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ABSTRACT
We propose an indexed natural deduction system for the modal
logic S5, ideally following Wansing’s previous work in the context
of tableaux sequents. The system, given both in the classical and
intuitionistic versions (called N c

5 and N i
5 respectively), is designed

to match as much as possible the structure and properties of the
standard system of natural deduction for first-order logic, exploiting
the formal analogy between modalities and quantifiers. We study
a (syntactical) normalization theorem for both N c

5 and N i
5 and

its main consequences, the sub-formula principle and the consis-
tency theorem. In particular, we propose an intuitionistic encoding
of classical S5 (via a suitable extension of the Gödel translation for
first-order classical logic). Moreover, via the BHK interpretation of
intuitionistic proofs, we propose a suitable Curry–Howard isomor-
phism for N i

5. By translation into the natural deduction system given
by Galmiche and Salhi in [(2010b). Label-free proof systems for intu-
itionistic modal logic is5. In E. M. Clarke & A. Voronkov (Eds.), Logic
for programming, artificial intelligence, and reasoning (pp. 255–271).
Springer Berlin Heidelberg.], we prove the equivalence of N i

5 w.r.t. an
Hilbert-style axiomatization of IS5. However, when considering the
sheer provability of labelled formulas, our system is comparable
to the one presented by Simpson in [(1993). The proof theory
and semantics of intuitionistic modal logic [PhD thesis], Univer-
sity of Edinburgh, UK.]. Nevertheless, it remains uncertain whether
it is feasible to establish a translation between the corresponding
derivations.
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1. Introduction

It is a fact that developing a good proof theory for modal logics is a difficult task. The
problem is not in having deductive systems. In fact, all the main modal logics enjoy an
axiomatic presentation or in some case a presentation in terms of the so-called seman-
tic tableaux (D’Agostino et al., 1999). The challenging point is in having a concrete
structural proof theory, in which the objects of study are (not only) modal formulas
but also modal proofs.

For example, a well-defined proof theory cannot ignore the syntactical study of cut
elimination/normalization theorem and its consequences, such as following Gentzen
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and Prawitz, the sub-formula property and the consistency theorem (see Troelstra
& Schwichtenberg, 2000).

This was clear to Prawitz when in his famous book ‘Natural deduction: a proof the-
oretical study’ (Prawitz, 1965) he tried to develop the proof theory for one of the most
important modal system, the logic S4.

Unfortunately, the ideas developed by Prawitz are rarely useful for modal systems
other than S4. For example for the logic S5, one of the first normal modal systems,
whose Kripke models are characterised by the fact that the accessibility relation is an
equivalence relation. Despite of its (apparently) simplicity, S5 lacks of a fully satisfac-
tory natural deduction. For instance, in Martins and Martins (2008), the authors arrived
to formulate a natural deduction for S5 following the classical canons of Gentzen
and Prawitz’s natural deduction only at the cost of a rather unnatural system, with an
objectively complex normalization proof.

In this paper, we address again the problem and propose an indexed natural
deduction system for S5.

Before describing our proposal, we contextualise it with respect to the (pertinent)
state of the art of modal proof theory. It is since the early 90s that we have witnessed
a real (re)birth of interest in structural modal proof theory. In particular, two new and
different approaches brought the attention of the logicians’ community.

The first approach could be defined as a geometric one: the leading idea is
to equip formulas with a notion of index or position that provide a sort of ‘spa-
tial coordinate’. Examples are 2-sequents (Baratella & Masini, 2003, 2019; Guerrini
et al., 1998; Martini & Masini, 1996; Martini et al., 2021; Masini, 1992, 1993), (linear)
nested sequents (Brünnler, 2009; Lellmann, 2015; Lellmann & Pimentel, 2019; Poggi-
olesi, 2009), indexed natural deduction systems, hyper-sequents and their numerous
variations (Avron, 1996; Ciabattoni et al., 2014; Wansing, 1999).

The second approach, the so-called Labelled Deductive Systems, is based on the
first-order translation of modal logics: that is, the rules that model the accessibility
relationship are explicitly imported into the syntactical deductive instruments. Thanks
to the direct handling of the accessibility relation in the syntax, Labelled Deductive
Systems are very useful in domain-specific applications of logical system, from tem-
poral logic (Masini et al., 2010; Masini, Viganò, & Volpe, 2011) to logic for quantum
computation (Masini et al., 2008; Masini, Viganò, & Zorzi, 2011; Viganò et al., 2017) to
expert systems (Cristani et al., 2019). Clearly, this versatility has a price: labelled systems
require a huge amount of rules and their proof theory often becomes quite exhausting.

The ‘geometric’ approach bases on very different premises and, in general, geomet-
ric systems are sensibly more tractable. Despite this, various logical systems remained
in a limbo for a long time. One of these logics is S5, usually treated by labelled deduc-
tive systems at the cost of a heavy overweight given by the rules formalizing the
properties of the accessibility relation.

Yet, a clear solution was provided in the far 70s and was given in the field of
semantic tableaux by M. Fitting in Fitting (1977). The idea is simple: each formula
is equipped with a label (e.g. a natural number) and each modal rule rewrites the
label of the formula. No need of explicit treatment of the accessibility relation since
the accessibility relation between labels is universal and hence neglected. Unfortu-
nately, Fitting’s proposal is not oriented to proof theory, in particular, no syntactical
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proof of cut elimination was proposed. We have to wait until the middle of the 90s to
get a proof-theoretical status for Fitting’s system, when Wansing proposed in Wans-
ing (1995) a labelled tableaux calculus á la Fitting for which he was able to prove a
strong cut-elimination theorem.1

Our proposal can be seen as an ideal continuation of Wansing’s one, but it is
also related to other interesting proof-theoretic investigations mainly focused on
sequent-based approaches. Among the others, we recall here the following ones.
For the classical logic S5, it is mandatory to cite the Avron’s hypersequent calculus
(Avron, 1996), the tree/hypersequent calculi by Poggiolesi defined in Poggiolesi (2008)
and Poggiolesi (2009), the hypersequent calculus with restricted contexts by Lell-
mann (2016), the deep sequent calculus introduced by Brünnler in Brünnler (2009),
and finally Renstall’s proof nets for S5 studied in Restall (2007). For the intuistionistic
logic S5, we cite Simpson (1993), the nested sequent calculus proposed in Strass-
burger (2010) by Strassburger, and the Galmiche and Sahli’s calculi defined in Galmiche
and Salhi (2010a) and in Galmiche and Salhi (2010b).

For a detailed comparison with these systems, we address the reader to Sec-
tions 6 and 7. In particular, in Sections 6.1 and 6.2, we show the correspondence
between the proofs of our natural deduction system and the one given in Galmiche
and Salhi (2010b). While in Section 7, we prove that our intuitionistic system is equiv-
alent to Simpson’s one (Simpson, 1993), and we analyse Wansing (1995) and other
related works.

1.1. Our proposal

We define and study a natural deduction system for S5 inspired by the indexed for-
mulas used by Wansing (1995) (for a light introduction to Wansing’s proposal, see
Section 7).

We define both a classical and an intuitionistic version of S5, named N c
5 and N i

5,
respectively. Although our intuitionistic calculus shares some similarities with the one
proposed by Simpson (1993), as we will argument in detail in Section 7, our proposal
is quite different from Simpson’s one, both in terms of derivability and from a proof
theoretic point of view. Indeed, the design of Simpson’s system is semantically driven
and, because of this, it contains relational rules encoding the expected accessibility
relation on the Kripke model of the conclusion that one wants to prove. Differently
from Simpson, we do not have an explicit syntactical representation of the accessibility
relation and a set of rules governing it. In our system, each rule is either an introduction
or an elimination of connectives and modal quantifiers. So, our intuitionistic calculus is
motivated by means of a BHK informal semantics, which is successively formalised into
a suitable term calculus, obtaining in this way a Curry–Howard isomorphism between
formulas/proofs/reduction and types/lambda-terms/computational steps.

In our opinion, this is the right argument which allows us to say that N i
5 is truly

intuitionistic, regardless of its Kripke-style semantics, which is instead the main argu-
ment used by Simpson to assert that his framework is intuitionistic. For the sake of
completeness, we have to say that Simpson’s purpose was completely different from
our one and that he fully achieved it by giving a framework in which one can obtain
different modal logics by modulating the relational rules.
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Like in previous contributions on this subject, our approach was instead to keep the
proof systems as simple as possible and to maintain the structure of the basic formats
à la Prawitz, to preserve the general good proof-theoretic properties of Prawitz’s nat-
ural deduction. The key idea of our system is the decoration of formulas with indexes
that play the role of a sort of (first-order) variables. Modalities act then on this index-
ing by (possibly) changing the index of their formula into another one (with some
restrictions), mirroring at the syntactic level what happens at the semantic level in
S5 universal models. We shall show that our classical system N c

5 is (weakly) com-
plete w.r.t. the standard Hilbert-style axiomatization of S5. For both N c

5 and N i
5, we

shall prove a (syntactical) normalization theorem, as well as its main consequences:
the sub-formula principle and the consistency theorem.

1.2. Synopsis

In Section 2, we recall the modal logic S5, its Hilbert style axiomatization and we
introduce indexed modal formulas; in Section 3, we present the classical natural deduc-
tion system N c

5 and in Section 3.1 we prove it can derive all the formulas of the
Hilbert axiomatization of S5. The semantics and the soundness theorem for N c

5 are
in Section 4. In Section 5, we prove a weak normalization theorem for N c

5 and, in
Section 5.3, we study its consequences. The intuitionistic natural deduction calculus
N i

5 and its properties are treated in Section 6, where it is also proposed a term cal-
culus, with which we establish a Curry–Howard isomorphism. Finally, in Section 7, we
propose a comparison with some related approaches.

2. Preliminary notions

In this section, we recall the modal logic S5 and its Hilbert-style axiomatization. We
also introduce the notion of indexed formula.

The language L of S5 contains the following symbols:

• a countably infinite set of propositional symbols, AT = {p0, p1, . . .};
• the propositional connectives ∨, ∧, →, ⊥;
• the modal operators�,♦;
• the auxiliary symbols ( and ).

As usual, ¬A is a shorthand for A → ⊥.

Definition 2.1: The set of modal formulas is the least set that contains the proposi-
tional symbols and is closed under application of the propositional connectives and
the modal operators. A modal formula is atomic if it is either a propositional symbol or
the connective ⊥.

We recall now the Hilbert style axiomatization of S5.

Definition 2.2: The logic S5 is the smallest set X of modal formulas that contains all
the instances of the following schemata:
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P1. A → (B → A)

P2. (A → (B → C)) → ((A → B) → (A → C))

P3. ((¬B → ¬A) → ((¬B → A) → B))

K. �(A → B) → (�A → �B)

T. �A → A
4. �A → ��A
B. A → �♦A

and the following closures:

MP if A, A → B ∈ X then B ∈ X ;
NEC if A ∈ X then�A ∈ X .

When A ∈ S5, we shall write �H A.

2.1. Indexes and indexed formulas

Let T be a denumerable set whose elements we call tokens, ranged by meta-variables
x, y, z, possibly indexed.

Definition 2.3: An indexed-formula (briefly i-formula) is an expression of the form Ax ,
where A is a modal formula and x ∈ T .

Given a set/sequence � of i-formulas, and a token x, with a little abuse of language
we write x ∈ � (x �∈ �) to denote that � contains (does not contain) an i-formula Ax .

The notion of sub-formula is quite standard:

Definition 2.4 (Sub-formulas): Given an i-formula Ax , we recursively define the set
Sf(Ax) of its sub-formulas as follows:

• Sf(Ax) = {Ax} if A is atomic;
• Sf(A ∨ Bx) = Sf(Ax) ∪ Sf(Bx) ∪ {A ∨ Bx};
• Sf(A ∧ Bx) = Sf(Ax) ∪ Sf(Bx) ∪ {A ∧ Bx};
• Sf(A → Bx) = Sf(Ax) ∪ Sf(Bx) ∪ {A → Bx};
• Sf(�Ax) = Sf(Ay) ∪ {�Ax} for any y ∈ T ;
• Sf(♦Ax) = Sf(Ay) ∪ {♦Ax} for any y ∈ T .

The notion of subformula is then extended to set of formula �:

Sf(�) =
⋃

Ax∈�

Sf(Ax)

3. Classical natural deduction for S5

We study now a natural deduction system for S5. In this section, we start by giving
the rules of the classical system N c

5 , whose intuitionistic version N i
5 will be studied in

Section 6. In Section 4, we shall then analyse the semantics of S5, and in Section 5 its
normalization.
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Logical rules

···
Ax

···
Bx

(∧I)
A ∧ Bx

···
A ∧ Bx

(∧1E)
Ax

···
A ∧ Bx

(∧2E)
Bx

···
Ax

(∨1I)
A ∨ Bx

···
Bx

(∨2I)
A ∨ Bx

···
A ∨ Bx

[Ax]···
Cy

[Bx]···
Cy

(∨E)
Cy

[Ax]···
Bx

(→ I)
A → Bx

···
A → Bx

···
Ax

(→ E)
Bx

[¬Ax]···
⊥y

(⊥c)
Ax

···
⊥y

(⊥i)
Ax

In the ⊥i and ⊥c rules, whenever Ax is ⊥x , we require x �= y.
Note that the rules for logical connectives ∧ and → and the ∨I rule can be only

applied between formulas with the same index. The rule ∨E mimics instead the original
rule by Prawitz and has no restriction on the index of the conclusion Cy .

The role of the indexes is clear in the rules for the modalities� and ♦:

···
Ax

(�I)
�Ay

···
�Ax

(�E)
Ay

In the rule�I, one has x �= y and x �∈ �, where � is the set of (open) assumptions on
which Ax depends. The token x of�I is called proper token of the rule.

···
Ax

(♦I)
♦Ay

···
♦Az

[Ax]···
Cy

(♦E)
Cy

In the rule ♦E, one requires x �= z, x �= y and x �∈ �, where � is the set of (open)
assumptions on which Cy depends, with the exception of the discharged assumptions
Ax .

The token x of ♦E is called proper token of the rule.
Given an instance of a rule R we define the concept of principal premise(s) of R (that

is a trivial extension of the classical notion in order to take into account also the case
of modal rules).
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• If R is an introduction or a ⊥c or a ⊥i rule, then the premise(s) of R is(are) the
principal premise(s) of R;

• if R is an elimination rule, then the principal premise is the formula that has
the main connective object of the elimination. More precisely, w.r.t. the previous
stated rules:

– the principal premise of ∧E is A ∧ Bx ;
– the principal premise of → E is A → Bx ;
– the principal premise of ∨E is A ∨ Bx ;
– the principal premise of�E is�Ax ;
– the principal premise of ♦E is ♦Az .

A premise is called minor if it is not principal.
As usual with � � Ax we denote that there is a derivation with conclusion Ax whose

open assumptions belong to �.
By token renaming, the following proposition is easily provable (see Troelstra & van

Dalen, 1988b, Vol. 2, pag. 529 for the analogous statement for proper parameters in the
case of first-order logic).

Proposition 3.1: Let � � Ax. There exists a deduction of Ax from � in the system N such
that

(1) each proper token is the proper token of exactly one instance of a�I or of a♦E rule;
(2) the proper token of any instance of a�I rule occurs only in the sub-derivation above

that instance of the rule;
(3) the proper token of any instance of a ♦E rule occurs only in the sub-derivation above

the minor premise of that instance of the rule.

Definition 3.2 (Token condition): A deduction satisfying the conditions of Proposi-
tion 3.1.(1)–(3) is said to satisfy the proper token condition.

Remark 3.1: By Proposition 3.1, we can always assume that, by a suitable renaming of
proper tokens, all deductions that we take into account in the rest of the paper satisfy
the token condition.

If � is a deduction, let �[x/y] denote the tree obtained by replacing each token x in
� with the token y.

Remark 3.2: Under reasonable assumptions, token substitution preserves deduction
correctness and token condition. Indeed,

(1) if � is a deduction satisfying the token condition and
(2) x, y are not proper tokens of �,

then �[x/y] is a deduction satisfying the token condition.
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Remark 3.3: Note that if the last rule of � is ⊥i, and the last formula is ⊥x for some x,
it might be the case that, after the token substitution, the side condition of this appli-
cation of ⊥i is no longer satisfied (that is, its premise and conclusion are both ⊥z , for
the same z). In such a case by �[x/y], we mean the deduction obtained by deleting the
last – incorrect – application of ⊥i.

Remark 3.4: Finally, we want to make sense of the operation �[x/y] even when the
conditions of Remark 3.2 are not satisfied. Note that if � is a deduction satisfying the
token condition, we can replace any proper token in � by a fresh token, to obtain a
deduction �′ of the same formula from the same assumptions, and such that x and y
satisfy all the conditions of Remark 3.2. Hence, we define �[x/y] as this �′[x/y]. In the
following, we will implicitly assume that by �[x/y] we actually mean �′[x/y], for some
�′ as above.

3.1. From the Hilbert-style calculus to N c
5

We prove now a theorem which ensures that all S5 theorems are derivable in N c
5 .

Proposition 3.3: For each token y:

(a) (1) � A → (B → A)y;
(2) � (A → (B → C)) → ((A → B) → (A → C))y;
(3) � ((¬B → ¬A) → ((¬B → A) → B))y;
(4) � ♦A ↔ ¬�¬Ay;
(5) � �(A → B) → (�A → �B)y;
(6) � �A → Ay;
(7) � �A → ♦Ay;
(8) � �A → ��Ay;
(9) � A → �♦Ay.

(b) if � Ay, then � �Ay; if � A → By and � Ay then � By.

Proof: (a) The proofs of (1)–(3) are exactly as for standard natural deduction
for propositional logic, simply label all the formulas in the classical standard
deductions with the same token y;

(4)

[♦Ay]

[Ax]

[�¬Ay]
�E

¬Ax

→ E
⊥x

⊥i⊥y

→ I
¬�¬Ay

♦E
¬�¬Ay

→ I
♦A → ¬�¬Ay

[¬♦Au]

[Ax]
♦I

♦Au

→ E
⊥u

⊥i⊥x

→ I
¬Ax

�I
�¬Au [¬�¬Au]

→ E
⊥u

⊥c♦Au

→ I
¬�¬A → ♦Au
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(5)

[�Ay]
�E

Ax

[�(A → B)y]
�E

A → Bx

→ E
Bx

�I
�By

→ I
�A → �By

→ I
�(A → B) → (�A → �B)y

(6)

[�Ay]
�E

Ay

→ I
�A → Ay

(7)

[�Ay]
�E

Ax

♦I
♦Ay

→ I
�A → ♦Ay

(8)

[�Ay]
�E

Az

�I
�Au

�I
��Ay

→ I
�A → ��Ay

(9)

[Ay]
♦I

♦Ax

�I
�♦Ay

→ I
A → �♦Ay

(b) Let us suppose that � Ay . Then there is a proof � with conclusion Ay . Now, pick
a fresh variable z, and therefore we have a proof �[y/z] of Az . Then apply �I
and obtain a proof of � �Ay . Finally, closure under MP is trivially ensured by
rule (→ E).

�

From Proposition 3.3, we easily the theorem:

Theorem 3.4: For each token y, if �H A, then � Ay.
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4. Semantics of S5

4.1. The standard universal semantics of S5

We know that S5 is sound and complete with respect to all the Kripke models whose
accessibility relation is an equivalence relation, but also with respect to all the Kripke
models whose accessibility relation is universal, namely where all the possible worlds
are mutually accessible. Consequently the accessibility relation may be dropped in the
definition of models (see the book Chellas, 1980, p. 178).

Definition 4.1 (Universal Model): A Universal Model is a pair W =< W , V > s.t.

(1) W is a non empty set of possible words;
(2) V : W → 2AT .

In the following, variables w, v (possibly indexed) range over the set W of a given
universal model W =< W , V >.

We recall the notion of satisfiability of modal formulas w.r.t. universal models.

Definition 4.2 (Satisfiability):

• W , w �|= ⊥
• W , w |= p ⇔ p ∈ V(w) for p ∈ AT
• W , w |= A → B ⇔ W , w |= A ⇒ W , w |= B
• W , w |= A ∨ B ⇔ W , w |= A or W , w |= B
• W , w |= A ∧ B ⇔ W , w |= A and W , w |= B
• W , w |= �A ⇔ ∀v ∈ W ,W , v |= A
• W , w |= ♦A ⇔ ∃v ∈ W ,W , v |= A

We write W |= A to denote that, for each w ∈ W , we have W , w |= A, and |= A to
denote that W |= A holds for each universal model W .

4.2. Semantics and soundness of N c
5

The semantics for indexed formulas requires the definition of an evaluation function
that interprets tokens into possible worlds. Note that we treat modal operators as
much as possible like quantifiers. Keeping in mind first-order systems, the following
definitions may be considered quite standard.

Definition 4.3 (Interpretation, satisfiability and logical consequence): (1) An
interpretation is a pair < W , ρW > where W =< W , V > is a universal model
and ρW : T → W is a map from token to worlds, that we call evaluation
function.

(2) The satisfiability relation for indexed formulas is defined as

ρW � Ax ⇔ W , ρW(x) |= A.

(3) Finally the notion of logical consequence is defined as

� � Ax ⇔ ∀W , ∀ρW .(ρW � � ⇒ ρW � Ax).
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Proposition 4.4: Let W be an universal model and let ◦ ∈ {�,♦},

ρW � ◦Ax ⇔ ∀ρ′
W , ∀z ∈ T , ρ′

W � ◦Az .

As an easy consequence of this proposition, we have

Proposition 4.5: (1) if � � Ax and x �∈ � then for each z ∈ T , � � �Az;
(2) if � � �Ax then for each z ∈ T , � � Az;
(3) if � � Ax then for each z ∈ T , � � ♦Az;
(4) if �′ � ♦Ay, �′′, Ax � Bz, z �= x �= y and x �∈ �′′ then �′, �′′ � Bz.

Thanks to Proposition 4.5, by an easy induction on proofs which strictly mimics
the standard proof of soundness for first-order natural deduction we can state the
following theorem.

Theorem 4.6 (Soundness 1): If � � Ax, then � � Ax.

Corollary 4.7: If � Ax, then �H A.

5. Weak normalization and its consequences

In this section, we prove that each derivation � in N c
5 can be reduced to another

derivation �′ in normal form (see later for the definition of normal form).
We write

Bz

�

Ax

to say that � is a deduction of Ax having some (possibly zero) occurrences of formula
Bz among its assumptions, and we write

�

Ax R

to say that � is a deduction of formula Ax whose last rule is R.
Following Prawitz, from now on we restrict the study of the normalization to the

complete basis →,� and ⊥.
Moreover, we can assume that the conclusion of the ⊥c rule is atomic. To show this

fact let us apply repeatedly the following transformations (e.g. see Prawitz, 1965, p.41):

[¬(A → B)x]
�

⊥y

A → Bx

�

[Ax]3[A → Bx]1

Bx [¬Bx]2

⊥y

(1)¬(A → B)x

�

⊥y

(2)
Bx

(3)
A → Bx
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[¬(�A)x]
�

⊥y

�Ax

�

[�Ax]1

Ay [¬Ay]2

⊥y

(1)¬(�A)x

�

⊥z

(2)
Ay

(3)�Ax

To define the normal form for a deduction, we need first to introduce the notions of
contractions, reduction steps, and reduction sequence (see, e.g. Girard, 1987.)

5.1. Proper contractions

The relation� of proper contractibility between deductions is defined as follows:

[Ax]
�1

Bx

A → Bx
�2

Ax

Bx

�
�2

Ax

�1

Bx

�

Ax

�Ay

Az

� �[x/z]

Az

Remark 5.1: It is easy to verify that contractions transform deductions into
deductions.

Definition 5.1 (Reducibility between Deductions): (1) The relation � of imme-
diate reducibility between deductions is the ‘context closure’ of �, defined as
follows: �1 � �2 if and only if there exist deductions �3 and �4 such that
�3 ��4 and �2 is obtained by replacing �3 with �4 in �1.

(2) The relation
∗� of reducibility is the transitive and reflexive closure of � .

Remark 5.2: It is easy to verify that reductions transform deductions into deductions.
Moreover, applying what we have written in remark 3.1, we assume that if � � �′
then �′ verify the token condition, if this is not the case simply rename the proper
tokens of �′ to obtain a derivation that verifies the token condition. This approach
is standard in the first-order natural deduction, where instead of proper tokens
there are the so-called proper parameters (see, e.g. Troelstra & van Dalen, 1988b pp.
529–530).

5.2. Normalization

Definition 5.2 (Normal forms and normalizable deductions): A deduction � is

(1) in normal form if there is no deduction �′ such that � � �′;
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(2) normalizable if there is a deduction �′ s.t. �
∗� �′ and �′ is in normal form.

Definition 5.3 (Degree of a formula): (1) The degree deg(A) of a modal formula
A is recursively defined as

(a) (a)deg(A) = 0 if A is an atomic formula;
(b) (b)deg(¬A) = deg(�A) = deg(♦A) = deg(A) + 1;
(c) (c)deg(A ∧ B) = deg(A ∨ B) = deg(A → B) = max{deg(A), deg(B)} + 1.

(2) The degree deg(Ax) of formula Ax is just deg(A).

Definition 5.4 (cut): (1) A cut in a derivation � is a formula Ax which is con-
clusion of an introduction rule I∗ of a connective ∗, and principal premise
of an elimination rule E∗ of the same connective.

(2) A cut Ax in � is maximal if deg(Ax) = max{deg(A′x) : A′x is a cut in �}.

Let C[�] be the set of cuts of �. For the normalization theorem we will use the
lexicographic ordering between pairs of natural numbers.2

Theorem 5.5 (Weak normalization): For each derivation � there exists a derivation �′

s.t. �
∗� �′ and �′ is in normal form.

Proof: The proof is on well ordering induction on pairs (d, n) of natural numbers. We
associate to each derivation � a pair (called rank) #[�] = (d, n) s.t.

• d = max{deg(Ax) : Ax ∈ C[�]};
• n = ∑

Ax∈C[�],deg(Ax)=d d.

We then prove the following claim:

#[�] > (0, 0) ⇒ ∃�′(�
∗� �′ & #[�′] < #[�]).

(1) Let us suppose that #[�] > (0, 0);
(2) pick a maximal cut Ax in � s.t. the sub-derivation �∗ ending with Ax does not

contain any other maximal cut;
(4) perform the relevant contraction.

The resulting derivation �′ has a smaller rank w.r.t � i.e. #[�′] < #[�] for the lexico-
graphic order. In fact, if there exists a unique maximal cut of degree d, then after the
contraction lowers the first number of the pair #[�] (such a contraction cannot create
new maximal cuts); if the maximal cut is not unique, then after the reduction lowers
the second number of the pair #[�] (once again such a contraction cannot create new
maximal cuts). So the result is established by a double induction.

Using the claim, since the lexicographic order is well founded, for each derivation

� there exists a derivation �′ s.t. �
∗� �′ and #[�′] = (0, 0), i.e. the thesis. �
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5.3. Consequences of the normalization

In this section, we prove a Consistency Theorem, as a main consequence of normaliza-
tion. In the following, we strictly follow Prawitz (1965).

Definition 5.6 (Thread): A finite sequence (Ai
xi)i≤m of formulas in a deduction is a

thread if:

(1) for all i < m, Ai
xi is immediately above Ai+1

xi+1 ;
(2) Am

xm is the end-formula of the deduction;
(3) A0

x0 is an assumption (either discharged or undischarged).

A branch is an initial segment of a thread satisfying some properties:

Definition 5.7 (Branch): By a branch in a deduction we understand an initial segment
A1

x1 . . . An
xn of a thread A1

x1 . . . An
xn An+1

xn+1 . . . Am
xm in a deduction such that An

xn is
either

(1) the first formula occurrence in the thread that is the minor premise of an
application of → E rule;

(2) the last formula occurrence in the thread (the end-formula of the deduction) if
there is no such minor premise in the thread.

By a main branch, we understand a branch that is also a thread and contains no
minor premise of → E rule.

The following proposition tells that a normal deduction can be split into two subse-
quences such that the formula occurrences that are major premises of some elimina-
tion rule precede all the formula occurrences that are premises of an introduction rule
of a ⊥c rule:

Proposition 5.8: Let � be a normal deduction and let b = A1
x1 . . . Ai

xn a branch in �.
Then there exists a modal formula occurrence Ai

xi , called the minimum formula in b, that
splits b in two (possibly empty) parts with the following properties:

(1) each Aj
xj , j < i, is a major premise of an → E rule or the premise of a �E rule and

contains Aj+1
xj+1 as a sub-formula; we call the sequence (Aj

xj)j≤i an elimination
sequence;

(2) each Aj
xj , i < j and j �= n is a premise of an → I rule or of a�I rule and is a sub-formula

of Aj+1
xj+1 ; we call the sequence (Aj

xj)i≤j an introduction sequence;
(3) the last formula An

xn , provided n �= i, is premise of an → I rule or premise of an�I rule
or the ⊥c rule.

Proof: The formula occurrences in b that are major premises of an → E rule precede all
the formula occurrences that are premises of an → I rule or a ⊥c rule. Otherwise, there
is a first formula occurrence in b, call it Ak

xk that is a major premise of an → E rule but
succeeds a premise of an → I rule or a ⊥c rule: Ak

xk would be a maximum formula, and
this contradicts the assumption that � is normal. The formula occurrences in b that are
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major premises of an�E rule precede all the formula occurrences that are premises of
an�I rule or a ⊥c rule. Otherwise we can reason as in the previous case.

Let Al
xl be the first formula occurrence in b that is premise of an → I rule or premise

of the�I rule or the ⊥c rule, or let Al
xl = An

xn : by definition, Al
xl is a minimum formula

and satisfies clauses 1) and 3). Moreover, every Aj
xj such that j < i < n is a premise of

an → I rule or of an�I rule or of the ⊥c rule. We can exclude the latter possibility, since
a premise of the ⊥c rule is an occurrence of the formula ⊥ and can be a consequence
of an → E rule only. Hence Al

xl satisfies also clause 2). �

In the proof of the following result, we use the notion of order between branches:

Definition 5.9 (Order of a branch): Let � be a derivation in normal form, we associate
to each branch b ∈ � a number o(b), called order, as follows.

(1) if b is a main branch, then o(b) = 0
(2) if b ends with the minor premise of an application of a → E rule and the major

premise of the rule belongs to a branch of order n, then o(b) = n + 1.

Corollary 5.10 (Sub-formula Property): Given a normal deduction � of a formula Ax

from a set � of assumptions, we call � the set of all the formula occurrences in � except for
the assumptions discharged by a ⊥c rule and for occurrences of ⊥ that stand below such
assumptions. Then each modal formula occurrence Ai

xi in � is either a sub-formula of Ax

or a formula in �.

Proof: It is enough to prove that the sub-formula property holds for all formula occur-
rences Ai

xi in a branch of order k, on the assumption that the property holds for all
Ai

xi in branch of order h < k. Consider a branch b = A1
x1 . . . Ai

xn and its minimum for-
mula Am

xm . The property clearly holds for An
xn : in fact, An

xn is either the conclusion A
or the major premise of an → E rule (then it is of the shape Al → Bl

xl ) and belongs to
a branch of order h = k − 1 < k. Consider now a Ai

xi in the introduction sequence of
b. By Proposition 5.8, we know Ai

xi is a premise of an → I rule and is a sub-formula
of Ai+1

xi+1 and we can conclude that the property holds. If Ai
xi does not follows in

the previous cases, then either it is an assumption � or it has been discharged by
an application of → I. In the latter case, the consequence of the rule has the shape
Al → Bl

xl and either belongs to the introduction sequence of a branch or belongs to
some branch of order h < k. In this case, we can conclude by Proposition 5.8.

Finally, if Ai
xi has been discharged by an application of the ⊥c rule, either Ai

xi is a
premise of an → I rule or is a major premise of an → E rule. In the former case, one has
Ai

xi = An
xn , whereas in the latter case either Ai

xi is of the shape ⊥xi or Ai
xi is the minor

premise of a → E rule and so Ai
xi = An

xn . �

As an immediate consequence, we have the following Consistency Theorem:

Theorem 5.11 (Consistency): For each token x, �� ⊥x.
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6. Intuitionistic system and normalization

In this section, we extend our proposal to the intuitionistic version of S5, obtaining the
system N i

5.
From a semantic perspective, Intuitionistic Modal logic is a very delicate topic. In par-

ticular, there is no standard extension of intuitionistic Kripke-style semantics for modal
logics. A very good explanation of the problems in having a Kripke semantics for modal
intuitionistic logics can be found in Simpson’s PhD Thesis (Simpson, 1993).

It is our firm opinion that an intuitionistic logic should not be characterised by a
semantics, which in some way could be arbitrary. What deeply identify a logic is rather
the set of the properties of its proofs.

In other words, an intuitionistic logic should be directly characterised by its BHK
‘semantics’, also called functional interpretation of proofs.

Moreover, as technically discussed in Section 6.10, the BHK semantics of proofs
induces a purely functional calculus, opening in our case the perspective of a theory of
intuitionistic S5 types for computational systems.

Following these motivations, we begin this section by stating that, in analogy with
first-order intuitionistic logic, the calculus obeys to the following BHK interpretation:

Definition 6.1 (BHK interpretation of proofs): (1) A proof A ∧ Bx is a pair (a, b)

where a is a proof of Ax and b is a proof of Bx ;
(2) a proof of A ∨ Bx is a pair (i, c) where i ∈ {0, 1} and if i = 0 then c is a proof of Ax

otherwise c is a proof of Bx ;
(3) a proof of A → Bx is a construction f that transform each proof a of Ax in a proof

f (x) of B;
(4) there is no proof of ⊥x ;
(5) a proof of�Ax is a construction that for each y gives a proof f (y) of Ay ;
(6) a proof of ♦Ax is a pair (y, a) such that a is a proof of Ay .

To be consistent with the BHK interpretation of proofs, exactly as for first-order cal-
culus, the deductive system for intuitionistic S5 is obtained from its classical version by
dropping the reductio ab absurdum rule ⊥c, but not the ex falso quod libet rule ⊥i.

Definition 6.2: The intuitionistic natural deduction system N i
5 for intuitionistic S5 is

obtained by dropping the ⊥c rule in N c
5 . The resulting system is called N i

5.

In Section 6.3, we will prove a weak normalization theorem and its main conse-
quences in the intuitionistic setting: the disjunction property and the witness property.

Before this, in the next two subsections we shall prove the equivalence of N i
5

w.r.t. an Hilbert-style axiomatization of IS5, by translation into the natural deduction
system given by Galmiche and Salhi (2010b).

6.1. IS5: the intuitionistic Hilbert calculus of S5

In this section, we recall the intuitionistic modal logic IS5 via an Hilbert-style axiomati-
zation and prove the equivalence of N i

5 w.r.t IS5.
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The language of IS5 is the same of classical S5. Let IPL be a sound and com-
plete axiomatization of intuitionistic propositional logic with modus ponens as unique
inference rule (see, e.g. Troelstra & van Dalen, 1988a).

Definition 6.3: The logic IS5 is the smallest set X of modal formulas that contain all the
instances of the following schemata (see, e.g. Galmiche & Salhi, 2010b; Simpson, 1993):

(0) all the axioms of IPL;
(1) �(A → B) → (�A → �B);
(2) �(A → B) → (♦A → ♦B);
(3) ♦⊥ → ⊥;
(4) ♦(A ∨ B) → (♦A ∨ ♦B);
(5) (♦A → �B) → �(A → B);
(6) �A → A;
(7) A → ♦A;
(8) ♦A → �♦A;
(9) ♦�A → �A.

and the following closures:

MP if A, A → B ∈ X then B ∈ X ;
NEC if A ∈ X then�A ∈ X .

When A ∈ IS5, we shall write �IS5 A.

To avoid misunderstandings, in this section we will denote with �N i
5

the derivability

relation of N i
5.

Proposition 6.4: For each instance A of an axiom of IS5 and for each token y, �N i
5

Ay .

Proof: (0) for each propositional axiom of IPL and for each token y, �N i
5

Ay .

Simply take a proof � in standard intuitionistic natural deduction and
decorate each occurrence of a formula B in � with By ;

(1) �N i
5
�(A → B) → (�A → �B)y ;

[�Ay]
�E

Ax

[�(A → B)y]
�E

A → Bx

→ E
Bx

�I
�By

→ I
�A → �By

→ I
�(A → B) → (�A → �B)y
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(2) �N i
5
�(A → B) → (♦A → ♦B)y ;

[♦Ay]

[�(A → B)y]
�E

A → Bx [Ax]
♦I

Bx

♦E
♦By

♦E
♦By

→ I
♦A → ♦By

→ I
�(A → B) → (♦A → ♦B)y

(3) �N i
5
♦⊥ → ⊥y ;

[♦⊥y]

[⊥z]
⊥i⊥y

♦E
⊥y

→ I
♦⊥ → ⊥y

(4) �N i
5
♦(A ∨ B) → (♦A ∨ ♦B)y ;

[♦(A ∨ B)y]

[A ∨ Bz]

[Az]
♦I

♦Ay

∨1♦A ∨ ♦By

[Bz]
♦I

♦By

∨2♦A ∨ ♦By

∨E
♦A ∨ ♦By

♦E
♦A ∨ ♦By

→ I
♦(A ∨ B) → (♦A ∨ ♦B)y

(5) �N i
5

(♦A → �B) → �(A → B)y ;

[Ax]
♦I

♦Ay [♦A → �By]
�E

�By

→ I
Bx

→ I
A → Bx

�I
�(A → B)y

→ I
(♦A → �B) → �(A → B)y

(6) �N i
5
�A → Ay ;

[�Ay]
�E

Ay

→ I
�A → Ay
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(7) �N i
5

A → ♦Ay ;

[Ay]
♦I

♦Ay

→ I
A → ♦Ay

(8) �N i
5
♦A → �♦Ay ;

[♦Ay]

[Ax]
♦I

♦Ax

�I
�♦Ay

♦E
�♦Ay

→ I
♦A → �♦Ay

(9) �N i
5
♦�A → �Ay ;

[♦�Ay]

�Ax

�E
Az

�I
�Ay

♦E
�Ay

→ I
♦�A → �Ay

�

Proposition 6.5:
If �N i

5
Ay, then �N i

5
�Ay;

if �N i
5

A → By and �N i
5

Ay then �N i
5

By.

Proof: Let us suppose that �N i
5

Ay . Then there is a proof � with conclusion Ay . Now,

pick a fresh variable z, and therefore we have a proof �[y/z] of Az . Then apply �I
and obtain a proof of �N i

5
�Ay . Finally, closure under MP is trivially ensured by rule

(→ E). �

As an immediate consequence, we have the following theorem:

Theorem 6.6: For each token y, if �IS5 A, then �N i
5

Ay.

We also have the reverse direction, by translation into the NDIS5 system proposed by
Galmiche and Salhi (2010b). In the next section, we shall see that every proof of N i

5 can
be translated into a proof of NDIS5, and vice versa. So, if we call �NDIS5 the derivability
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relation of the approach of NDIS5, we will show that (see Lemma 6.8)

�N i
5

Ay ⇒ �NDIS5 A

for each token y. Since Galmiche and Salhi prove the equivalence of their system
w.r.t. IS5

�IS5 A ⇔ �NDIS5 A

then we can state the following:

Theorem 6.7: For each token y, if �N i
5

Ay then �IS5 A.

6.2. MC-sequents

Galmiche and Salhi (2010b) gave a label-free natural deduction system NDIS5 proving
that it is sound and complete w.r.t. IS5. The authors did not prove normalization for
NDIS5, focusing on the cut elimination of a sequent-style counterpart, which is proved
equivalent to the natural deduction system.

The rules of the systems are given in terms of MC-sequents

�1; . . . ; �n � �0 � A

where �0, . . . , �n are multisets of formulas, and �1; . . . ; �n is at its turn a multiset (or
equivalently, it is an unordered sequence). When �0 = ∅ it can be ignored and the
MC-sequent can be written as �1; . . . ; �n � � A.

We shall now prove that every proof of N i
5 can be translated into a proof of NDIS5,

and vice versa.

From indexed sequents to MC-sequents

Given a judgement � � Ax , since the formulae in a context � are not ordered, we can
rearrange it in sub-contexts �x in which we collect all the formulas with the token x,
and take � = �1

x1 , �2
x2 , . . . , �n

xn , where xi = xj only if i = j.
According to the latter convention, every judgment of N i

5 can be written as

�1
x1 , . . . �i

xi , . . . , �n
xn � Axi

where x1, . . . , xn are distinct tokens and �j
xj is a (possibly empty) multiset of formulas

indexed by the token xj, for 1 ≤ j ≤ n. We remark the particular case in which �i = ∅,
corresponding to a proof in which the tokens of all the open assumptions differ from
the token xi of the conclusion.

Let us now give a map �J � translating any judgment J of N i
5 into an MC-sequent,

by defining:

��1
x1 , . . . , �n

xn � Axi� = �1; . . . ; �i−1; �i+1; . . . , �n � �i � A

The rules of the NDIS5 natural deduction system of Galmiche and Salhi (2010b) translate
almost directly into the rules of N i

5, by replacing the judgements corresponding to the
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premises and the conclusion of each rule with their translations. Let us see in detail the
translation of the�I and�E rules, the other ones are similar.

• We start with the�I rule

Ax

�I
�Ay

In which we recall that y �= x and x �∈ {x1, . . . , xn}, where {x1, . . . , xn} is the set
of the tokens of the open assumptions in the context. In accord with these con-
straints, let us assume w.l.o.g. that y = xn and take x = xn+1. The translation of
the rule is a�I rule of NDIS5

��1
x1 , . . . , �n

xn � Axn+1�
�I

��1
x1 , . . . , �n

xn � �Axn�

whose premise and conclusion are just the translation of the corresponding
judgements of the N i

5 proof. Since �n+1 = ∅, we obtain

�1; . . . ; �n � � A
�I

�1; . . . ; �n−1 � �n � �A

• For the translation of the�E rule

Ax

�I
�Ay

let us assume w.l.o.g. that x = xn and y = xj, with 1 ≤ j ≤ n. The resulting rule is
obtained as above by

��1
x1 , . . . , �n

xn � Axn�
�k

E
��1

x1 , . . . , �n
xn � �Axj

�

but we must distinguish two cases, corresponding to the two �E rules of NDIS5

(for k = 1 or k = 2, respectively):
(1) when j = n, we have k = 1 and the resulting NDIS5 rule is

�1; . . . ; �n−1 � �n � A
�1

E
�1; . . . ; �n−1 � �n � �A

(2) when j �= n, we have k = 2 and, by assuming w.l.o.g. that j = n−1, the
resulting NDIS5 rule is

�1; . . . ; �n−2; �n−1 � �n � A
�2

E
�1; . . . ; �n−2; �n � �n−1 � �A

By applying the above translation to all the rules, we can then conclude that every
formula provable in N i

5 can be proved in NDIS5.
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Lemma 6.8: Let us write �NDIS5 A to denote that � � A is derivable in NDIS5.

�N i
5

Ay ⇒ �NDIS5 A

As already remarked (see of Theorem 6.7), since �NDIS5 is sound w.r.t. IS5, the
previous lemma proves that N i

5 too is sound.

From MC-sequents to indexed sequents

Analogously, we have an inverse translation translating every MC-sequents into an
indexed judgement of N i

5. Namely:

ρ[�1; . . . ; �n � �0 � A] = �1
x1 ; . . . ; �n

xn � �0
x0 � Ax0

where x0, x1, xn are distinct tokens. By replacing each MC-sequent S in an NDIS5 proof
with the conclusion of the corresponding ρ[S] judgement of N i

5, we can see by induc-
tion of the length of the proof that the translation of every rule of the NDIS5 deduction
becomes a valid N i

5 rule whose conclusion is the conclusion of an N i
5 subproof

proving the corresponding judgement.

Lemma 6.9: For each token y

�NDIS5 A ⇒ �N i
5

Ay

Remark 6.1: We remark that, thanks to the latter Lemma 6.9, we have that

�IS5 A ⇒ �NDIS5 A ⇒ �N i
5

Ay

for each token y. However, to show our calculus at work, we thought it has been
interesting to give a direct proof of the axioms of IS5 (see Proposition 6.4).

6.3. Weak normalization

In view of the proof of normalization, it is useful to restrict the ⊥i to atomic conclusions.
We call the resulting system N ia

5 .
To show that the constraint for the ⊥i rule preserves the logical power of the system,

it suffices to apply the following transformation rules:

�

⊥y

A → Bx

�

�

⊥y

Bx

A → Bx

�

⊥y

A ∨ Bx

�

�

⊥y

Bx

A ∨ Bx

�

⊥y

A ∧ Bx

�

�

⊥y

Ax

�

⊥y

Bx

A ∧ Bx
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�

⊥y

�Ax

�

�

⊥y

(z fresh)
Az

�Ax

�

⊥y

♦Ax

�

�

⊥y

Ax

♦Ax

As for the classical case, we write

Bz

�

Ay

to say that � is a deduction of Ay having some (possibly zero) occurrences of formula
Bz among its assumptions, and we write

�

Ay R

to say that � is a deduction of formula Ay whose last rule is R.

6.4. Proper contractions

The relation� of proper contractibility between deductions is defined as follows :3

�1

Ay
�2

By

A ∧ By

Ay

� �1

Ay

�1

Ay
�2

By

A ∧ By

By

� �2

By

�1

Ay

A ∨ By

[Ay]
�2

Cz

[By]
�3

Cz

Cz

�
�1

Ay

�2

Cz

�1

By

A ∨ By

[Ay]
�2

Cz

[By]
�3

Cz

Cz

�
�1

By

�3

Cz

[Ay]
�1

By

A → By
�2

Ay

By

�
�2

Ay

�1

By

�

Ax

�Ay

Az

� �[x/z]

Az

�1

Az

♦Ay

[Ax]
�2

Cv

Cv

�
�1

Az

�2[x/z]

Cv
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6.5. Commutative contractions

In this section, we denote by

�1

Cz �2
R

Dγ

a deduction ending with an elimination rule R whose major premise is a formula Cz .
We further extend the relation� by adding the following commutative contractions:

�1

A ∨ By

[Ay]
�2

Cz

[By]
�3

Cz

Cz �4
R

Dv

� �1

A ∨ By

[Ay]
�2

Cz �4
R

Dv

[By]
�3

Cz �4
R

Dv

Dv

�1

♦Ay

[Ax]
�2

Cz

Cz �3
R

Dv

� �1

♦Ay

[Ax]
�2

Cz �3
R

Dv

Dv

6.6. Simplification contraction

�

A ∨ Bx
�1

Cz
�2

Cz

∨E
Cz

� �i

Cz

if the rule does not discharge assumptions in �1, �2;

�

♦Ax
�1

Cz

♦E
Cz

� �1

Cz

if the rule does not discharge assumptions in �1.

Remark 6.2: Following the approach highlighted in Remark 5.2 for classical logic, we
define reducibility and normal forms for N ia

5 as in Definitions 5.1 and 5.2.

6.7. Normalization

Definition 6.10 (Segments and Endsegments): Let Ay be an indexed formula.

(1) A finite sequence (Ay
i)i≤m of occurrences of Ay in a deduction � is a segment

(of length m + 1) if:
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(a) Ay
0 is not a conclusion of ∨E or ♦E;

(b) Ay
m is not a minor premise of ∨E or ♦E;

(c) for all i < m, Ay
i is a minor premise of ∨E or ♦E with conclusion Ay

i+1.
(2) A segment in a deduction is an endsegment if its last formula is the last formula

of the deduction.

We will denote segments by σ , possibly indexed. When we want to highlight that a
segment is made of occurrences of a formula Ay we will write σ [Ay]. With |σ | we denote
the length of the segment σ .

Given a deduction
�

Ay R, with little abuse of language we will say that a deduction

�′ is a (main) premise of rule R to mean that �′ is a sub-deduction of � whose end-
formula is a (main) premise of the displayed application of R.

Definition 6.11 (Major/Minor Premises and Conclusions): Let σ [Ay] = Ay
0 . . . Ay

m

and let R be a segment and an instance of a deduction rule in �, respectively. We say
that:

• σ is the (major/minor) premise of R, if Ay
m is the (major/minor) premise of R;

• σ is conclusion of R, if Ay
0 is the conclusion of R.

The degree of a segment σ [Ay] is defined by δ(σ [Ay]) = deg(A), where deg(A) is the
degree of the formula A (see Definition 5.3).

Definition 6.12 (cut): (1) A cut in a derivation � is a segment σ which is conclu-
sion of an introduction rule I∗ of a connective ∗, and principal premise of an
elimination rule E∗ of the same connective.

(2) A cut σ in � is maximal if δ(σ ) = max{δ(σ ′) : σ ′ is a cut in �}.
(3) A (maximal) cut formula is a (maximal) cut segment of length 1.

Let C[�] be the set of cuts of �. For the normalization theorem, we will use the
lexicographic ordering between pairs of natural numbers.4

Theorem 6.13 (normalization): For each derivation �, there exists a derivation �′ s.t.

�
∗� �′ and �′ is in normal form.

Proof: Phase 1 : In this phase, we do not consider simplification contractions.
The proof is on well ordering induction on pairs (d, n) of natural numbers. We associate

to each derivation � a pair (called rank) #[�] = (d, n) s.t.
• d = max{δ(σ ) : σ ∈ C[�]};
• n = ∑

σ∈C[�],δ(σ )=d d.
We then prove the following claim:

#[�] > (0, 0) ⇒ ∃�′(�
∗� �′ & #[�′] < #[�]).

(1) Let us suppose that #[�] > (0, 0);
(2) pick a maximal cut σ in � s.t. the sub-derivation �∗ ending with σ (i.e. ending with

the last occurrence of σ ) does not contain any other maximal cut segment;
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(3) perform all possible commutative contractions with respect to the segment under
consideration;

(4) perform the relevant contraction.
The resulting derivation �′ has a smaller rank w.r.t �, i.e. #[�′] < #[�] for the lexi-

cographic order. In fact, if there exists a unique maximal cut of degree d, then after the
contraction lowers the first number of the pair #[�] (such a contraction cannot create new
maximal cuts); if the maximal cut is not unique, then after the reduction lowers the sec-
ond number of the pair #[�] (once again such a contraction cannot create new maximal
cuts). So the result is established by a double induction.

Using the claim, since the lexicographic order is well founded, for each derivation �

there exists a derivation �′ s.t. �
∗� �′ and #[�′] = (0, 0), i.e. the thesis.

Phase 2: Simplifications.
We proceed by applying inductively the simplification contractions, until no simplifi-

cation may be performed. Please note that such a simplifications do not produce new
redexes. �

6.8. Consequences of the normalization

In this section, we study the structure of intuitionistic normal derivations. We essen-
tially retrace what we have done in Section 5.3. The proof is a plain variation of the
classical case.

Recall the definition of segment and endsegment from Definition 6.10. A maximum
segment σ is a segment that begins with a consequence of an application of an intro-
duction rule or the ⊥i rule and ends with a major premise of an elimination rule.
Moreover, we say a segment s is a top segment (resp. end segment) or a consequence
(resp. major or minor premise) of an application r of a rule when the first (resp. last)
formula is σ is a top formula (resp. the end formula) or a consequence (resp major or
minor premise) of r.

We can adapt what we proved for the classical case by taking the segments instead
of the formula occurrences and replacing the branches with sequence of formula
occurrences. We formalise this by the notion of path.

Definition 6.14 (Path): A sequence of labelled formulas π = A1
y1 . . . An

yn is a path in
a deduction � such that:

(1) A1
y1 is an hypothesis that is not discharged by an application of ∨E or ♦E;

(2) for each i < n, Ai
yi is not the minor premise of an application of → E and either

(i) Ai
yi is not the major premise of an ∨E or♦E and Ai+1

yi+1 is the formula occur-
rence immediately below Ai

yi or (ii) Ai
yi is the major premise of an application r

of ∨E or ♦E and Ai+1
yi+1 is an assumption of � discharged by r;

(3) An
yn is either the minor premise of → E, or the end formula of �, or a major

premise of an application r of ∨E or ♦E such that r does not discharges
assumptions.

Note that in a normal deduction � the last formula in a path is always a minor
premise of → E or the end formula in �.

Any path π can be (uniquely) divided into consecutive segments σ1 . . . σk . We
provide some useful definitions.
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Proposition 6.15: Given a normal form derivation, for each path we have that no
introduction rule can precede an elimination one.

Proof: Let π = A1
x1 . . . Am

xm be a path and let σ1 . . . σn the sequence of segments in
π . We reason by contradiction. Suppose the statements are not true. In this case, there
would be an σk conclusion of the last introduction rule, call it RI, that precedes in the
path the first elimination rule RE . Note that σk cannot be the main premise of an elim-
ination rule (otherwise the derivation would not be in normal form). This implies that,
between RI and RE there must be another rule which can only be ⊥i. But this is impos-
sible, since this case ⊥k would consist only of a sequence of ⊥ which cannot be the
result of an introduction rule. �

Moreover, analogously to the classical case, the following proposition tells that
a path in a normal deduction can be split into an ‘elimination sequence ’ and an
‘introduction sequence’.

Proposition 6.16: Let � be a normal deduction and let π = A1
x1 . . . Ai

xn a path in �

and let σ1 . . . σn the sequence of segments in p. Then there exists a segment σi , called
the minimum segment in p, that splits p in two (possibly empty) parts with the following
properties:

(1) each σj , j < i, is a major premise of an elimination rule and the formula occurring in sj

is sub-formula of the one occurring in sj+1; we call the sequence {σj}j≤i the elimination
part of the path;

(2) σi , provided i �= n, is a premise of an introduction rule or of the ⊥i rule;
(3) each σj , i < j and j �= n is a premise of an introduction rule and the formula occurring

in σj is a sub-formula of the one occurring in σj+1; we call the sequence {σj}i≤j the
introduction part of the path;

Proof: As a consequence of Proposition 6.15, we have that in every path all the
elimination rules must precede those of introduction.

Let RE be the last elimination rule in the path. Its conclusion is σn, or it is the premise
of an introduction or it is ⊥ the premise of ⊥i. �

As for the branches in the classical case, we can assign an order to paths and prove
a Sub-formula property.

Since in the intuitionistic system we consider all the connectives and rules, we split
the proof of the subformula property.

We adapt to paths the notion of order between branches:

Definition 6.17 (Order of a path): Let � be a derivation in normal form, we associate
to each path π ∈ � a number o(π), called order, as follows.

(1) if π ends with the conclusion of �, then o(π) = 0 and a path of order 0 is said a
main path;

(2) if a path π ends in the minor premise of an instance of → E whose major
premise belongs to a path π ′ with o(π ′) = n then o(π) = n + 1.
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Lemma 6.18: Let � be a derivation in normal form. Then each (occurrence of a) formula
Ax in � belongs to some path.

Proof: The proof proceeds by induction on the height of � and by cases with respect
to the last rule. We show the case where the last rule is ♦E.

�1

♦Ax

[Ay]
�2

Cz

♦E
Cz

Let’s examine the shape of the paths in �.
Since � is in normal form (even with respect to simplification contractions) the rule

♦E discharges the hypothesis Ay and therefore no track can stop at the major premise
of the rule.

π is a path of � if:

• π is a path in �1 with o(π) > 0 or a path in �2 with o(π) > 0;
• π = π1, π2 with π1 a path of �1 with o(π1) = 0 and π2 a path of �2 starting with

an occurrence of the discharged hypothesis Ay and with o(π1) > 0
• π = π1, π2, Cz with π1 a path of �1 with o(π1) = 0 and π2 a path of �2 starting

with an occurrence of the discharged hypothesis Ay and with o(π2) = 0
• π = π2, γ with π2 a path of �2 that doesn’t start with an occurrence of the

downloaded assumption Ay and with o(π2) = 0.

By applying the inductive hypotheses to the sub-derivations �1 we have the thesis.
Cases related to other rules are treated in the same way (i.e. examining all possible

path cases). �

Let us call HP(�) the set of undischarged hypotheses of �.

Lemma 6.19: Let
�

Ax be a derivation in normal form: for any n and for any Cz, if π is a

path with o(π) = n and Cz ∈ π then Cz ∈ SF(HP(�) ∪ {Ax}).

Proof: The proof proceeds by induction on the order of the paths. Let π =
Ax0

0 , . . . , Axm
m .

base: if o(π) = 0 the theorem trivially holds for Axm
m and therefore for all

the formulas belonging to the I–part. Now consider Ax0
0 . If Ax0

0 was
not discharged, then all formulas in the E–part and the minimum
segment verify the assertion to be proved. If instead Ax0

0 was dis-
charged (by → I), then there is a formula Axk

k = A0 → Bxk in the I
-part. Since all the formulas of the I-part and of the minimum seg-
ment are subformulas of Ax0

0 , then they are also subformulas of Axk
k

which is in its turn a subformula of Axm
m .
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inductive step: The reasoning to be done is very similar to that of the base case
with the addition of the application of the inductive hypothesis.

Let o(π) = n + 1.
If Az = Axm

m then Az is a minor premise of a rule → E, and there-
fore is a subformula of a formula in a path π ′ such that o(π ′) = n.
Then we apply the inductive hypothesis and conclude.

If Az belongs to the I-part, then it is subformula of Axm
m and

concludes.
Now consider Ax0

0 . If Ax0
0 was not discharged, then all formulas in

E-part and minimum segment verify the assertion to be proved.
If instead Ax0

0 has been discharged (by → I), then either in the I-
part of π there is a formula Axk

k = A0 → Bxk and we conclude as for
the base case, or A0 → Bxk belongs to a path π ′ such that o(π ′) = n.

We therefore apply the inductive hypothesis to π ′ and since
all the formulas of the I-part and of the minimum segment are
subformulas of Ax0

0 , we conclude. �

Corollary 6.20 (Sub-formula Property): Every formula Ai
xi occurring in a normal

deduction � of Ax from a set � of assumptions, is a sub-formula of Ax or of some formula
in �.

Proof: We simply observe that for Lemma 6.18 for each formula there is a path that
contains it, therefore we apply the previous Lemma 6.19 and conclude. �

As an immediate consequence, we have the following Consistency Theorem:

Theorem 6.21 (Consistency): For each token y, ��N i
5

⊥y.

Proof: By the subformula property, every formula in a derivation should be a subfor-
mula of ⊥, so no rule could be used and therefore no derivation of ⊥ exists with all
hypotheses discharged. �

Proposition 6.22: Let
�

Ax a normal form derivation. If Ax is not an atomic formula

and the set of non-discharged hypotheses of � is empty, then the last rule of � is an
introduction one.

Proof: Obviously the last rule cannot be ⊥i. Let us suppose that the last rule of � is
an elimination rule. Now let us consider a path of order 0. Therefore all the formulas in
such a path belong to the elimination part, and therefore there must be at least one
undischarged hypothesis, absurd. �

As a consequence, we have the following theorem.

Theorem 6.23 (Disjunction and Witness Properties): (1) If � A ∨ Bx then either �N i
5

Ax or �N i
5

Bx.

(2) If �N i
5
♦Ax then there exist y s.t. �N i

5
Ay.
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6.9. A translation of the classical calculus into the intuitionistic one

We end the section by showing that intuitionistic N i
5 is expressive enough to ‘encode’

classical S5. As a by-product, we obtain a syntactical proof of consistency for the
classical systems.

In this section, to gain in readability, we refer by �Nc
5

and �N i
5

to the derivability

relations of N c
5 and N i

5 respectively.
We adapt now Gödel’s double negation translation to our system.
We must note a very recent work of Lin and Ma (2022), where Gödel’s translation (as

well Kolmogorov and Kuroda’s translations) is used in a refined way to obtain to prove
proof-theoretical results on IKt ⊕ S.

Our approach is less pretentious, having as its sole purpose the original one of
Gödel’s translation, i.e. to show that intuitionistic logic can codify classical reasoning
(see, e.g. Troelstra & Schwichtenberg, 2000 for the case of on modal logics).

As usual, A ↔ B is a shorthand for (A → B) ∧ (B → A).

Definition 6.24 (Translation map): We inductively define a map g between modal
formulas as follows:

g(⊥) = ⊥;
g(A) = ¬¬A for atomic A distinct from ⊥;
g(A ∨ B) = ¬(¬g(A) ∧ ¬g(B));
g(A
B) = g(A) 
 g(B) when 
 is a binary connective distinct from ∨;
g(�A) = �g(A);
g(♦A) = ¬�¬g(A);

Proposition 6.25: For every modal formula A and every token y,

�Nc
5

(A ↔ g(A))y .

Proof: By induction on the complexity of A. �

Definition 6.26 (Negative Formulas): A modal formula is negative if it is constructed
from ⊥ or from atomic formulas by means of�, ∧, →.

Lemma 6.27: Let A be a negative formula constructed from doubly negated atomic
formulas or from ⊥. Then, for all tokens y

�N i
5

(A ↔ ¬¬A)y .

Proof: By induction on the complexity of A.

• For the basis, recall that if A is either ⊥ or a doubly negated atomic formula then
A is provably equivalent to ¬¬A in an intuitionistic framework.

• Concerning the induction step, we only examine some nontrivial cases.
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�A: Suppose the statement true for A. Then

�N i
5

(�A ↔ �¬¬A)y

for all positions s. Therefore, to prove the nontrivial implication �N i
5

(¬¬�A → �A)y , it suffices to show that �N i
5

(¬¬�A → �¬¬A)y . The

latter holds since

�N i
5

(♦¬A → ¬�A)y and �N i
5

(¬♦¬A → �¬¬A)y

are true for all token s, even with no assumption on A.
A → B: The direction (A → B)y → ¬¬(A → B)y is trivial. For the other direction,

suppose by i.h. that �N i
5

(B ↔ ¬¬B)y . The thesis ¬¬(A → B)y → (A → B)y

follows as shown in the derivation below:

[A → By] [Ay]
→ E

By [¬By]
→ E

⊥y

→ I
¬(A → B)y [¬¬(A → B)y]

→ E
⊥y

→ I
¬¬By

i.h.
¬¬B → By

→ E
By

→ I
A → By

→ I
¬¬A → By → A → By

�

Remark 6.3: For every modal formula A, the formula g(A) satisfies the assumptions of
Lemma 6.27.

Remark 6.4: The following holds for any set � of formulas and formulas Ay and Bz : if
�, Ay �N i

5
Bz then �, ¬Bz �N i

5
¬Ay .

We can now prove the following:

Proposition 6.28: For every family {Bi
yi : i ∈ I} of formulas and every formula Ay

{Bi
yi : i ∈ I} �Nc

5
Ay ⇔ {g(Bi)

yi : i ∈ I} �N i
5

g(A)y .

Proof: (⇐) Straightforward from Proposition 6.25.
(⇒) By induction on the height of a deduction of Ay in S5. We only examine some

nontrivial cases of the induction step.
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(♦E) Suppose
. . . Bi

yi . . .····
♦Cz

[Cx] . . . Bi
yi . . .····

Ay

Ay

in N c
5 . Then (inductively) we get the deductions

. . . g(Bi)
yi . . .····

¬�¬g(C)z

and

g(C)x . . . g(Bi)
yi . . .····

g(A)y

in N i
5. By Remark 6.4, Remark 6.3 and Lemma 6.27 we get the following

deduction in N i
5 (we leave to the reader to check that all side conditions of

deduction rules are fulfilled):
[¬g(A)y] . . . g(Bi)

yi . . .····
¬g(C)zx

�¬g(C)z

. . . g(Bi)
yi . . .····

¬�¬g(C)z

⊥z

⊥y

¬¬g(A)y

····
¬¬g(A) → g(A)y

g(A)y

(∨E) Suppose

. . . Bi
yi . . .····

B ∨ Cz

[Bz] . . . Bi
yi . . .····

Ay

[Cz] . . . Bi
yi . . .····

Ay

Ay

in S5.

By induction hypothesis and by Remark 6.4, we get the following deductions
in IS5:

. . . g(Bi)
yi . . .····

¬(¬g(B) ∧ ¬g(C))z

¬g(A)y . . . g(Bi)
yi . . .····

¬g(B)z

¬g(A)y . . . g(Bi)
yi . . .····

¬g(C)z
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From these deductions, we can produce the following in IS5:

. . . g(Bi)
yi . . .····

¬(¬g(B) ∧ ¬g(C))z

[¬g(A)y] . . . g(Bi)
yi . . .····

¬g(B)z

[¬g(A)y] . . . g(Bi)
yi . . .····

¬g(C)z

¬g(B) ∧ ¬g(C)z

⊥z

⊥y

¬¬g(A)y

We finally get the required deduction in IS5 from Lemma 6.27.The other
cases are easier. �

Corollary 6.29: For every formula Ay

�Nc
5

Ay ⇔ �N i
5

g(A)y .

Consistency of S5 follows immediately from Corollary 6.29.

6.10. Curry–Howard correspondence and Intuitionistic S5

We conclude our treatment of N i
5 by showing how the BHK interpretation, via the

natural deduction system, induces a Curry–Howard Isomorphism, in the following
(standard sense):

(i) indexed formulas can be interpreted as types;
(ii) derivations can be interpreted as lambda terms;

(iii) reductions can be interpreted as computational steps.

We assume the reader is familiar with the main ideas behind the Curry–Howard
isomorphism for standard intuitionistic logic, and typed lambda–calculus.

For the sake of clarity, we start from the negative fragment ∧, →,� of N i
5.

The set of raw lambda terms has an alphabet given by

• a denumerable set of variables a0, a1, . . . (ranged over by a, b, c);
• a denumerable set of indexes x0, x1, . . . (ranged over by x, y, z).

The set T of raw λ-terms is built according to the following abstract syntax:

T := x | (T1T2) | (T1x) | (λa : Ax .T1) | (�x.T1)

The reader should note that lambda terms are formed with two different kind of
lambda abstractions, λ and �

Now we show how to inductively associate lambda terms to the indexed formula in
the derivations, i.e. to types.
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First, we assign to each occurrence of an hypothesis, a variable a, in such a way that
if we have two occurrence a : Bx and a : Cy of undischarged hypotheses, then Bx = Cy .

Now, we can inductively decorate the proofs with lambda terms as follows:

[a : Ax]
�

T : Bx

(→ I)
λa : Ax .T : A → Bx

�1

T1 : A → Bx T2 :

�2

Ax

(→ E)
T1T2 : Bx

�

T : Ax

(�I)
�x.T : �Ay

�

T : �Ax

(�E)
Ty : Ay

The reader is invited to note the similarity of what has just been written with
λ–PRED, i.e. the typed lambda calculus for the negative fragment of first-order intu-
itionistic logic in the so-called Barendregt cube (see, e.g. Barendregt, 1992).

The lambda-abstraction λ is related to the introduction of the arrow type, in an
absolutely standard way, while the lambda-abstraction � is connected to the intro-
duction of the �. Obviously we have two different kinds of functional applications,
corresponding to the elimination of the → and of the�.

Notation 6.1: (1) In the rest of this section, �, �1, . . . will denote derivations
under the assignment of lambda terms just defined.

(2) As usual, we shall write � � T : Ax when there exists a derivation �T : Ax s.t.
� contains the undischarged occurrences of hypotheses in �. �, also called
context, is a set of indexed formulas s.t., if a : Bx , a : Cy ∈ �, then Bx = Cy .

(3) We read � � T : Ax as ‘the lambda term T has type Ax, with respect to the con-
text �.’ Or, in other words, ‘the typed lambda term T : Ax is derivable from the
context �.’

Now we take a look to computations, by focusing on the transformations that
reductions induce on the lambda terms used to decorate derivations.

By applying the inductive definition of labelling derivations, we have two labelled
contractions:

[a : Ax]
�1

T1 : Bx

λa : Ax .T1 : A → Bx
�2

T2 : Ax

(λa : Ax .T1)T2 : Bx

�
�2

T2 : Ax

�1[a/T2]

T1[a/T2] : Bx

�

T : Ax

�x.T : �Ay

(�x.T)z : Az

� �[x/z]

T[x/z] : Az
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The above contractions induce the following β reductions between lambda terms:

(λa : Ax .T1)T � T1[a/T]

(�x.T1)y � T1[x/y]

As usual for reductions between lambda terms, we have the contextual closures �
of �, and the reflexive and transitive closure

∗� of � between terms. The relation �
represents the computational step between lambda terms.

By means of the correctness of the reductions steps between derivations, we get
immediately the following theorem.

Theorem 6.30 (Subject reduction): If � � T : Ax and T � T1 then � � T1 : Ax.

Moreover, since derivations normalise (Theorem 6.13), we have also the following
normalization theorem for lambda terms:

Theorem 6.31 (Normalization for lambda terms): If � � T : Ax , then there exists a
lambda term T1 s.t.

• T1 is in normal form (i.e. T1
∗� T2 ⇒ T1 = T2);

• T
∗� T1.

6.10.1. Extending the Curry–Howard isomorphism to the♦ types.
The extension of the lambda calculus to include ∨ and ⊥ also is similar to the corre-
sponding propositional intuitionistic logic (e.g.see Girard et al., 1989). Then, we show
here the new case of ♦ types only.

Raw lambda terms are extended with two new constructors: Let and pairing
< _, _ >. The abstract syntax for raw terms becomes then:

T := x | (T1T2) | (T1x) | (λa : Ax .T1) | (�x.T1) | < T1, T2 > | Let[T1 be T2] in T3

The assignment of terms to derivations is augmented by the following assignments:

�

T : Ax

(♦I)
〈T , x〉 : ♦Ay

�1

T1 : ♦Az

[a : Ax]
�2

T2 : Cy

(♦E)
Let[〈a, x〉 be T1] in T2] : Cy

and consequently we have the reduction:

�1

T1 : Az

〈T1, z〉 : ♦Ay

[c : Ax]
�2

T2 : Cv

Let[〈c : Ax , x〉 be 〈T1, z〉] in T2] : Cv

�
�1

Az

�2[x/z, c/T1]

T2[x/z, c/T1] : Cv

Such a contraction induces the following contraction between lambda terms:

Let[< c : Ax , x > be < T1, z >] in T2] � T2[x/z, c/T1]
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The notion of � and
∗� are extended accordingly. Moreover, the subject reduction and

normalization theorems still hold true.

7. Other related works

We have examined in a detailed way the connection of our system with those of
Galmiche and Salhi (2010b), but other proposals deserve attention.

While it is true that our work is not the first attempt to obtain a natural deduc-
tion system for S5, we believe that our approach, as mentioned in the introduction,
is simpler, more direct, and more faithful to Prawitz’s original natural deduction than
previous works proposed in the literature. In particular, let us stress that:

(1) our natural deduction does not require the introduction on permutation rules
in order to obtain the sub-formula property and a procedure for strong normal-
ization (see the comparison with Simpson Simpson, 1993);

(2) the design of our systems is syntactically driven and the intuitionistic system
is obtained by asking that its rules are compatible with some (non artificial)
BHK interpretation. As for intuitionistic propositional logic, N i

5 is obtained by
keeping the ex falso quod libet rule for the elimination of ⊥ (the ⊥ rule) and
dropping the reduction ad absurdum rule (the ⊥c rule) instead, since this is the
only rule for which a BHK interpretation cannot be found. In other approaches
instead, the design of the proof system is semantically driven, and the intuition-
istic nature of it is given in terms of the interpretation into some Kripke model
(see Simpson, 1993, for instance);

(3) to verify the applicability of the introduction rule for�we do not have to verify
all the paths in the proofs of the hypothesis, but it suffices to verify (the label
of ) the hypothesis and (the labels of ) the open premises of the proof (see the
comparison with Martins & Martins, 2008).

Let us now analyse in more details some other natural deduction approaches and
the relevant work of Wansing (1995).

H. Wansing semantic tableau calculus. In Wansing (1995), Wansing develops a
tableau calculus for classical S5 (with ∧ and♦ as derived operators). Following a previ-
ous work by Fitting (1977), the formula of Wansing’s tableaux are labelled by indexes.
The derivable assertions are sequents of the form X → Y, where X and Y (by using our
notation) are sets of indexed formulas. The modal rules are:

X → �Ai, Y
→ �

X → Ak , Y

X,�Ai → Y
�→

X, Ak → Y

provided that in →� the index k is new in the branch under extension. Wansing proves
then an important cut elimination theorem for his tableaux.

Our work develops and extends Wansing’s indexed formula approach to natural
deduction. Which is an important step towards an intuitionistic proof system and a
corresponding term calculus for which the BHK interpretation holds. We remark also
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that, given a tableau/sequent formulation of a logical system, the existence of a corre-
sponding natural deduction is not all evident, see for instance the case of Linear Logic,
which has a very simple formulation in terms of sequents but for which there is no
natural deduction and no satisfactory term calculus.

Intuitionism: the proposal of A. Simpson. Simpson (1993) proposes a natural
deduction for intuitionistic S5 whose derivable assertions are labelled formulas x : A
very similar to our ones, since the label x corresponds, de facto, to our tokens. The dif-
ferences with our system become, however, evident if we analyse the rules. Simpson’s
approach is based on the first-order translation of modal formulas and is semantics
driven. In other words, Simpson controls the introduction of modalities by means of
additional relational rules where relational formulas xRy are used only as hypotheses
and where R is a relation coding the accessibility relation of the Kripke model. The main
advantage of Simpson’s calculus is that it is modular, by changing the relation R he can
obtain a wide spectrum of modal logics. His main disadvantage is that this leads to add
a series of relational rules which do not introduce or eliminate any connective. In detail,
here it is Simpson’s modal and relational rules for intuitionistic S5:

[sRt]
�

t : A
(�I)∗

s : �A

�

s : �A sRt
(�E)

t : A

�

t : A sRt
(♦I)

s : ♦A

�

s : ♦A

[t : A][sRt]
�1

u : B
(♦E)◦

u : B

[tRt]
...

w : A
refl

w : A

xRy yRz

[xRz]
...

w : A
trans

w : A

xRy xRz

[yRz]
...

w : A
five

w : A

The structure of the proofs is then much more involved and less directly driven by the
structure of the formula as in our system. As an example, let us compare the proof
(in normal form) of the formula named B, namely A → �♦A, in Simpson’s framework
(right-hand side) and in our system (left-hand side).

[Ay]1

♦I
♦Ax

�I
�♦Ay

→ I(1)

A → �♦Ay

[x : A]4 [xRx]0

refl(0)

x : ♦A

[xRy]3 [xRz]2

[z : A]2 [yRz]1

♦I
y : ♦A

five(1)

y : ♦A
♦E(2)

y : ♦A
�I(3)

x : �♦A
→ I(4)

x : A → �♦A

The main proof theoretic drawback of these relational rules is that a series of corre-
sponding proof permutation rules are needed to recover the sub-formula property (in
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addition to the standard permutation rules caused by ∨ and � elimination rules). As for
instance:

x1Ry1 · · · xnRyn

[tRu]
...

w : A
r

w : A �
R

u : B

�
x1Ry1 · · · xnRyn

[tRu]n

...
w : A �

R
u : B

r(n)

u : B

Proof reduction must take into account these permutations and becomes then more
involved, to the point that, instead of giving a direct combinatorial proof, Simpson
proves strong normalization indirectly, via a translation into a first-order calculus.

Since Simpson’s framework is probably one of the most important and accom-
plished natural deduction proposal up to know, let us briefly analyse how it relates to
our solution in terms of provability. We stress that Simpson’s framework is intuitionistic,
so this comparison makes sense with our N i

5 system only.
In Sections 6.1 and 6.2, we have seen that for each token x:

�N i
5

Ax ⇐⇒ �IS5 A

On the other hand, via semantical methods, Simpson proves that for each label x (let
us call SiS5 the system of Simpson):

�SiS5 x : A ⇐⇒ �IS5 A

and therefore

�SiS5 x : A ⇐⇒ �N i
5

Ax

This means that from the point of view of pure provability of labelled formulas our system
is equivalent to Simpson’s one.

On the other hand, differently from the comparison we have done with the
approach of Galmiche and Salhi (2010b), we do not know if it is possible to have a trans-
lation of our derivations in those of Simpson, since the two systems are truly different
in the way they handle tokens/labels.

The key point is that Simpson’s deductions are constructed by applying appropriate
relational rules from time to time, depending on what we intend to prove. In other
words, the proof of an assertion codes also its Kripke semantics interpretation. For
instance, how could we translate the rules for�?

···
Ax

(�I)
�Ay

···
�Ax

(�E)
Ay

The point is that it is not clear at all when and how to introduce the relational rules
which allow to verify the side condition of the corresponding Simpson’s � rules. To
mimic Simpson’s approach, maybe we should have separate rules for each property
of the accessibility relation. Nor, it seems viable to postpone all the relational rules to
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the end of the translation, since this seems not feasible without leaving undischarged
relational hypotheses.

Other proposals. There are also proposals for natural deduction systems for S5
that do not require indexed formulas or extended judgments. The most important
one for intuitionistic S5 is that of Prawitz (1965), revived in recent times by Martins
and Martins (2008) by extending it to full classical S5.

Roughly speaking they study weak normalization in a system with an introduction
rule for�with the shape:

�1

C1 · · ·
�k

C2

�

A
�I

�A
where each C1 is modally closed (the definition is at p. 77 of Prawitz, 1965).

In other words, to introduce the� operator it is necessary to examine all the paths
from the premises of the rule to the leaves, namely the assumptions of the proofs, and
check that every path contains at least a modally closed formulas.

This formulation is, however, not completely in the spirit of natural deduction, since
it is no longer true that the rules depend only on their hypotheses and on their conclu-
sions but also on what is inside the derivations above them. As a consequence, we also
have that the proof of the normalization result becomes very complex from a technical
point of view.

Finally, we mention the work by Murphy et al. (2004); Murphy VII et al. (2005), in
which the authors study modal types for distributed and mobile computing. Even if
the authors propose term calculi for S5, their interest is not proof-theoretic, but to find
a proof system for a modal lambda-calculus suitable for their purposes. Because of this,
the authors introduce structural rules which make sense as a type system and have no
clear logical meaning instead. At the same time, the authors are less interested in the
usual proof theoretic good properties, as normalization and sub-formula.

Notes

1. We remark that Wansing’s proof applies not only to tableaux, but to sequent calculus
too.

2. (n, m) < (p, q) if either n < p or (n = p and m < q)
3. Since the conclusion of ⊥i is always atomic, we do not have contractions associated to

such a rule.
4. (n, m) < (p, q) if either n < p or (n = p and m < q)
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