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Modeling Multiple Temporal Scales of Full-body
Movements for Emotion Classification

Cigdem Beyan, Sukumar Karumuri, Gualtiero Volpe, Antonio Camurri, and Radoslaw Niewiadomski

Abstract—This work investigates classification of emotions from full-body movements by using a novel Convolutional Neural Network-based
architecture. The model is composed of two shallow networks processing in parallel when the 8-bit RGB images obtained from time intervals
of 3D-positional data are the inputs. One network performs a coarse-grained modelling in the time domain while the other one applies a
fine-grained modelling. We show that combining different temporal scales into a single architecture improves the classification results of a
dataset composed of short excerpts of the performances of professional dancers who interpreted four affective states: anger, happiness,
sadness, and insecurity. Additionally, we investigate the effect of data chunk duration, overlapping, the size of the input images and the
contribution of several data augmentation strategies for our proposed method. Better recognition results were obtained when the duration of a
data chunk was longer, and this was further improved by applying balanced data augmentation. Moreover, we test our method on other
existing motion capture datasets and compare the results with prior art. In all experiments, our results surpassed the state-of-the-art
approaches, showing that this method generalizes across diverse settings and contexts.

Index Terms—Emotion recognition, convolutional neural network, full-body movements, kinematics, multiple temporal scales, motion capture
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1 Introduction

S Everal studies have acknowledged the importance of expres-
sion dynamics for perception and automatic recognition of

emotions [1], [2], [3], [4]. In particular, the expressive qualities of
full-body movements, i.e., how a movement is performed, provide
significant information about the emotional state of a person.
Among many others, Wallbott [5] showed that emotions such as
"hot anger" and "elated joy" are characterized by high movement
activity and dynamics as well as expansive movements while
emotions such as "contempt" and "sadness" are characterized by
low movement activity and dynamics. Similarly, it is possible to
recognize emotions just from point-light displays of arm move-
ments, i.e., from movement dynamics, as shown in [1].

Extracting expressive qualities of a movement conveying an
emotion requires temporal analysis. At the same time, there is no
gold standard regarding the minimal observation time needed to
perceive an expressive quality nor to detect it automatically. Re-
garding that, Camurri et al. [6] presented a conceptual framework
for the analysis of expressive qualities of the movements. Inspired
by previous research on human movement perception and dance
theories (e.g., Laban Effort [7]), the authors postulate that compu-
tational models of expressive qualities should operate on different
temporal scales. The first layer of their framework [6] consists of
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low-level features (e.g., velocity) computed instantaneously while
middle and high-level features (such as impulsivity and fluidity)
are computed on larger temporal scales, varying from 0.5 to 5-
seconds. That framework [6] finds empirical confirmation in a
recent functional magnetic resonance imaging (fMRI) study [8],
showing that low-level features are processed by a different part
of the brain than mid-level features. Other recent works (see for
example the European FET PROACTIVE Project EnTimeMent,
http://entimement.dibris.unige.it) also refer to the importance of
different temporal scales in movement analysis and prediction. For
example, processing the data at short time intervals is sufficient
to detect hand tremors or trembling (e.g., in anxiety [9]) whilst
longer time intervals are required to identify fluid and large full-
body movements (e.g., in lightness [10]).

Motivated by these findings, in this paper, we propose a
novel approach to modeling the dynamics of full-body movement
data represented on multiple temporal scales for the emotion
recognition task. A motion capture (MoCap) system was used
to collect positional data, which contained short excerpts of the
performances of professional dancers who interpreted four affec-
tive states: anger, happiness, sadness, and insecurity. We focus
on dancers’ improvised movements as they are characterized by
high complexity and versatility and involve a much larger set
of movements compared to the regular day-to-day activities. The
dancers use their physical and motor abilities to endow emotional
meaning to the movements through the modulation of movement
dynamics. Dancers’ movements are here context-free, i.e., they
are not constrained or limited by the context and the surrounding
objects, which is a common issue in everyday activity datasets.
Dancers were asked to express emotions without using specific
actions or stereotype emotion emblems, and they did not perform
any specific action.

In our approach, movement dynamics at two different but re-
lated temporal scales are processed jointly by a two-branch neural
network architecture. Our proposed method learns simultaneously
both features at a middle-level (i.e., fine-grained such as 0.5-, 1-
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seconds temporal scale) and at a high-level (i.e., coarse-grained
such as 4-seconds scale). The network architecture consists of
two shallow Convolutional Neural Networks (CNN) processing
in parallel, where inputs are 8-bit RGB images obtained from
various time intervals of 3D-positional data. We investigate the
effect of data chunk duration, various data augmentation strategies
for the classification of the aforementioned four emotions as well
as the performance of the proposed method compared to the
prior art. Additionally, the proposed method was tested on two
other datasets, which a) contain more emotion classes including
non-basic emotions (from 8 to 12 emotions), b) were captured
in different contexts (i.e., contemporary dance and daily-living
actions) and c) contain full-body motion performed by multiple
participants (from 6 to 12 participants).

The rest of the paper is organized as follows. Related works
on automatic full-body movements classification and particularly
emotion recognition are discussed in Section 2. Our dataset and
the data representation method are introduced in Sections 3 and 4,
respectively. Section 5 describes the proposed method. The details
of the experimental analysis is given in Section 6 while Section 7
includes an ablation study and discusses the performance of the
proposed method within a comparative study performed on our
as well as other available datasets. Finally, in Section 8 we con-
clude the paper with a summary, list of findings and discussions
including future research.

2 RelatedWork
There has been a growing interest in automatic classification
of full-body movements. Majority of the works have focused on
automatic recognition of a pre-defined set of activities or gestures.
However, in this paper, we target classification of emotions from
full-body movement data. Thus, below, we only briefly discuss
the action and gesture recognition studies and mainly focus on the
prior art of emotion recognition. Finally, we review the affective
computing studies for modeling multiple temporal scales.

2.1 Action and Gesture Recognition

Ha and Choi [11] presented a CNN-based human activity recog-
nition method that performs better than Hidden Markov Models
(HMMs) and Support Vector Machines (SVMs) for 12-activity
classes (e.g., standing still, sitting and relaxing, lying down, walk-
ing) whose data was collected by accelerometers and gyroscopes.
In [12], a CNN model is used for action recognition from MoCap
data. The captured data is represented as images such that the
joint positions constitute the x-axis and the time information
constitute the y-axis of the image. That method [12] was applied
to two standard datasets while CNN showed significantly better
results compared to hand-crafted features. In [13], a deep encoder-
decoder architecture was applied for classification and prediction
of activities in the CMU MoCap database, which contains 2230
recordings of different physical activities such as walking, run-
ning, and punching, resulting in 78% accuracy for nine classes.
Wan et al. [14] present a Bidirectional Long Short-Term Mem-
ory (Bi-LSTM) network for large-scale isolated and continuous
gesture recognition, showing a remarkable performance. There
is a large number of other studies performing action and/or
gesture recognition from full-body movements. Interested readers
can refer to the survey papers in which the data is captured by
RGB cameras [15], depth sensors [16], [17], and wearable inertial
sensors [18].

2.2 Emotion Recognition

Emotions expressed through full-body can be perceived from
1) a static full-body pose (e.g., a forward head and chest bend
expressing the sadness [19]), 2) specific gestures being emotion
emblems (e.g, raising arms and hands-on-hips are the gestures
of pride [20]), and 3) expressive quality of the movement (e.g.,
performing expanse movement in anger [3]). This work focuses
on the third aspect while the second aspect can be addressed with
the methods described in Section 2.1, and the first aspect does not
rely on the temporal data.

Several challenges have been mentioned in the literature re-
garding emotion recognition from full-body MoCap data [21],
[22], [23]. The contextual and interpersonal differences in ex-
pressing and perceiving affect makes emotion recognition complex
[22], [23]. Consequently, it becomes harder to obtain reliable
ground-truth data, which is needed to develop automatic recogni-
tion methods. Full-body affective expressions may differ between
individuals in both intensity and quality level due to numerous fac-
tors, e.g., personality, physical capacity, and personal experience.
Such differences might cause low accuracy for person-independent
automatic recognition [22]. Additionally, existing MoCap datasets
are usually rather small, due to the effort needed to collect and
most importantly annotate such data with a high reliability. This
requires not only relatively expensive and sophisticated hardware
but also a lot of post-processing, which might even include manual
data cleaning. Consequently, it is very important to develop
shallower machine learning methods that are able to efficiently
deal with limited data.

Indeed, the majority of the studies in this context still rely
on hand-crafted features and apply learning methods such as
SVMs and Random Forests [24], [25], [26], [27]. For example,
Castellano et al. [24] classify acted emotional states using the
movement features (motion quantity, velocity, movement fluidity
and so forth) extracted from visual data. A set of temporal
aggregators is applied to these low-level features to describe their
dynamics, which are later classified in terms of four emotions.
Piana et al. [27] use 3D-motion data of full-body movements and
defines a number of low-level (e.g., kinematics of a single joint)
and high-level (e.g., contraction index, impulsiveness) features,
which are modelled by an SVM classifier. The contribution of
temporal features (e.g., regularity of a motion profile, overall or
single gesture phase impulsiveness) and multi-level body cues
(e.g., based on Body Action and Posture Coding System [28])
to automatic emotion classification were investigated by Fourati
et al. [25] on a dataset composed of 8 daily-life actions (e.g.,
walking with/without objects in hands, moving books on a table)
performed with 8-states (anxiety, pride, joy, sadness, panic fear,
shame, anger and neutral).

Daoudi et al. [29] represent the 3D-skeleton data in the Rie-
mannian manifold by integrating covariance operator and use this
representation with a Nearest Neighbour classifier to differentiate
between angry, fearful, joyful, neutral and sad walks. Kacem et
al. [30] adapt the idea of using representations parametrized in
the Riemannian manifold, followed by a temporal warping and
SVM. That method was used for action recognition from 3D-
data, emotion recognition from 3D-body movements and 2D-
facial expression recognition, showing boosted performances in all
these cases. In [31], a 3-layered Recurrent Neural Network (RNN)
is used to perform emotion classification from MoCap data of
daily activities such as clapping, drinking, throwing, and waving
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associated with four-emotions: happy, angry, sad, and neutral.
Creen et al. [32] present a method, which synthesizing neutral
motion, is used to detect body expression from the 3D-skeleton
provided by MoCap data. Neutrality in a motion is quantized
through a cost function, and then the difference between body
expression of other emotions and synthesized neutral emotion is
calculated.

2.3 Modeling Multiple Temporal Scales

The existing affective computing works integrating multiple tem-
poral scales, exclusively rely on analyses of facial expressions in
videos or by audio processing. For instance, Yun et al. [33] present
an engagement detection method processing facial videos with
a CNN architecture that includes a layer modeling the temporal
long and short-term data dynamics. Chanti et al. [34] use the
combination of 3D-CNN to model short-term spatio-temporal
features and Convolutional-LSTM to learn global spatio-temporal
features for video-based facial expression analysis. Similarly, a
combination of CNN and LSTM models are recently tested for
affect recognition from audio and video facial expressions data
[35], [36].

In terms of architecture design, targeted problem and dataset,
the most similar work to our study is [37]. The authors [37]
compare data representation methods: coarse position format, fine
position format, logistic position format, and logistic velocity
format by applying a shallow CNN architecture for classification
of affect from full-body movements. Herein, we use an extended
version of the dataset introduced in that study [37] and rely only on
the logistic position format (described in Section 4) as it performed
the best out of all others analyzed in [37]. Unlike [37], we explore
the effectiveness of using multiple temporal scales for emotion
recognition.

3 Our Dataset
Our dataset is composed of four affective states: angry, happy,
sad and insecure. The choice of labels was inspired by previous
studies such as [38] where the images displaying bodily emotions
of four basic emotions: anger, happiness, sadness, and fear were
correctly categorized at least 85% of all the cases. The same set of
four labels was also considered in other studies on perception of
emotions from static images and videos [39], [40]. We replaced
“fear” with “insecure”, which is not among basic emotions,
but shares some characteristics with the former (e.g., both are
reactions to threats). The advantage of "insecurity" (i.e., a reaction
to abstract threat) is that it can be easier to express with dance
than fear (i.e., a reaction to immediate and concrete threat).

TABLE 1: The total number of segments and overall segment
duration in seconds for each emotion class in our dataset.

Emotion Number of Total Duration
Segments (seconds)

Angry 16 176
Happy 17 334
Insecure 18 292
Sad 10 283
Total 61 1085

Two professional dancers participated in the data collection.
They were asked to portray an emotion in a free movement im-
provisation, not necessarily dance, avoiding stereotype movements

TABLE 2: The order of the markers (1-30) and their correspon-
dence with the body parts.

Body Part Order index - Short Label (Description)
Head 1 - ARIEL (Top Head), 2 - C7 (7th Cervical Vertebra),
& 3 - T5 (5th Thoracic Vertebra), 4 - STRN (Sternum),
Torso 5 - CLAV (Xiphoid Process), 6 - BWT (Sacrum Bone),

7/8 - LBWT/RBWT (Left/Right Pelvic Bone),
Left 9 - LSHO (L.Shoulder), 10 - LBUPA (L. Upper Arm),
Arm 11 - LELB (L. Elbow), 12 - LIWR (L. Wrist),

13 - LPLM (L. Palm), 14 - LINDX (L. Index Finger)
Right 15 - RSHO (R. Shoulder), 16 - RBUPA (R. Upper Arm),
Arm 17 - RELB (R. Elbow), 18 - RIWR (R. Wrist),

19 - RPLM (R. Palm), 20 - RINDX (R. Index Finger)
Left 21 - LFTHI (Left Thigh), 22 - LKNI (Left Knee),
Leg 23 - LANK (Left Ankle), 24 - LHEL (Left Heel),

25 - LMT1 (Left 1st Meta Tarsal)
Right 26 - RFTHI (Right Thigh), 27 - RKNI (Right Knee),
Leg 28 - RANK (Right Ankle), 29 - RHEL (Right Heel),

30 - RMT1 (Right 1st Meta Tarsal)

and specific actions.1 Each recording session was 1-minute long,
on average. A team of three experts selected segments of various
duration from each recording. Segments that display 1-type of
emotion as agreed by all experts were kept, while segments that
do not display any clear emotion were discarded. The selected
segments have an average duration of 17.8 seconds. The number
of selected segments and their duration are summarized in Table 1.

4 Data Representation
A Qualisys MoCap System was used for creating the dataset. 30
markers were attached to the body of the dancers. Sample rate
was 100 frames per second (fps). Markers were split into five
sets: head and torso, left arm, right arm, left leg, and right leg.
The markers were re-ordered within each group according to their
position in the body (from top to bottom of the body). These
were then arranged as shown in Table 2. Missing values were
interpolated by using polynomial interpolation.

4.1 Image Construction

Data consisting of the 3D-positions of 30 markers at 100 fps was
converted into RGB images, which is a common input format for
CNNs. This includes dividing the MoCap segments as identified
by the experts, which have a variable duration, into chunks of
fixed duration. Then, a chunk of data is converted into an RGB
image. Various values were tested for the duration of a single
chunk while overlapping in time was also applied. The resulting
number of images for each setting is given in Table 3. For example,
for the data chunk having a duration of 4-seconds and applying a
0.5-seconds overlapping to the whole dataset results in 1683 RGB
images, in total.

TABLE 3: The total number of images obtained from a certain
chunk duration and overlapping. NA stands for "not applied".

Chunk Duration Overlapping Number of
(seconds) (seconds) Images

0.5 NA 2169
1 0.5 2068
2 NA 513
2 0.5 1946
4 0.5 1683

1. A video containing sample visualizations of the MoCap data is provided
as the supplementary material.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2021.3095425, IEEE
Transactions on Affective Computing

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. XX, XX XX 4

The procedure for constructing RGB images includes body-
centered relative normalization, which can be described as follows.
The value of marker CLAV at the first frame of each chunk is taken
as a point of reference. CLAV is situated on the lower part of the
chest on the xiphoid process. So, in the first frame, the position of
CLAV is zero. The positions of the other markers are taken with
respect to this new origin. In the second data frame, if the dancer
moves, the position of CLAV changes, i.e., it is no longer at the
origin. This allows us to model not only the movement of the joints
with respect to the CLAV, but also the movement of the whole
body with respect to its initial position. Additionally, by using
body-centered relative positioning, the range of the marker values
is reduced, thus, it is no longer required to map all the positions
of the work-space. An advantage of this normalization is that it
allows the creation of images with an overlap. For example, if we
take a 1-second chunk with 0.5-seconds overlap, in the first chunk
the origin corresponds to the CLAV position at frame one, while
in the second chunk, the origin corresponds to the CLAV position
at frame 51 of the whole sequence. Hence, the overlapping portion
of two consecutive images contain different values.

Following that, an 8-bit RGB image format is used to represent
the data based on the method presented in [12]. In detail, the X ,
Y and Z coordinates of the markers are associated with the R, G
and B layers, respectively. Markers are represented on the y-axis,
while the consecutive frames of the sequence are represented on
the x-axis. For example, a row of the R layer in the resulting image
represents the temporal evolution of the X coordinate of the marker
associated with that row. Then, logistic position (LP) is used to fit
the information in this 8-bit image format, as this method was
shown to be the most efficient mapping in our previous work [37].

Fig. 1: RGB images in logistic position format with their emotion
labels. These examples encode 1-second of data (x-axis), and 30
markers (y-axis).

Logistic Position Image Format. While an 8-bit image allows
256 values in the range of 0 to 255, the marker positions are
provided in millimeters for high accuracy, hence even with relative
positioning, the range of 256 values is insufficient to fit all the
data. The approach that we use is based on human perception.
In detail, humans are quite capable of noticing differences in
lower frequencies, but not so good at identifying high frequency
components. Hence, high frequency components can be mapped
to a single quantum value and lower frequency components can be
mapped to a larger number of values. Inspired by this observation,
we use a logistic function that maps the positions into the -127 to
+127 interval. The function is given as follows:

R =

⌈
255

1+ e−L(Q)

⌉
(1)

where R represents the new marker value, Q represents the original
value obtained from relative position extraction and L was a
constant selected empirically. Shortly, the input values closer to
the origin are mapped to a larger range of output values. Some
examples of the resulting images in logistic position format for
the 4-emotion classes of our dataset are given in Fig. 1.

Fig. 2: Original image in logistic position format (top) and the cor-
responding new images obtained by applying data augmentation:
(a) L2RR2L, (b) 3D-RotX, (c) 3D-RotY, (d) 3D-RotZ (bottom).

4.2 Data Augmentation

Given a data chunk D represented by the X , Y and Z coordinates
of the 30 markers, we obtain a new chunk by:
• Swapping the data associated to the left-side body markers

with the right-side body markers (L2RR2L): The values of the
left-arm markers (i.e., LSHO, LBUPA, LELB, LIWR, LPLM,
LINDX) are assigned to the right-arm markers (i.e., RSHO,
RBUPA, RELB, RIWR, RPLM, RINDX), while the values of
the right-arm markers are assigned to the left-arm markers.
Similarly, the values of the left-leg markers (i.e., LFTHI, LKNI,
LANK, LHEL, LMT1) are exchanged with the values of the
right-leg markers (i.e., RFTHI, RKNI, RANK, RHEL, RMT1)
as well as the values of the LBWT marker is exchanged with
the values of the RBWT marker and vice versa.

• Applying 3D rotation around the X-axis (3D-RotX): We obtain
a new data Dx′, which results from the rotation of the original
data D around the X-axis for 90 degrees.

• Applying 3D rotation around the Y -axis (3D-RotY): A new data
Dy′, which results from the rotation of the original data D around
the Y -axis for 90 degrees, is obtained.

• Applying 3D rotation around the Z-axis (3D-RotZ): A Dz′,
which results from the rotation of the original data D around
the Z-axis for 90 degrees, is obtained.

L2RR2L assumes that the person can display the same ex-
pressive quality by moving left and right part of his/her body.
Strategies similar to 3D-RotX, 3D-RotY, and 3D-RotZ have been
recently used in [41] for automatic detection of reflective thinking.
Herein, we have adapted them for emotion classification, and they
are based on the assumption that emotion recognition should be
invariant to 3D-rotations. In other words, augmentations applied
add some variability to the data, which can be corresponding to the
potential real-life situations, e.g., various viewpoints that might not
be covered during data collection. The aforementioned augmenta-
tion strategies have been designed considering the content (i.e.,
full-body movements), instead of applying traditional methods
such as image cropping, padding, or horizontal flipping. Fig. 2
shows examples of the original and the corresponding augmented
data represented in the logistic position image format. The data
obtained as a result of the aforementioned augmentations retain the
labels of the original chunks since the expressed affective states
are unaltered.
Given one of these four strategies, we apply:
• Augmenting every training image (A_ALL): This creates the

biggest training set out of all.
• Augmenting 10% of the images belonging to each emotion class

(A_10%).
• Balanced Training (A_BALANCED): We calculate the number

of images belonging to each emotion class in the original train-
ing set. The majority class (i.e., the class having the maximum
number of data) is not augmented, but all other classes are
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augmented, resulting in a final training set containing an equal
number of images from each emotion class.

In case of using all four augmentation strategies (L2RR2L, 3D-
RotX, 3D-RotY, 3D-RotZ) together, we randomly determine the
strategy to be applied for the generation of a single new image.

One reason to apply data augmentation is to increase the size
of the training set, which might result in a better performing model
(e.g., as applied in [42]). But it is often difficult to foresee what
the quantity of the augmented data should be. Among A_ALL,
A_10%, and A_BALANCED the highest number of augmented
data is obtained by applying A_ALL while the smallest number of
augmented data is obtained by applying A_BALANCED. Another
important issue is having class imbalanced data that causes a
tendency of the trained model to bias towards the majority class
[43]. The possible negative effects of having class imbalance are
handled by applying data augmentation with the A_BALANCED
strategy where quantity of the augmented data is not a parameter
(as in A_10%), but instead it is in terms of the quantity of
the data belonging to the majority class. Overall, by applying
the aforementioned data augmentations, we aim to improve the
overall classification performance while performing equally well
prediction for each emotion class.

5 Proposed Method
In this study, we have spatio-temporal data to be processed and
classify in terms of some set of emotion classes. While CNN
is best known for its application to the classification of static
images (i.e., only spatial data), it is also an appropriate technique
to process temporal data [33], [12]. There are some benefits of
using a CNN model for our task as compared to other machine
learning methods. For example, similar dynamic patterns observed
in different parts of the body can be identified using the same filter.
Thus, we do not need to train separately the network to detect the
same features in different parts of the body as it could be in case of
other machine learning methods. Also, by using CNN, the filter is
able to detect a quality (i.e., emotion cue) in the data irrespective of
when the corresponding motion occurs. CNN allows us to bypass
the manual extraction of movement features and let the network
decide the best features for classification. Moreover, compared
to other popular deep learning methods such as RNNs, CNNs
typically require less computation and memory and can provide
better classification results for a smaller data size [37].

Our proposed method employs a two-branch architecture.
It consists of two CNNs, each of them is composed of three
convolutional layers followed by fully connected layers. It is
illustrated in Fig. 3. One key feature in our architecture is the
shape of the convolutional filters. Instead of using square filters,
which is more common, our filters are extended along the time-
axis to form 3×5 rectangles. The reason for having rectangular
filters is that we expect the network to learn and extract features in
the time domain rather than among successive markers. It is also
important to highlight that the input image is always rectangular.
The first convolution is applied to the input image with 16 filters.
The "same" padding, which makes the size of outputs the same
as that of inputs, is used. A max pooling operation with a stride
of two is performed, which reduces both x and y dimensions by
half. The obtained result is given to the next layer after applying a
ReLU function.

This series of operations is repeated in the next two convo-
lutional layers, but with increasing numbers of filters. In other

Fig. 3: The architecture of our proposed method. K stands for the
number of markers and C represents the number of emotions.

words, in the second layer 32 filters are used while in the
third layer 64 filters are used. Such increase in the number of
filters allows us to identify more complex features in the deeper
layers. After the third and final max pooling and ReLU layer, the
image size is reduced to 3×12, but with 64 layers. The output
is then flattened out. In this two-branch architecture, separate
convolutional layers are used before the weights are flattened out
and these weights are added together in a fully connected layer.
Finally, another fully connected layer of dimension 4×1 is used as
the output layer such that each output value corresponds to a single
emotion class. A softmax function in the output layer determines
the final emotion class for the given input image.

The input of our model at a time is a part of a data segment in
the form of two RGB images in logistic position image format (see
Fig. 3). The L constant introduced in Eq. 1 was taken as 0.0035,
which was decided empirically, for the experiments applied on
our dataset. The two-branches of the proposed architecture take
images I′′ and I′, both having the size M/N × K (which is
determined empirically in Section 7 while K is defined by the
number of markers). Starting from an image I (having the size
M×K) corresponding to a certain data chunk duration and I′ that
is a part of I corresponding to the last portion of I (e.g., the last
quarter), thus its size is M/N×K (e.g., M/4×K), where N ∈ Z
and 1 < N < M, first, image resizing with bi-cubic interpolation is
applied to I, resulting in I′′, which is M/N×K. Then, I′′ and I′

are given to the network as the inputs, simultaneously.

Our architecture as well as the way of pre-processing the input
data are inspired by the human perception and the studies in [6],
[8]. In detail, one branch learns the temporal patterns of the longer
chunks (so-called global learning) while the other branch learns
more local temporal patterns, which are shorter (so-called local
learning). In other words, the branch that processes I′′ performs
a coarse-grained modelling in the time domain while the other
branch applies a fine-grained modelling by processing I′. It is
important to highlight that by applying overlapping, both branches
process all the data of the given segment. We illustrate this in
Fig. 4.

Below, we investigate whether emotion classification from
full-body movements can be performed more accurately as com-
pared to not considering multiple temporal scales by applying
our proposed two-branch architecture as well as we compare the
performance of the proposed method with the prior art.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2021.3095425, IEEE
Transactions on Affective Computing

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. XX, XX XX 6

Fig. 4: Illustration of data segmentation and overlapping

6 Experimental Analysis

To train the proposed method, mini-batch gradient descent was
used with Adam optimizer. Dropout regularization was performed
on the fully connected layers. Early stopping was applied to
determine the number of epochs such that we stopped the training
where the validation error started to increase significantly. In the
end, the learning rate was fixed to 0.0009 and increased up to
0.00135, mini-batch size was fixed to 32 or 64, the number of
epochs was fixed to 120 or 200 together with the values of filter
sizes and convolution operations mentioned in Section 5. The
values of all these parameters were set empirically.

A hybrid cross validation was performed. This hybrid method
involves a k-fold cross validation and a Monte Carlo cross val-
idation. In the inner loop, a 5-fold cross validation was applied.
In the outer loop, the data was shuffled randomly and sent to the
inner loop. This enables the creation of different segments in the
5-fold and hence provides a measure of randomness akin to the
Monte-Carlo method. This was performed for ten times bringing
on 50 (10×5) results. The results given in the next Section are the
average of the 50 results of the cross validation.

7 Results

In this section, first, we discuss the effect of chunk duration
and overlapping together with the effect of the size of the input
images (Section 7.1). Then, the contribution of the applied data
augmentation strategies is investigated (Section 7.2). All of these
analyses were performed by using a single branch of the proposed
architecture (illustrated as the top branch in Fig. 3 with or without
resizing), and the corresponding results are given in Table 4 in
terms of F1-score. Following that, we report the performance of
the proposed method, which analyses the data at multiple temporal
scales with a two-branch CNN architecture (Section 7.3, Table 5)
and compare its performance with the prior art (Section 7.4,
Table 6). All these aforementioned experiments were realized on
our dataset (Section 3). Finally, we tested the proposed method on
two other datasets containing full-body MoCap data of multiple
persons performing dance and daily actions associated with several
emotion classes (Section 7.5).

TABLE 4: F1-score of each setting. "NO" stands for not applying
augmentation. "w/ ALL" refers to randomly applying one of the
four augmentation strategies: L2RR2L, 3D-RotX, 3D-RotY, 3D-
RotZ by using a single data chunk. The best of all results is
emphasized in bold.

Dura Over Image Size Augmentation F1-
tion lap score
1 0.5 100x30 NO 77%
1 0.5 100x30 A_ALL 76%
1 0.5 100x30 A_10% 77%
1 0.5 100x30 A_BALANCED w/ L2RR2L 79%
1 0.5 100x30 A_BALANCED w/ 3D-RotX 79%
1 0.5 100x30 A_BALANCED w/ 3D-RotY 78%
1 0.5 100x30 A_BALANCED w/ 3D-RotZ 79%
1 0.5 100x30 A_BALANCED w/ ALL 80%
0.5 No 50x30 NO 74%
0.5 No 50x30 A_BALANCED w/ALL 76%
0.5 No 50x30 to 100x30 NA 74%
0.5 No 50x30 to 100x30 A_BALANCED w/ALL 76%
2 0.5 200x30 NO 80%
2 0.5 200x30 A_BALANCED w/ ALL 81%
2 0.5 200x30 to 100x30 NA 81%
2 0.5 200x30 to 100x30 A_BALANCED w/ALL 83%
4 0.5 400x30 NO 87%
4 0.5 400x30 A_BALANCED w/ ALL 89%
4 0.5 400x30 to 100x30 NO 90%
4 0.5 400x30 to 100x30 A_ALL 89%
4 0.5 400x30 to 100x30 A_10% 90%
4 0.5 400x30 to 100x30 A_BALANCED w/ L2RR2L 91%
4 0.5 400x30 to 100x30 A_BALANCED w/ 3D-RotX 91%
4 0.5 400x30 to 100x30 A_BALANCED w/ 3D-RotY 90%
4 0.5 400x30 to 100x30 A_BALANCED w/ 3D-RotZ 91%
4 0.5 400x30 to 100x30 A_BALANCED w/ ALL 92%

7.1 The effect of chunk duration, overlapping, and input
image resizing

The duration that is equal to 1-second and overlapping that is
equal to 0.5-seconds, resulting in images having size 100×30 was
taken as the baseline setting since this was the best performing
configuration in our earlier work [37]. It is important to recall
that choosing a chunk duration influences the size of the images
(see Table 3). Consequently, direct comparison of the classification
results for different chunk durations might be unfair when the
same architecture with the same filter sizes is used, thus we also
applied image resizing such that the input images became the same
size with the baseline dimensions (100×30).

Applying image resizing did not affect the classification per-
formance when the chunk duration was taken equal to 0.5. How-
ever, when the chunk duration was increased to 2- and 4-seconds,
1% (from 80% to 81% F1-score) and 3% (from 87% to 90%
F1-score) classification improvements were obtained respectively,
after image resizing.

Shorter chunks result in higher numbers of images (see Ta-
ble 3) while applying overlapping increases the number of images
as well. Typically, having more images in the training set might
result in better classification performance. It is however important
to highlight that longer chunks contain more information and
although the final model is trained with the same data, it might be
able to learn better. Indeed, the model trained with longer chunks
resulted in improved performance (without image resizing: 74%,
77%, 80%, 87% F1-scores for 0.5-, 1-, 2- and 4-seconds data,
respectively; with image resizing: 74%, 77%, 81%, 90% F1-scores
for 0.5-, 1-, 2- and 4-seconds data, respectively).



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2021.3095425, IEEE
Transactions on Affective Computing

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. XX, NO. XX, XX XX 7

7.2 The effect of augmentation

The effects of applying data augmentation according to differ-
ent strategies were examined for 1) the baseline setting and 2)
the setting having data chunk duration equal to 4-seconds and
overlapping equal to 0.5-seconds, resulting in images having size
400×30.

For the baseline setting, the A_BALANCED strategy per-
formed the best (the performance changing from 78% to 80%
F1-score). Following that, not applying data augmentation (shown
as NO) and 10% data augmentation for each emotion class (shown
as A_10%) performed equally well (77% F1-score), whilst aug-
menting every training data performed the worst (76% F1-score)
out of all. Balanced training with a randomly selected strategy per
data chunk (A_BALANCED w/ ALL: L2RR2L, 3D-RotX, 3D-
RotY, or 3D-RotZ) showed the best performance: 80% F1-score.
There is no statistically significant (p−value > 0.05) performance
difference between L2RR2L, 3D-RotX, 3D-RotY, and 3D-RotZ
when they are applied individually (78-79% F1-scores).

For the 4-seconds duration with 0.5-seconds overlapping and
without image resizing, applying A_BALANCED w/ ALL im-
proved the results from 87% to 89% F1-score. When image resiz-
ing was applied, applying data augmentation type A_BALANCED
w/ ALL showed the best performance out of all, which im-
proved results from 90% to 92% F1-score. This performance
was followed by not applying data augmentation (90% F1-score)
and by A_10% for each emotion class (90% F1-score) while
A_ALL (89% F1-score) performed the worst. Shortly, the data
augmentation trend observed for the baseline setting was the same
for the data represented as 4-seconds chunks with 0.5-seconds
overlapping.

To sum up, results (Table 4) show that data augmentation
has potential to improve the emotion classification performance
and the key point is balancing the training data. On the other
hand, longer data chunks (implies less training images) bring in
better emotion classification results, whilst image resizing applied
to longer chunks also contributes positively to the classification.
Consequently, for our dataset, the best recognition was observed
for 4-seconds chunks resized to 100×30, when balanced data
augmentation was applied out of all combinations tested.

7.3 The effect of multiple temporal scales

Given the setting having chunk duration equal to 4-seconds and
overlapping equal to 0.5-seconds, resized to 100×30, performed
better than any other settings of shorter chunks, we tested our
proposed two-branch architecture for that setting. In detail, one
branch of the proposed method was fed with images lasting
4-seconds with 0.5-seconds overlapping. Meanwhile, the other
branch was fed with the last quarter of the aforementioned images
(i.e., they encode the data occurring in the last 1-second of
the 4-seconds chunk and image size is equal to 100×30). The
images in the former branch were resized to 100×30, while for
both branches the same types of data augmentation were applied.
The performance boost occurred by the inclusion of the multiple
temporal scales is reported in Table 5.

Our proposed method performs better than its single-branch
version (i.e., without multiple temporal scales) when augmentation
is not applied (90% vs. 92% F1-score) as well as when augmen-
tation is applied (92% vs. 95% F1-score). The performance gain
which is obtained by integrating multiple temporal scales (from
92% to 95% F1-score) is statistically significant (p-value < 0.05,

TABLE 5: Performances in terms of F1-score. NA and
A_BALANCED stand for "not applied" and "balanced training",
respectively. ALL refers to randomly applying one of the four
augmentation strategies: L2RR2L, 3D-RotX, 3D-RotY, and 3D-
RotZ using a single data chunk.

Method F1-score
Proposed Method w/out multiple temporal scales 90%
Proposed Method w/out multiple temporal scales
w/ A_BALANCED ALL 92%
Proposed Method w/out augmentation 92%
Proposed Method w/ A_BALANCED L2RR2L 94%
Proposed Method w/ A_BALANCED 3D-RotX 94%
Proposed Method w/ A_BALANCED 3D-RotY 93%
Proposed Method w/ A_BALANCED 3D-RotZ 94%
Proposed Method w/ A_BALANCED ALL 95%

measured with a t-test on 10 executions) compared to processing
the data at a single temporal scale. These results clearly show that
processing full-body movement data at multiple temporal scales
improves emotion classification.

7.4 Comparison with the prior art

In Table 6, the performance of the proposed method (with the
setting described in Section 7.3) is compared with the best results
of:
• Our earlier work [37]: A multiple input CNN-based architecture

taking the logistic position and the corresponding logistic veloc-
ity based image as the simultaneous inputs when the data chunk
length is 1-second and 0.5-seconds overlapping is applied.

• A Bi-LSTM Network [14] getting the raw positional data as
the input: The input data size at a time corresponds to a vector
of 30×3 (30 markers and 3D-positional data) and the length
of the data chunk is 1-second while 0.5-seconds overlapping
is applied. As a pre-processing step, we applied body-centered
relative normalization (see Section 4.1 for its definition). We
designed two-hidden layers in the Bi-LSTM network having 64
or 128 or 256 hidden units (when the length of the input data
is smaller than the number of hidden units used, it might result
in under-fitting the training data. In that case, we also tested
having an additional fully connected layer before the LSTM
layer to augment to data, which improved the results). These
layers were followed by a dense layer and a softmax (giving
equal weights to each emotion class) to obtain the probability
for each class. We used the Adam optimizer with the batch size
32 or 64. The model was trained for up to 100 epochs with a
learning rate of 0.001. As we noticed that this network might be
prone to over-fitting, we tested to apply a 50% dropout in the
Bi-LSTM layers too.

• Support Vector Machine (SVM) with the flattened images in the
logistic position format as the input, and data chunk duration is
{1-, 2-, or 4-} seconds with 0.5-seconds overlapping. We used
radial basis function (RBF) kernel when the penalty parameter
C of the error term is ranging from 0.001 to 10000, and γ kernel
coefficient is ranging from 0.001 to 1000.

Bi-LSTMs and SVM-RBF have been frequently applied to process
MoCap data of nonverbal behaviors in various contexts including
emotion classification [26], [14], [41], [25], therefore, we included
them to the comparisons.

Our method outperforms the prior art: [37], [14] and SVM-
RBF. Performing better than [37] once again shows the benefits
of processing the full-body movement data at multiple temporal
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TABLE 6: Performance comparisons among proposed method
and the prior art in terms of F1-score. The best performance is
emphasized in bold.

[37] Bi-LSTM [14] SVM Proposed Method
89% 82% 80% 95%

Fig. 5: Confusion matrix (%) of our proposed method in testing.

scales. Additionally, surpassing SVM shows that the designed
filters of the proposed method are good at capturing the spatio-
temporal relationship of the data. Performing better than the Bi-
LSTM [14] network shows that our image representation: logistic
position format can be preferable to using raw 3D-positional data.

In Fig. 5, we also report the confusion matrix of the proposed
method corresponding to its performance given in Table 6. For
happy, insecure, and sad classes the Correct Classification Rates
(CCR) of the proposed method are all above 95% while the lowest
CCR, which is 87.06%, was obtained for angry. Angry was mis-
classified as happy with 10% classification rate. The relatively
higher confusion rate for this pair can be explained by the fact
both these emotions are characterized by expansive movements
and high movement dynamics [5].

7.5 Experiments on other datasets

Several multimodal datasets for emotion recognition are publicly
available, e.g., [44], [45], [46], [47], but only few contains full-
body MoCap data. We evaluate the proposed method on DMCD
[48] and Emilya [49] datasets as they contain relatively larger
number of full-body motion data. By using them, we aim to show
generalizability of our approach within the same (e.g. dance) and
different domains. Both dataset also include non-basic emotions
(e.g., satisfied, excited and miserable), allowing us to test our
method on diverse emotion classes. Below, we explain the applied
experimental analysis and then discuss the corresponding results.

7.5.1 Dance Motion Capture Database [48]
DMCD consists of various dance performances recorded with
PhaseSpace Impulse X2 MoCap system. We used the contem-
porary dance sequences performed by six participants (Andria,
Elena, Olivia, Sophie, Theodora, and Vasso), having different
dance-related backgrounds (theatrical, ballet, gymnastic, and so
on). They performed a choreography, each associated to one of 12
emotions: excited, happy, pleased, satisfied, relaxed, tired, bored,
sad, miserable, annoyed, angry, and afraid. There are in total 108
performances (12 emotions × 9 since 3 performers did two trials
per emotion) corresponding to 614898 3D-points captured with 38
markers.

It is important to note that the number of markers and the po-
sition of the markers in the DMCD database [48] are slightly dif-
ferent than our dataset (Section 3). We used 26 markers arranged
as follows: 1- Head, 2- Neck1, 3- Neck, 4- Spine1, 5- Spine,
6- Hips, Left Arm: 7- LeftShoulder, 8- LeftArm, 9- LeftFore-
Arm, 10- LeftHand, 11- LeftHandIndex1, 12- RightShoulder, 13-
RightArm, 14- RightForeArm, 15- RightHand, 16- RightHandIn-
dex1, 17- LHipJoint, 18- LeftUpLeg, 19- LeftLeg, 20- LeftFoot,
21- LeftToeBase, 22- RHipJoint, 23- RightUpLeg, 24- RightLeg,
25- RightFoot, and 26- RightToeBase. This arrangement is like the
one given in Table 2.

We segmented the continuous DMCD data with a window of
100, 200 and 400 frames. This segmentation resulted in images
having the width of 100, 200, 400 pixels, respectively, while the
height of the images is defined by the number of the selected
markers (i.e., 26). These images were given as the inputs to the
first branch of the proposed method, which were further resized
to the dimension of the images that were the inputs of the second
branch (i.e., 25×26, 50×26 and 100×26, respectively). Thus, the
proportions between the image sizes of the first (before resizing)
and second branch were kept the same as in the previous experi-
ments in Section 7.4 (i.e., the second branch gathers the data which
is corresponding to the last quarter of the data given to the first
branch). As these settings resulted in training/test images having a
size that is similar to the size of the training/test images obtained
from our dataset, we were able to use the exact same architecture
introduced in Fig. 3 without changing the size of the filters. We
kept all the hyper-parameters (mini-batch, epoch, learning rate,
dropout and so forth) the same as defined in Section 6. During
the creation of images in logistic position format, we applied 50
frames overlapping when L (Eq. 1) was taken as 0.1. We only used
the world coordinates data from the DMCD dataset and applied
body-centered relative normalization using the Spine marker as
the point of reference. We applied the cross-validation method
described in Section 6 and the balanced data augmentation method
in which the four augmentation strategies (L2RR2L, 3D-RotX,
3D-RotY, and 3D-RotZ) were randomly applied to the minority
classes.

Fig. 6: The confusion matrix corresponding to 74.68% F1-score,
obtained by applying the proposed method to the DMCD database.

The proposed method tested on the DMCD database results
in the confusion matrix given in Fig. 6. It corresponds to the best
performance that has 74.68% F1-score. The highest class CCR
was obtained for afraid (79.03%), while the CCR obtained for tired
(78.61%) and sad (78.16%) classes are the followers. Afraid was
mis-classified as annoyed with 3.59% classification rate and it was
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recognized as other emotion classes with classification rate less
than 2.5%. The lowest CCR were obtained for pleased (70.40%)
and annoyed (70.39%) classes. Happy, which was classified with
72.71% CCR, was mis-classified as annoyed, excited, pleased,
and satisfied with 5.10%, 3.96%, 3.96%, and 3.44% classification
rates, respectively. These findings are in line with [50] that applied
the Pearson’s Correlation coefficients analysis to a subset of the
data we used in our analysis, showing that excited, happy, pleased
and satisfied are highly correlated and happy is correlated to
annoyed and angry as well.

The other classes that were found highly correlated in [50]
are: bored, sad and miserable, while satisfied, relaxed and tired
are mildly correlated. The proposed method classified sequences
labelled as bored with 74.26% CCR, while it mis-classified bored
as tired class with 6.26% classification rate. Sad sequences, which
were classified with 78.16% CCR, were mis-recognized as bored
with 3.62% classification rate. Miserable emotion class that was
detected with 76.56% CCR, was recognized as sad with 3.89%,
as bored with 3.28% and as tired with 3.38% classification rates.
To sum up, our results follow the previous findings [50] such
that highly correlated emotion classes were mis-classified with
each other more than they were mis-classified with other emotion
classes.

7.5.2 Emilya Dataset [49]
This is a 3D-MoCap dataset of emotional body expressions during
8 daily actions: simple walking (SW), walking with an object in
hands (WH), moving books on a table (MB), knocking (KD),
sitting down (SD), being seated (BS), lifting (Lf) and throwing
(Th). In total, 12 persons were asked to perform all these actions
with 8 states: anxiety, pride, joy, sadness, panic fear, shame, anger
and neutral.

The data was captured with 28 markers. To generate images
in logistic position format, we ordered the markers as follows:
1- EndSiteHeadX, 2- HeadX, 3- NeckX, 4- Chest4, 5- Chest3,
6- Chest2, 7- Chest, 8- Hips, 9- LeftCollar, 10- LeftShoulder,
11- LeftElbow, 12- LeftWrist, 13- EndSiteLeftWrist, 14- Right-
Collar, 15- RightShoulder, 16- RightElbow, 17- RightWrist, 18-
EndSiteRightWrist, 19- LeftHip, 20- LeftKnee, 21- LeftAnkle,
22- LeftToe, 23- EndSiteLeftToe, 24- RightHip, 25- RightKnee,
26- RightAnkle, 27- RightToe, and 28- EndSiteRightToe. The
body-centered relative normalization was applied using the Chest2
marker. The training/test images (input to first branch) have the
size of either 100×28 or 200×28 while 50 frames overlapping
was applied. Except L (Eq. 1) that was taken as 0.01, other settings
(regarding architecture, hyper-parameters, augmentation, second
branch image proportions) were all kept the same as those applied
on DMCD [48] and our dataset.

We tested the proposed method on individual action classes as
well as all sequences of all actions. We compare our results with
the state-of-the-art methods: [25], [51] and [32]. It is important
to highlight that [25], [51] and [32] utilized two slightly different
cross-validation set-ups. We followed the same set-ups as them
in one-to-one comparisons. The corresponding results in terms of
accuracy are given in Table 7 where we also report the Correct
Classification Rates (CCR) of the proposed method for each
emotion class.

When tested on individual action classes, the proposed method
(PM) surpasses [25], [51] with a considerable extent. This refers
to performance improvements with a margin of 2.29-28.59%
accuracy. The results of the PM are above 87% accuracy in

TABLE 7: Performance comparisons (in terms of Accuracy)
among the proposed method (PM) and the state-of-the-art ap-
proaches [25], [51], [32] on single actions: simple walking (SW),
walking with an object in hands (WH), moving books on a table
(MB), knocking (KD), sitting down (SD), being seated (BS),
lifting (Lf) and throwing (Th) as well as all actions (shown as
ALL1 and ALL2) of Emilya dataset [49]. Correct Classification
Rates (CCR) of the PM for each emotion class, corresponding to
the accuracy score of the PM, are also given. ? and × stand for the
cross validation set-up applied in [25], [51] and [32], respectively.
NA stands for "not available". The best performance for each
category is emphasized in bold.

SW? WH? MB? BS? SD?

[25], [51] 85.00% 84.00% 83.00% 68.00% 68.00%
[32] NA NA NA NA NA
PM 87.29% 87.35% 92.02% 96.59% 87.63%
PM- Anger 85.58% 83.10% 77.09% 96.38% 90.00%
PM- Anxiety 85.11% 85.59% 89.97% 93.24% 82.61%
PM- Joy 85.59% 88.63% 80.45% 92.07% 85.83%
PM- Neutral 84.71% 86.89% 98.04% 96.05% 86.62%
PM- Panic Fear 92.17% 89.38% 89.07% 95.09% 85.81%
PM- Pride 90.78% 85.86% 96.44% 97.78% 86.93%
PM- Sadness 88.42% 92.23% 96.52% 99.70% 92.54%
PM- Shame 85.28% 85.73% 95.54% 98.01% 87.61%

KD? Lf? Th? ALL1? ALL2×

[25], [51] 82.00% 78.00% 79.00% 75.00% NA
[32] NA NA NA NA 82.20%
PM 93.03% 90.24% 90.10% 90.48% 91.31%
PM- Anger 94.55% 81.76% 78.13% 90.85% 90.92%
PM- Anxiety 91.37% 86.48% 86.84% 88.03% 91.04%
PM- Joy 81.06% 76.68% 78.13% 87.86% 85.21%
PM- Neutral 95.64% 93.94% 80.77% 95.22% 94.78%
PM- Panic Fear 97.65% 88.94% 89.33% 89.13% 91.39%
PM- Pride 89.01% 87.90% 86.79% 91.54% 90.48%
PM- Sadness 96.52% 96.81% 98.20% 91.17% 90.67%
PM- Shame 94.49% 95.75% 96.08% 89.79% 94.97%

all actions while it performs the best for BS action (96.59%
accuracy). Given the CCR results, one can observe that sadness
was recognized with the highest rate for 6 out of 8 actions. On
the other hand, the lowest CCR results were obtained for anger,
anxiety, and joy. The PM emotion recognition performance, when
all actions are considered altogether (ALL1 and ALL2), achieves
remarkable results, which are 15.48% better than [25], [51] and
9.11% better than [32]. Joy (87.89% and 85.21%) has the lowest
CCR results in overall while Neutral has the highest CCR results
(95.22% and 94.78%).

8 Conclusions and FutureWork
In this paper, a novel approach for the classification of emotions
from MoCap data has been introduced. Inspired from a recent
conceptual model [6] and fMRI studies [8], we introduced a
two-branch neural network architecture for learning features from
the data at multiple temporal scales, simultaneously. When we
evaluated our proposed method on our dataset to classify four
emotion classes, it achieved an average F1-score of 95%, pre-
senting 3% improvement as compared to processing data at a
single temporal scale. Additionally, the proposed method brings
in 6% improvement compared to our previous work [37], which
also relies on a multi-branch CNN architecture, but does not
investigate the effect of processing multiple temporal scales of
the data and instead examines different ways to represent MoCap
data as RGB images. The proposed method outperforms Bi-LSTM
[14] and SVMs with 13-15% improvement. Additional analysis
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was carried out to test the effectiveness of the proposed method
on datasets having a higher number of emotion classes expressed
by several persons. The proposed method achieved up to 91%
average accuracy for classification of 8 emotions expressed during
various daily actions and the classification accuracy increases up
to 97% when considering these actions individually. In both cases
our method surpasses remarkably the-state-of-the art. At the same
time, the proposed method achieved on average 75% F1-score for
12 emotion classes expressed during contemporary dance.

The main contributions of this study can be summarized as
follows:
• A novel two-branch neural network architecture to process full-

body MoCap data at multiple temporal scales is presented.
In detail, we jointly process movement data represented with
two temporal scales. This outperforms its single temporal
scale version as well as the state-of-the-art methods. The
proposed method is able to achieve remarkable classification
performances for a high number of classes including non-
basic emotions captured in different contexts (i.e., contemporary
dance and daily-living actions) and containing full-body motion
performed by multiple participants.

• Several data augmentation methods were compared, showing
the importance of balanced training for emotion classification
from full-body movements.

• The effect of chunk duration and overlapping as well as the
effect of the size of the input images were investigated. Results
show that longer chunks improve the performance and image
resizing applied to longer chunks contributes to the classification
positively.

Motivated by the results showing that longer time observation
intervals (such as 4-seconds) are boosting automatic emotion
classification, one can speculate whether this is also valid for
human perception of affective full-body continuous movements.
The code of the proposed method is publicly available in:
https://github.com/cbeyan/AffectiveBodyMovements.

Future work includes extending our dataset with performances
of more dancers and with additional emotion classes. Adding
more dancers would allow us to examine the generalization of the
method across different participants, which is not covered in this
study. To be able to deploy the proposed approach to interactive
systems (e.g., social robots), data collected from RGB-D cameras
will be used instead of MoCap systems. Last but not least, this
work is a preliminary stage of a larger research project in which
we aim to show that the proposed method trained on one domain
(e.g., dance), can be adapted to recognize emotions elicited in
other setups (e.g., daily actions).
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