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In this paper we develop a new well-balanced discontinuous Galerkin (DG) finite element scheme 
with subcell finite volume (FV) limiter for the numerical solution of the Einstein–Euler equations 
of general relativity based on a first order hyperbolic reformulation of the Z4 formalism. The 
first order Z4 system, which is composed of 59 equations, is analyzed and proven to be strongly 
hyperbolic for a general metric. The well-balancing is achieved for arbitrary but a priori known 
equilibria by subtracting a discrete version of the equilibrium solution from the discretized time-

dependent PDE system. Special care has also been taken in the design of the numerical viscosity 
so that the well-balancing property is achieved. As for the treatment of low density matter, e.g. 
when simulating massive compact objects like neutron stars surrounded by vacuum, we have 
introduced a new filter in the conversion from the conserved to the primitive variables, preventing 
superluminal velocities when the density drops below a certain threshold, and being potentially 
also very useful for the numerical investigation of highly rarefied relativistic astrophysical flows.

Thanks to these improvements, all standard tests of numerical relativity are successfully 
reproduced, reaching three achievements: (i) we are able to obtain stable long term simulations 
of stationary black holes, including Kerr black holes with extreme spin, which after an initial 
perturbation return perfectly back to the equilibrium solution up to machine precision; (ii) a 
(standard) TOV star under perturbation is evolved in pure vacuum (𝜌 = 𝑝 = 0) up to 𝑡 = 1000 with 
no need to introduce any artificial atmosphere around the star; and, (iii) we solve the head on 
collision of two punctures black holes, that was previously considered un–tractable within the Z4 
formalism.

Due to the above features, we consider that our new algorithm can be particularly beneficial for 
the numerical study of quasi normal modes of oscillations, both of black holes and of neutron 
stars.

1. Introduction

In spite of considerable progress made in the last two decades, the stable and accurate numerical solution of the Einstein field 
equations still remains an extremely challenging task to be tackled. Among recent achievements, we highlight the results obtained 
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in [112,125,113,135,123,146]. One of the primary obstacles for numerical discretization of the Einstein equations is the fact that 
these equations are not immediately well-posed in their original four-dimensional form, and a well-posed 3+1 formulation is required. 
On a mathematical ground, the well-posedness of a 3+1 formulation of the Einstein equations would be guaranteed if one could prove 
that such a system of time-dependent partial differential (PDE) equations is unconditionally symmetric hyperbolic [42,133,41,137]. 
However, there are a number of reasons which prevent from reaching a simple conclusion in this respect. First, the Einstein equations 
arise as nonlinear second order PDEs in the metric coefficients, and reducing them to a first–order system from which the required 
mathematical properties can emerge more clearly is far from trivial [93]. Second, the gauge freedom which is inherent to the 
Einstein equations is quite often a rather delicate issue, as it can substantially affect hyperbolicity [79]. Finally, as the Einstein 
equations include a set of stationary nonlinear second order differential constraints which must be satisfied during the evolution, 
their proper treatment can also have important implications on the mathematical nature of the overall PDE system.

Despite the symmetric hyperbolicity being necessary for strictly proving well-posedness of a given first–order PDE system, from 
the computational view point this condition might be slightly relaxed as it is well known that for stable numerical computations, in 
fact, a strongly hyperbolic formulation is usually enough. In particular, the first-order strongly hyperbolic 3+1 formulation used in 
this paper does not have an obvious symmetric hyperbolic reformulation, at least to the best of our knowledge. Yet, it provides the 
possibility to perform stable computations of the Einstein field equations. We note that several symmetric hyperbolic formulations 
of the Einstein’s equations in 3+1 split are known [79,2,73,8,32,98], but the applicability of most of these formulations in numerical 
general relativity (GR) has yet to be tested.

One can notice that, after the first detection of gravitational waves recorded in 2015 [1], the vast majority of research groups 
performing numerical simulations of the gravitational signal from astrophysical sources have been adopting the so called 3+1 
formalism [3] in its various formulations. Some representative examples include [15,96,99,113,120,36,57]. In many of these codes 
the amount of physical effects that are currently taken into account is really impressive (see [14] for a review). The most popular and 
successful implementations using the 3+1 foliation of spacetime include the BSSNOK (Baumgarte-Shapiro-Shibata-Nakamura-Oohara-

Kojima) formulation [139,17,119,30]; the Z4 formulation of [24,25,5], which has the advantage of incorporating the treatment of the 
Einstein constraints through the addition of a four vector 𝑧𝜇 ; the Z4c formulation [22], which adds a conformal transformation to the 
metric; the CCZ4 formulation of [6,7], where suitable coefficients are added to damp the violation of the Einstein constraints and it is 
particularly suitable for treating binary systems. Finally, in recent work [63,62] a first–order version of CCZ4 was proposed, namely 
FO-CCZ4, which consists of a system of 59 equations, it is strongly hyperbolic for a particular choice of gauges and it incorporates 
a curl-cleaning technique for the treatment of internal curl-free conditions. As a proper mathematical formulation of the Einstein 
equations must be accompanied by a good numerical scheme in order to obtain stable and accurate numerical simulations, in [63,62]

a numerical scheme based on discontinuous Galerkin methods combined with finite volume subcell limiter [70] was used.

In spite of their attractive features in terms of accuracy and scalability on parallel computers, DG methods are far from common 
in the relativistic framework. After the pioneering investigations of [68,134], and apart from a slightly better popularity for treating 
relativistic flows in stationary spacetimes, with or without magnetic fields [34,152,56,54,88], their usage in full numerical relativ-

ity remains rather limited, with only a few groups investing on them around the world [142,116,105,97,146]. While in the just 
mentioned works the time evolution is performed via Runge–Kutta schemes at various orders, the approach followed by our group 
over the years has been to resort to ADER (arbitrary high order derivatives) schemes [147,148], which incorporate the solution of a 
Generalized Riemann Problem (GRP) at the cell boundaries. After the modern reformulation of ADER provided by [61,59], where the 
approximate solution of the GRP is obtained by evolving the data inside each cell through a local space-time discontinuous Galerkin 
predictor, ADER schemes have been successfully implemented to solve the relativistic hydrodynamics and magnetohydrodynamics 
equations in stationary spacetimes [153,155,154,75,84]. With the present work, we resume our investigations in full numerical rel-

ativity with DG methods, by revisiting the original Z4 formulation of the Einstein equations, which, as we clarify below, does not 
show any inconvenience with respect to the CCZ4 formulation and is significantly simpler.

In addition, when one performs numerical simulations of (nearly) stationary configurations, a crucial property that ought 
to be achieved is the ability to preserve equilibria exactly at the discrete level over long time scales. Indeed, this capabil-

ity, besides guaranteeing long-time stable simulations of the equilibrium profiles themselves, allows to capture with increased 
accuracy small physical perturbations around them that otherwise would be hidden by spurious numerical oscillations. For in-

stance, this is particularly relevant when studying normal modes of oscillations in relativistic astrophysical sources [110,78]. 
Thus, in this work we endow our high order finite volume and discontinuous Galerkin schemes with so-called well-balanced (WB) 
techniques. Such techniques were originally introduced in computational fluid dynamics for the shallow water equations, see 
e.g. [21,109,90,29,12,37,121,122], and then successfully employed for many different applications with a number of relevant results 
over the last two decades [38,115,85,81,11,39,128]. In particular, there has been a major interest for well-balancing in astrophysical 
applications, starting from their use joint to the classical Newtonian Euler equations with gravity and more recently even for the 
MHD system, see for example [28,101,102,40,20,82,55,106,144,143,145,92,19] and [100,23,76], to the more recent work of [83], 
where WB has been applied for the first time to the general relativistic framework allowing the (1D) numerical simulations of the 
coupled evolution of matter and spacetime for small perturbations of neutron star equilibrium configurations. In this work we pro-

pose a new, simple but rather efficient approach to obtain the well-balanced property inside an existing three-dimensional general 
purpose code for numerical general relativity that is based on finite volume and discontinuous Galerkin finite element schemes and 
which includes also adaptive mesh refinement (AMR) with time-accurate local time stepping (LTS), see [69,153,63]. Our new kind of 
well-balancing can be easily applied even to very complex hyperbolic PDE systems, such as the Einstein field equations, for which the 
original WB algorithm of [37,83] becomes more cumbersome, in particular when combining DG and FV schemes inside a 3D AMR 
2

framework with LTS. Since our work develops along different directions joining together various aspects concerning the formulation 
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of the equations, the numerical scheme and potential astrophysical applications, we list here the major achievements attained in this 
paper.

1. We provide a novel first–order reformulation of the Einstein equations in their Z4 version, showing the hyperbolicity of the 
resulting PDE system by the explicit computation of all the eigenvalues and eigenvectors for a general metric.

2. We solve the full Einstein–Euler equations written as a single monolithic first order hyperbolic system applying the same numerical 
scheme to all equations; the method employed in this paper is a very high order accurate and robust Discontinuous Galerkin (DG) 
scheme with adaptive mesh refinement (AMR), time-accurate local time stepping (LTS) and a posteriori sub-cell finite volume 
limiter.

3. We present a simple but at the same time very general well-balanced version of the overall algorithm, capable of preserving any 
general but a priori known equilibrium solution on arbitrarily long timescales. This opens the door to a wide field of potential 
applications in the numerical study of quasi normal modes of oscillations, both of black holes and of neutron stars.

4. We propose a major improvement in the conversion from the conserved to the primitive variables (of the matter part) in the 
presence of vacuum, which, at least in the simple case of an ideal gas equation of state, allows to treat physical regimes with 
𝑝 = 𝜌 = 0, thus avoiding any use of artificial low density atmospheres outside high density objects.

5. We show that even the Z4 formulation of the Einstein equations, which does not contain a conformal factor in the spatial metric, 
can successfully treat binary black holes, provided a “non–shifting–shift” version of the Gamma driver is adopted and a special 
filtering is applied to the metric terms, to avoid the formation of spikes.

The structure of the paper is the following: in Sect. 2 we present the original Z4 formulation provided by [24,25,27] with only 
minor modifications. Sect. 3 is devoted to the description of the new well-balanced ADER-DG scheme with subcell finite volume 
limiter, while Sect. 4 contains the results of our investigations. Finally, we conclude our analysis in Sect. 5 with a few indications for 
further progresses.

Throughout this paper we assume a signature (−, +, +, +) for the spacetime metric and we will use Greek letters (running from 
0 to 3) for four-dimensional spacetime tensor components, while Latin letters (running from 1 to 3) for three-dimensional spatial 
tensor components. Moreover, we adopt a geometrized system of units by setting 𝑐 =𝐺 = 1, in such a way that the most convenient 
unit of lengths is 𝑟𝑔 =𝐺𝑀∕𝑐2 =𝑀 . We just recall that for a one solar mass black hole, this choice corresponds to 𝑟𝑔 = 1.476 ×103 m

as a unit of length and to 𝑟𝑔 = 4.925 × 10−6 s as a unit of time.

2. Damped Z4 formulation of the Einstein equations

2.1. The 3+1 splitting of spacetime

According to the 3+1 formalism, the spacetime can be foliated through Σ𝑡 = 𝑐𝑜𝑛𝑠𝑡 hypersurfaces as

𝑑𝑠2 = −(𝛼2 − 𝛽𝑖𝛽𝑖)𝑑𝑡2 + 2𝛽𝑖𝑑𝑥𝑖𝑑𝑡+ 𝛾𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗 , (1)

where 𝛼 is the lapse, 𝛽𝑖 is the shift and 𝛾𝑖𝑗 is the metric of the three dimensional space, see [3,136,18,91] for an extended discussion. 
An Eulerian observer is then introduced, with four velocity defined by 𝑛𝜇 = 1

𝛼
(1, −𝛽𝑖) everywhere orthogonal to the hypersurface Σ𝑡, 

and with respect to whom all physical quantities are measured. We recall that the original Z4 formulation of the Einstein equations 
was not meant to be restricted to the 3+1 formalism. In fact, it was specifically devised by [24,25] to hyperbolize the elliptic Einstein 
constraints in a general covariant framework, after introducing an additional quantity 𝑧𝜇 whose role is analogous to the scalar Ψ in 
the divergence cleaning approach of [117,52] for the Maxwell and magnetohydrodynamics equations. On the other hand, the damped 
version of the Z4 formulation, first proposed by [94], was intrinsically linked to the 3+1 framework, since it dragged the four vector 
𝑛𝜇 directly into the Einstein equations, in combination with two additional constant coefficients 𝜅1 and 𝜅2, which were introduced 
to allow for the damping of the four vector 𝑧𝜇 as it propagates constraint violations away. An alternative rigorous treatment of the 
constraints is obtained via so-called fully-constrained formulations, see e.g. [48,47] and references therein.

Here we introduce a slightly different version with respect to [94], where the coefficients 𝜅1 and 𝜅2 are never multiplied among 
each other and thus produce effects that are clearly separated. Hence the augmented Einstein equations with damped Z4 cleaning 
read

𝐺𝜇𝜈 +∇𝜇𝑧𝜈 +∇𝜈𝑧𝜇 −∇𝜋𝑧𝜋𝑔𝜇𝜈 − 𝜅1(𝑛𝜇𝑧𝜈 + 𝑛𝜈𝑧𝜇) − 𝜅2𝑛𝜋𝑧𝜋𝑔𝜇𝜈 = 8𝜋𝑇𝜇𝜈 , (2)

or, equivalently,

(4)
( )
3

𝑅𝜇𝜈 +∇𝜇𝑧𝜈 +∇𝜈𝑧𝜇 − 𝜅1(𝑛𝜇𝑧𝜈 + 𝑛𝜈𝑧𝜇 − 𝑛𝜋𝑧𝜋𝑔𝜇𝜈) + 𝜅2𝑛𝜋𝑧𝜋𝑔𝜇𝜈 = 8𝜋 𝑇𝜇𝜈 −
1
2
𝑇 𝑔𝜇𝜈 , (3)
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where 𝐺𝜇𝜈 and (4)𝑅𝜇𝜈 are the Einstein and the Ricci tensors,1 while 𝑇 𝜇𝜈 is the energy–momentum tensor of matter. In this paper we 
limit our attention to a perfect fluid with no magnetic fields, such that

𝑇 𝜇𝜈 = (𝑒+ 𝑝)𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈 = 𝜌ℎ𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈 , (4)

with 𝑒, 𝑝, 𝜌 and ℎ being the energy density, the pressure, the rest mass density and the specific enthalpy, respectively, each of 
them measured in the comoving frame of the fluid with four velocity 𝑢𝜇 . We notice that the wave equation for the four vector 𝑧𝜇
corresponding to (2) is

∇𝜇∇𝜇𝑧𝜈 +
(4)
𝑅𝜇𝜈𝑧

𝜇 = 𝜅1∇𝜇(𝑛𝜇𝑧𝜈 + 𝑛𝜈𝑧𝜇) + 𝜅2∇𝜈(𝑛𝜌𝑧𝜌) , (5)

which is obtained after taking the four divergence of (2). Within the 3+1 decomposition, all vectors and tensors are split in their 
components parallel and perpendicular (or mixed, depending on the rank) to 𝑛𝜇 . So, for instance, we have

𝑢𝜇 =𝑊 𝑛𝜇 +𝑊 𝑣𝜇, (6)

𝑇 𝜇𝜈 = 𝑆𝜇𝜈 +𝑆𝜇𝑛𝜈 + 𝑛𝜇𝑆𝜈 +𝐸𝑛𝜇𝑛𝜈, (7)

𝑧𝜇 =Θ𝑛𝜇 +𝑍𝜇, (8)

where 𝑊 = −𝑢𝜇𝑛𝜇 = 1∕
√
1 − 𝑣2 is the Lorentz factor of the fluid, 𝑆𝜇𝜈 = 𝛾𝛼𝜇 𝛾

𝛽
𝜈 𝑇𝛼𝛽 is the spatial part of the energy–momentum tensor, 

𝑆𝜇 = −𝛾𝛼𝜇 𝑛
𝛽𝑇𝛼𝛽 is the momentum density, 𝛾𝜇𝜈 = 𝑛𝜇𝑛𝜈 + 𝛿

𝜇
𝜈 is the spatial projector tensor, 𝛿𝜇𝜈 is the Kronecker delta, 𝐸 = 𝑛𝛼 𝑛𝛽𝑇𝛼𝛽 is 

the energy density, 𝑍𝜇 = 𝛾𝜇𝜈 𝑧𝜈 is the purely spatial part of the four vector 𝑧𝜇 and Θ = −𝑧𝜇𝑛𝜇 = 𝛼𝑧0, each of which is measured in the 
Eulerian observer frame. In terms of the primitive variables they read

𝑆𝜇𝜈 = 𝜌ℎ𝑊 2𝑣𝜇𝑣𝜈 + 𝑝𝛾𝜇𝜈 , (9)

𝑆𝜇 = 𝜌ℎ𝑊 2𝑣𝜇 , (10)

𝐸 = 𝜌ℎ𝑊 2 − 𝑝 . (11)

There are also vectors and tensors which are intrinsically spatial, namely without any component along 𝑛𝜇 , such as the four acceler-

ation of the Eulerian observer

𝑎𝜇 = 𝑛𝜈∇𝜈𝑛𝜇 = 𝛾𝜈𝜇∇𝜈 ln𝛼 =𝐷𝜇 ln𝛼 , (12)

or the extrinsic curvature of the hypersurface Σ𝑡, a symmetric tensor defined as

𝐾𝜇𝜈 = −𝛾𝛼𝜇∇𝛼𝑛𝜈 = −∇𝜇𝑛𝜈 − 𝑛𝜇𝑎𝜈 , (13)

which plays a fundamental role as a dynamical set of quantities, representing the opposite of the (non–trace-free) shear tensor of 
the Eulerian four velocity 𝑛𝜇 . We notice that the purely spatial part of the Ricci tensor 𝑅𝜇𝜈 is not simply given by the full spatial 
projection of the four dimensional Ricci tensor (4)𝑅𝜇𝜈 , but rather is obtained from the so-called contracted Gauss relations, i.e.

𝑅𝜇𝜈 = 𝛾𝛼𝜇𝛾
𝛽
𝜈

(4)
𝑅𝛼𝛽 + 𝛾𝛼𝜇𝛾

𝛽
𝜈 𝑛

𝜎𝑛𝜋
(4)
𝑅𝛼𝜎𝛽𝜋 −𝐾𝐾𝜇𝜈 +𝐾𝜇𝜋𝐾𝜋

𝜈 , (14)

where 𝐾 = 𝛾𝑖𝑗𝐾𝑖𝑗 = −∇𝜇𝑛𝜇 is the trace of the extrinsic curvature, also equal to the opposite of the Eulerian observer expansion.

2.2. The second order Z4 system

The second order PDE system that governs the evolution of the gravitational field in the presence of matter is given by (see also 
[24] for a comparison)

(𝜕𝑡 −𝛽 ) 𝛾𝑖𝑗 = −2𝛼𝐾𝑖𝑗 (15)

(𝜕𝑡 −𝛽 ) 𝐾𝑖𝑗 = −𝐷𝑖𝐷𝑗𝛼 + 𝛼
[
𝑅𝑖𝑗 +𝐷𝑖𝑍𝑗 +𝐷𝑗𝑍𝑖 − 𝜅1Θ𝛾𝑖𝑗 − 𝜅2Θ𝛾𝑖𝑗 − 2Θ𝐾𝑖𝑗

− 2𝐾𝑖𝑚𝐾𝑚
𝑗 +𝐾𝐾𝑖𝑗 − 8𝜋

(
𝑆𝑖𝑗 −

1
2
𝑇 𝛾𝑖𝑗

) ]
(16)

(𝜕𝑡 −𝛽 ) Θ = 𝛼

2
𝑒2

[
𝑅+𝐾2 −𝐾𝑖𝑗 𝐾𝑖𝑗 − 16𝜋𝐸

]
+ 𝛼

[
𝐷𝑘𝑍

𝑘 −𝑍𝑘𝐷𝑘𝛼

𝛼
−Θ(2𝜅1 + 𝜅2) −𝐾Θ

]
(17)

(𝜕𝑡 −𝛽 ) 𝑍𝑖 = 𝛼 [
𝐷𝑗 𝐾𝑖

𝑗 −𝐷𝑖 𝐾 − 8𝜋𝑆𝑖
]
+ 𝛼[𝜕𝑖Θ− 2𝐾𝑖𝑗 𝑍𝑗 −Θ𝐷𝑖 ln𝛼 − 𝜅1𝑍𝑖] . (18)

1 In what follows we use the left superscript (4) to distinguish between four-dimensional tensors and three dimensional ones, in those cases when confusion may 
arise (the Ricci and the Riemann tensor). Moreover, ∇𝜇 denotes the four dimensional covariant derivative, while 𝐷𝜇 ∶= 𝛾𝜈𝜇∇𝜈 = (𝑛𝜈𝑛𝜇 + 𝛿𝜈𝜇)∇𝜈 is used for the spatial 
4

covariant derivative. This is the same convention of [3,136].



Journal of Computational Physics 504 (2024) 112875M. Dumbser, O. Zanotti, E. Gaburro et al.

Furthermore, we stress the following facts about each of the above equations.2 Eq. (15) is a pure relation coming from differential 
geometry and which can be derived without any reference to the Einstein field equations. It states that the dynamics of the spatial 
metric tensor 𝛾𝑖𝑗 is determined by the extrinsic curvature. Eq. (16) is obtained after inserting the four dimensional Ricci tensor as 
given by the Einstein equation (3) into the so–called Ricci equation of differential geometry (see [18,136] for an extended discussion). 
Finally, Eqs. (17)–(18) are the evolutionary version of the Einstein constraints within the Z4 formalism and are obtained after 
contracting the Einstein equations (3) with 𝑛𝜇𝑛𝜈 and 𝑛𝜇𝛾𝜈𝜋 , respectively. In fact, the Hamiltonian constraint 𝐻 and the momentum 
constraints 𝑀𝑖, defined as

𝐻 =𝑅−𝐾𝑖𝑗𝐾𝑖𝑗 +𝐾2 − 16𝜋𝐸 , (19)

𝑀𝑖 = 𝛾𝑗𝑙
(
𝜕𝑙𝐾𝑖𝑗 − 𝜕𝑖𝐾𝑗𝑙 − Γ𝑚

𝑗𝑙
𝐾𝑚𝑖 + Γ𝑚𝑗𝑖𝐾𝑚𝑙

)
− 8𝜋𝑆𝑖 , (20)

can be recognized on the right hand side of (17) and (18). Assumed to be zero for proper initial data of the Einstein equations, on the 
discrete level such quantities can in fact increase, and the whole strategy of the Z4 approach is to keep their dynamics under control 
by transporting the numerical errors away from the computational domain at the velocity 𝑒, which is the so-called cleaning speed.

2.3. The first–order Z4 system with matter

Similarly to the standard approach of [24,25,63], we introduce 30 auxiliary variables involving first derivatives of the metric 
terms, namely

𝐴𝑖 ∶= 𝜕𝑖 ln𝛼 =
𝜕𝑖𝛼

𝛼
, 𝐵 𝑖

𝑘
∶= 𝜕𝑘𝛽𝑖 , 𝐷𝑘𝑖𝑗 ∶=

1
2
𝜕𝑘𝛾𝑖𝑗 . (21)

In addition, we list the following expressions and identities, clarifying how second order spatial derivatives can be removed:

𝛾 = det(𝛾𝑖𝑗 ) , (22)

𝜕𝑘𝛾
𝑖𝑗 = −2𝛾𝑖𝑛𝛾𝑚𝑗𝐷𝑘𝑛𝑚 , (23)

Γ𝑘𝑖𝑗 = 𝛾
𝑘𝑙
(
𝐷𝑖𝑗𝑙 +𝐷𝑗𝑖𝑙 −𝐷𝑙𝑖𝑗

)
, (24)

𝜕𝑘Γ𝑚𝑖𝑗 = −2𝛾𝑚𝑛𝛾𝑝𝑙𝐷𝑘𝑛𝑝

(
𝐷𝑖𝑗𝑙 +𝐷𝑗𝑖𝑙 −𝐷𝑙𝑖𝑗

)
+ 𝛾𝑚𝑙

(
𝜕(𝑘𝐷𝑖)𝑗𝑙 + 𝜕(𝑘𝐷𝑗)𝑖𝑙 − 𝜕(𝑘𝐷𝑙)𝑖𝑗

)
, (25)

𝑅𝑚
𝑖𝑘𝑗

= 𝜕𝑘Γ𝑚𝑖𝑗 − 𝜕𝑗Γ
𝑚
𝑖𝑘
+ Γ𝑚

𝑙𝑘
Γ𝑙𝑖𝑗 − Γ𝑚

𝑙𝑗
Γ𝑙
𝑖𝑘
, (26)

𝑅𝑖𝑗 =𝑅𝑘𝑖𝑘𝑗 = 𝜕𝑘Γ
𝑘
𝑖𝑗 − 𝜕𝑗Γ

𝑘
𝑖𝑘
+ Γ𝑘

𝑙𝑘
Γ𝑙𝑖𝑗 − Γ𝑘

𝑙𝑗
Γ𝑙
𝑖𝑘
, (27)

𝑅 = 𝛾𝑖𝑗 𝑅𝑖𝑗 , (28)

𝐷𝑖𝐷𝑗𝛼 = 𝛼𝐴𝑖𝐴𝑗 − 𝛼 Γ𝑘𝑖𝑗𝐴𝑘 + 𝛼𝜕(𝑖𝐴𝑗) , (29)

Γ𝑖 = 𝛾𝑗𝑘 Γ𝑖
𝑗𝑘
, (30)

𝜕𝑘Γ𝑖 = −2𝐷𝑗𝑙

𝑘
Γ𝑖
𝑗𝑙
+ 𝛾𝑗𝑙 𝜕𝑘Γ𝑖𝑗𝑙 . (31)

Having done that, we can rephrase the system (15)–(18) as a first–order system, augmented by the matter part (see [53] for details). 
The full Z4 Einstein-Euler system is therefore given by

𝜕𝑡(
√
𝛾𝐷) + 𝜕𝑖

[√
𝛾(𝛼𝑣𝑖𝐷 − 𝛽𝑖𝐷)

]
= 0 , (32)

𝜕𝑡(
√
𝛾𝑆𝑗 ) + 𝜕𝑖

[√
𝛾(𝛼𝑆𝑖𝑗 − 𝛽

𝑖𝑆𝑗 )
]
=
√
𝛾
[
𝛼𝑆𝑖𝑘𝐷𝑗𝑖𝑘 +𝑆𝑖𝐵 𝑖

𝑗 − 𝛼𝐸𝐴𝑗
]
, (33)

𝜕𝑡(
√
𝛾𝐸) + 𝜕𝑖

[√
𝛾(𝛼𝑆𝑖 − 𝛽𝑖𝐸)

]
=
√
𝛾
[
𝛼𝑆𝑖𝑗𝐾𝑖𝑗 − 𝛼𝑆𝑗𝐴𝑗

]
, (34)

𝜕𝑡𝛾𝑖𝑗 − 𝛽𝑘𝜕𝑘𝛾𝑖𝑗 = 𝛾𝑖𝑘𝐵 𝑘
𝑗 + 𝛾𝑘𝑗𝐵 𝑘

𝑖 − 2𝛼𝐾𝑖𝑗 , (35)

𝜕𝑡𝐾𝑖𝑗 − 𝛽𝑘𝜕𝑘𝐾𝑖𝑗 + 𝛼𝜕(𝑖𝐴𝑗) − 𝛼𝛾𝑘𝑙
(
𝜕(𝑘𝐷𝑖)𝑗𝑙 − 𝜕(𝑘𝐷𝑙)𝑖𝑗

)
+ 𝛼𝛾𝑘𝑙

(
𝜕(𝑗𝐷𝑖)𝑘𝑙 − 𝜕(𝑗𝐷𝑙)𝑖𝑘

)
− 2𝛼𝜕(𝑖𝑍𝑗) =𝐾𝑘𝑖𝐵 𝑘

𝑗 +𝐾𝑘𝑗𝐵 𝑘
𝑖

− 𝛼𝐴𝑖𝐴𝑗 + 𝛼Γ𝑘𝑖𝑗𝐴𝑘 + 𝛼
[
− 2𝛾𝑘𝑛𝛾𝑝𝑙𝐷𝑘𝑛𝑝

(
𝐷𝑖𝑗𝑙 +𝐷𝑗𝑖𝑙 −𝐷𝑙𝑖𝑗

)
+ 2𝛾𝑘𝑛𝛾𝑝𝑙𝐷𝑗𝑛𝑝

(
𝐷𝑖𝑘𝑙 +𝐷𝑘𝑖𝑙 −𝐷𝑙𝑖𝑘

)
+ Γ𝑚

𝑙𝑚
Γ𝑙𝑖𝑗 − Γ𝑚

𝑙𝑗
Γ𝑙𝑖𝑚

]
− 2𝛼Γ𝑘𝑖𝑗𝑍𝑘 − 𝛼Θ𝛾𝑖𝑗 (𝜅1 + 𝜅2) − 2𝛼𝐾𝑖𝑙𝛾𝑙𝑚𝐾𝑚𝑗 + 𝛼𝐾𝑖𝑗 (𝐾 − 2Θ)

− 8𝜋𝛼
(
𝑆𝑖𝑗 −

1
2
𝑇 𝛾𝑖𝑗

)
, (36)

𝜕𝑡Θ− 𝛽𝑘𝜕𝑘Θ− 1
2
𝛼𝑒2

[
𝛾𝑖𝑗𝛾𝑘𝑙

(
𝜕(𝑘𝐷𝑖)𝑗𝑙 − 𝜕(𝑘𝐷𝑙)𝑖𝑗

)
− 𝛾𝑖𝑗𝛾𝑘𝑙

(
𝜕(𝑗𝐷𝑖)𝑘𝑙 − 𝜕(𝑗𝐷𝑙)𝑖𝑘

)
+ 2𝛾𝑖𝑗𝜕𝑖𝑍𝑗

]
=

5

2 While deriving the equations (16)–(17) one uses the fact 𝛾𝛼
𝜇
𝛾
𝛽
𝜈 ∇𝛼𝑧𝛽 = −Θ𝐾𝜇𝜈 +𝐷𝜇𝑍𝜈 and ∇𝜇𝑧

𝜇 = −𝐾Θ − 𝑛𝜇𝑛𝜈∇𝜇𝑧𝜈 +𝐷𝜇𝑍
𝜇 = −𝐾Θ + 𝑛𝜇𝜕𝜇Θ +𝑍𝜇𝑎

𝜇 +𝐷𝜇𝑍
𝜇 .
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= 𝛼

2
𝑒2

[
− 2𝛾𝑖𝑗𝛾𝑘𝑛𝛾𝑝𝑙𝐷𝑘𝑛𝑝

(
𝐷𝑖𝑗𝑙 +𝐷𝑗𝑖𝑙 −𝐷𝑙𝑖𝑗

)
+ 2𝛾𝑖𝑗𝛾𝑘𝑛𝛾𝑝𝑙𝐷𝑗𝑛𝑝

(
𝐷𝑖𝑘𝑙 +𝐷𝑘𝑖𝑙 −𝐷𝑙𝑖𝑘

)
+ 𝛾𝑖𝑗

(
Γ𝑚
𝑙𝑚
Γ𝑙𝑖𝑗 − Γ𝑚

𝑙𝑗
Γ𝑙𝑖𝑚

)
+𝐾2 −𝐾𝑖𝑗 𝐾𝑖𝑗 − 16𝜋𝐸

]
+ 𝛼

[
−𝛾𝑖𝑗 Γ𝑘𝑖𝑗𝑍𝑘 −𝑍

𝑘𝐴𝑘

]
− 𝛼Θ𝐾 − 𝛼Θ(2𝜅1 + 𝜅2) , (37)

𝜕𝑡𝑍𝑖 − 𝛽𝑘𝜕𝑘𝑍𝑖 − 𝛼𝜕𝑖Θ− 𝛼
[
𝛾𝑗𝑚𝜕𝑗𝐾𝑚𝑖 − 𝛾𝑚𝑛𝜕𝑖𝐾𝑚𝑛

]
=𝑍𝑘 𝐵 𝑘

𝑖 + 𝛼
[
− 𝛾𝑗𝑚(Γ𝑛𝑗𝑚𝐾𝑛𝑖 + Γ𝑛𝑗𝑖𝐾𝑚𝑛)

+ 𝛾𝑚𝑛(Γ𝑙𝑖𝑚𝐾𝑙𝑛 + Γ𝑙𝑖𝑛𝐾𝑚𝑙) − 8𝜋𝑆𝑖
]
+ 𝛼[−2𝐾𝑖𝑗 𝑍𝑗 −Θ𝐴𝑖 − 𝜅1𝑍𝑖] , (38)

where we have written the principal part of the PDEs on the left hand side, while moving all algebraic source terms to the right. In 
addition to the system (32)–(38), we need to adopt specific gauge conditions, which we choose in the following way. For the lapse, 
we assume the standard form [18]

𝜕𝑡 ln𝛼 − 𝛽𝑘𝜕𝑘 ln𝛼 = −𝑔(𝛼)𝛼(𝐾 −𝐾0 − 2𝑐Θ) , (39)

which gives us the possibility to switch among the 1+log gauge condition, setting 𝑔(𝛼) = 2∕𝛼, and the harmonic gauge condition, setting 
𝑔(𝛼) = 1. For the shift, on the other hand, we use the gamma–driver condition in those cases when the evolution of the shift is needed, 
and in particular we adopt the so-called “non–shifting–shift” version of [74]

𝜕𝑡𝛽
𝑖 = 3

4
𝑏𝑖, (40)

𝜕𝑡𝑏
𝑖 = 𝜕𝑡Γ̂𝑖 − 𝜂𝑏𝑖 , (41)

where Γ̂𝑖 = Γ𝑖 + 2𝛾𝑖𝑗𝑍𝑗 and Γ𝑖 = 𝛾𝑗𝑘 Γ𝑖
𝑗𝑘

. Note that the quantities Γ̂𝑖 are not primary variables, and their time evolution can be 
deduced from the other dynamical variables as specified below. From the gauge conditions (39)–(40) we can then obtain the PDEs 
for the auxiliary variables, namely

𝜕𝑡𝐴𝑖 − 𝛽𝑘𝜕𝑘𝐴𝑖 + 𝛼𝑔(𝛼)
(
𝛾𝑚𝑛𝜕𝑖𝐾𝑚𝑛 − 𝜕𝑖𝐾0 − 2𝑐𝜕𝑖Θ

)
= −𝛼𝐴𝑖

(
𝐾 −𝐾0 − 2Θ𝑐

)(
𝑔(𝛼) + 𝛼𝑔′(𝛼)

)
+

+ 2𝛼𝑔(𝛼)𝐾𝑗𝑘𝐷𝑖𝑗𝑘 +𝐵 𝑘
𝑖 𝐴𝑘 , (42)

𝜕𝑡𝐵
𝑖
𝑘
− 𝑠

(3
4
𝜕𝑘𝑏

𝑖 − 𝛼2𝜇 𝛾𝑖𝑗𝛾𝑛𝑙
(
𝜕𝑘𝐷𝑙𝑗𝑛 − 𝜕𝑙𝐷𝑘𝑗𝑛

))
= 0 , (43)

𝜕𝑡𝐷𝑘𝑖𝑗 − 𝛽𝑙𝜕𝑙𝐷𝑘𝑖𝑗 −
1
2
𝛾𝑚𝑖𝜕(𝑘𝐵

𝑚
𝑗) −

1
2
𝛾𝑚𝑗𝜕(𝑘𝐵

𝑚
𝑖) + 𝛼𝜕𝑘𝐾𝑖𝑗 =𝐵

𝑚
𝑘
𝐷𝑚𝑖𝑗 +𝐵 𝑚

𝑗 𝐷𝑘𝑚𝑖 +𝐵 𝑚
𝑖 𝐷𝑘𝑚𝑗

− 𝛼𝐴𝑘𝐾𝑖𝑗 . (44)

The following aspects ought to be emphasized about the whole system (32)–(44)

• The first five equations for the evolution of matter are in conservative form, while the rest of the equations are in non conserva-

tive form.

• The quantities Γ̂𝑖 in Eq. (41) are not primary variables. Their evolution in time is obtained from

𝜕𝑡Γ̂𝑖 = Γ𝑖
𝑗𝑘
𝜕𝑡𝛾

𝑗𝑘 + 𝛾𝑗𝑘 𝜕𝑡Γ𝑖𝑗𝑘 + 2
(
𝑍𝑗𝜕𝑡𝛾

𝑖𝑗 + 𝛾𝑖𝑗𝜕𝑡𝑍𝑗
)
, (45)

which involve time derivatives of the already existing dynamical variables. In fact, we can write

𝜕𝑡𝛾
𝑖𝑗 = −𝛾𝑖𝑛𝛾𝑗𝑚𝜕𝑡𝛾𝑛𝑚
= −2𝛾𝑖𝑛𝛾𝑗𝑚𝛽𝑘 𝐷𝑘𝑛𝑚 − 𝛾𝑗𝑘𝐵 𝑖

𝑘
− 𝛾𝑖𝑘𝐵 𝑗

𝑘
+ 2𝛼𝛾𝑖𝑛𝛾𝑗𝑚𝐾𝑛𝑚, (46)

𝜕𝑡Γ𝑖𝑗𝑘 = 𝜕𝑡𝛾
𝑖𝑚
(
𝐷𝑗𝑚𝑘 +𝐷𝑘𝑗𝑚 −𝐷𝑚𝑗𝑘

)
+ 𝛾𝑖𝑚

(
𝜕𝑡𝐷𝑗𝑚𝑘 + 𝜕𝑡𝐷𝑘𝑗𝑚 − 𝜕𝑡𝐷𝑚𝑗𝑘

)
= 𝛾𝑖𝑚𝛽𝑟

[
𝜕𝑟𝐷𝑗𝑚𝑘 + 𝜕𝑟𝐷𝑘𝑗𝑚 − 𝜕𝑟𝐷𝑚𝑗𝑘

]
+ 𝜕(𝑗𝐵 𝑖

𝑘) − 𝛼𝛾
𝑖𝑚
(
𝜕𝑗𝐾𝑚𝑘 + 𝜕𝑘𝐾𝑗𝑚 − 𝜕𝑚𝐾𝑗𝑘

)
+

+𝛾𝑖𝑚
[
𝐷𝑗𝑚𝑛𝐵

𝑛
𝑘
+𝐷𝑛𝑚𝑘𝐵

𝑛
𝑗 +𝐷𝑘𝑛𝑚𝐵

𝑛
𝑗 +𝐷𝑛𝑗𝑚𝐵

𝑛
𝑘
−𝐷𝑚𝑗𝑛𝐵

𝑛
𝑘
−𝐷𝑚𝑛𝑘𝐵

𝑛
𝑗

]
−𝛼𝛾𝑖𝑚

(
𝐴𝑗𝐾𝑚𝑘 +𝐴𝑘𝐾𝑗𝑚 −𝐴𝑚𝐾𝑗𝑘

)
+

+
[
− 2𝛾𝑖𝑝𝛾𝑚𝑞𝛽𝑟𝐷𝑟𝑝𝑞 − 𝛾𝑚𝑟𝐵 𝑖

𝑟 + 2𝛼𝛾𝑖𝑝𝛾𝑚𝑞𝐾𝑝𝑞
] (
𝐷𝑗𝑚𝑘 +𝐷𝑘𝑗𝑚 −𝐷𝑚𝑗𝑘

)
. (47)

• The binary parameter 𝑠 in Eq. (43), either 1 or 0, is introduced to switch the gamma–driver on or off, depending on the test being 
considered.

The equations (32)–(44) above form a non-conservative first-order hyperbolic system, namely they can be written as

𝜕𝐮 𝜕𝐟𝑖(𝐮) 𝜕𝐮 𝜕𝐮
6

𝜕𝑡
+

𝜕𝑥𝑖
+𝐁𝑖(𝐮) 𝜕𝑥𝑖

= 𝐒(𝐮), or, equivalently,
𝜕𝑡

+∇ ⋅ 𝐅(𝐮) +𝐁(𝐮) ⋅∇𝐮 = 𝐒(𝐮), (48)
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where 𝐮 is the state vector, composed of 59 dynamical variables,3 𝐅(𝐮) = (𝐟1(𝐮), 𝐟2(𝐮), 𝐟3(𝐮)) is the flux tensor for the conservative 
(hydrodynamic) part of the PDE system, while 𝐁(𝐮) =

(
𝐁1(𝐮),𝐁2(𝐮),𝐁3(𝐮)

)
represents the non-conservative part of the system, 

essentially all of the Einstein sector. Finally, 𝐒(𝐮) is the source term, which contains algebraic terms only. When written in pure 
quasilinear form, the system (48) becomes

𝜕𝐮
𝜕𝑡

+𝑨𝑖(𝐮)
𝜕𝐮
𝜕𝑥𝑖

= S(𝐮) , (49)

where the matrix 𝐀𝑖(𝐮) = 𝜕𝐟𝑖(𝐮)∕𝜕𝐮 + 𝐁𝑖(𝐮) contains both the conservative and the non-conservative contributions. Sect. 3 below 
describes the numerical methods adopted to solve such a system of equations.

2.4. Hyperbolicity of the first order Z4 system

Even before the Z4 formalism was introduced, in [26] the hyperbolic nature of the first–order conservative formulation of the 
Einstein field equations was highlighted. It was subsequently confirmed after the introduction of the Z4 approach [24]. However, our 
analysis differs from theirs, since our system (32)–(44) is written in non–conservative form. In the context of the CCZ4 formulation 
[63], we have already emphasized that the hyperbolicity of a system like (49) is favored if one makes the maximum possible use of 
the auxiliary variables defined in Eq. (21). In other words, our first-order Z4 system does not contain any spatial derivatives of 𝛼, 
𝛽𝑖, 𝛾𝑖𝑗 , which have been moved to the purely algebraic source term 𝑺(𝐮) precisely by using the auxiliary quantities defined in (21). 
We have verified the hyperbolicity of the subsystem (35)–(44) governing the space-time evolution by computing the eigenvalues and 
the corresponding eigenvectors through the symbolic mathematical software Maple.4 The results for a general metric are reported in 
Appendix A.

3. The numerical scheme

3.1. A well-balanced ADER-DG scheme for non conservative systems

For problems where a stationary equilibrium solution needs to be maintained in time, the well-balancing properties of a numerical 
scheme can play a major difference. Such techniques were first introduced for the shallow water equations in [21,109,86,90,12,37,

38,126] and further developed over the years with a number of significant contributions, see [39] and references therein. Later, the 
concept of well-balancing was also extended to the Newtonian Euler equations with gravity, see e.g. [28,101,102,40,20,82,55,106,

143,92]. The resulting numerical schemes are able to remove the discretization errors from the equilibrium solution, while focusing 
on the development of real physical perturbations that may act on a system. A well-balanced scheme for the numerical solution of 
the Einstein equations was first proposed by [83], who showed that, if an initial perturbation is introduced in a stationary solution, 
only the well-balanced algorithm is able to recover the shape of the equilibrium over long timescales. On the contrary, the solution 
obtained through a not well-balanced scheme will be significantly deteriorated.

Unfortunately, the extension to three space dimensions and to adaptive mesh refinement (AMR) with time-accurate local time 
stepping (LTS) of the well-balanced scheme presented by [83] is quite cumbersome, as the scheme essentially relies on the incorpo-

ration of well-balanced reconstruction operators. Therefore, we propose here an alternative approach which is conceptually much 
simpler, yet extremely effective. The obtained method, presented here below, is exactly well-balanced for any equilibrium solution 
that is known a priori, exactly or in a discrete way. Thus, the equilibrium can be given in a closed analytical form, but it may also be 
just a numerical equilibrium, as it is for example in the TOV star test case, presented in Sect. 4.6, where the equilibrium solution has 
been obtained by solving an ODE system in radial direction with a high order accurate numerical method. From the point of view 
of preserved equilibria this is for example the same context of [83] and [19], the latter being similar also for the structure of the 
proposed well-balanced methodology.

In the following we use 𝐮𝑒 = 𝐮𝑒(𝐱) to denote a general stationary equilibrium solution, for which we know that

𝜕𝑡𝐮𝑒 = 0. (50)

Hence, as a consequence, the equilibrium solution 𝐮𝑒 must satisfy the stationary PDE system

𝜕𝐟𝑖(𝐮𝑒)
𝜕𝑥𝑖

+𝐁𝑖(𝐮𝑒)
𝜕𝐮
𝜕𝑥𝑖

= 𝐒(𝐮𝑒), or, equivalently, 𝑨𝑖(𝐮𝑒)
𝜕𝐮
𝜕𝑥𝑖

= 𝐒(𝐮𝑒). (51)

Since we can always subtract (51) from the governing PDE (48) we obtain

𝜕𝐮
𝜕𝑡

+
𝜕𝐟𝑖(𝐮)
𝜕𝑥𝑖

−
𝜕𝐟𝑖(𝐮𝑒)
𝜕𝑥𝑖

+𝐁𝑖(𝐮)
𝜕𝐮
𝜕𝑥𝑖

−𝐁𝑖(𝐮𝑒)
𝜕𝐮𝑒
𝜕𝑥𝑖

= 𝐒(𝐮) − 𝐒(𝐮𝑒). (52)

Having done that, we create an extended vector of quantities 𝐮̃ = [𝐮, 𝐮𝑒]𝑇 to be evolved in time, essentially doubling the number of 
variables. In practice, the vector 𝐮𝑒 is slightly smaller than 𝐮, since we do not need to consider the equilibrium values of the cleaning 

3 More specifically, 5 for the matter part, 10 for the lapse, the shift vector and the metric components, 6 for 𝐾𝑖𝑗 , 4 for the 𝑧𝜇 four vector, 3 for 𝐴𝑖 , 9 for 𝐵 𝑗
𝑖

, 18 for 
𝐷𝑖𝑗𝑘 , 1 for 𝐾0 and 3 for 𝑏𝑖 .
7

4 See https://maplesoft .com/.

https://maplesoft.com/
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four vector 𝑧𝜇 , neither of the scalar 𝐾0, nor of the three vector 𝑏𝑖 related to the gamma–driver. Eventually, the full vector 𝐮̃ contains 
59 + 51 = 110 variables, and with the above property 𝜕𝑡𝐮𝑒 = 0 of a stationary equilibrium the system (52) translates into

𝜕𝐮̃
𝜕𝑡

+
𝜕𝐟𝑖(𝐮)
𝜕𝑥𝑖

+ 𝐁̃𝑖(𝐮)
𝜕𝐮̃
𝜕𝑥𝑖

= 𝐒̃(𝐮̃), or, equivalently,
𝜕𝐮̃
𝜕𝑡

+∇ ⋅ 𝐅̃(𝐮̃) + 𝐁̃(𝐮̃) ⋅∇𝐮̃ = 𝐒̃(𝐮̃), (53)

with 𝐅̃(𝐮̃) =
(
𝐟1(𝐮̃), 𝐟2(𝐮̃), 𝐟3(𝐮̃)

)
,

𝐒̃(𝐮̃) =
(
𝐒(𝐮) − 𝐒(𝐮𝑒)

0

)
, 𝐟𝑖(𝐮̃) =

(
𝐟𝑖(𝐮) − 𝐟𝑖(𝐮𝑒)

0

)
(54)

and

𝑨̃𝑖 =
(
𝑨𝑖(𝐮) −𝑨𝑖(𝐮𝑒)
0 0

)
, 𝐁̃𝑖 =

(
𝐁𝑖(𝐮) −𝐁𝑖(𝐮𝑒)
0 0

)
, (55)

thus obtaining that the equilibrium sector 𝐮𝑒 contained in the second part of 𝐮̃ remains frozen, while the equilibrium solution is 
subtracted from the first part of the vector 𝐮̃, as dictated by Eq. (52). We note that the approach expressed by Eq. (52) closely follows 
the seminal ideas introduced in [87,19] for the well-balancing of completely general multi-dimensional hyperbolic PDE systems. While 
the applications presented in [87,19] were related to the Newtonian Euler and MHD equations, the method is general enough so that 
in this paper it can now for the first time also be applied to a first order reformulation of the Einstein-Euler system that describes the 
coupled dynamics of matter and spacetime in full general relativity, see (32)-(44).

It is obvious that when inserting the extended equilibrium solution 𝐮̃𝑒 = (𝐮𝑒, 𝐮𝑒)𝑇 into (53) one has 𝜕𝑡𝐮̃𝑒 = 0, i.e. the augmented 
equation is trivially satisfied since by construction the following fundamental properties hold:

𝐅̃(𝐮̃𝑒) = 0, 𝐁̃(𝐮̃𝑒) ⋅∇𝐮̃𝑒 = 0, 𝐒̃(𝐮̃𝑒) = 0. (56)

In the computation of the numerical fluxes via Riemann solvers, which is typical for discontinuous Galerkin and finite volume 
schemes, special care has to be taken in the structure of the numerical viscosity, which must not destroy the well-balancing of the 
numerical scheme. For this purpose, we will later need a modified identity matrix or well-balanced identity matrix, which acts on the 
extended state vector 𝐮̃ and has the following block structure:

𝐈̃ =
(

𝐈 −𝐈
0 0

)
. (57)

The main property of the above well-balanced identity matrix is that its product with the extended equilibrium state 𝐮̃𝑒 = (𝐮𝑒, 𝐮𝑒)𝑇
is zero, i.e. 𝐈̃ 𝐮̃𝑒 = 0.

In the practical implementation of the numerical scheme solving Eq. (53), we have allowed for the possibility to switch the well-

balancing on or off, according to the problem under consideration. For equilibrium, or close–to–equilibrium problems, well-balancing 
is of course important and it is activated. For rather dynamical problems, on the contrary, well-balancing is abandoned, and only the 
first 59 equations are considered with no need to subtract the equilibrium solution.

The DG and FV discretization is based on the weak form of the PDE (53), which, upon integration over the spacetime control 
volume Ω𝑖 × [𝑡𝑛, 𝑡𝑛+1], provides

𝑡𝑛+1

∫
𝑡𝑛

∫
Ω𝑖

Φ𝑘
𝜕𝐮̃
𝜕𝑡
𝑑𝐱 𝑑𝑡+

𝑡𝑛+1

∫
𝑡𝑛

∫
Ω𝑖

Φ𝑘

(
∇ ⋅ 𝐅̃(𝐮̃) + 𝐁̃(𝐮̃) ⋅∇𝐮̃

)
𝑑𝐱 𝑑𝑡=

𝑡𝑛+1

∫
𝑡𝑛

∫
Ω𝑖

Φ𝑘 𝐒̃(𝐮̃)𝑑𝐱 𝑑𝑡 . (58)

The most important difference between the new scheme presented in this paper and the one used in [83] is that here we use a 
discrete version of the equilibrium 𝐮𝑒

ℎ
(𝐱, 𝑡𝑛) by simply setting the nodal degrees of freedom as 𝐮̃𝑛

𝑖,𝓁 = (𝐮𝑒(𝐱𝓁), 𝐮𝑒(𝐱𝓁))𝑇 , i.e. the discrete 
equilibrium is the 𝐿2 projection of the exact equilibrium into the space of piecewise polynomials of degree 𝑁 . Instead, in [83] the 
discrete solution was the sum of the exact analytical (non-polynomial) equilibrium 𝐮𝑒(𝐱) plus a piecewise polynomial perturbation.

In the following, we will focus on a few relevant aspects calling for attention when integrating Eq. (58), each of which deserves 
a bit of discussion.

3.1.1. The DG discretization in space

We tackle the solution of the Z4 system by considering a computational domain Ω in dimension 𝑑 = 2 or 𝑑 = 3 that is given by the 
union of a set of non-overlapping Cartesian tensor-product elements, namely Ω =

⋃
Ω𝑖 =

⋃
[𝑥𝑖 −

1
2Δ𝑥𝑖, 𝑥𝑖 +

1
2Δ𝑥𝑖] × [𝑦𝑖 −

1
2Δ𝑦𝑖, 𝑦𝑖 +

1
2Δ𝑦𝑖] × [𝑧𝑖 −

1
2Δ𝑧𝑖, 𝑧𝑖 +

1
2Δ𝑧𝑖], where 𝒙𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) indicates the barycenter of cell Ω𝑖 and Δ𝒙𝑖 = (Δ𝑥𝑖, Δ𝑦𝑖, Δ𝑧𝑖) defines the size of 

Ω𝑖 in each spatial coordinate direction. According to the DG finite-element approach, the discrete solution at time 𝑡𝑛 is written in 
terms of prescribed spatial basis functions Φ𝓁(𝒙) as

𝑛
∑

𝑛 𝑛
8

𝐮̃ℎ(𝒙, 𝑡 ) =
𝓁

𝒖̃
𝑖,𝓁Φ𝓁(𝒙) ∶= 𝒖̃𝑖,𝓁Φ𝓁(𝒙) . (59)
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Here 𝓁 ∶= (𝓁1, 𝓁2, 𝓁3) is a multi-index while the expansion coefficients 𝒖̂𝑛
𝑖,𝓁 are the so-called degrees of freedom. The spatial basis 

functions Φ𝓁(𝒙) = 𝜑𝓁1
(𝜉)𝜑𝓁2

(𝜂)𝜑𝓁3
(𝜁) are chosen as tensor products of one-dimensional nodal basis functions defined on the refer-

ence element [0, 1]. In one spatial dimension, the basis functions 𝜑𝓁𝑖
(𝜉) are the Lagrange interpolation polynomials, up to degree 

𝑁 , which pass through the (𝑁 + 1) Gauss-Legendre quadrature points. This is particularly convenient when performing numerical 
integrals of the discrete solution, due to the nodal property that 𝜑𝑘(𝜉𝑗 ) = 𝛿𝑘𝑗 , with 𝜉𝑗 being the coordinates of the nodal points.5

3.1.2. The spacetime predictor

A crucial aspect has to do with time integration. A common option to integrate Eq. (58) in time would be to resort to Runge–

Kutta schemes, thus obtaining RKDG schemes [46,45]. However, as a valid alternative introduced by [66,61,130] and adopted 
preferentially within our group, we have followed the ADER approach, according to which a high order accurate (both in space 
and in time) solution can be obtained through a single time integration step, provided an approximate predictor state 𝐪̃ℎ is available 
at any intermediate time between 𝑡𝑛 and 𝑡𝑛+1. Note that unlike in previous publications on ADER schemes in this paper 𝐪̃ℎ is an 
approximation of the extended state vector 𝐮̃ = [𝐮, 𝐮𝑒]𝑇 . Furthermore, while in the original ADER version of ADER by Toro and 
Titarev [147,148,150] the computation of the predictor was obtained through the Cauchy-Kovalewski procedure, we follow here the 
more recent approach introduced in [59], which is more suitable for complex systems of equations like the Einstein-Euler equations 
of general relativity. The predictor 𝐪̃ℎ is thus expanded into a local spacetime basis

𝐪̃ℎ(𝒙, 𝑡) =
∑
𝓁

𝜃𝓁(𝒙, 𝑡)𝒒̃𝑖,𝓁 ∶= 𝜃𝓁(𝒙, 𝑡)𝒒̃𝑖,𝓁 , (60)

with the multi-index 𝓁 = (𝓁0, 𝓁1, 𝓁2, 𝓁3) and where the spacetime basis functions

𝜃𝓁(𝒙, 𝑡) = 𝜑𝑙0 (𝜏)𝜑𝓁1
(𝜉)𝜑𝓁2

(𝜂)𝜑𝓁3
(𝜁)

are again generated from the same one-dimensional nodal basis functions 𝜑𝑘(𝜉) as before, namely using the Lagrange interpolation 
polynomials up to degree 𝑁 passing through 𝑁 + 1 Gauss–Legendre quadrature nodes. The coordinate time is mapped to the 
reference time 𝜏 ∈ [0, 1] via 𝑡 = 𝑡𝑛 + 𝜏Δ𝑡. Multiplication of the PDE system (53) with a test function 𝜃𝑘 and integration over the 
spacetime control volume Ω𝑖 × [𝑡𝑛, 𝑡𝑛+1] yields

𝑡𝑛+1

∫
𝑡𝑛

∫
Ω𝑖

𝜃𝑘
𝜕𝐪̃ℎ
𝜕𝑡

𝑑𝐱 𝑑𝑡+
𝑡𝑛+1

∫
𝑡𝑛

∫
Ω𝑖

𝜃𝑘
(
∇ ⋅ 𝐅̃(𝐪̃ℎ) + 𝐁̃(𝐪ℎ) ⋅∇𝐪̃ℎ

)
𝑑𝐱 𝑑𝑡 =

𝑡𝑛+1

∫
𝑡𝑛

∫
Ω𝑖

𝜃𝑘𝐒̃(𝐪̃ℎ)𝑑𝐱 𝑑𝑡. (61)

Since the calculation is performed locally for each cell, no special treatment of the jumps at the element boundaries is needed at this 
stage, and Riemann solvers are not involved. Rather, Eq. (61) is integrated by parts in time, providing

∫
Ω𝑖

𝜃𝑘(𝐱, 𝑡𝑛+1)𝐪̃ℎ(𝐱, 𝑡𝑛+1)𝑑𝐱 − ∫
Ω𝑖

𝜃𝑘(𝐱, 𝑡𝑛)𝐮̃ℎ(𝐱, 𝑡𝑛)𝑑𝐱 −
1

∫
0

∫
𝑇𝐸

𝜕𝜃𝑘(𝐱, 𝑡)
𝜕𝑡

𝐪̃ℎ(𝐱, 𝑡)𝑑𝐱 𝑑𝑡 =

𝑡𝑛+1

∫
𝑡𝑛

∫
Ω𝑖

𝜃𝑘
(
𝐒̃(𝐪̃ℎ) − ∇ ⋅ 𝐅̃(𝐪ℎ) + 𝐁̃(𝐪̃ℎ) ⋅∇𝐪̃ℎ

)
𝑑𝐱 𝑑𝑡. (62)

Eq. (62) generates a nonlinear system for the unknown degrees of freedom 𝒒̃𝑖,𝓁 of the spacetime polynomials 𝐪̃ℎ. The solution of (62)

is obtained via a simple fixed-point iteration, the convergence of which was proven in [35].

Well-balanced property of the predictor When the discrete solution 𝐮̃ℎ(𝐱, 𝑡𝑛) at time 𝑡𝑛 coincides with the discrete equilibrium, i.e. 
when 𝐮̃ℎ(𝐱, 𝑡𝑛) = (𝐮𝑒

ℎ
, 𝐮𝑒
ℎ
)𝑇 with nodal degrees of freedom 𝐮̃𝑛

𝑖,𝓁 = (𝐮𝑒(𝐱𝓁), 𝐮𝑒(𝐱𝓁))𝑇 , then it is obvious that 𝐪̃ℎ = 𝐪̃𝑒
ℎ
= (𝐮𝑒

ℎ
, 𝐮𝑒
ℎ
)𝑇 is 

a solution of (62) since 𝐒̃(𝐪̃𝑒
ℎ
) − ∇ ⋅ 𝐅̃(𝐪̃𝑒

ℎ
) + 𝐁̃(𝐪̃𝑒

ℎ
) ⋅ ∇𝐪𝑒

ℎ
= 0 due to the fundamental properties (56). Hence, the predictor is by 

construction well-balanced.

3.1.3. ADER-DG schemes for non-conservative systems

Another aspect related to the solution of Eq. (58) has to do with the presence of non–conservative terms, indeed the vast majority 
in the Einstein–Euler system that we are considering. Our strategy is based on the so-called path-conservative approach of [37,126], 
which was first applied to DG schemes by [60,64] and subsequently considered in the context of the first–order formulation of the 
CCZ4 Einstein system by [63]. In practice, after integration by parts of the flux divergence and the introduction of a Riemann solver 
that accounts for the jumps at the element boundaries, the fully discrete one-step ADER-DG scheme resulting from (58) reads
9

5 The mapping from physical coordinates 𝐱 ∈Ω𝑖 to reference coordinates 𝝃 = (𝜉, 𝜂, 𝜁 ) ∈ [0, 1]3 is simply given by 𝐱 = 𝐱𝑖 −
1
2
Δ𝐱𝑖 + (𝜉Δ𝑥𝑖, 𝜂Δ𝑦𝑖, 𝜁Δ𝑧𝑖)𝑇 .
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⎛⎜⎜⎜⎝∫Ω𝑖
Φ𝑘Φ𝓁 𝑑𝐱

⎞⎟⎟⎟⎠
(
𝒖̃𝑛+1
𝑖,𝓁 − 𝒖̃𝑛

𝑖,𝓁

)
+

𝑡𝑛+1

∫
𝑡𝑛

∫
Ω◦
𝑖

Φ𝑘 𝐁̃(𝐪̃ℎ) ⋅∇𝐪̃ℎ𝑑𝐱 𝑑𝑡−
𝑡𝑛+1

∫
𝑡𝑛

∫
Ω◦
𝑖

∇Φ𝑘 ⋅ 𝐅̃(𝐪̃ℎ)𝑑𝐱 𝑑𝑡

+

𝑡𝑛+1

∫
𝑡𝑛

∫
𝜕Ω𝑖

Φ𝑘(
𝐪̃−
ℎ
, 𝐪̃+
ℎ

)
⋅ 𝒏𝑑𝑆𝑑𝑡+

𝑡𝑛+1

∫
𝑡𝑛

∫
𝜕Ω𝑖

Φ𝑘  (
𝐪̃−
ℎ
, 𝐪̃+
ℎ

)
⋅ 𝒏𝑑𝑆𝑑𝑡 =

𝑡𝑛+1

∫
𝑡𝑛

∫
Ω𝑖

Φ𝑘 𝐒̃(𝐪̃ℎ)𝑑𝜉 𝑑𝜏 , (63)

where the boundary integrals in (63) become relevant only when the boundary extrapolated states at the left 𝐪̃−
ℎ

and at the right 𝐪̃+
ℎ

of the interface are different, 𝐪̃−
ℎ
≠ 𝐪̃+

ℎ
, namely when there is a true jump. According to a now well-established procedure, developed 

in [126,37,67], the jump terms in the non-conservative product are computed through a path-integral in phase space as

(
𝐪̃−
ℎ
, 𝐪̃+
ℎ

)
⋅ 𝒏 = 1

2

⎛⎜⎜⎝
1

∫
0

𝐁̃(𝝍) ⋅ 𝒏𝑑𝑠
⎞⎟⎟⎠
(
𝐪̃+
ℎ
− 𝐪̃−

ℎ

)
, (64)

which we have solved via a Gaussian quadrature formula composed of three points. For simpler systems of equations, one might 
even think about using the Riemann invariants of the PDE system as optimal paths along which to perform the integration [118], 
but for the Einstein equations such an option is absolutely impracticable, thus we have used a simple segment path

𝝍 =𝝍(𝐪̃−
ℎ
, 𝐪̃+
ℎ
, 𝑠) = 𝐪̃−

ℎ
+ 𝑠

(
𝐪̃+
ℎ
− 𝐪̃−

ℎ

)
, 0 ≤ 𝑠 ≤ 1 . (65)

The simplest possible numerical flux for the conservative part of the equations, i.e. for the Euler subsystem, is a Rusanov-type flux 
given by

 (
𝐪̃−
ℎ
, 𝐪̃+
ℎ

)
⋅ 𝒏 = 1

2
(
𝐅̃(𝐪̃−

ℎ
) + 𝐅̃(𝐪̃+

ℎ
)
)
⋅ 𝒏− 1

2
𝑠max 𝐈̃

(
𝐪̃+
ℎ
− 𝐪̃−

ℎ

)
. (66)

The last term in Eq. (66) contains the numerical viscosity, which employs the well-balanced identity matrix 𝐈̃. For a Rusanov-type 
flux the numerical viscosity is provided by the knowledge of a single characteristic speed, 𝑠max, which denotes the maximum of the 
absolute values of the characteristic velocities |||Λ(𝐪̃−ℎ )|||, |||Λ(𝐪̃+ℎ )||| at the interface

𝑠max = max
(|||Λ(𝐪̃−ℎ )||| , |||Λ(𝐪̃+ℎ )|||

)
. (67)

A more sophisticated HLL-type flux, which also employs the use of the well-balanced identity matrix 𝐈̃ reads

 (
𝐪̃−
ℎ
, 𝐪̃+
ℎ

)
⋅ 𝒏 =

𝑠𝑅𝐅̃(𝐪̃−ℎ ) − 𝑠𝐿𝐅̃(𝐪̃
+
ℎ
)

𝑠𝑅 − 𝑠𝐿
⋅ 𝒏+

𝑠𝑅𝑠𝐿
𝑠𝑅 − 𝑠𝐿

𝐈̃
(
𝐪̃+
ℎ
− 𝐪̃−

ℎ

)
, (68)

with the left and right signal speeds 𝑠𝐿 ≤ 0 and 𝑠𝑅 ≥ 0 computed, e.g., according to [71,72].

Well-balanced property of the final ADER-DG scheme We now assume that the discrete solution coincides with the discrete equilibrium, 
i.e. 𝐮̃ℎ = (𝐮𝑒

ℎ
, 𝐮𝑒
ℎ
)𝑇 . Since the predictor is well-balanced, the resulting predictor solution is 𝐪̃ℎ = (𝐮𝑒

ℎ
, 𝐮𝑒
ℎ
)𝑇 . Due to the fundamental 

property (56) it is obvious that all terms in (63) cancel by construction. However, at this point we emphasize again that in order 
to preserve the well-balancing property of the numerical scheme, in the numerical fluxes one must make use of the well-balanced 
identity matrix 𝐈̃ introduced in (57), since 𝐈̃

(
𝐪̃𝑒,+
ℎ

− 𝐪̃𝑒,−
ℎ

)
= 0 for two arbitrary discrete equilibrium states 𝐪̃𝑒,±

ℎ
= (𝐮𝑒,±

ℎ
, 𝐮𝑒,±
ℎ

).
Finally, since it is quite often a crucial quantity in a numerical simulation, it is worth providing some information about the 

total memory consumption produced by our numerical scheme. Let us first quantify the memory load of the spacetime predictor of 
Sect. 3.1.2 for a single variable and a single numerical cell, i.e.

MemLoad𝑃 = (𝑁 + 1)4 ⋅ [ 1
⏟⏟⏟

𝐪̃ℎ

+ 3
⏟⏟⏟

𝐅̃

+ 3
⏟⏟⏟

∇𝐪̃

+ 1
⏟⏟⏟

𝐒̃

] = 8 ⋅ (𝑁 + 1)4 , (69)

where 𝑁 is the degree of the DG polynomial, the exponent 4 refers to the number of spacetime dimensions, while the terms in square 
brackets correspond to the contribution of the variable itself, the fluxes, the gradients and the source, respectively. Secondly, the 
memory load produced by the true DG scheme of Sect. 3.1.3 is given by

MemLoad𝐷𝐺 = 2 ⋅ (𝑁 + 1)3 ⋅ [ 1
⏟⏟⏟

𝐪̃ℎ

+ 3
⏟⏟⏟

𝐅̃

+ 1
⏟⏟⏟

𝐒̃−𝐁̃⋅∇𝐪̃

] = 10 ⋅ (𝑁 + 1)3 , (70)

where the multiplication factor 2 is required to account for the two time levels at 𝑡𝑛 and 𝑡𝑛+1, the exponent 3 refers to the number 
of space dimensions, while the terms in square brackets correspond to the contribution of the variable itself, the fluxes, and the 
compactified term 𝐒̃ − 𝐁̃ ⋅∇𝐪̃, the latter one being an optimization feature of our implementation. Summing Eq. (69) and Eq. (70), 
10

and multiplying by the 110 variables of the fully well-balanced scheme, we obtain the total memory load per numerical cell
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Table 1

Memory load per cell of the fully well-balanced Z4 ADER-

DG scheme according to Eq. (71).

𝑁 MemLoad MemLoad (Byte, double precision)

1 22880 183040 ∼ 0.2 MB

2 100980 807840 ∼ 0.8 MB

3 295680 2365440 ∼ 2.2 MB

4 687500 5500000 ∼ 5.2 MB

5 1378080 11024640 ∼ 10.5 MB

MemLoad = 110 ⋅ (MemLoad𝑃 +MemLoad𝐷𝐺) = 220 ⋅ (𝑁 + 1)3 ⋅ (4𝑁 + 9) . (71)

Table 1 shows the total memory load for a few values of the polynomial degree 𝑁 according to Eq. (71).

3.2. A posteriori sub-cell finite volume limiter

At this point, we need to point out that DG schemes are linear in the sense of Godunov [89]. This means that, while the solution is 
represented within each cell by higher order polynomials, the update rule is linear when applied to a linear PDE. Hence, they represent 
a highly accurate method to describe the smooth features of the metric variables, but, as proven by the Godunov theorem [89], 
starting from second order, they will inevitably oscillate in presence of discontinuities or strong gradients. Thus, we need to endow 
our DG scheme with a technique able to strengthen its robustness, maintaining at the same time its desirable high order of accuracy.

Among the different strategies proposed over the years (see for example [43,44,108,127,131,132] for some seminal introductory 
papers), we select the so-called a posteriori sub-cell finite volume limiter, which has proved its capabilities in previous works both 
from the authors themselves [70,156,65,155,103,80,84] and also from other research groups [140,141,51,95,111,138,129]. While 
referring to the aforementioned references for a detailed description, in particular to Section 3.4 of [156] and Section 4 of [155]

where the sub-cell finite volume limiter has been also outlined on adaptive Cartesian meshes (AMR), here we only briefly recall the 
key concepts.

First, our limiter acts in general in an a posteriori fashion: indeed, at the beginning of each timestep we apply our unlimited DG 
scheme, everywhere on the domain, in order to obtain a candidate solution 𝐮̃𝑛+1,∗

ℎ
= 𝐮̃𝑛+1

ℎ
. Then, the candidate solution is checked 

against physical and numerical admissibility criteria to verify that it does not present nonphysical values (as negative densities, 
negative pressures or superluminal velocities) or spurious oscillations (according to a relaxed discrete maximum principle). The cells 
where one of these criteria is not respected are marked as troubled and, only in those cells, we completely recompute the solution 
by employing a more robust scheme; in particular, in this work we rely either on a second order Total Variation Diminishing (TVD) 
finite volume scheme or on a third order ADER-WENO [16] FV method.

Furthermore, we emphasize that the key point for maintaining the resolution capabilities of the DG scheme, when using instead a 
less accurate FV scheme, consists in applying it on a locally refined mesh. So, we subdivide each original troubled cell Ω𝑖 in (2𝑁 +1)𝑑
sub-cells 𝜔𝛼 . Then, we perform an 𝐿2 projection of the DG solution 𝐮̃𝑛

ℎ
on the space of constant polynomials obtaining the sub-cell 

averages values 𝑢̂𝑛|𝜔𝛼 with 𝛼 = [1, (2𝑁 + 1)𝑑 ], and we evolve these sub-cell values with the FV scheme. In this way, we obtain the 
updated sub-cell averages information 𝑢̂𝑛+1|𝜔𝛼 from which we reconstruct back a high order polynomial 𝐮̃𝑛+1

ℎ
with a least square 

operator coupled with a conservation constraint on the main cell Ω𝑖. We also notice that this reconstruction technique might still 
lead to an oscillatory solution, being an unlimited linear procedure. In this case, the oscillatory cell will be marked again as troubled 
at the next timestep 𝑡𝑛+2, so we will apply again the FV scheme there but using as sub-cell averages directly the oscillation-free 
𝑢̂𝑛+1|𝜔𝛼 obtained at the previous timestep without passing through the reconstruction-projection step.

Finally, we remark that FV schemes have a less restrictive CFL stability condition than that imposed by Eq. (88) for DG schemes. 
In particular, the choice of the Δ𝑡 is not affected at all by the requested order of accuracy, thus the factor (2𝑁 + 1) is not appearing 
in the finite volume CFL formula. This justifies the stability of our FV limiter scheme which can be safely applied to the cells 𝜔𝛼
whose mesh size is exactly a factor (2𝑁 + 1) smaller than the original Ω𝑖 cell size, thus leading exactly to the same CFL constraint of 
the original unlimited DG scheme. Further details can be found in [70].

Concerning the well-balancing property, the subcell FV limiter is also by construction well-balanced for discrete equilibria due to 
the fundamental properties (56).

3.3. The choice of coordinates

In general relativity the choice of coordinates is completely arbitrary, in the sense that, since the original equations are covariant, 
the mathematical form of the equations is always the same, irrespective of the coordinates chosen. However, this does not mean that 
all coordinate systems behave equally well, especially when performing numerical simulations. In this paper we have adopted the 
following systems of coordinates:

1. Spherical coordinates (𝑡, 𝑟, 𝜃, 𝜙), which can be used either in flat spacetime or in the presence of a central (non–rotating) mass, 
11

as for the case described in Sect. 4.6. The corresponding metric is
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𝑑𝑠2 = −𝑒2𝜙𝑑𝑡2 + 𝑒2𝜓𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃𝑑𝜙2 , (72)

where 𝜙 and 𝜓 are functions of 𝑟 only.

2. Kerr–Schild spheroidal coordinates (𝑡, 𝑟, 𝜃, 𝜙). These are special coordinates6 that are very convenient to describe the stationary 
spacetime of either non-rotating (Schwarzschild, with 𝑎 = 0) or rotating (Kerr, with 0 < 𝑎 < 1) black holes, since they do not 
show any singularity at the event horizon. In terms of such coordinates the metric can be written as [104,107]

𝑑𝑠2 =(𝑧− 1)𝑑𝑡2 − 2𝑧𝑎 sin2 𝜃 𝑑𝑡𝑑𝜙+ 2𝑧𝑑𝑡 𝑑𝑟− 2𝑎(1 + 𝑧) sin2 𝜃 𝑑𝑟𝑑𝜙

+ (1 + 𝑧)𝑑𝑟2 + 𝜌2 𝑑𝜃2 + Σsin2 𝜃
𝜌2

𝑑𝜙2 , (73)

where 𝑧 = 2𝑀𝑟∕𝜌2, 𝜌2 = 𝑟2 + 𝑎2 cos2 𝜃, Σ = (𝑟2 + 𝑎2)2 − 𝑎2Δ sin2 𝜃, Δ = 𝑟2 + 𝑎2 − 2𝑀𝑟. The lapse of the metric is 𝛼 = 1∕
√
1 + 𝑧, 

while there is a non–zero shift 𝛽𝑖 = (𝑧∕(1 + 𝑧),0,0) even in the absence of black hole rotation. The spatial part of the metric is 
given by

𝛾𝑖𝑗 =
⎛⎜⎜⎝

1 0 −𝑎 sin2 𝜃(1 + 𝑧)
0 𝜌2 0

−𝑎 sin2 𝜃(1 + 𝑧) 0 Σ sin2 𝜃∕𝜌2

⎞⎟⎟⎠ . (74)

The only physical singularity of the Kerr spacetime, which is also a coordinate singularity, is at 𝜌2 = 0, namely, at 𝑟 = 0 and 
𝜃 = 𝜋∕2.

3. Kerr–Schild Cartesian coordinates (𝑡, 𝑥, 𝑦, 𝑧). These coordinates are obtained from the Kerr-Schild spheroidal coordinates through 
the transformation

𝑥 =
√
𝑟2 + 𝑎2 sin𝜃 cos

[
𝜙− arctan

(
𝑎

𝑟

)]
, (75)

𝑦 =
√
𝑟2 + 𝑎2 sin𝜃 sin

[
𝜙− arctan

(
𝑎

𝑟

)]
, (76)

𝑧 = 𝑟 cos𝜃 , (77)

𝑡 = 𝑡′ , (78)

such that the metric can be expressed as a deviation from the flat Minkowski spacetime, namely

𝑑𝑠2 =
(
𝜂𝜇𝜈 + 2𝐻𝑙𝜇𝑙𝜈

)
𝑑𝑥𝜇 𝑑𝑥𝜈 𝜇, 𝜈 = 1,2,3 (79)

where

𝐻 = 𝑀𝑟3

𝑟4 + 𝑎2𝑧2
, 𝑙𝑥 =

𝑟𝑥+ 𝑎𝑦
𝑟2 + 𝑎2

, 𝑙𝑦 =
𝑟𝑦− 𝑎𝑥
𝑟2 + 𝑎2

, 𝑙𝑧 =
𝑧

𝑟
, (80)

and

𝑟 =

√
(𝑥2 + 𝑦2 + 𝑧2 − 𝑎2)∕2 +

√
((𝑥2 + 𝑦2 + 𝑧2 − 𝑎2)∕2)2 + 𝑧2𝑎2. (81)

Note that the lapse and the shift are given, respectively, by 𝛼 = 1∕
√
𝐺 and 𝛽𝑖 = 2𝐻

𝐺
𝑙𝑖, where 𝐺 = 1 + 2𝐻 . In these coordinates, 

the physical singularity, that in spheroidal coordinates is at 𝑟 = 0, 𝜃 = 𝜋∕2, corresponds to the points with 𝑥2 + 𝑦2 = 𝑎2 on the 
𝑧 = 0 plane, and it is therefore represented by a circle, the so-called ring singularity.

For each of the numerical tests reported in Sect. 4 we will specify which kind of coordinates have been adopted, among those just 
described.

3.4. Recovering of the primitive hydrodynamical variables

Notoriously, in the relativistic framework the recovering of the primitive variables (𝜌, 𝑣𝑖, 𝑝) from the conserved variables (𝐷, 𝑆𝑖, 𝐸)
is not analytic, and a numerical root-finding approach is necessary. The primitive variables are in fact required for the computation 
of the numerical fluxes in the evolution of the matter variables (see equations (32)–(34) above). Here, following the third method 
reported in Sect. 3.2 of [53], we solve the system

𝐹1(𝑥, 𝑦) = 𝑦2𝑥−𝑆2 = 0, (82)

𝐹2(𝑥, 𝑦) = 𝑦− 𝑝−𝐸 = 0 , (83)

6 In view of the coordinate transformation (75)–(78), we are not allowed to interpret the Kerr–Schild coordinates as standard spherical coordinates. For an extended 
12

discussion about different coordinate systems in the Kerr spacetime see [151].
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Fig. 1. Left panel: plot of the polynomial 𝑓 (𝑦) built in such a way to have 𝑓 (0) = 1, 𝑓 (𝑦0) = 0, 𝑓 ′(0) = 0, 𝑓 ′(𝑦0) = 0. Right panel: plot of the ratio between velocity 
and momentum 𝑣𝑖∕𝑆𝑖 when the filter function is applied. If 𝑦 = 𝜌ℎ𝑊 2 < 10−4 , the filter is activated, and the velocity decreases smoothly to zero.

where 𝑥 = 𝑣2, 𝑦 = 𝜌ℎ𝑊 2, and where the pressure, at least for an ideal gas equation of state considered in this paper, can be written 
in terms of 𝑥 and 𝑦 as

𝑝 = 𝛾 − 1
𝛾

[
(1 − 𝑥)𝑦−𝐷

√
1 − 𝑥

]
. (84)

In practice, we first derive 𝑦 = 𝑦(𝑥) from Eq. (83) and then we find the root of 𝐹1[𝑥, 𝑦(𝑥)] = 0 via a Newton scheme. As any other 
root solver, however, also this one might have troubles when the gas variables become very small, a problem that has been afflicting 
numerical relativistic hydrodynamics since its birth. We have found a rather efficient strategy to solve this problem in such a way 
that allows us to treat even cases when 𝜌 = 0 exactly. The idea can be split in the following steps:

1. We first check whether 𝐷 is smaller than a given tolerance, say 𝐷 < 10−14. If that is the case, we set 𝜌 =𝑚𝑎𝑥(0, 𝐷) and 𝑣𝑖 = 0. 
This accounts also for the cases when 𝐷 becomes less or equal than zero, and reflects the idea that where there is no matter, the 
velocity field also vanishes, hence the associated Lorentz factor is one.

2. If 𝐷 > 10−14, then we apply our standard root solver as outlined above. If the root solver fails, then again we set 𝜌 = 𝑝 = 𝑣𝑖 = 0.

3. If the root solver finds a root, namely a value of 𝑥 = 𝑣2, the following check is performed. If 𝑦 > 𝑦0 = 10−4, the velocity is 
computed normally as

𝑣𝑖 =
𝑆𝑖

𝑦
. (85)

If instead 𝑦 < 𝑦0 = 10−4, then a filter function is introduced

𝑓 (𝑦) = 2(𝑦∕𝑦0)3 − 3(𝑦∕𝑦0)2 + 1 (86)

and the velocity field is computed by a filtered division as

𝑣𝑖 = 𝑆𝑖
𝑦

𝑦2 + 𝑓 (𝑦)𝜀
, (87)

where 𝜀 = 5 × 10−9. The filter function 𝑓 (𝑦) in the denominator of (87) is a cubic polynomial chosen in such a way to have 
vanishing first derivatives in 𝑦 = 0 and in 𝑦 = 𝑦0, as well as the correct interpolating property in those two points, namely 
𝑓 (0) = 1, 𝑓 (𝑦0) = 0.

In this way it is possible to solve regions characterized by very low matter densities, including even 𝜌 = 0, and the potentially harmful 
division by zero is controlled by the filter function in the denominator of (87), which never vanishes. We stress that the value of 𝜀 in 
Eq. (87) does not come from a rigorous proof, but it is related to the choice 𝑦0 = 10−4 roughly as 𝜀 ≤ 𝑦20 according to the following 
arguments: since 𝑓 (0) = 1 and 𝑓 (𝑦0) = 0 (see the left panel of Fig. 1), when 𝑦 → 0, the product 𝑓 (𝑦)𝜀 → 𝜀, which is a small but finite 
quantity, thus avoiding division by zero in the denominator of Eq. (87). When 𝑦 → 𝑦0, on the contrary, the product 𝑓 (𝑦)𝜀 → 0 and we 
approach the safe regime of normal division, namely Eq. (87) reduces to Eq. (85). The effect of the filter is plotted in Fig. 1, showing 
both the polynomial 𝑓 (𝑦) (left panel) and the ratio 𝑣𝑖∕𝑆𝑖 (right panel), which reduces smoothly to zero when 𝑦 → 0.

The method that we have just described is decoupled from the well-balanced property of Sect. 3.1, in the sense that it can be 
applied successfully even in a not well-balanced implementation. Of course it will require appropriate adaptations in case of more 
complicated equations of state. Actually, having 𝜌 = 𝑝 = 𝑣𝑖 = 0 corresponds to removing the fluid, while preserving the underlying 
13

equilibrium solution of the spacetime. Therefore, the algorithm itself adheres perfectly to the well-balanced approach.
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Fig. 2. Linearized gravitational wave test solved with an ADER-DG scheme of order 6. Left panel: 𝐾𝑧𝑧 component of the extrinsic curvature at the final time, compared 
to the exact solution. Right panel: Einstein constraints monitored all along the duration of the simulation.

4. Numerical tests

In this Section we present a large set of numerical results to show all the capabilities, in terms of robustness, long-term stability 
and resolution, of our high order finite volume and discontinuous Galerkin schemes for the simulation of the proposed first–order 
hyperbolic Einstein-Euler Z4 system. If not stated otherwise, in all numerical tests we use the standard Z4 cleaning speed 𝑒 = 1 in 
our modified Z4 system.

We also recall that the timestep in DG schemes is restricted according to

Δ𝑡 < 1
𝑑

1
(2𝑁 + 1)

ℎ|𝜆max| , (88)

where ℎ and |𝜆max| are a characteristic mesh size and the maximum signal velocity, respectively.

4.1. Linearized gravitational wave test

As a first validation of our approach we consider a simple test, essentially one-dimensional, taken from [4] for which the metric 
is given as a wave perturbation of the flat Minkowski space time

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑥2 + (1 + 𝑏)𝑑𝑦2 + (1 − 𝑏)𝑑𝑧2, with 𝑏 = 𝜖 sin (2𝜋(𝑥− 𝑡)) , (89)

where 𝜖 = 10−8 is small enough so that the model behavior is linear and the terms depending on 𝜖2 can be neglected. According 
to (89) 𝛾𝑥𝑥 = 1, 𝛾𝑦𝑦 = 1 + 𝑏, 𝛾𝑧𝑧 = 1 − 𝑏; next, we use the harmonic gauge condition, while the gamma–driver can be turned off, i.e. 
𝑠 = 0. Furthermore, the extrinsic curvature is given by 𝐾𝑖𝑗 = 𝜕𝑡𝛾𝑖𝑗∕(2𝛼) which means that its nonzero components are only 𝐾𝑦𝑦 =
−1∕2 𝜕𝑡𝑏 and 𝐾𝑧𝑧 = 1∕2 𝜕𝑡𝑏. The remaining non zero terms for the problem initialization are 𝐷𝑥𝑦𝑦 = 1∕2 𝜕𝑥𝑏 and 𝐷𝑥𝑧𝑧 = −1∕2 𝜕𝑥𝑏, 
with the following setting for the other relevant parameters 𝜅1 = 0, 𝜅2 = 0 and 𝑐 = 0. Matter is absent in this test. To discretize the 
problem we consider a rectangular domain [−0.5, 0.5] × [−0.2, 0.2] with periodic boundary conditions, and we employ an unlimited 
ADER-DG scheme of order 6 on a mesh composed by 4 × 4 elements, which corresponds to 24 degrees of freedom in each direction. 
We run our simulation until a final time of 𝑡 = 1000, corresponding to 1000 crossing times.7 Fig. 2 shows the results of the calculation. 
In the left panel we present the numerical solution for the 𝐾𝑧𝑧 component of the extrinsic curvature, at the final time, compared 
with the exact one. Essentially the same perfect matching is exhibited by the other quantities. In the right panel we display instead 
the evolution of the Einstein constraints. As evident, in this simulation the Hamiltonian and momentum constraints are all constant 
up to machine precision for the entire duration of the simulation.

4.2. The gauge wave

We continue the benchmarking of our numerical scheme and of the proposed first–order hyperbolic reformulation of the 𝑍4
system with the so called gauge wave test, also taken from [4]. Here, the metric is given by

𝑑𝑠2 = −𝐻(𝑥, 𝑡)𝑑𝑡2 +𝐻(𝑥, 𝑡)𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2, where 𝐻(𝑥, 𝑡) = 1 −𝐴 sin (2𝜋(𝑥− 𝑡)) , (90)
14

7 We recall that, for tests in special relativity, having set 𝑐 = 1, the unit of time is the time taken by light to cover a unit distance.
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Fig. 3. Solution of the gauge wave test at 𝑡 = 1000 with 𝐴 = 0.1 using an ADER DG scheme of order 4. Left panel: profile of the lapse 𝛼 compared to the exact solution. 
Right panel: Evolution of the Einstein constraints.

which describes a sinusoidal gauge wave of amplitude 𝐴 propagating along the 𝑥-axis. This means that the metric variables are set 
to 𝛾𝑥𝑥 =𝐻 and 𝛾𝑦𝑦 = 𝛾𝑧𝑧 = 1 and the shift vector is 𝛽𝑖 = 0, hence the gamma–driver is switched off (𝑠 = 0). For this test the harmonic 
gauge condition is used. The extrinsic curvature is again given by 𝐾𝑖𝑗 = −𝜕𝑡𝛾𝑖𝑗∕(2𝛼), i.e.

𝐾𝑦𝑦 =𝐾𝑧𝑧 =𝐾𝑥𝑦 =𝐾𝑥𝑧 =𝐾𝑦𝑧 = 0 and 𝐾𝑥𝑥 = −𝜋𝐴 cos (2𝜋(𝑥− 𝑡))√
1 −𝐴 sin (2𝜋(𝑥− 𝑡))

. (91)

All the other quantities follow accordingly, with the lapse function given by 𝛼 =
√
𝐻 . Matter is absent also in this test problem. We 

emphasize that the present test case, even if it can be seen as a nonlinear reparametrization of the flat Minkowski spacetime, is far 
from trivial: indeed, it is reported that the first and second order formulation of the classical BSSNOK system fail for this test after 
a rather short time, see [6,31], and that the original version of the CCZ4 system was stable only in its damped formulation [6]. The 
first stable undamped simulation was reported in [63] for a first–order reformulation of the CCZ4 system. Also here for this test 
we use an undamped version of the PDEs with 𝜅1 = 0, 𝜅2 = 0, while we have noticed that it is necessary to set 𝑐 = 1 in the gauge 
condition (39) chosen with the harmonic version, i.e. 𝑔(𝛼) = 1.

We have first run a test case with a small wave amplitude 𝐴 = 0.1 over a rectangular domain of size [−0.5, 0.5] ×[−0.02, 0.02] with 
periodic boundary conditions. We have used an ADER-DG P3 numerical scheme with a uniform grid composed of 100 × 4 elements, 
evolving the system until 𝑡 = 1000. Hence in the left panel of Fig. 3 we show the profile of the lapse function 𝛼 as a representative 
quantity, showing a perfect matching with the exact solution at the final time. In the right panel, on the other hand, we monitor as 
usual the Einstein constraints, which manifest a moderate linear growth all along the evolution.

Then, we have considered a large amplitude perturbation with 𝐴 = 0.9, to the extent of performing a numerical convergence 
analysis of our scheme. The computational domain in this case is given by [−0.5, 0.5] × [−0.05, 0.05]. The results, extracted from data 
at time 𝑡 = 10, are reported in Table 2 and confirm that the scheme reaches the nominal order of convergence.

4.3. The robust stability test

Another important validation for any numerical GR code is represented by the so–called robust stability test in a flat Minkowski 
spacetime without matter, already treated by [4,63]. It consists of a random perturbation with amplitude ±10−7∕𝜚2 which is applied 
to all quantities of the PDE system in a flat Minkowski spacetime. The amplitude of the perturbation that we have chosen is three 
orders of magnitude higher than that reported in [4]. The computational domain is given by the square [−0.5; 0.5] × [−0.5; 0.5], 
for which we have considered four simulations with an unlimited ADER-DG 𝑃3 scheme on a sequence of refined meshes formed by 
10𝜚 × 10𝜚 elements, where 𝜚 ∈ {1,2,4,8} is the refinement factor.

This is also a test for the gamma–driver shift condition, which, in principle, would not be necessary for this kind of problem but 
is nevertheless activated to solve the PDE system in its full generality. The other relevant parameters have been chosen as 𝜅1 = 0, 
𝜅2 = 0, 𝑐 = 0, 𝜇 = 0.2, 𝜂 = 0, see (41) and (43). Fig. 4 shows the results of our calculations, where we have reported the evolution of 
the four Einstein constraints for a sample of progressively refined meshes. The unit of time is again the travel time taken by light to 
cover the edge of the square domain.

4.4. Spherical Michel accretion

As a further test, we have evolved the transonic spherical accretion solution of matter onto a Schwarzschild black hole obtained 
by [114] (see also [136] for a modern presentation). We recall that this is not a solution of the full Einstein–Euler equations, but 
15

rather just of the Euler equations in the stationary background spacetime of a non–rotating black hole. However, if the whole mass 
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Table 2

Numerical convergence results for the gauge wave test at 𝑡 = 10 with a wave amplitude 𝐴 = 0.9. In the table we report 
the 𝐿1 , 𝐿2 , 𝐿∞ error norms and the corresponding numerical order of convergence for the lapse 𝛼.

Gauge wave — ADER-DG-ℙ𝑁
𝑁𝑥 ×𝑁𝑦 𝐿1 error 𝐿2 error 𝐿∞ error 𝐿1 order 𝐿2 order 𝐿∞ order Theor.

D
G

-ℙ
2

40 × 4 1.2838E-03 4.8661E-03 2.5095E-02 — — —

3
60 × 6 2.6423E-04 9.8619E-04 4.9053E-03 3.90 3.94 4.03

80 × 8 8.2440E-05 3.0322E-04 1.5083E-03 4.05 4.10 4.10

100 × 10 3.3280E-05 1.2108E-04 6.0413E-04 4.07 4.11 4.10

D
G

-ℙ
3

40 × 4 5.3398E-05 2.0348E-04 1.0660E-03 — — —

4
60 × 6 1.2460E-05 4.7006E-05 2.3760E-04 3.59 3.61 3.70

80 × 8 4.1667E-06 1.5621E-05 7.7947E-05 3.81 3.83 3.87

100 × 10 1.7520E-06 6.5436E-06 3.2420E-05 3.88 3.90 3.93

D
G

-ℙ
4

40 × 4 1.8236E-06 6.7109E-06 3.3969E-05 — — —

5
60 × 6 1.6400E-07 5.8994E-07 2.8784E-06 5.94 6.00 6.09

80 × 8 2.9500E-08 1.0461E-07 4.9922E-07 5.96 6.01 6.09

100 × 10 7.7948E-09 2.7398E-08 1.2988E-07 5.96 6.00 6.03

D
G

-ℙ
5

40 × 4 5.5287E-08 2.0571E-07 1.1845E-06 — — —

6
60 × 6 6.2100E-09 2.2674E-08 1.1696E-07 5.39 5.44 5.71

80 × 8 1.2027E-09 4.3669E-09 2.1883E-08 5.71 5.73 5.83

100 × 10 3.3009E-10 1.1974E-09 5.9321E-09 5.79 5.80 5.85

D
G

-ℙ
6

40 × 4 2.8610E-09 1.0215E-08 5.2758E-08 — — —

7
50 × 5 5.0341E-10 1.7825E-09 8.9322E-09 7.79 7.82 7.96

60 × 6 1.2258E-10 4.3434E-10 2.5857E-09 7.75 7.74 6.80

70 × 7 3.8840E-11 1.3929E-10 1.0035E-09 7.46 7.38 6.14

accretion rate is small enough, we can neglect the increase of the black hole mass that would in principle be produced by the 
accreted matter. Under such circumstances we can consistently evolve the Euler equations while freezing the evolution of the metric, 
i.e. assuming what is referred to as the Cowling approximation [49].

The numerical details for obtaining the initial conditions can be found in [10]. We have performed this simulation in spheroidal 
Kerr–Schild coordinates (see case 1. of Sect. 3.3) over a two dimensional computational domain given by (𝑟, 𝜃) ∈ [0.5; 10] ×[0 + 𝜖; 𝜋−
𝜖], with 𝜖 = 0.005 and covered by a 50 ×32 uniform grid. The critical radius, where the flow becomes supersonic, is 𝑟𝑐 = 5 (inside the 
computational domain). We choose the critical density (density at the critical radius) 𝜌𝑐 = 1.006 × 10−7 such that the mass accretion 
rate (computed as 4𝜋𝑟2𝑐 𝜌𝑐𝑢

𝑟
𝑐 ) is −1.0 ×10−5, meaning that the total mass accreted onto the black hole from 𝑡 = 0 to 𝑡 = 1000 𝑀 is just 

1∕100 of the total mass 𝑀 of the central black hole, thus justifying the physical assumption of a stationary spacetime. We stress that, 
with these parameters characterized by very low rest mass densities, the test becomes extremely challenging from the numerical 
point of view, in spite of the solution being smooth and regular.8

The equation of state is that of an ideal gas with adiabatic index 𝛾 = 5∕3. At time 𝑡 = 0, the rest mass density of the exact solution 
is perturbed by a Gaussian profile peaked at the critical radius, with an amplitude given by 𝛿𝜌 = 10−3𝜌𝑐 . We have solved this test 
by considering only the hydrodynamic section of the system (32)–(44), thus adopting the Cowling approximation. The numerical 
scheme is a pure DG scheme at fourth order of accuracy (𝑁 = 3), while the other relevant parameters have been chosen as 𝜅1 = 0.01, 
𝜅2 = 0, 𝑐 = 0, with no gamma–driver. We have performed two simulations to the final time 𝑡 = 1000 𝑀 , the first one with the new 
well-balancing technique described in Sect. 3, and a second one without it, obtaining rather different results. Fig. 5 reports the one 
dimensional profiles of the solution for the rest mass density and for the radial velocity 𝑣𝑟 at the final time compared to the exact 
solution. If no well-balancing is adopted, the solution quickly deteriorates, amounting to a sequence of failures in the recovering of 
the primitive variables, as can be seen by the zero density values reported in the left panel of Fig. 5. If the well-balancing is used 
instead, the exact solution is recovered and stationarity is preserved. We recall that the positive values of the radial velocity, which 
are somewhat counter intuitive given that matter is falling into the black hole with increasing velocity, are a spurious effect of the 
Kerr–Schild coordinates, which generate a positive radial shift.

We also stress that in these regimes of low density matter, using the filter described in Sect. 3.4 is absolutely crucial, and the 
simulation encounters a sequence of catastrophic failures before 𝑡 ∼ 5𝑀 if no filter is adopted, irrespective of the well-balancing 
property being activated, or not.

4.5. Single stationary black holes in two and three space dimensions

The Schwarzschild solution, historically the first exact solution that was found for the Einstein field equations, describes the 
spacetime around a non–rotating black hole and it represents a static solution of the Einstein field equations. A generalization 
16

8 For a comparison, the rest mass density chosen in [53] was much higher, giving a mass accretion rate 𝑟2
𝑐
𝜌𝑐𝑢

𝑟
𝑐
= −1.
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Fig. 4. Robust stability test case with a random initial perturbation of amplitude 10−7∕𝜌2 in all quantities on a sequence of successively refined meshes on the unit 
square in 2D. The gamma–driver shift condition, 1 + log slicing and ADER-DG 𝑃3 scheme have been used. Top left: 10 ×10 elements, corresponding to 40 × 40 degrees 
of freedom (𝜚 = 1). Top right: 20 ×20 elements, corresponding to 80 ×80 degrees of freedom (𝜚 = 2). Bottom left: 40 ×40 elements, corresponding to 160 ×160 degrees 
of freedom (𝜚 = 4). Bottom right: 80 × 80 elements, corresponding to 320 × 320 degrees of freedom (𝜚 = 8).

Fig. 5. Solution of the spherical accretion of matter onto a non-rotating black hole. The final rest mass density (left panel) and the radial velocity (right panel) at time 
17

𝑡 = 1000 𝑀 are compared to their initial profiles.
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Fig. 6. 2D simulation of an initially perturbed Schwarzschild black hole (𝑎 = 0) in the 2D plane 𝑟 − 𝜃 using spherical Kerr-Schild coordinates. Top left: time series of 
the constraint violations until time 𝑡 = 1000 𝑀 . It is clearly visible that the initial perturbation decays exponentially in time and that the numerical solution returns 
to the stationary equilibrium. From top right to bottom right: 1D cuts along the radial direction at 𝜃 = 𝜋∕2 for the lapse 𝛼, the metric tensor component 𝛾11 and the 
extrinsic curvature component 𝐾11 at time 𝑡 = 1000 𝑀 and comparison with the exact solution.

to rotating black holes is the stationary Kerr solution. For all simulations reported in this section, the mass of the black hole is 
𝑀 = 1 𝑀⊙. In all tests presented here, matter is absent.

Non-rotating black hole in 2D In our first simulation we solve the Z4 equations for a Schwarzschild black hole (𝑎 = 0) in spherical 
Kerr–Schild coordinates, see Sect. 3.3. The two–dimensional computational domain in the 𝑟 −𝜃 plane is chosen as Ω = [0.5, 6] ×[𝛿, 𝜋−
𝛿], with 𝛿 = 0.1415926535. The domain Ω is discretized with 80 × 40 elements. On all boundaries we prescribe the initial condition 
as Dirichlet boundary condition for all state variables. We use the fourth order version (𝑁 = 3) of our new exactly well-balanced 
ADER-DG scheme based on the HLL Riemann solver and without any subcell FV limiter. Concerning the Z4 system we use the 1+log 
gauge condition and set 𝑐 = 0, 𝜅1 = 1.0, 𝜅2 = 1.0 and 𝑠 = 0, i.e. the shift is not evolved in time. In order to study the behavior of the 
new well-balanced scheme in the presence of a small perturbation, the initial condition for the cleaning variable Θ is chosen as

Θ(0,𝐱) =𝐴0 exp
(
−1
2
(𝑋 − 4)2 + (𝑌 − 0)2

𝜎2

)
, (92)

with (𝑥1, 𝑥2) = (𝑟, 𝜃), 𝐴0 = 10−3, 𝜎 = 0.2, 𝑋 = 𝑟 sin𝜃 and 𝑌 = 𝑟 cos𝜃. We expect that during the simulation the perturbation leaves the 
computational domain and that for large enough times the solution returns back to the exact stationary equilibrium solution. The 
computational results obtained for this simulation are shown in Fig. 6. In the top left panel we plot the 𝐿2 norms of the constraint 
violations 𝐻(𝑡) −𝐻(0) and 𝑀𝑖(𝑡) −𝑀𝑖(0) for the Hamiltonian and the momentum constraints. As expected, the initial perturbation 
of the order 10−3 decays exponentially in time and the solution returns back to the exact equilibrium. To the best knowledge of 
the authors, this is the first long-time simulation ever carried out for the Einstein field equations using a high order exactly well-

balanced discontinuous Galerkin finite element scheme and where, after an initial perturbation, the discrete solution returns back to 
the exact steady equilibrium solution. In the remaining panels of Fig. 6 we show one dimensional profiles obtained from cuts along 
the equatorial plane, for various representative quantities like 𝛼, 𝛾11, 𝐾11. As apparent from the figure, perfect agreement with the 
18

exact stationary solution is obtained at the final time 𝑡 = 1000 𝑀 .
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Table 3

Numerical well-balancing test with a fourth order ADER-DG scheme using single, double and quadruple precision. 
𝐿∞ error norms for several quantities of the Z4 system at time 𝑡 = 0.1.

Quantity single precision, 𝐴0 = 10−8 double precision, 𝐴0 = 10−16 quadruple precision, 𝐴0 = 10−28

𝛼 7.4505806E-06 3.2196468E-015 4.7282543E-030

𝛾11 7.8201294E-05 3.3306691E-014 2.2768344E-030

𝐾11 8.1777573E-05 3.2862602E-014 2.8324170E-029

𝐾12 2.7160518E-06 1.9922607E-015 1.5911163E-029

Θ 2.6383780E-06 1.6878889E-015 3.4825676E-029

𝑍1 9.8760290E-07 1.3437779E-015 2.3198075E-029

𝐴1 9.4473362E-06 4.8849813E-015 1.8991764E-029

𝐷111 3.3855438E-05 1.3766766E-014 4.5212168E-030

Numerical study of the well-balancing property We now repeat the previous test of the non-rotating black hole in 2D until 𝑡 = 0.1
using a fourth order ADER-DG scheme (𝑁 = 3) on 40 ×20 elements and employing three different machine precisions, namely single, 
double and quadruple precision. We set the perturbation amplitude 𝐴0 so that it corresponds to the respective machine precision. 
The values of 𝐴0 as well as the obtained 𝐿∞ error norms are reported in Table 3 at time 𝑡 = 0.1 for several components of the Z4 
system and for all chosen machine precisions. The computational results clearly show that the errors remain of the order of machine 
precision, hence the new numerical method proposed in this paper is well-balanced also in its practical implementation, as expected.

Non-rotating black hole in 3D We have then evolved the same stationary Schwarzschild black hole (𝑎 = 0) in three space dimensions 
by choosing the 3D Cartesian Kerr–Schild coordinates already discussed in Sect. 3.3. The computational domain is the box [−5; 5] ×
[−5; 5] × [−5; 5], from which we have excised a cubic box with an edge of length 1.0 centered on the physical singularity at 𝑟 = 0. 
The resolution is 203, and similarly to the two-dimensional case, a perturbation is introduced in the variable Θ. Again with a fourth 
order well-balanced ADER-DG scheme, we obtain the results that are shown in Fig. 7. The constraint violations decay back to the 
equilibrium at time 𝑡 ≈ 400 𝑀 , after which the solution is perfectly stable around machine precision. For this simulation, the 1D cuts 
are extracted along the 𝑧 axis.

Rotating black hole in 3D Finally, in addition to the previous Schwarzschild black holes with 𝑎 = 0, we have also evolved two Kerr 
black holes in three space dimensions, one with spin 𝑎 = 0.5 and the other one with spin 𝑎 = 0.99. The computational domain is the 
box [−5; 5] × [−5; 5] × [−5; 5], with the same resolution as for the Schwarzschild case, namely 203. A major difference is given by the 
fact that the excision box must enclose the ring singularity on the 𝑧 = 0 plane [50], which has an external radius 𝑟ring = 𝑎. Hence, 
the excision box is effectively a parallelepiped with edges 2 × 2 × 1, and 3.2 × 3.2 × 1, for the two black holes with spin 𝑎 = 0.5 and 
𝑎 = 0.99, respectively. Keeping the same strategy of perturbing the initial configuration, we obtain results that are shown in Fig. 8

and Fig. 9, and confirming the turning back of the solution to the exact equilibrium. Fig. 10, on the other hand, shows the contour 
surfaces of a few representative quantities where the Schwarzschild (𝑎 = 0) and the Kerr (𝑎 = 0.99) black holes are compared.

4.6. Non–rotating neutron star in equilibrium

A crucial test for numerical relativity, where both the Einstein and the relativistic Euler equations must be accounted for, is 
represented by the time evolution of an equilibrium neutron star. In the non–rotating case, this amounts to solving the so called 
Tolman–Oppenheimer–Volkoff (TOV) system, which we report here for completeness [149,124,136]

𝑑𝑚

𝑑𝑟
= 4𝜋𝑟2𝑒 , (93)

𝑑𝑝

𝑑𝑟
= −(𝑒+ 𝑝)(𝑚+ 4𝜋𝑟3𝑝)

𝑟(𝑟− 2𝑚)
, (94)

𝑑𝜙

𝑑𝑟
= − 1

𝑒+ 𝑝
𝑑𝑝

𝑑𝑟
, (95)

where 𝑚(𝑟) is the mass enclosed within the radius 𝑟, 𝜙 is the unknown metric function in the line element (72), while 𝑒−2𝜓 = 1 − 2𝑚
𝑟

. 
The equation of state adopted is that of a polytropic gas, namely 𝑝 =𝐾 𝜌𝛾 .

The TOV system (93)–(95) constitutes a set of three ODEs, which we have solved using a tenth order accurate discontinuous 
Galerkin scheme, see [58]. For high order ADER-DG schemes, in fact, simple initial data computed via Runge-Kutta ODE integrators 
are not accurate enough. We have adopted a stable model with parameters which have by now become canonical in numerical 
relativity [77], namely a central rest mass density 𝜌𝑐 = 1.28 × 10−3, 𝐾 = 100 and 𝛾 = 2. Having done that, the numerical integration 
of (93)–(95) provides all the radial profiles as well as the remaining physical characteristics of the star, i.e. a total mass 𝑀 = 1.4 𝑀⊙

and a radius 𝑅 = 9.585 𝑀⊙ = 14.15 𝑘𝑚. When performing the coordinate transformation

𝑑𝑟̄

𝑟̄
=
(
1 − 2𝑚

𝑟

)−1∕2 𝑑𝑟

𝑟
, (96)
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see [33], then the spatial part of the metric (72) becomes conformally flat, namely



Journal of Computational Physics 504 (2024) 112875M. Dumbser, O. Zanotti, E. Gaburro et al.

Fig. 7. 3D simulation of an initially perturbed Schwarzschild black hole (spin 𝑎 = 0) in 3D Cartesian Kerr-Schild coordinates using a fourth order well-balanced 
ADER-DG scheme. Top left: time series of the constraint violations until time 𝑡 = 1000 𝑀 . It is clearly visible that the initial perturbation decays exponentially in time 
and that the numerical solution returns to the stationary equilibrium. From top right to bottom right: 1D cuts along the z axis (𝑥 = 𝑦 = 0) for the lapse 𝛼, the metric 
tensor component 𝛾11 and the extrinsic curvature component 𝐾11 at time 𝑡 = 1000 𝑀 and comparison with the exact solution.

𝑑𝑠2 = −𝑒2𝜙𝑑𝑡2 + 𝑒2𝜓̄ (𝑑𝑟̄2 + 𝑟̄2𝑑𝜃2 + 𝑟̄2 sin2 𝜃𝑑𝜙2) = −𝑒2𝜙𝑑𝑡2 + 𝑒2𝜓̄ (𝑑𝑥̄2 + 𝑑𝑦̄2 + 𝑑𝑧̄2) , (97)

thus generating a spatial metric that is just 𝛾𝑖𝑗 = (𝑟∕𝑟̄)2𝜂𝑖𝑗 . In the space outside the star, due to Birkoff’s theorem, the spacetime is 
that of a Schwarzschild solution produced by a mass 𝑀 , i.e.

𝑒2𝜙 = 1 − 2𝑀
𝑟
, 𝑟̄ = 1

2

(√
𝑟2 − 2𝑀𝑟+ 𝑟−𝑀

)
, (98)

while all the hydrodynamic variables collapse to zero. For this test problem the full Einstein–Euler system is evolved in the domain 
Ω = [−16, +16]3 until 𝑡 = 1000 𝑀 using a third order ADER-WENO finite volume scheme with 603 elements. We set the damping 
coefficients to 𝜅1 = 𝜅2 = 0.05. We stress that, thanks to our new conversion from the conservative to the primitive variables (see 
Sect. 3.4), there is no need to insert a low density atmosphere in the exterior of the neutron star. For this test the fluid pressure was 
initially perturbed by adding a small fluctuation 𝑝′ = 𝑝0 exp

(
−1

2
𝐱2
𝜎2

)
to the pressure obtained from the TOV solution, with amplitude 

𝑝0 = 10−7 and halfwidth 𝜎 = 0.2.

To obtain better results, and only for this test, we had to resort to a well-balanced third order ADER-FV scheme [69], which 
became necessary for its increased robustness with respect to ADER-DG, especially at the surface of the star. Fig. 11 shows the 
results of our computations, by reporting the 1D-cuts of a few representative quantities at the final time, compared to the reference 
equilibrium solution. A perfect matching is obtained, apart for very small deviations in the profiles of the velocity (along 𝑥) and in 
the trace of the extrinsic curvature 𝐾 . To the best of our knowledge, this is the first time that a numerical relativity code can evolve 
a TOV star in a (matter) vacuum atmosphere with 𝜌 = 𝑝 = 0.

In addition, in Fig. 12 we report the time evolution of the central rest–mass density (left panel, normalized to its initial value) and 
of the central lapse (right panel). We just mention briefly that from this oscillating behavior it is possible to extract the normal modes 
20

of oscillation of the neutron star, comparing them with those obtained through a perturbative analysis and inferring fundamental 
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Fig. 8. 3D simulation of an initially perturbed Kerr black hole (spin 𝑎 = 0.5) in 3D Cartesian Kerr-Schild coordinates using a fourth order well-balanced ADER-DG 
scheme. Top left: time series of the constraint violations until time 𝑡 = 1000 𝑀 . It is clearly visible that the initial perturbation decays exponentially in time and that 
the numerical solution returns to the stationary equilibrium. From top right to bottom right: 1D cuts along the z axis (𝑥 = 𝑦 = 0) for the lapse 𝛼, the metric tensor 
component 𝛾33 and the extrinsic curvature component 𝐾33 at time 𝑡 = 1000 𝑀 and comparison with the exact solution.

aspects of neutron star physics [78]. As we are not interested to enter such details in this work, we postpone further analysis to future 
investigations.

Finally, Fig. 13 shows the behavior of the Einstein constraints during the evolution. The left panel refers to the same simulation 
reported in Fig. 11, and it shows that the 𝐿2 norm of the Einstein constraints remains low and stationary all along the evolution. 
The right panel refers instead to a second simulation with the third–order ADER-DG scheme. In this case we have compared the 
well-balanced (WB) algorithm with the not well-balanced (NOWB) one. The difference is remarkable, since in the not well-balanced 
evolution (NOWB) the Einstein constraints start increasing around 𝑡 ∼ 300, entering an exponential grow which eventually makes 
the code crash.

4.7. Two puncture black holes

As a last test we have analyzed the head-on collision of two nonrotating black holes, which are modeled as two moving punctures. 
The initial conditions can be obtained by the TwoPunctures initial data code [9], and are prescribed as follows:

• equal black hole masses, 𝑀 = 1, with no spin;

• initial positions given by 𝒙− = (−1, 0, 0) and 𝒙+ = (+1, 0, 0);
• zero linear momenta;

• zero initial extrinsic curvature.

We have performed this test to the purpose of showing the ability of the DG scheme based on our improved Z4 implementation 
of the Einstein equations to solve moving punctures, irrespective of the possibility of extracting gravitational waves, which will 
be the subject of a future research. The three-dimensional computational domain is given by Ω = [−60; 60]3 and flat Minkowski 
21

spacetime is imposed as boundary condition everywhere. We use adaptive mesh refinement (AMR) with time accurate local time 
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Fig. 9. 3D simulation of an initially perturbed Kerr black hole (spin 𝑎 = 0.99) in 3D Cartesian Kerr-Schild coordinates using a fourth order well-balanced ADER-DG 
scheme. Top left: time series of the constraint violations until time 𝑡 = 1000 𝑀 . It is clearly visible that the initial perturbation decays exponentially in time and that 
the numerical solution returns to the stationary equilibrium. From top right to bottom right: 1D cuts along the z axis (𝑥 = 𝑦 = 0) for the lapse 𝛼, the metric tensor 
component 𝛾33 and the extrinsic curvature component 𝐾33 at time 𝑡 = 1000 𝑀 and comparison with the exact solution.

stepping [69] and one level of refinement with refinement factor 𝜚 = 3 inside the box [−10, 10]3. The subcell finite volume limiter is 
always activated within the box [−3, 3]3. The numerical relevant parameters are set as 𝜅1 = 0.2, 𝜅2 = 0.2, 𝑐 = 0, 𝜇 = 0.0.

For this test, the activation of the gamma–driver is mandatory. In order for the evolution to proceed successfully, we have found 
that it is necessary to perform the following actions: in the inner region the lapse 𝛼 is flattened as

𝛼 =
𝛼𝑟6 + 𝜖𝛼𝑚𝑖𝑛
𝑟6 + 𝜖

, (99)

where 𝛼𝑚𝑖𝑛 = 0.01, 𝜖 = 10−4, in such a way that the spacetime evolution is effectively frozen. Simultaneously, all the metric terms 
are filtered as

𝑓 = erf
(
𝛾𝑚𝑎𝑥

𝛾𝑖𝑗

[
1 +

(
𝑟

0.4

)4
])

, (100)

𝛾𝑖𝑗 = 𝛾𝑚𝑎𝑥(1 − 𝑓 ) + 𝛾𝑖𝑗𝑓 , (101)

so as to avoid metric spikes, but rather reaching a smooth maximum value at 𝛾𝑚𝑎𝑥 ∼ 25. In addition, since there is not an exact 
solution for this test, the well-balancing property is switched off completely.

In Fig. 14 we present the contour iso-surfaces of the lapse at different times, showing the merger process of the two black holes. 
In Fig. 15 the time evolution of the Hamiltonian and momentum constraints is reported, showing a stable evolution of the system 
until the end of the merger process. To the very best knowledge of the authors, this is the very first stable 3D simulation of a head-on 
collision of two puncture black holes carried out with a high order DG scheme applied to the first order reformulation of the Z4 
22

system of the Einstein field equation.
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Fig. 10. Contour surfaces of initially perturbed black hole spacetimes in 3D Cartesian Kerr-Schild coordinates at 𝑡 = 1000 𝑀 using a fourth order well-balanced 
ADER-DG scheme. Left: Schwarzschild black hole (𝑎 = 0). Right: Kerr black hole (𝑎 = 0.99). From top to bottom: lapse 𝛼, shift 𝛽2 and extrinsic curvature component 
𝐾33 . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

5. Conclusions

In this paper we have investigated the first–order version of the Z4 formulation of the Einstein–Euler equations, originally 
proposed by [24,25], via a new well-balanced discontinuous Galerkin scheme for non conservative systems. We have shown substantial 
advantages with respect to its analogous first–order CCZ4 version, already discussed in [63]. Along with an obvious simpler form of 
the equations, when compared to CCZ4, in the Z4 system the 𝑍𝜇 four vector is an evolved quantity, allowing for a direct monitoring 
23

of the Einstein constraints violations. Strong hyperbolicity has been verified by computing the full set of eigenvectors for a general 
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Fig. 11. 1D cuts of some hydrodynamic and metric quantities of the TOV star obtained with the new well-balanced third order ADER-FV scheme at the final time 
𝑡 = 1000 𝑀 .

metric in case of frozen shift. The new high order well-balanced ADER-DG scheme for conservative and non-conservative systems 
relies on the framework of path-conservative schemes. The choice of the path is irrelevant in the case of the Einstein field equations, 
since the non-conservative part of the system concerns only the metric, which cannot develop discontinuities as all associated 
characteristic fields are linearly degenerate. We have verified the nominal order of convergence of our new scheme up to seventh 
24

order in space and time. Two additional and fundamental features make the new numerical scheme particularly robust and attractive:
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Fig. 12. Time evolution of the central mass density (left panel) and of the central lapse (right panel) for the 3D TOV star.

Fig. 13. Time evolution of the constraint violations for the stable 3D TOV star. Left panel: well-balanced third order ADER-FV scheme. Right panel: well-balanced 
third order ADER-DG scheme vs. not well-balanced third order ADER-DG scheme (𝑁 = 2).

1. The overall scheme is well-balanced, in the sense that it can preserve stationary equilibrium solutions exactly up to machine 
precision. This has been obtained in a pragmatic but very effective way by subtracting the discretized equilibrium solution from 
the evolved one during the simulation. For highly dynamical systems, on the other hand, the well-balancing property is not 
useful and hence not adopted.

2. The conversion from the conservative to the primitive variables, which has been plaguing relativistic hydrodynamic codes for so 
long, has been made substantially more robust by the introduction of a special filter function, which avoids division by zero and 
thus the divergence of the velocity in regimes of very low rest mass densities. To the best of our knowledge, this is the very first 
time that compact objects like neutron star can be simulated by setting 𝜌 = 0 outside the object, instead of requiring a numerical 
atmosphere.

After these improvements, we have been able to reproduce all the standard tests of numerical relativity with unprecedented accuracy 
in the computation of stationary solutions. In particular, and to the best of our knowledge, this is the first time that a stationary 
black hole (including an extreme Kerr one with 𝑎 = 0.99) has been evolved with a high order DG scheme in three space dimensions 
within the 3+1 formalism up to 𝑡 = 1000𝑀 , and with no limitation to proceed even further. Our new approach could be beneficial 
for the numerical study of quasi–normal modes (QNM) of oscillations of black holes, which represents a fertile field of research in 
high energy astrophysics (see, among the others, [13].)

Second, our new filter in the conversion from the conserved to the primitive variables allowed us to evolve a TOV star in true 
vacuum, namely with 𝑝 = 𝜌 = 0 outside the star. This new feature is likely to play a major role in future applications of high energy 
25

astrophysics where very low density regions are involved.
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Fig. 14. Contour surfaces of the lapse for the two punctures black holes. The solution is reported at six different times: 𝑡 = 0,5,7,8,10,20𝑀 .

Finally, at the level of a proof of concept calculation and with no intention yet to compute the gravitational wave emission from 
a binary system, we have obtained first encouraging preliminary results concerning the head–on collision of two equal masses black 
holes. This demonstrates the possibility to account for a physical problem that was previously considered off–limits for the original 
Z4 formulation.

Future work will concern the application of the new numerical scheme to the simulation of the inspiral and merger of binary 
black holes and binary neutron star systems with the calculation of the related gravitational waves.
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Appendix A. The eigenstructure of the first–order Z4 system

We stress that the Euler and the Einstein sector of the full PDE given by (32)–(44) are coupled only through the source terms, 
since all the metric derivatives arising in the matrix 𝜕𝐅(𝐐)∕𝜕𝐐, and corresponding to the Euler block, have been moved to the 
source terms on the right hand side as auxiliary variables. Hence, with no loss of generality, we can analyze the eigenstructure of 
the Einstein–Euler system by focusing on the Einstein block, more specifically by setting to zero all the hydrodynamic variables 
(𝐷, 𝑆1, 𝑆2, 𝑆3, 𝐸), whose eigenvectors are well known. In addition, assuming the 1+log gauge condition with zero shift (𝛽𝑖 = 0, 𝑠 = 0), 
excluding the passive quantity 𝐾0 from the analysis, and using 𝑐 = 0, the remaining 55 variables for the state vector 𝐐 relative to 
the matter and spacetime evolution are given by

𝑸𝑇 =
(
𝐷,𝑆1, 𝑆2, 𝑆3,𝐸, ln𝛼, 𝛽1, 𝛽2, 𝛽3, 𝛾11, 𝛾12, 𝛾13, 𝛾22, 𝛾23, 𝛾33,𝐾11,𝐾12,𝐾13,𝐾22,𝐾23,𝐾33,Θ,𝑍1,𝑍2,𝑍3,

𝐴1,𝐴2,𝐴3,𝐵
1
1 ,𝐵

1
2 ,𝐵

1
3 ,𝐵

2
1 ,𝐵

2
2 ,𝐵

2
3 ,𝐵

3
1 ,𝐵

3
2 ,𝐵

3
3 ,𝐷111,𝐷112,𝐷113,𝐷122,𝐷123,𝐷133,𝐷211,𝐷212,𝐷213,)
27

𝐷222,𝐷223,𝐷233,𝐷311,𝐷312,𝐷313,𝐷322,𝐷323,𝐷333, . (A.1)
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Under such circumstances, the eigenvalues are given by

𝜆1 =
√
𝛾11𝛼 𝑒 (multiplicity 1) ,

𝜆2 = −
√
𝛾11𝛼 𝑒 (multiplicity 1) ,

𝜆3,⋯,7 =
√
𝛾11𝛼 (multiplicity 5) ,

𝜆8,⋯,12 = −
√
𝛾11𝛼 (multiplicity 5) ,

𝜆13,⋯,53 = 0 (multiplicity 41) ,

𝜆54 =
√
2
√
𝛼 𝛾11 (multiplicity 1) ,

𝜆55 = −
√
2
√
𝛼 𝛾11 (multiplicity 1) ,

(A.2)

with corresponding eigenvectors:

𝒓𝑇1 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

√
𝛾11𝑒 ,0 ,0 ,0 ,0 ,0 ,1∕2 𝛾

113∕2𝑒𝑒2𝛼 − 2
𝛼

,−1∕2 𝛾
11 𝑒2𝛼 − 2

𝛼
,0 ,0 ,

2 𝛾
11

𝛼
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

)
(A.3)

𝒓𝑇2 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,−

√
𝛾11𝑒 ,0 ,0 ,0 ,0 ,0 ,−1∕2 𝛾

113∕2𝑒(𝑒2𝛼 − 2)
𝛼

,

−1∕2 𝛾
11 (𝑒2𝛼 − 2)

𝛼
,0 ,0 ,2 𝛾

11

𝛼
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

)
(A.4)

𝒓𝑇3 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,−2 𝛾12√

𝛾11
,
√
𝛾11 ,0 ,0 ,0 ,0 ,0 , 𝛾12 ,−𝛾11 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,−2 𝛾
12

𝛾11
,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

)
(A.5)

𝒓𝑇4 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,−2 𝛾13√

𝛾11
,0 ,

√
𝛾11 ,0 ,0 ,0 ,0 , 𝛾13 ,0 ,−𝛾11 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

−2 𝛾
13

𝛾11
,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

)
(A.6)

𝒓𝑇5 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,− 𝛾22√

𝛾11
,0 ,0 ,

√
𝛾11 ,0 ,0 ,0 , 𝛾22 ,−𝛾12 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

− 𝛾
22

𝛾11
,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

)
(A.7)

𝒓𝑇6 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,−2 𝛾23√

𝛾11
,0 ,0 ,0 ,

√
𝛾11 ,0 ,0 ,2 𝛾23 ,−𝛾13 ,−𝛾12 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,−2 𝛾
23

𝛾11
,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

)
(A.8)

𝒓𝑇7 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,− 𝛾33√

𝛾11
,0 ,0 ,0 ,0 ,

√
𝛾11 ,0 , 𝛾33 ,0 ,−𝛾13 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

− 𝛾
33

𝛾11
,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

)
(A.9)

𝒓𝑇8 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 , 𝛾22√

𝛾11
,0 ,0 ,−

√
𝛾11 ,0 ,0 ,0 , 𝛾22 ,−𝛾12 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

− 𝛾
22

𝛾11
,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

)
(A.10)

𝒓𝑇9 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 , 𝛾33√

𝛾11
,0 ,0 ,0 ,0 ,−

√
𝛾11 ,0 , 𝛾33 ,0 ,−𝛾13 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

− 𝛾
33

𝛾11
,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

)
(A.11)

𝒓𝑇10 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,2 𝛾12√

𝛾11
,−

√
𝛾11 ,0 ,0 ,0 ,0 ,0 , 𝛾12 ,−𝛾11 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,−2 𝛾
12

𝛾11
,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

)
(A.12)

𝒓𝑇11 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,2 𝛾13√

𝛾11
,0 ,−

√
𝛾11 ,0 ,0 ,0 ,0 , 𝛾13 ,0 ,−𝛾11 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,−2 𝛾
13

𝛾11
,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

)
(A.13)

𝒓𝑇12 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,2 𝛾23√

𝛾11
,0 ,0 ,0 ,−

√
𝛾11 ,0 ,0 ,2 𝛾23 ,−𝛾13 ,−𝛾12 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

23 )
28

0 ,0 ,0 ,−2 𝛾
𝛾11

,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 (A.14)
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𝒓𝑇13 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1
)

(A.15)

𝒓𝑇14 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0
)

(A.16)

𝒓𝑇15 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,1 ,0 ,0
)

(A.17)

𝒓𝑇16 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.18)

𝒓𝑇17 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.19)

𝒓𝑇18 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0
)

(A.20)

𝒓𝑇19 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,

0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.21)

𝒓𝑇20 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.22)

𝒓𝑇21 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.23)

𝒓𝑇22 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.24)

𝒓𝑇23 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.25)

𝒓𝑇24 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.26)

𝒓𝑇25 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.27)

𝒓𝑇26 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.28)

𝒓𝑇27 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.29)

𝒓𝑇28 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.30)

𝒓𝑇29 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.31)

𝒓𝑇30 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.32)

𝒓𝑇31 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.33)

𝒓𝑇32 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,−1∕2 𝛾

12

𝛾11
,1∕2 ,0 ,− 𝛾

12

𝛾11
,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,)
29

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 (A.34)
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𝒓𝑇33 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,−1∕2 𝛾

13

𝛾11
,0 ,1∕2 ,− 𝛾

13

𝛾11
,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.35)

𝒓𝑇34 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1∕2 −𝛾122𝛾33 + 𝛾132𝛾22

𝛾11 𝛾12
,

−1∕2 −𝛾11 𝛾12 𝛾33 − 𝛾11 𝛾13 𝛾23 + 2 𝛾12 𝛾132

𝛾11 𝛾12
,1∕2 −𝛾11 𝛾12 𝛾23 − 𝛾13 𝛾22 𝛾11 + 2 𝛾122𝛾13

𝛾11 𝛾12
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,− 𝛾13
2

𝛾11 𝛾12
,0 ,0 , 𝛾

13

𝛾12
,1 ,0 ,0 , 𝛾

12

𝛾11
,0 ,0 ,0

)
(A.36)

𝒓𝑇35 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1∕2 𝛾

122𝛾33 − 𝛾132𝛾22

𝛾11 𝛾12
,

−1∕2 𝛾
11 𝛾12 𝛾33 + 𝛾11 𝛾13 𝛾23 − 2 𝛾12 𝛾132

𝛾11 𝛾12
,1∕2 𝛾

11 𝛾12 𝛾23 + 𝛾13 𝛾22 𝛾11 − 2 𝛾122𝛾13

𝛾11 𝛾12
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 , 𝛾13
2

𝛾11 𝛾12
,0 ,0 ,− 𝛾

13

𝛾12
,0 ,0 ,0 ,− 𝛾

12

𝛾11
,0 ,1 ,0

)
(A.37)

𝒓𝑇36 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1∕2 −𝛾11 𝛾13 𝛾23 + 𝛾13 𝛾22 𝛾11

𝛾11 𝛾13
,

−1∕2 −𝛾112𝛾23 + 𝛾11 𝛾13 𝛾13

𝛾11 𝛾13
,1∕2 −𝛾112𝛾22 + 𝛾11 𝛾132

𝛾11 𝛾13
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

− 𝛾
13

𝛾13
,0 ,0 , 𝛾

11

𝛾13
,0 ,0 ,1 ,0 ,0 ,0 ,0

)
(A.38)

𝒓𝑇37 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1∕2 −𝛾11 𝛾13 𝛾23 + 𝛾13 𝛾22 𝛾11

𝛾11 𝛾13
,

−1∕2 −𝛾112𝛾23 + 𝛾11 𝛾13 𝛾13

𝛾11 𝛾13
,1∕2 −𝛾112𝛾22 + 𝛾11 𝛾132

𝛾11 𝛾13
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

− 𝛾
13

𝛾13
,1 ,0 , 𝛾

11

𝛾13
,0 ,0 ,0 ,0 ,0 ,0 ,0

)
(A.39)

𝒓𝑇38 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1∕2 2 𝛾11 𝛾13 𝛾23 − 2 𝛾13 𝛾22 𝛾11

𝛾11 𝛾13
,

−1∕2 2 𝛾112𝛾23 − 2 𝛾11 𝛾13 𝛾13

𝛾11 𝛾13
,1∕2 2 𝛾112𝛾22 − 2 𝛾11 𝛾132

𝛾11 𝛾13
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,

2 𝛾
13

𝛾13
,0 ,0 ,−2 𝛾

11

𝛾13
,0 ,0 ,0 ,0 ,0 ,0 ,0

)
(A.40)

𝒓𝑇39 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.41)

𝒓𝑇40 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.42)

𝒓𝑇41 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.43)

𝒓𝑇42 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.44)

𝒓𝑇43 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.45)

𝒓𝑇44 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.46)

𝒓𝑇45 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.47)

𝒓𝑇46 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.48)

𝒓𝑇47 =
(
0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,)
30

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 (A.49)
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𝒓𝑇48 =
(
0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.50)

𝒓𝑇49 =
(
0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.51)

𝒓𝑇50 =
(
0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.52)

𝒓𝑇51 =
(
0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.53)

𝒓𝑇52 =
(
0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.54)

𝒓𝑇53 =
(
1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
)

(A.55)

𝒓𝑇54 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1∕2

√
2
√
𝛼 𝛾11

𝛾11
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,1∕2 𝛼

𝛾11
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

)
(A.56)

𝒓𝑇55 =
(
0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,−1∕2

√
2
√
𝛼 𝛾11

𝛾11
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,

0 ,0 ,0 ,0 ,1∕2 𝛼

𝛾11
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

)
(A.57)
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