A0133 Data processing pipeline and Artificial Intelligence (AI) for autonomous fusion in transperineal prostate biopsies

Eur Urol Suppl 2024;85 (S1): S858

Cianflone F.¹, Maris B.², Alessandro V.¹, Artoni F.¹, Montanaro F.¹, Pettenuzzo G.¹, Cerruto M.A.¹, Fiorini P.², Antonelli A.¹

¹University of Verona - Azienda Ospedaliera Universitaria Integrata, Dept. of Urology, Verona, Italy, ²University of Verona, Dept. of Engineering for Innovation Medicine, Verona, Italy

Introduction & Objectives: The role of prostate segmentation through AI is to automatize fusion biopsies procedures. Real-time segmentation of the prostate could allow prostate tracking during the procedure, compensating both ultrasound (US) probe and patients movements. Here we present a data processing pipeline and AI for autonomous fusion during transperineal prostate biopsies.

Materials & Methods: 293 patients undergoing freehand US-guided transperineal prostate biopsies for prostate cancer suspicion at our center were enrolled from 04/21 to 07/22; 242 underwent fusion biopsies, with 153 of them having in-house mpMRI DICOM images. An Arietta V70 US machine with biplanar transrectal probe was employed. Before performing the biopsy, prostate sagittal and axial US (framerate ~20Hz) were recorded in DICOM format, gathering ~400 images for each patient. To obtain the 'ground-truth', expert radiologists segmented the prostates on sagittal and axial scans with a semi-automatic interface in Mevislab (MeVis Medical Solutions AG, Germany). The US dataset was divided into test, validation and training with a ratio of 20%, 20% and 60% respectively. An AI algorithm was designed for this task: PROST-Net. A 60 patients validation cohort was enrolled from 02/23 to 06/23. Transrectal biplanar US (Esaote) was performed, with the same scan protocol. On this US data, the interface was integrated with the AI, giving an initial contouring of the prostate; 2 experturologists adjusted AI results, adding more immediate data to the 'ground truth'. To train our algorithm for MRI segmentation, we used data from the Cancer Imaging Archive website (https://wiki.cancerimagingarchive.net/), and its accuracy was verified on patients' in house MRI data. The dataset contained T2 MRI scans, 3D reconstructed US and prostate and PIRADS≥3 lesions segmentation in both MRI and US. After automatic contouring of the prostate in both mpMRI and US, we designed a fusion algorithm that works in 3 steps: pre-alignment, rigid-alignment and elastic fusion. After fusion, distances between each lesion in MRI to the same lesion in US were assessed.

Results: On the US test data after "ground-truth", the Dice coefficient of PROST-Net in prostate segmentation was 0.78. In the 2° US cohort after adding data, its accuracy was >0.80. After MRI algorithm training, the accuracy was 0.95 on in-house MRIs. Dice coefficient between MRI and US segmentation after rigid fusion was 0.75. Mean MRI-US lesion distance was 8mm after the rigid fusion and 4mm after elastic fusion.

Conclusions: We demonstrate an effective data processing pipeline and AI for the autonomous fusion during transperineal prostate biopsies. Further goal is to add data for AI algorithm to reach \geq 0.90 fusion accuracy and \leq 2mm MRI-US lesion distance, providing a sound basis for developing an autonomous robotic platform for transperineal prostate biopsies.