was not assessed. A
total of 19% of patients had hypertension. Of note, even Karava’s population was older
than ours because the mean age was 12 years. Few other studies on adolescents with
ADPKD showed a higher LVMI in hypertensive and borderline hypertensive adolescents
than non-hypertensive [40]. A higher LVMI in patients with ADPKD as compared to group
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control was also shown, although within the normal range [41,42]. It has also been reported
that around half of adult patients with ADPKD have LVH [43]. All the remaining studies
investigating cardiac and vascular damage in patients with ADPKD were conducted in
adults [14,15,17,44–46]. In the present study, we have shown a very early vascular and
cardiac impairment in a patient affected by ADPKD despite a mean age of only 9.5 years.
We have found neither PWV nor DC beyond the reference range, but different from the
study of Karava et al. [27], we showed that 80% of patients had a cIMT higher than the
95th percentile. Regarding cardiac damage, the mean RWT was increased on average,
and this was a sign of cardiac remodeling, whereas only one child had cardiac concentric
hypertrophy. This is probably due to the very young age of our population, with concentric
remodeling being a (possible) first step before overt cardiac hypertrophy can develop. It
is also intuitive that vascular dysfunction precedes cardiac damage. Finally, we found a
positive correlation between PWV and RWT, as well as a negative correlation between DC
and RWT. Taken together, these unexpected findings suggest that vascular and cardiac
damage is already detectable in children <10 years and that they are in part related to
each other. This evidence is in line with the fact that most ADPKD patients die because of
cardiovascular diseases [19,47]. Despite the evidence of cardiac and vascular damage, only
two patients out of eleven in our sample could be classified as hypertensive if evaluated
using office BP. Conversely, if we refer to ABPM, the number of hypertensive children rises
to four out of ten, compatible with a diagnosis of masked hypertension. This suggests
that hypertension is underestimated, and a widespread use of ABPM should probably be
advised as a better screening tool in all patients affected by ADPKD. In previous studies
using office BP, the median age for hypertension diagnosis in patients with ADPKD was
33 years in males and 38 years in females whose parents were hypertensive and 40 years
in males and 50 years in females whose parents were non-hypertensive [48]. Interestingly,
in our sample, target organ damage was not found only in hypertensive children but also
in some normotensive ones. This is a significant finding, suggesting that cardiovascular
injuries in these patients are not only related to hypertension. This hypothesis is consistent
with the fact that the damage caused by hypertension takes several years. Due to the young
age of our population, one can speculate that other mechanisms can subtend cardiovascular
damage besides and beyond hypertension per se.

The reason why patients with ADPKD develop so early and so frequently experience
cardiovascular damage is still debated. The activation of the renin-angiotensin-aldosterone-
system (RAAS) [17,18,49–52], an increased sympathetic tone [53], and endothelial dys-
function, primarily via endothelin and nitric oxide actions [16,54–59], were intensively
investigated.

According to the results of our study, the role of blood pressure/hypertension is not
pivotal since the markers of early vascular and cardiac damage are not different in children
with or without high blood pressure (Table 1), and cardiovascular damage was present in
normotensive patients.

Anyhow, it is conceivable to speculate that early antihypertensive treatment, especially
with drugs that modulate renin-angiotensin-aldosterone, may be important for preventing
renal worsening or cardiovascular protection. Both these speculations are supported by the
notion that cardiovascular disease prevention occurs by reducing blood pressure and LVH,
even in ADPKD patients [60,61]. So far, the use of ACE inhibitors and maintaining blood
pressure < 120/80 mmHg are recommended in hypertensive patients with ADPKD [62]. By
contrast, if ACE inhibitors have been shown to slow kidney disease progression in patients
with nephropathies, especially if proteinuria is present, the role of ACE inhibitors in
slowing the progression of ADPKD needs to be clarified. In a randomized, prospective trial,
after a 5-year follow-up in patients with ADPKD who had well-preserved renal function,
amlodipine and enalapril were associated with a similar decline in creatinine clearance.
Still, only enalapril showed a sustained antialbuminuric effect leading to higher protective
effects in the long term [63]. No differences in the loss of renal function were also found in
comparison with beta-blockers after a 3-year follow-up [64]. On the other hand, it has been
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demonstrated that lowering blood pressure is crucial in slowing renal damage progression
regardless of antihypertensive use [64,65]. Even a meta-analysis including 142 patients
affected by ADPKD concluded that ACE inhibitors are more effective in lowering urine
protein excretion. Still, the progression rate of kidney disease was not significantly slower
than other agents [62]. All these data are in line with the hypothesis that, for slowing
kidney disease progression in ADPKD, lowering blood pressure is particularly important,
regardless of the therapy used, even though a more extended trial may be needed.

The cross-sectional design of the present study does not allow us to see if cardiac and
vascular damages develop contemporarily or are, in part, causes or consequences of each
other. Another limitation of the present study is that our population consisted of only
11 patients. However, the rarity of the disease can, at least partially, justify the restricted
number of included patients, which is consistent with other studies [26,27,41]. We also have
to acknowledge the lack of a control group. Reference values were taken from previous
epidemiological studies on children from European or US populations [32–36]. Moreover,
another limit was that genetics data were not available.

5. Conclusions

In conclusion, in this study, we showed a high prevalence of organ damage even in
children (with an average age < 10 years old) affected by ADPKD. In these children, we
report tendentially increased RWT and high cIMT, with likely masked hypertension in
almost half of patients despite normal renal function. Although this observation is clinically
relevant, the present study should be read cautiously due to several limitations. First of all,
because of the small sample size, this remains a pilot study, and firm conclusions cannot be
drawn. Second, a control group is missing, and thus differences between ADPKD patients
and healthy children cannot be determined, but only interpreted in the light of references
values. Anyhow, our data should be a warning and prompt towards early cardiovascular
screening and BP measurements using ABPM in children affected by ADPKD. Future
studies using a higher sample size and adequate control groups may help to address the
unmet points raised by our pilot study.
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