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A B S T R A C T

There is an increasing interest in exploiting human pose estimation (HPE) software in human–machine
interaction systems. Nevertheless, adopting such a computer vision application in real industrial scenarios is
challenging. To overcome occlusion limitations, it requires multiple cameras, which in turn require multiple,
distributed, and synchronized HPE software nodes running on resource-constrained edge devices. We address
this challenge by presenting a real-time distributed 3D HPE platform, which consists of a set of 3D HPE software
nodes on edge devices (i.e., one per camera) to redundantly extrapolate the human pose from different points
of view. A centralized aggregator collects the pose information through a shared communication network and
merges them, in real time, through a pipeline of filtering, clustering and association algorithms. It addresses
network communication issues (e.g., delay and bandwidth variability) through a two-levels synchronization,
and supports both single and multi-person pose estimation. We present the evaluation results with a real case
of study (i.e., HPE for human–machine interaction in an intelligent manufacturing line), in which the platform
accuracy and scalability are compared with state-of-the-art approaches and with a marker-based infra-red
motion capture system.
1. Introduction

Human pose estimation (HPE) is a key component for human mo-
tion analysis from images and videos (Liu, Chen, Zhao, Zhang and
Zhang, 2021; Liu et al., 2018; Liu, Liu, Yang, & Zhang, 2024)

Among the many application fields, such as sports performance
evaluation, gait analysis, and rehabilitation (Guo, Deligianni, Gu, &
Yang, 2019), there is a growing interest in applying such a computer vi-
sion technology in human–robot interaction systems (Lim et al., 2021).
On the one hand, recent advances in camera sensors and convolutional
neural networks (CNN) architectures (Liu et al., 2022; Liu, Wang, Yang
& Wang, 2021; Liu et al., 2023) have led to sufficiently high accuracy
of the estimated 3D human poses (Zhang et al., 2023) even for such
critical systems (Kidzinski et al., 2020; Pavlakos, Zhou, Derpanis, &
Daniilidis, 2017). Some techniques implement end-to-end CNNs and
take advantage of sensors that integrate RGB and depth information
(e.g., Intel RealSense, Microsoft Kinect, StereoLab Zed) to estimate the
pose in 3D. Other techniques achieve comparable accuracy by estimat-
ing the 2D pose first from an RGB sensor and then lifting the 2D pose to
a view-invariant 3D pose (Chen, Xu, & Zou, 2023; Fang, Xu, Wang, Liu,
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& Zhu, 2018; Palermo, Moccia, Migliorelli, Frontoni, & Santos, 2021).
On the other hand, all these approaches, which are based on a single
camera point of view, suffer from field occlusions when applied to real
industrial contexts (Dong et al., 2021). In standard working scenarios,
both obstacles and other people are often between the subject and
the camera sensor for long periods of time, and therefore, the subject
often hides body parts from the camera. All this leads to inaccurate
estimations of the whole body poses, which makes the HPE software
unsuitable for real industrial scenarios. HPE based on multiple points
of view (i.e., multi-camera networks) has shown great potential to solve
such occlusion limitations. In the domain of multi-camera Human Pose
Estimation (HPE), different methodologies are employed. Some systems
utilize multiple views with 2D estimated poses, which are subsequently
merged to generate a 3D reconstruction (Chen, Ai, Chen, Zhuang, & Liu,
2020). Conversely, others utilize separate 3D systems for each view and
then aggregate the resulting contributions (Tu, Wang, & Zeng, 2020).
Nevertheless, it requires one HPE software node per camera and strict
synchronization among the generated data flows. At the state of the art,
HPE platforms based on multi-camera generally target the triangulation
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Fig. 1. Multi-camera system with 3D HPE offloaded on edge devices connected to a remote server performing synchronization and aggregation.
of many 2D poses to build the 3D pose. Since both the 2D HPE and the
triangulation software are centralized, they assume (i) the 2D pose is
always generated for each point of view, (ii) the synchronization among
all the multiple 2D poses at each time frame is implicit, (iii) there are
no constraints on the cameras-HPE network bandwidth, and (iv) there
are no constraints on the computational resources (Carraro, Munaro,
Burke, & Menegatti, 2019). Since all these constraints together cannot
be guaranteed in real industrial environments, centralized solutions at
the state of the art cannot guarantee enough accuracy for human–
robot interaction systems. We propose a different approach where
multiple instances of 3D HPE software run on a distributed set of edge
devices (one instance per camera), and the results are collected by an
aggregator unit on a centralized server. This architecture has never
been considered in the literature as it implies that:

1. Since each single HPE node runs on a resource-constrained
device, it achieves low accuracy (i.e., not enough for human–
machine interaction).

2. Since the communication network is subject to bandwidth and
delay variability as well as packet loss, the 3D poses generated in
real-time by each node easily get out of synchronization before
reaching the central aggregator unit.

3. The aggregation phase cannot work in case of multi-person in
the scene, as the person detection implemented by the multiple
HPE nodes are not synchronized.

To overcome these limitations, we propose a two-level synchronization
approach customized for real-time multi-person 3D HPE (see Fig. 1). It
aims at aggregating the contribution of the multiple and distributed 3D
HPE nodes by supporting the multi-dimensional information received
in real-time by the central unit (i.e., single/multi-person from single/
multi-camera) and the communication issues (i.e., pose loss, pose ob-
solescence). With respect to the state of the art, the main novel contri-
butions of this work are:

• A real-time distributed 3D HPE architecture in which the infer-
ence software is customized for resource-constrained edge de-
vices. This improves the system’s scalability by overcoming the
constraints on the network bandwidth and on the computational
resources.

• A centralized two-levels aggregation mechanism that synchro-
nizes the 3D poses in real-time and merges keypoints belonging
2

to multiple persons by compensating for time-varying communi-
cation delays.

• It quantitatively measures the accuracy of the 3D HPE poses with
an infra-red marker-based motion capture system as ground-truth
in an industrial environment. To the best of our knowledge, such
an accuracy evaluation has never been done in the past.

2. Related works

Human pose estimation has been largely applied in human-cyber–
physical systems. In Moghaddam and Piccardi (2014), the authors
addressed the problem of adopting sequential probabilistic models
for human action recognition. They proposed two methods for one-
off initialization of hidden Markov models, which achieve a sound
trade-off between accuracy and training time.

In Zhang, Liao, Paz, and Christensen (2022), the authors proposed to
use the skeleton generated by state-of-the-art HPE platforms to identify
human heads. As an alternative to wearable sensors (Zhu, Han, & Yi,
2022), they demonstrated that HPE software can reduce missed faces
and better protect the identity information of human subjects.

In Lee, Cho, Liu, Cho, and Helal (2015), the authors investigated on
the automated understanding and recognition of human activities and
behaviours in a smart space. They proposed a context-activity-action
nexus and showed how the approach combines modelling and visual-
ization of actions with context and activity simulation. In Proia, Carli,
Cavone, and Dotoli (2022), the authors reviewed control techniques for
safe, ergonomic, and efficient human–robot collaboration in the digital
industry.

Different solutions focused on human pose estimation based on
multiple cameras to deal with occlusions and field-of-view limitations.
A class of them rely on a topology of distributed 2D RGB cameras.
Each camera sends, through the network, the input frames to a cen-
tralized module, which first extrapolates multiple 2D poses of the
subject (one per view) and, then, it triangulates them to build the
final pose in 3D (e.g., Chen et al. (2020)). In Remelli, Han, Honari,
Fua, and Wang (2020) authors proposed a similar centralized approach
by which the 2D keypoint positions are estimated through a learned
camera-independent representation of the 3D poses. Then, through a
GPU-optimized triangulation algorithm, they lift the 2D keypoints to
3D.



Expert Systems With Applications 252 (2024) 124089M. Boldo et al.
Fig. 2. Overview of the BeFine architecture.
Another class of approaches relies on multiple 2D cameras, and
for each camera, the 3D pose is directly extrapolated by a centralized
inference application through a CNN directly trained for 3D data (Tu
et al., 2020). In Yeung, Kwok, and Wang (2013) authors proposed a
methodology that takes advantage of multiple RGB-D sensors (Microsoft
Kinect) to build 3D human poses. Their focus is on the pose fusion algo-
rithm, which takes advantage of the hard constraints of the inter-joint
distances.

In Li, Liu, Tian, Zhu, and Wang (2018) authors introduced the
information weighted consensus filter (ICF), which increases the ac-
curacy of body joint estimation through a data fusion algorithm. The
algorithm works off-line by evaluating the sequences of generated
keypoints. In Liu, Liu, Tian, and Ji (2019), the authors implemented
the distributed 3D HPE through a dynamic hybrid consensus filter to fuse
the human pose data. The method is based on a distributed aggregation
and does not require a centralized master node for merging data.

In Carraro et al. (2019) authors proposed a system for estimating
3D human poses through a network of 3D RGB-D cameras. Each node
estimates the 3D pose by first performing the inference on the RGB
image through a 2D CNN. Then each node interpolates the results with
the depth information provided by the sensor to extrapolate the third
dimension of each keypoint. The main focus of the work is on the
association algorithm of the different views.

All these approaches either assume no constraints in computational
resources or no communication interferences between cameras, HPE
inference applications, and the aggregation phase. In general, they ei-
ther suffer from scalability if centralized or from sensitivity to temporal
de-synchronization caused by real communication networks.

3. The BeFine platform

Fig. 2 shows the architecture of the proposed real-time distributed
system (BeFine), which consists of a set of edge devices and a central-
ized aggregation unit connected by a communication network. Each
edge device consists of an RGB-D camera and a heterogeneous em-
bedded board running an inference application for single-view real-
time 3D HPE. The devices are synchronized both spatially and tempo-
rally to guarantee common references for the data aggregation (Sec-
tion 3.1). Local HPE information with timestamps is sent over the
network through a standard communication protocol (Section 3.2)
towards the centralized aggregation unit. The centralized aggregation
unit implements data merge through a pipeline of filtering, clustering,
fusion, and association algorithms (Section 3.3). The platform aims at
supporting both single and multi-person pose estimation (𝐻1, 𝐻2, and
𝐻3 in Fig. 2) in real-time.
3

3.1. Single-view 3D human pose estimation at the edge

We developed a resource-constrained edge device version of Hu-
man Pose Estimation (HPE) based on the 2D HPE method introduced
in NVIDIA AI IoT (2020) (referred to as TRTPose). We re-implemented
the inference application in C++ and CUDA to maximize the utilization
of the heterogeneous CPU+GPU architecture present in off-the-shelf
edge computing devices (i.e., NVIDIA Jetson boards). The application
retrieves the 2D keypoints from the RGB image captured by the RGB-
D camera, representing the human body joints. Then, using the depth
matrix extracted from the RGB-D sensor, the 2D key points are associ-
ated with their depth information, indicating the distance of each point
from the camera in 3D space. After this operation, the RGB image and
the depth matrix are discarded. To extract the 3D coordinates in the
space of each keypoint, the node implements a back-projection of each
2D keypoint (𝑘𝑝2𝐷𝑖 ) into the 3D space based on the pinhole camera
model (Hartley, 2004). The result is a set of 3D keypoints (𝐾𝑃 𝑡

𝑝) for
each video frame with a timestamp (𝑡), representing the joints of the
human body for each person (𝑝) identified in the scene:

𝐾𝑃 𝑡
𝑝 = {𝑘𝑝𝑡𝑗 ∶ 𝑗 = 1...|𝐶𝑁𝑁_𝑘𝑝𝑠|} (1)

where |𝐶𝑁𝑁_𝑘𝑝𝑠| is the total number of keypoints detected by the
adopted CNN for each frame. The timestamp generated by the edge
device is synchronized with the global reference time, as detailed in
the next section. We assume a common frame rate among the camera
sensors.

3.2. Temporal alignment across the communication network

The platform addresses the temporal alignment among the edge
devices and the aggregator node at two levels. At the first level, the
platform implements a network time protocol (NTP) (Martin, Burbank,
Kasch, & Mills, 2010) to synchronize the clock of each edge device
with the global reference clock of the computing unit hosting the
aggregator. This allows each set of keypoints 𝐾𝑃 𝑡

𝑝, for each person
and for each analysed video frame, to be marked with a globally
synchronized timestamp. In the example of Fig. 2, considering the
first camera, {𝐾𝑃 1

1 , 𝐾𝑃 1
2 , 𝐾𝑃 1

3 } is the set of keypoints of three people
at the time of the first video frame and {𝐾𝑃 2

1 , 𝐾𝑃 2
2 , 𝐾𝑃 2

3 } is the set
at the time of the second frame. For each edge device and for each
video shooting, the keypoints and the timestamp are encapsulated
into a message and sent through the TCP transport protocol. Each
message generated by the device 𝑣 represents a multi-person keypoint set
𝑀𝑃𝐾𝑃 𝑡

𝑣 = {𝐾𝑃 𝑡
1,… , 𝐾𝑃 𝑡

𝑁}, and contains the whole set of keypoints of
all (𝑁) individuals present in the scene at time frame 𝑡.

To guarantee platform portability and modularity, we adopted a
standard MQTT-based publisher/subscriber approach for the delivery
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Fig. 3. Second-level temporal alignment (a) and example of 𝑡𝑔𝑙𝑜𝑏𝑎𝑙 definition with the corresponding temporal window (b).
of the multi-person keypoint sets (see Fig. 2). The computing unit
hosting the aggregator contains an MQTT broker that collects data from
the edge devices. Each device acts as MQTT publisher, sending in real
time a sequence of 𝑀𝑃𝐾𝑃 𝑡

𝑣 messages on the corresponding topic (one
per device). The aggregator acts as MQTT subscriber interested in all
topics to collect data in real-time.

In real scenarios, the communication network is shared among
different applications, and, as a consequence, it features variable load
and potential packet losses, both translating into variable values of
transmission delay (i.e., lost packets are re-transmitted by TCP inside
MQTT). This may lead to a non-periodic arrival of messages from the
same edge device and a misalignment among the messages referring
to the same time but coming from different devices. The aggregator
addresses both issues through a second-level time alignment.

The block diagram in Fig. 3(a) depicts the main idea. The asyn-
chronous thread (MQTT SUB) in the aggregator subscribes to all MQTT
topics and, in real time, forwards each message 𝑀𝑃𝐾𝑃 𝑡

𝑣 to the cor-
responding FIFO queue 𝑄 (one queue per topic). MQTT allows us to
4

𝑣

assume that messages entering the corresponding queue are ordered
incrementally by the timestamp. The first objective of the queues is to
compensate for fluctuations of the inter-arrival time between messages
arriving from the same camera. A second thread (2nd-level synch
in the figure) implements Algorithm 1 to group 𝑀𝑃𝐾𝑃 𝑡

𝑣 messages with
similar timestamp into a macro-message and to discard obsolete mes-
sages. Given a reference timestamp (𝑡𝑔𝑙𝑜𝑏𝑎𝑙) and a temporal tolerance 𝜖,
a macro-message contains all messages with timestamp in the temporal
window 𝑡𝑔𝑙𝑜𝑏𝑎𝑙 ± 𝜖 ms. The maximum value of 𝜖 is half the period of the
edge camera rate. By design, each macro-message can contain up to one
message per queue (i.e., one per edge device). Too old messages are
discarded since they are obsolete (rows 12–13). New messages outside
the temporal window are left into the queues (rows 14–15). The thread
sends the macro-message to the last stage of the aggregator and starts
the generation of a new temporal window. To do that, it updates the
reference timestamp (𝑡𝑔𝑙𝑜𝑏𝑎𝑙) by adding half frame period to the value
of the timestamp of the newest message in the previous macro-message
(row 20). It updates 𝑡 with a frequency up to twice the frame rate.
𝑔𝑙𝑜𝑏𝑎𝑙
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Algorithm 1 Algorithm for time alignment in the aggregator
Require: 𝑀𝑃𝐾𝑃 𝑡

𝑖 ordered in each queue
1: 𝑄 ← {𝑄1, ..., 𝑄𝑛}
2: 𝜖 ← 1

2×𝑐𝑎𝑚𝑒𝑟𝑎𝐹𝑃𝑆
× 1000 ⊳ in milliseconds

3: 𝑡𝑔𝑙𝑜𝑏𝑎𝑙 initialized
4: while 𝑇𝑅𝑈𝐸 do
5: 𝑀𝑎𝑐𝑟𝑜𝑀𝑠𝑔 ← {}
6: 𝑡 ← {}
7: for all 𝑞𝑢𝑒𝑢𝑒𝑖 ∈ 𝑄 do
8: for all 𝑀𝑃𝐾𝑃 𝑡

𝑖 ∈ 𝑞𝑢𝑒𝑢𝑒𝑖 do
9: if 𝑡𝑔𝑙𝑜𝑏𝑎𝑙 − 𝜖 ≤ 𝑡 ≤ 𝑡𝑔𝑙𝑜𝑏𝑎𝑙 + 𝜖 then

10: 𝑀𝑎𝑐𝑟𝑜𝑀𝑠𝑔 ← 𝑀𝑎𝑐𝑟𝑜𝑀𝑠𝑔 ∪ {𝑀𝑃𝐾𝑃 𝑡
𝑖 }

11: 𝑡 ← 𝑡 ∪ {𝑡}
2: else if 𝑡 ≤ 𝑡𝑔𝑙𝑜𝑏𝑎𝑙 − 𝜖 then
3: delete 𝑀𝑃𝐾𝑃 𝑡

𝑖 from 𝑞𝑢𝑒𝑢𝑒𝑖
14: else if 𝑡 ≥ 𝑡𝑔𝑙𝑜𝑏𝑎𝑙 + 𝜖 then
15: continue
16: end if
17: end for
18: end for
19: Send_𝑀𝑎𝑐𝑟𝑜𝑀𝑠𝑔_to_aggregator()
20: 𝑡𝑔𝑙𝑜𝑏𝑎𝑙 ← 𝑚𝑎𝑥(𝑡 ∪ {𝑡𝑔𝑙𝑜𝑏𝑎𝑙}) + 𝜖
21: sleep for 𝜖
22: end while

As a consequence, the temporal windows are overlapped (see Fig. 3(b))
and the number of messages discarded due to late arrival is minimized.

Fig. 3(b) shows an example in which the frame rate is set to
20 Hz (50 ms period). The example depicts three instants, each one
showing the messages arrived in the aggregator in any queue, which are
considered for the generation of a macro-message. In the first instant,
𝑀𝑃𝐾𝑃 1

1 has arrived from edge device 1, as well as both 𝑀𝑃𝐾𝑃 1
2 and

𝑃𝐾𝑃 2
2 from the device 2. 𝑀𝑃𝐾𝑃 1

1 and 𝑀𝑃𝐾𝑃 1
2 are grouped in the

irst macro-message, while 𝑀𝑃𝐾𝑃 2
2 is left on the queue for the next

teration. In the second instant, besides 𝑀𝑃𝐾𝑃 2
2 , three new messages

ave arrived. All of them are grouped in the new macro-message except
𝑃𝐾𝑃 1

3 since no longer useable for the new aggregation.

.3. Data processing in the aggregator

The aggregator aims at generating one and only one 3D skeleton
or each person present in the scene. To do that, it merges, in real
ime, the information coming from the different edge devices. The
nformation is composed of a sequence of macro-messages, where each
acro-message contains the set of keypoints representing one of the

ollowing configurations:

• Single person from single view;
• Single person from multiple views;
• Multiple people from single view;
• Multiple people from multiple views;
• A combination of the previous.

For each macro-message, the aggregator first applies a clustering
lgorithm to associate skeletons belonging to the same person taken
rom different cameras. This allows the system to understand whether
ultiple sets of keypoints in the macro-message belong to a single or
ifferent subjects (Section 3.3.1). The result is a number of clusters, one
er human subject identified in the scene. The aggregator implements
fusion step to merge the keypoints of each cluster (Section 3.3.2).

his allows the system to generate one single 3D skeleton per person.
hen, the aggregator implements an algorithm of temporal association
o guarantee consistency in the association of skeletons to people across
ifferent video frames (Section 3.3.3). This aims at avoiding switches
etween skeleton-person associations due to the dynamism in the scene
5

n case of more than one person, which does not maintain the order n
f people identification along the frames. Finally, the identified 3D
keletons undergo a filtering step to denoise the keypoint information
Section 3.3.4).

.3.1. Clustering
The input is a macro-message, which contains 𝑀𝑃𝐾𝑃 messages

orresponding to the same time interval and that describes the 3D
osition of the person (or people) keypoints in the different views. We
ssume that all the keypoints have already been rototranslated and
apped into a common coordinate system between all views thanks

o the (standard) spatial calibration phase. If a person is taken by
ore than one camera, the macro-message contains more than one

et of keypoints 𝐾𝑃 . The clustering step implements a density-based
patial clustering of applications with noise algorithm (DBSCAN) (Ester,
riegel, Sander, & Xu, 1996) to select the keypoint sets for clustering.
he algorithm identifies the clusters (one per person) that contain a
ufficiently high density (3D space proximity) of keypoints to represent
person. Each single keypoint 𝐾𝑝𝑡 is tagged with a person identifier

𝐾𝑝𝑡𝑝 where 𝑝 is the identifier).
The algorithm relies on two parameters to identify the clusters, the

irst is the maximum distance that two samples should have in the same
luster to be considered of the same person. The second is the minimum
umber of samples that can compose a cluster. The clustering module
alculates the distance by considering the topological constraints of the
uman body to reduce outliers.

.3.2. Fusion metrics
For each macro-message, this module merges multiple sets of key-

oints of the same human subject. Different metrics are at the state of
he art for keypoint fusion (e.g., voting scheme Hong & Kim, 2018, etc.).
hey differ from the way they balance the contribution of each view
o each keypoint and how they identify outliers. The fusion algorithm
s out of the scope of this work and any solution in literature can be
dopted in the proposed platform. It implements a basic algorithm that
elies on the coordinate median of each keypoint 𝑘𝑝.

.3.3. Association
The result of the previous step is a set of non-redundant keypoints

or each person in the scene, which is the input for the temporal asso-
iation. This module implements such an assignment problem through
variant of the Munkers algorithm (Virtanen et al., 2020). We defined

he cost function for the optimization as follows: for each couple of
onsecutive temporal instants 𝑡𝑖 and 𝑡𝑖−1, the cost is the euclidean
istances of all centroids of the keypoint sets representing the people
resent in the scene at time 𝑡𝑖 with those of the people present in the
cene at time 𝑡𝑖−1. It computes the centroids through the median of all
he subject keypoints.

.3.4. Filtering
The aggregator implements temporal filtering to correct errors due

o the intrinsic approximation of the human poses performed by the
ystem from the edge devices to the aggregator. These are due to the
eural network and camera accuracy, depth extrapolation in particular
see Section 3.1), and to the network interference and the consequent
acket loss. The system implements a Gaussian filter on the aggregated
ata. Since this filter acts on a temporal window of keypoints, to run
uch filtering in real time, the module implements a sliding window by
hich data is first accumulated and then filtered.

. Experimental results

We evaluated 𝐵𝑒𝐹 𝑖𝑛𝑒 in terms of accuracy, scalability, and robust-

ess to the network interference.
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Table 1
Performance of edge devices and transmission network. The proposed system outperforms the RTSP methodology in Max Framerate and
minimizes the information loss due to time sync.

Setup Edge: Performance per node Network

Cam (#) Workload
%CPU;%GPU

Mem. (MB) Max rate (FPS) Used BW
(kbps)

Frames/KPs
lost due to
time sync

RTSP 1 34.5;21.7 484 19 2452 0/405 (0.0%)
2 34.6;21.7 489 19 4869 17/791 (2.1%)
3 33.4;21.7 483 19 7318 6/935 (0.6%)
4 40.4;21.0 496 19 9770 120/821 (14.6%)
5 39.3;27.8 490 19 12,000 536/701 (23.5%)
6 / / / / /

BeFine 1 22.5;37.4 3349 24 108 0/448 (0.0%)
2 22.7;37.4 3312 22 214 1/896 (0.1%)
3 20.9;37.4 3051 23 333 2/1340 (0.1%)
4 22.5;37.4 3310 22 442 1/1788 (0.0%)
5 24.9;37.4 3051 23 550 3/2236 (0.1%)
6 23.1;37.4 3010 23 659 3/2680 (0.1%)
10 25.6;37.4 3366 20 1009 9/4468 (0.2%)
c
i

t

4.1. Experimental setup

Each edge device consists of an Nvidia Jetson Xavier NX board,
equipped with 384 CUDA cores + 48 tensor cores GPU, hexa-core
CPUs, and 8 GB RAM LPDDR4X unified memory. Each device is directly
connected to a StereoLabs Zed2 RGB-D Camera (2K resolution). The
centralized compute unit consists of a desktop PC equipped with an
Nvidia RTX 2070 Super GPU, an Intel i5 7400 CPU, 8 GB DDR4 RAM, and

buntu 18.04 LTS operating system. Edge devices and the centralized
nit are connected to a 1 Gb/s Ethernet switch (Netgear GS305E).

The dataset consists of 36 videos recorded in a smart manufacturing
ndustrial line, in which up to three people play different working ac-
ions (e.g., human–robot arm interactions, walking, loading, moving),
or a total amount of 18 min of recording.

For the accuracy evaluation of the HPE-based marker-less systems
i.e., both centralized and distributed), we used an 8-camera marker-

based motion capture system (Mocap) MX 13, VICON, Oxfordshire, UK
as ground truth. For the quantitative evaluation of the HPE accuracy,
we measured the results in terms of average percentage of detected
keypoints per person (𝐴𝑣𝑔𝐾𝑝), mean-absolute error distance (𝑀𝐴𝐸),
and Pearson correlation (𝑃𝐶𝐶) w.r.t. to the ground truth.

4.2. Analysis of accuracy and scalability

For the accuracy and scalability, we evaluated the multi-camera
pose estimation results of the following configurations over an increas-
ing number of cameras (i.e., viewpoints) and the corresponding HPE
instances:

1. CentralOpenPose: A fully centralized approach with one of the
most widespread 3D HPE (i.e., OpenPose Cao, Simon, Wei, &
Sheikh, 2017) for each view and the aggregation phase presented
in Section 3.3. Each view point consists of the only camera
sensor, which is connected via cable to the centralized server. It
does not include temporal synchronization among cameras since
implicitly guaranteed. This allows us to evaluate the maximum
accuracy of the multi-view 3D HPE software at the state of the
art without the network interference.

2. CentralTRTPose++: A fully centralized approach as in (1), where
the extended version of TRTPose presented in Section 3.1 re-
places OpenPose. This allows us to evaluate the maximum ac-
curacy and scalability of the proposed 3D HPE module without
the interference of the network and communication protocol.

3. RTSP: A fully centralized approach as in (2) with the network
and the corresponding communication protocols described in
Section 4.1 between the cameras and the 3D HPE instances +
6

aggregator system. The edge devices implement compression
and transmission of the video using the real-time streaming
protocol (RTSP). The depth extrapolation, 3D HPE of each video
flow, and aggregation are centralized in the server. This allows
us to evaluate the scalability of the approach by including the
network constraints.

4. BeFine: The platform presented in Section 3.

Table 1 reports the performance of the software on the edge nodes
with the RTSP and BeFine configurations.

With RTSP, since each edge device implements video stream com-
pression and transmission, it supports a frame rate ≃ 19 𝐹𝑃𝑆. The high
bandwidth and the nature of the RTSP protocol guarantee the trans-
mission with no packet loss. Nevertheless, the arrival delay of packets
increases with the increase of the view points. As a consequence, a
sensible number of the transmitted frames are discharged by the system
before the aggregation phase since temporally misaligned (up to 23.5%
with a five camera network). With more than five cameras, the RTSP
onfiguration runs out of memory in the centralized server, as detailed
n the following.

With BeFine, the light 3D HPE software (TRTPose++) offloaded on
he NVIDIA Jetson NX edge board supports a frame rate ≃ 22 𝐹𝑃𝑆.

The data generated by each edge node consists of keypoints (i.e., one
floating point × 3 dimensions × 25 human keypoints), which require
a very limited bandwidth. The low data payload allows the packets to
arrive with limited delays, which translates into a negligible number
of discharged keypoints before aggregation. To evaluate the system’s
scalability, we included up to ten view points (i.e., cameras) in the
system. However, since in this configuration, the highest workload
is the aggregator procedure in the centralized compute unit, it is
reasonable to suppose that the platform can be extended to a higher
number of nodes.

Table 1 does not include information on the Central OpenPose and
Central TRTPose+ since they do not implement any software unit (for
compression or HPE) at the edge.

Table 2 reports the performance of the software on the centralized
server for all configurations. With Central OpenPose, the high accuracy
of the OpenPose HPE requires high workloads on both CPU and GPU
units, which limits the system’s scalability. The centralized software
achieves a limited frame rate with two cameras (i.e., lower than camera
FPS) and runs out of memory with three cameras. This is due to the fact
that it runs one OpenPose software instance per camera. The results
obtained with one camera confirm the high workload and memory
footprint of the OpenPose software, which prevent its application on
the edge boards.

Central TRTPose+ supports a higher number of viewpoints and

achieves higher FPS values. Nevertheless, scalability is limited to five
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Table 2
Performance of centralized server. As the number of cameras increases, the framerate decreases. This becomes a problem for all methodologies
considered (e.g. RTSP system with 5 cameras goes at a framerate of 3 fps). On the other hand, Befine, due to this distributed computation on
edge devices, keeps the computing demand low on the centralized server, which acts exclusively as an aggregator.

Setup Centralized compute unit: Performance

Cam (#) CPU Workload
%CPU;%GPU

GPU Mem. (MB) HPE+Aggr
(max FPS)

Central OpenPose 1 47.5;29.0 3146 17 FPS
2 93.5;44.0 6292 11 FPS
3 / Out-of-mem /

Central TRTPose++ 1 39.6;18.0 1653 65 FPS
2 58.9;33.0 3306 63 FPS
3 80.9;50.0 4959 63 FPS
4 85.1;59.0 6612 40 FPS
5 93.9;59.0 8265 26 FPS
6 / Out-of-mem /

RTSP 1 51.7;18.0 1540 8 FPS
2 81.6;33.0 3080 8 FPS
3 85.1;46.0 4620 5 FPS
4 95.6;42.0 6160 6 FPS
5 100;40.0 7700 3 FPS
6 / Out-of-mem /

BeFine 1 16.2;0.0 Not used 233 FPS
2 17.2;0.0 Not used 197 FPS
3 16.9;0.0 Not used 200 FPS
4 17.2;0.0 Not used 176 FPS
5 17.0;0.0 Not used 170 FPS
6 17.3;0.0 Not used 166 FPS
10 18.9;0.0 Not used 153 FPS
Table 3
Accuracy comparison of the 3D HPE configurations (Central OpenPose as ground truth). The proposed system performs equal as the Centralized
version (the version without transmission issues/latency).

Setup Accuracy (optimal-cases:worst-cases of occlusions/poses)

Cam (#) %Avg detected KPS MAE w.r.t. Central OpenPose
(cm)

PCC w.r.t. Central
OpenPose (%)

Central TRTPose++ 1 93.5 7.2:11.5 93.8
2 99.2 4.5:8.9 97.5
3 99.5 4.9:8.4 98.8

RTSP 1 93.7 8.1:12.4 89.5
2 97.0 7.3:11.7 94.2
3 98.7 10.6:14.1 97.1

BeFine 1 93.5 6.9:11.2 93.8
2 99.2 4.5:8.9 97.5
3 99.5 4.9:8.4 98.8
cameras, after that it runs out of memory due to the multiple TRT-
Pose++ software instances.

RTSP suffers from scalability for the same reason and, in addition,
it achieves lower FPS values as it implements image decompression
before aggregation beside 3D HPE.

BeFine implements only the aggregation phase in the centralized
server, and this allows the system to support very high FPS values
regardless of the number of view points. The workload, which is
entirely on the CPU, and the memory footprint are limited. This allows
the aggregation unit to be offloaded on one of the edge devices (which
is part of our future implementation).

Table 3 reports the comparison of accuracy achieved by the different
configurations by considering Central OpenPose 3-cam as ground truth.
In particular, it aims to evaluate the efficacy of the networked systems
in addressing the occlusion limitations. To support three cameras, the
results with Central OpenPose have been obtained offline.

The accuracy is expressed in terms of average detected keypoints,
mean absolute error (MAE) of the Euclidean distance of the keypoints,
and Pearson correlation w.r.t. the ground truth. As expected, all config-
urations suffer from occlusions with one camera (≃93.5%). The average
of detected keypoints sensibly increases with two or three cameras. It
is important to note that small percentages of non detected keypoints
reflects on sensible lost of accuracy in the estimation of the overall
skeleton position (see Fig. 4 and the following discussion).
7

The table shows that, by considering the MAE and Pearson cor-
relation of the overall estimated skeletons, Central TRTPose++ and
BeFine achieve a comparable accuracy (i.e., below 5 cm optimal video
capturing scenario, below 9 cm worst case scenario, 98.8% PCC). This
proves the efficiency of the temporal synchronization and aggregation
unit. The efficiency of this configuration with non optimal network
conditions is presented in Section 4.3.

With RTSP, the low values of supported FPS (see Table 2) due to
the bottleneck in the central server leads to a strong degradation of
the aggregation results (from 11 to 14 cm average error with three
cameras).

In terms of performance, we obtained similar results with the cam-
era sensors set to lower resolutions (i.e., 1920 × 1080 and 1280 × 720,
respectively) with higher working frequency (i.e., 30 FPS and 60 FPS,
respectively).

Figs. 4, 5, and 6 report the accuracy evaluation of Central OpenPose
(software golden model) and BeFine w.r.t. the marker-based infra-red
multi-camera MoCap system (i.e., Vicon) as ground truth. Fig. 4 reports
the results with one camera, which underlines the very low accuracy of
the marker-less systems with a single point of view due to occlusions
in real scenarios. The boxplots represent the error in cm of each
keypoint w.r.t. the ground truth (segment extremes as minimum and
maximum values, lower and upper sides of rectangles as first and third
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Fig. 4. Comparison between the accuracy in measuring the keypoints achieved with the marker-less systems (1 camera centralized OpenPose and 1 camera BeFine) and the
marker-based MoCap system (Vicon). Keypoints (Left and Right): shoulder (SH), elbow (E), wrist (W), pelvis (H), knee (K), ankle (A), upper and lower extremities of the neck and
the midpoint of the pelvis. Befine 1cam and Openpose 1cam perform similarly, with low accuracy due to occlusions.
Fig. 5. Comparison between the accuracy in measuring the keypoints achieved with the marker-less systems (2 cameras centralized OpenPose and 3 cameras BeFine) and the
arker-based MoCap system. Befine with 3 cameras perform better than Openpose with 2 cameras (the best configuration of Openpose for real-time purposes).
uartiles, and median in the rectangles). It is important to note that
he accuracy of this comparison (1-cam) is affected only by the 2D
ose estimator and the depth sensors. Since the proposed methodology
s completely modular, an upgrade on these two parts (e.g. adopting

more accurate transformer-based pose estimator) has the effect of
mproving the quality of the whole system.

Fig. 5 shows the comparison results between Central OpenPose with
wo cameras (best setup to support the real-time pose estimation) and
eFine with three cameras. The comparison is representative to show
hat, although the lighter TRTPose++ of BeFine is less accurate in each
ingle view, it achieves a system level accuracy comparable to Central
OpenPose by increasing the number of view points. Thanks to the ad-
ditional camera support, BeFine achieves higher accuracy than Central
OpenPose for more than one keypoints. It is important to note that the
average error includes the bias given by the position of the markers in
the human body for the MoCap and the position of the extrapolated
keypoints of both the HPE systems. We measured an average Person
correlation between keypoints and markers ≃ 99%, which emphasizes
the very limited difference between the human skeleton estimated by
the HPE systems and the MoCap in dynamic scenes.

Fig. 6 shows the overall system accuracy achieved by BeFine with
10 cameras with optimal (few occlusions and reduced subject mobility)
and suboptimal video capturing scenarios (many occlusions and fast
subject mobility). The results are the average values obtained with
the whole dataset, which includes a mix of single/multiple person in
the scene with single/multi view points per person. Even considering
the bias between marker and keypoint coordinates, it is evident how
occlusions (mostly involved by a single view point per person in the
dataset) lead up to an additional 9 cm average error in the keypoint
8

estimation.
4.3. Analysis of the robustness to communication issues

In the previous tests, we considered a state-of-the-art local area
network with a high-end Ethernet switch providing 1 Gb/s bandwidth
and 1 ms end-to-end latency. We now compare the system efficiency in
worst case scenarios where the available network bandwidth is lower
and end-to-end latency as well as packet loss rate may be significant.
We report the results obtained in two use cases:

• a mobile setup in a private area where edge devices communicate
with the aggregator through WiFi;

• a public area setup where the aggregator is hosted on the cloud
and edge devices transmit on a cellular network.

In both cases, the first step consisted of characterizing the global
device-aggregator channel in terms of available bandwidth, packet loss
rate due to impairments in the wireless link and end-to-end latency
and its variability. To this purpose, we set up a real test bed with two
Linux machines running Iperf3.1 For the WiFi scenario, the Linux boxes
were connected to a Ubiquiti UAP-AC-M access point. For the cellular
scenario, we connected one Linux box to Oneplus7t cell phone through
USB3 tethering while the Iperf3 server was installed in a Linux virtual
machine on GARR cloud2 with public IP address 90.147.167.187. First,
several Iperf3 UDP sessions were launched to find a stable value for the
available bandwidth, which was 25 Mb/s for WiFi and between 2 Mb/s
and 10 Mb/s for the cellular setup depending on the signal quality.
Then, in the cellular case, Iperf3 was used to generate a UDP flow

1 http://software.es.net/iperf/.
2 https://cloud.garr.it/.

http://software.es.net/iperf/
https://cloud.garr.it/
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Fig. 6. Comparison between the accuracy achieved by 10 cameras BeFine with optimal (few occlusions and reduced subject mobility) and suboptimal (many occlusions and fast
subject mobility) video capturing scenarios.
Table 4
Impact of communication issues on the BeFine accuracy with 10 views. If the bitrate exceeds the available bandwidth, packets are lost due to the congestion and then retransmitted,
causing delay and subsequent error increase.

Frame rate
(FPS)

Bandwidth
(Mb/s)

Radio loss
(%)

Latency
(ms)

Bitrate
(Mb/s)

Lost KPs due to
delay (%)

Avg. detected
KPs (%)

MAE w.r.t. unloaded
network (cm)

PCC w.r.t. unloaded
network (%)

15

25 / / 1.5 0.1 99.6 0.0 ± 0.0 100.0
10 / / 1.5 0.1 99.6 0.0 ± 0.0 100.0
5 / / 1.5 0.1 99.6 0.0 ± 0.0 100.0
2 / / 1.5 0.1 99.6 0.0 ± 0.0 100.0
10 5 / 1.6 0.3 99.6 0.0 ± 0.0 100.0
10 10 / 1.7 0.7 99.6 0.1 ± 0.0 100.0
10 15 / 1.6 1.0 99.6 1.4 ± 0.0 99.9
10 25 / 1.7 5.5 99.6 3.2 ± 0.1 99.8
10 / 15 ± 5 1.5 0.1 99.6 0.0 ± 0.0 100.0
10 / 35 ± 1 1.5 0.1 99.6 0.0 ± 0.0 100.0

25

25 / / 2.5 1.1 99.6 0.2 ± 0.1 100.0
10 / / 2.5 1.2 99.6 0.1 ± 0.0 100.0
5 / / 2.5 11.5 99.6 3.2 ± 4.3 99.8
2 / / 2.4 68.6 95.4 12.5 ± 11.5 91.8
10 5 / 2.6 2.8 99.6 0.6 ± 3.0 99.8
10 10 / 2.8 28.9 99.6 4.2 ± 6.9 99.5
10 15 / 3.0 19.7 99.2 3.0 ± 6.6 99.8
10 25 / 2.8 56.0 98.5 8.6 ± 11.8 97.9
10 / 15 ± 5 2.5 4.5 99.6 0.4 ± 2.1 99.9
10 / 35 ± 1 2.5 8.8 99.6 1.2 ± 3.5 99.9
with a bitrate equal to the available bandwidth, and the packet loss
rate was measured. In this way, we measured the so-called radio packet
loss rate due to radio signal problems and not to congestions in the wide
area network. Latency was measured by using the PING utility between
the two Linux systems. As expected, the WiFi latency was negligible,
whereas in the cloud connection, the latency was between 15 ms and
35 ms.

The next step consisted of reproducing these network conditions in
the original Ethernet network. In the network interface of the central
unit, the Linux traffic control tools tc3 and tc-netem4 have been
used to create a bottleneck to simulate a reduction of the available
bandwidth, to drop packets according to a given probability and to
introduce transmission delays. BeFine was tested with 10 simultaneous
video inputs at 15 frame/s and 25 frame/s.

Table 4 shows the impact of the described communication issues
on the BeFine accuracy. Columns 2 to 4 report the considered network
conditions. The next columns describe the behaviour of BeFine. Column
5 reports the total bitrate generated by the 10 edge devices, which
depends on the frame rate. If it exceeds the available bandwidth,
packets are lost due to congestion, and the MQTT TCP re-transmits
them leading to further delays. Column 6 reports the keypoints rejected

3 https://man7.org/linux/man-pages/man8/tc.8.html.
4 https://man7.org/linux/man-pages/man8/tc-netem.8.html.
9

by the aggregator because they are obsolete. Lost keypoints are the
main cause of inaccuracy as witnessed by the last columns of the table.
It is worth noting that the keypoint loss is more affected by radio
packet loss and TCP re-transmissions due to congestions than by the
network latency introduced in Column 4. This is one of the benefits
of Algorithm 1, which considers inter-arrival delays to minimize the
number of rejected messages.

The last 2 columns demonstrate that the proposed pose estimation
platform keeps errors within reasonable limits except for bandwidth
lower than 10 Mb/s or radio packet loss rate higher than 10%, which
can be considered unusual conditions in forthcoming networks. Vice
versa, an architecture that does not offload pose estimation at the edge
is much less robust because of the huge amount of traffic sent over the
channel.

In summary, the proposed method has been demonstrated to en-
hance the accuracy of 3D human pose estimation in intricate environ-
ments characterized by multiple occlusions, such as industrial plants.
This improvement is achieved while minimizing latency, ensuring pri-
vacy, and reducing transmission network load. Our system, despite
employing a lightweight neural network model for edge computing,
demonstrates comparable performance to the Openpose model, which
achieves superior results in the 1-cam scenarios. Considering this, as
part of our future work, we intend to explore lightweight 2D pose
estimators to enhance our results further.

https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc-netem.8.html
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5. Conclusion

This article addressed the challenges related to the adoption of hu-
man pose estimation platforms in real industrial applications. It focused
on the problem of occlusions, on the solution based on multi-camera
and 3D HPE at the edge, and on the problem of data aggregation
and synchronization. It presented BeFine, a platform that implements
such a distributed 3D HPE system and a two-level synchronization
mechanism to deal with delays of real communication networks. With
an extended set of experimental results in real working scenarios, the
article compared the accuracy achieved by the proposed platform with
centralized approaches at the state of the art by using an infra-red
motion capture system as ground truth. Furthermore, the work showed
that the reduction of communication traffic due to a well-designed
offloading enables the introduction of pose estimation in less ideal
communication scenarios.
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