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Abstract
This paper introduces a conjugate gradients (CG) acceleration of the coordinate descent
algorithm (CD) for linear systems. It is shown that the Kaczmarz algorithm (KACZ) can
simulate CD exactly, so CD can be accelerated by CG similarly to the CG acceleration of
KACZ (Björck and Elfving in BIT 19:145–163, 1979). Experimental results were carried out
on large sets of problems of reconstructing bandlimited functions from random sampling.
The randomness causes extreme variance between different instances of these problems, thus
causing extreme variance in the advantage of CGCD over CD. The reduction of the number of
iterations by CGCD varies from about 50–90% and beyond. The implementation of CGCD is
simple. CGCD can also be used for the parallel solution of linear systems derived from partial
differential equations, and for the efficient solution of multiple right-hand-side problems and
matrix inversion.

Keywords Coordinate descent · CD · CGCD · CGMN · Conjugate gradients acceleration ·
Gauss–Seidel · Kaczmarz algorithm · Linear systems · Matrix inversion · Multiple
right-hand-sides · Parallelism
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1 Introduction

The coordinate descent algorithm (CD) is a well-known and widely used optimization algo-
rithm; see, for example, [13, 16] for details and applications. CD is also used for solving linear
systems as follows: given a linear system Ax = b, each step of CD consists of choosing a
coordinate xi and minimizing ‖Ax−b‖2 w.r.t. xi by setting ∂

∂xi
‖Ax−b‖2 = 0 and extracting

a new value for xi . This approach is generally referred to as “CD for linear systems”. There are
several papers on various acceleration methods of CD, such as [1, 9, 10], and specifically for
linear systems, see [8, 15]. CD for linear systems is identical to the Gauss–Seidel iteration on
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the system AT Ax = AT b; see for example [11, p. 594] and [16, Sect 1.4]. AT Ax = AT b is
also called NR (for “normal” and “residual” associated with the minimization of ‖b− Ax‖2;
see Saad [12, Sect. 8.1]. In the following, “CD” will refer to CD for linear systems.

The rest of the paper is organized as follows. Section 2 presents the Kaczmarz algorithm
(KACZ) [7] and shows the geometric identity between KACZ and CD. This is followed by
the CG acceleration of KACZ, called CGMN, developed by Björck and Elfving [2], and the
proof that this acceleration can be applied to CD. Section 3 presents the CG acceleration of
CD and Sect. 4 presents the experiments. Section 5 presents an efficient construction of the
pre-calculations for sparse systems, and Sect. 6 concludes with a summary and suggestions
for the efficient solution of multiple right-hand-sides problems and matrix inversion.

2 Kaczmarz, CD and Their CG Acceleration

Consider a consistent system of linear equations

Ax = b. (1)

KACZ operates as follows: starting from an arbitrary point as the initial iterate, that point
in space is orthogonally projected towards a plane defined by one of the equations, thus
creating a new iterate. This process is continued sequentially for all the following equations,
and then repeated until some stopping criterion is satisfied. There are several variations of
this procedure, such as randomized selection of the equations and a symmetric approach in
which the equations are alternately handled in a forward and backward sequence.

Let x0 be a chosen initial iterate. For k ≥ 0, xk+1 is obtained from xk by projecting xk

orthogonally towards the hyperplane determined by the kth equation, i.e.,

xk+1 = xk + λ
bk − 〈ak, xk〉

‖ak‖2
2

ak, (2)

where ak is the kth matrix row, bk is the kth RHS element, and 0 < λ < 2 is a relaxation
parameter that determines whether the projection is exactly on the hyperplane determined
by the equation (λ = 1), or before or after the hyperplane. It is more efficient to initially
divide every equation by the L2 norm of its corresponding row, thus avoiding the division
by ‖ak‖2

2 at every step. KACZ is also known as successive overrelaxation (SOR) on the
system AAT y = b, x = AT y. Successive SOR (SSOR) is KACZ carried out in the forward
direction and then in the backward direction. The robustness of KACZ follows from the
following observation: after all the equations are normalized, the diagonal of AAT consists
of ones, while the off-diagonal elements are all smaller than one. In a consistent system, the
KACZ iterates converge towards a solution (there may be many solutions if the system is
under-determined). We can now prove the following:

Lemma 1 Let CD operate on a consistent system of equations whose solution is x∗
1 , . . . , x∗

n .
Then, KACZ can be applied (in parallel to CD) to the system of equations x1 = x∗

1 , . . . , xn =
x∗
n , with relaxation parameters that bring each iterate of KACZ to the same position in space

that CD brings it.

Proof Let (xk1 , . . . , xkn ) be some current value of the coordinates obtained by CD, and consider
one step of CD that changes some coordinate xki to a new value xk+1

i . xk+1
i is now closer to

x∗
i than xki , so the change of the i th coordinate moves the current iterate (xk1 , . . . , xkn ) closer
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to the plane xi = x∗
i . Only the i th coordinate is changed so the direction of this movement

is orthogonal to the plane xi = x∗
i .

Consider now a specific KACZ operation on the system x1 = x∗
1 , . . . , xn = x∗

n , running
in parallel to CD. The initial iterate of KACZ is taken as the initial iterate of CD. For each
step of CD on a coordinate xki , KACZ performs one step on the equation xi = x∗

i , and the
relaxation parameter is chosen to bring the new iterate to the same position that CD brings
it. Clearly, KACZ produces exactly the same sequence of iterates as CD. ��

In a seminal paper, Björck and Elfving [2] showed that KACZ can be accelerated by CG,
and called this algorithm CGMN. Based on Lemma 1, we have the following:

Theorem 1 CD can be accelerated by CG.

Proof The original CGMN [2] assumed a constant relaxation parameter, but now we need to
accelerate KACZ with variable relaxation parameters as in Lemma 1. In [6, Sect. 3] it was
shown that the CG acceleration of KACZ can use different relaxation parameters for different
equations, and this enabled a parallel version of CGMN (called CARP-CG) for solving huge
linear systems derived from partial differential equations. See also [5, Sect. 2]. It is easy to
see from [6, Sect. 3] that the cyclic relaxation parameters can be replaced by any relaxation
parameter at every instance of Eq. (2). It now follows from Lemma 1 that the CG acceleration
of (the specific) KACZ can be applied to CD. ��

The following are some related comments regarding CG. Given the system (1), consider
the system NR mentioned previously:

AT Ax = AT b (3)

The system (3) can also be solved directly by CG, and this is known as CGNR; see [12,
Sect. 8.3.1]. There is also the CGNE algorithm, also known as Craig’s Method, which is a
CG acceleration of the system AAT u = b, x = AT u, which is referred to as NE (normal
equations); see [12, Sect. 8.3.2]. In [4], CGNR and CGNE produced identical results on
the problem of reconstructing bandlimited functions from random sampling, but they were
significantly worse than CGMN, as can be seen from [4, Figs. 4 and 6].

3 CG Acceleration of CD

CD and its CG acceleration will now be presented in detail. Let A be a matrix of size
m × n (m rows by n columns), and b the right-hand side. Our purpose is to find a vector
x = (x1, . . . , xn) ∈ R

n such that ‖Ax − b‖ is minimal. CD proceeds by successively setting
∂

∂xi
‖Ax − b‖2 = 0, for i = 1, . . . , n. In the following, the dot product of two vectors is

represented by “•”. We introduce some notations:

• Ai denotes the i th column of A.
• A j

i = Ai • A j if i 
= j, else 0.
• A∗

i = (A1
i , . . . , A

n
i ). (Note that the i th element, Ai

i , is zero.)

In order to save some computation time, the columns of A are normalized, i.e., each column
is divided by its L2-norm. It is easy to see that setting ∂

∂xi
‖Ax − b‖2 = 0 produces the

following iteration: xi = Ai • b − x • A∗
i . The CD algorithm is the following:
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CD: The coordinate descent algorithm
1. compute all the terms Ai • b and A∗

i ;
2. set x ∈ R

n to an arbitrary value;
3. repeat until some termination goal is reached:
4. for i = 1 to n:
5. xi = Ai • b − x • A∗

i ;
6. end repeat

Note that in the term x • A∗
i in line 5, xi is multiplied by zero, so xi does not appear in the

RHS.
In the following CGCD, α, β, γ, δ, δ1 are auxiliary variables and p, q, r are vectors of

size n.

CGCD: CG acceleration of CD:

1. compute all the terms Ai • b and A∗
i for 1 ≤ i ≤ n;

2. set x = r ∈ R
n to an arbitrary value;

3. forward and backward loops with b:

4. for i = 1 to n:

5. ri = Ai • b − r • A∗
i ;

6. for i = n downto 1:

7. ri = Ai • b − r • A∗
i ;

8. p = r = r − x ;

9. δ = r • r ;
10. CG iterations:
11. repeat until some termination goal is reached:
12. set q = p;
13. forward and backward loops without b:
14. for i = 1 to n:
15. qi = −q • A∗

i ;
16. for i = n downto 1:
17. qi = −q • A∗

i ;
18. q = p − q ; γ = p • q;
19. α = δ/γ ; x = x + α p;
20. r = r − αq ; δ1 = r • r ;
21. β = δ1/δ;
22. p = r + β ∗ p ; δ = δ1;
23. end repeat

Consider now the complexity question: does CG impose a great burden on the coordinate
descent? Note that the computations of A j

i and A∗
i are used for both CD and CDCG, so they

are not considered in this comparison. From the CD algorithm, we can see that the number
of products of one iteration in the loop of lines 4–5 is of order O(n2), and so is the number
of products (in one iteration) of the loops of CGCD (lines 15–16 and 18–19). In contrast, the
number of products in one CG iteration needed for the CG in CGCD is only 5n, and this is
negligible. In comparing the number of iterations required by CD and CGCD, for the same
problem, each iteration of CGCD is counted as two iterations, due to the two loops in CGCD.
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Note that both CD and CGCD require the pre-computation of two sets of constants:

AB ={Ai • b | 1 ≤ i ≤ n} (4)

AA ={A∗
i | 1 ≤ i ≤ n} (5)

The space required by AB is O(nm), and the space of AA, in the case of a full rank matrix, is
O(n2m). The details for constructing AB and AA for sparse systems are presented in Sect. 5.

4 Experiments

4.1 Background

CD and CGCD were tested on the problem of recovering bandlimited signals from random
sampling. A well-known paper on this topic is due to Strohmer and Vershynin [14], who
got excellent results on this problem by using the Kaczmarz algorithm. Every sample con-
tributes one equation to the problem. Before applying KACZ, the equations were sorted and
every equation was assigned a probability weight proportional to the average distance of the
sample from its nearest points. This concept is due to Feichtinger and Gröchenig [3]. In the
experiments of [14], KACZ was applied randomly to the equations according to the weights.
The experiments were done on a problem of 101 variables and 700 equations (samples). For
convenience, the ratio between equations and variables will be denoted as EVR, so EVR≈ 7
in this problem.

This problem was also studied by the author in [4], where it turned out that when EVR
was smaller than 5, the number of projections required by KACZ rises (seemingly) expo-
nentially; see the KACZ plots in [4, Fig. 3]. However, CGMN provided excellent results for
2≤EVR≤6.

The problem of recovering bandlimited signals from random samples was chosen as a test-
bed for comparing CD and CGCD due to the extreme variance between different instances
of seemingly identical problems. The experimental problem that is being solved appears in
[14, Sect. 4.1], and also in [4, Sect. 3.1]. It can be described as follows:

A bandlimited function f (t) is known to be of the form

f (t) =
r∑

�=−r

x�e
2π i�t (6)

where t is time, x� ∈ C, r is a known positive integer (called the “bandwidth”), n is an integer
set as 2r + 1, m ≥ n, and f (t j ) for t j ∈ R and 1 ≤ j ≤ m are known samples of the values
of f (t) taken at irregular points in time. Our problem is to determine the values of x1, . . . , xn
which will provide the values of f (t) at any point in time. The linear system that provides
the values of x1, . . . , xn is obtained by setting

f (t j ) =
r∑

�=−r

x�e
2π i�t j , for 1 ≤ j ≤ m. (7)

The main problem of irregular sampling is that large gaps between samples make it more
difficult to determine the values of xi , hence the large computational differences between
different instances of this problem; see [4, Sect. 4.1] for the effects of large gaps. Note that
every instance of setting up a linear system is derived from randomly selecting the values
of t1, . . . , tm ; if these values are spread quite evenly, then CD will converge fairly quickly,
otherwise, CD converges slowly, and this is where CGCD has a big advantage.
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Fig. 1 Comparison of CD and CGCD on the same 50 problems. The results are sorted according to increasing
number of iterations required by CD

4.2 Results

The only way to compare CD and CGCD is to run a large number of experiments in which
every instance is solved by both CD and by CGCD. Let R denote the ratio of the number of
iterations required by CGCD divided by the number of iterations required by CD on exactly
the same problem. The experiments show that R can vary in different cases from about 0.03
up to about 0.5. In many cases CGCD provides a very significant improvement over CD. The
C program for these experiments, called cgcd.c, is available for download1; the program is
self-explanatory.

Figures 1 and 2 show comparisons between the number of iterations required by CD and
CGCD for 50 and 100 runs, respectively. The relative residual goal was set at 10−13 and
the maximum number of iterations was set at 100,000. The results are sorted according to
increasing numbers of iterations required by CD. The extreme variance stands out clearly,
and in other experiments, some CD runs required significantly more iterations. The statistics
show that the average number of iterations required by CGCD is around 13% of the average
of CD. The most significant result of these experiments is that while about 20% of the CD
runs required thousands of iterations, CGCD did not need more than 350 iterations. Some
of the runs fail to reach the prescribed relative residual goal, and the failure percentage is
typically around 2% for CD and 4% for CGCD, but it may vary widely. The consequence
is that CGCD is somewhat less stable than CD on some of these particular problems, so in
practice, it may be useful to run both versions in parallel.

1 https://cs.haifa.ac.il~gordon/cgcd.c.

123



Journal of Scientific Computing            (2023) 96:86 Page 7 of 10    86 

Fig. 2 Comparison of CD and CGCD on the same 100 problems. The results are sorted according to increasing
number of iterations required by CD

5 Construction of AB and AA for Sparse Systems

The issue of setting up AB and AA, Eqs. (4) and (5), needs some explanation. If the system
matrix is full then AB and AA can be calculated easily as arrays, as in the above experiments.
Otherwise, AB and AA can be calculated as explained below. An important issue here is that
in each row of A, the nonzero elements can be accessed easily, i.e., without traversing the
entire row. This should not be a problem because every row is made up by the parameters of
a single equation and the sequential access can be enabled when the matrix is formed. Also,
in huge matrices, it is customary to have some compact form of the non-zero coefficients of
a matrix row.

Consider first the data structure required by AB. A j • b is the dot product of column A j

and b. We compute A j •b for every j as follows: for every 1 ≤ j ≤ n, a variable ABj is set to
zero. Next, for every matrix row i , we access all its non-zero elements, e.g., ai,5, ai,50, ai,90,
multiply every one of them by bi , and add these products to their corresponding ABj , e.g.,
AB5 += ai,5 × bi , AB50 += ai,50 × bi , and AB90 += ai,90 × bi .

The data structure required by AA consists of the sequences A∗
i = (Ai,1, . . . , Ai,n), for

1 ≤ i ≤ n. Every Ai, j is Ai • A j if i 
= j and 0 otherwise. Consider the following approach:
for every A∗

i , a linked list is constructed with a header [i |A∗
i ]. The pointer of the header is

initially set to null. This list will contain the non-zero elements of Ai • A j together with the
index j , and ordered by increasing values of j ; for example:

[i |A∗
i ] → [5|Ai • A5] → [12|Ai • A12] → · · · → [340|Ai • A340] (8)

This structure will enable the efficient calculation of dot products such as q • A∗
i in lines 16

and 19 of CGCD.
The construction of a list as in Eq. (8) proceeds as follows: We traverse the rows in

sequence, for 1 ≤ k ≤ m. The non-zero elements of row 1 are the parameters of one equation,
e.g., a1,5, a1,20, and a1,70. We now initiate 3 constants to zero, each constant labeled by a pair
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of the nonzero parameters: A5,20, A5,70, and A20,70. We now compute all possible products
of the parameters and add them to the 3 constants that were set up, according to the indices
of the constants Ai, j :

A5,20 += a1,5 × a1,20

A5,70 += a1,5 × a1,70

A20,70 += a1,20 × a1,70 (9)

We now add the three elements Ai, j of Eq. (9) to the corresponding lists of A∗
5, A

∗
20, A

∗
70—see

Eq. (8). Every Ai, j in the lists must carry the column number which differs from the header,
and the lists are sorted by the indices:

[5|A∗
5] → [20|A5,20] → [70|A5,70]

[20|A∗
20] → [5|A5,20] → [70|A20,70]

[70|A∗
70] → [5|A5,70] → [20|A20,70] (10)

Note that Ai, j = A j,i . Continuing with the following rows, we get two types of new products.
For example, if in row 2 we get a product c = a2,5 × a2,70, then c should be added to A5,70
in the list of A∗

5 and also to A5,70 in the list of A∗
70. Otherwise, new elements of type Ai, j are

created, the remaining constants are added to them as above, and they are inserted into the
corresponding lists [i |Ai ] as in Eq. (9). Note that if there are k non-zero elements in a row,
then there will be

(k
2

)
products.

At the end, the linked lists can be converted to arrays to save some computation time. In
some cases, the sizes of the lists can be quite large, so it would be more efficient to use binary
trees instead of linked lists because the insertion time is log2 of the time in lists. At the end,
the inorders of the trees need to be converted to linked lists or arrays.

6 Conclusions and Further Applications

It has been shown that the CG acceleration of coordinate descent for linear systems, denoted
CGCD, can be significantly faster than plain CD, so it can benefit applications that already
use CD for linear systems, and perhaps other applications for which CD is too slow.

CGCD can also be useful for the problematic issue of multiple right-hand-sides because
the time consuming setup of AA depends only on the matrix, and setting up new structures for
AB is simple. As a consequence, CGCD can also deal with matrix inversion efficiently by
successively choosing right-hand-sides as (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1).
In a parallel setting, after AA has been set up, the computations with the various RHSs can
be distributed among several processors.

Parallelism for sparse matrices: in a full-rank matrix, such as in the experiments of this
paper, CD (and CGCD) cannot be paralleled because CD is inherently sequential. In a sparse
matrix, CD can be parallelize as follows: we define two variables xi and x j as dependent
if they appear together in some equation, and otherwise they are independent. We will first
show that if xi and x j are independent, then they can be handled in parallel. Consider the dot
product Ai • A j = 0 and also line 5 of the CD algorithm xi = Ai • b − x • A∗

i : the vector A∗
i

is defined as (Ai,1, . . . , Ai,n) and Ai, j = Ai • A j = 0. Hence, x j has no effect on the new
value of xi (obtained from line 5), and vice versa. It follows that the two updates of xi and
x j can be done in parallel.
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Fig. 3 Coloring a 2D grid with
diagonal lines of two colors for
5-point stencils for PDE
problems

To deal with dependent variables, we need to divide the variables into disjoint sets
S1, ..., Sk , which will be handled sequentially, and, if a variable xi is in set S j , then all
its dependent variables belong to different sets. This way, all the required updates of a set
can be done in parallel. The number of sets should be as small as possible. As an example,
consider the problem of solving a partial differential equation in two dimensions using a finite
difference, second-order scheme, in which every equation consists of 5 variables forming a
5-point stencil on the grid—see the central cross in Fig. 3. The division of the variables into
two sets is shown by the diagonal red (solid) and blue (dashed) lines. Note, for example, that
the central grid point is in the red set and all its 4 neighbors are in the blue set. A 3×3 stencil
for higher order accuracy will require three sets.
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