
Theoretical Computer Science 998 (2024) 114537

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Behavioral equivalences for AbU: Verifying security and safety in

distributed IoT systems ✩

Michele Pasqua a,∗, Marino Miculan b

a University of Verona, Strada le Grazie 15, Verona - 37134, Verona, Italy
b University of Udine, Via delle Scienze 206, Udine - 33100, Udine, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

ECA rules
IoT programming
Distributed systems
Bisimulations
Formal methods
Autonomic computing
Verification

Attribute-based memory Updates (AbU in short) is an interaction mechanism recently introduced for
adapting the Event-Condition-Action (ECA) programming paradigm to distributed reactive systems,
such as autonomic and smart IoT device ensembles. In this model, an event (e.g., an input from
a sensor, or a device state update) can trigger an ECA rule, whose execution can cause the state
update of (possibly) many remote devices at once; the latter are selected “on the fly” by means of
predicates over their state, without the need of a central coordinating entity.
However, the combination of different AbU systems may yield unexpected interactions, e.g., when
a new device is added to an existing secure system, potentially hindering the security of the whole
ensemble of devices. This can be critical in the IoT, where smart devices are more and more
pervasive in our daily life.
In this paper, we consider the problem of ensuring security and safety requirements for AbU
systems (and, in turn, for IoT devices). The first are a form of noninterference, as they correspond
to avoid forbidden information flows (e.g., information flows violating confidentiality); while the
second are a form of non-interaction, as they correspond to avoid unintended executions (e.g.,
leading to erroneous/unsafe states).
In order to formally model these requirements, we introduce suitable behavioral equivalences

for AbU. These equivalences are generalizations of hiding bisimilarity, i.e., a kind of weak
bisimilarity where we can compare systems up to actions at different levels of security. Leveraging
these behavioral equivalences, we propose (syntactic) sufficient conditions guaranteeing the
requirements and, then, effective algorithms for statically verifying such conditions.

1. Introduction

In the Event-Condition-Action (ECA) programming paradigm, the behavior of a system is defined by a set of rules of the form “on

Event if Condition do Action” which means: when Event occurs, if Condition is verified then execute Action. Due to its reactive nature,
this paradigm is well-suited for programming “smart” systems, such as in IoT scenarios [1,2]. ECA systems react to events (as inputs)
from the environment by performing internal actions, that update the local state, and external actions, that influence the environment

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.

* Corresponding author.
Available online 28 March 2024
0304-3975/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail addresses: michele.pasqua@univr.it (M. Pasqua), marino.miculan@uniud.it (M. Miculan).

https://doi.org/10.1016/j.tcs.2024.114537
Received 27 December 2022; Received in revised form 26 November 2023; Accepted 25 March 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:michele.pasqua@univr.it
mailto:marino.miculan@uniud.it
https://doi.org/10.1016/j.tcs.2024.114537
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2024.114537&domain=pdf
https://doi.org/10.1016/j.tcs.2024.114537
http://creativecommons.org/licenses/by/4.0/

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

itself. Due to their inherently simple yet powerful programming paradigm, all main platforms in the field of Home/Automotive IoT
(e.g., IFTTT, Samsung SmartThings, Microsoft PowerAutomate, Zapier Zaps, etc.) adopt ECA rules.

Nevertheless, in these platforms, devices cannot directly execute the ECA rules nor directly interact with each other; instead, ECA
rules are stored and executed on a central coordinator node (often deployed in the cloud, and reachable via the Internet), which
collects the inputs from the devices and delivers the actions to be performed. Despite its simplicity, this architecture suffers from
many issues. First, it does not scale well, due to the strongly centralized underlying infrastructure. Secondly, the availability depends
on the central node, which may be offline or just unreachable due to network problems. Third, the transmission of user’s sensible
information to remote, unknown, servers on possibly insecure channels raises privacy concerns. Finally, all this data transmission on
the network introduces delays and increases energy consumption.

To mitigate these issues, the ECA paradigm has been recently extended with Attribute-based memory Updates (AbU) [3], a com-
munication mechanism designed for reactive and distributed programming, that is derived from Attribute-based Communication
(AbC) [4,5]. In this model, nodes (e.g., IoT devices) can directly communicate with each other and self-coordinate, in a truly decen-
tralized setting, without the need of a central entity. Furthermore, ECA rules are deployed and executed directly on the nodes, thus
computation moves from the cloud to the edge, akin fog computing. In particular, in AbU an event on a node can cause the update of
the states of (possibly many) remote nodes, selected “on the fly” by means of ECA rule conditions. For instance, the following rule:

𝑙𝑜𝑔𝑖𝑛 ⋗@(𝑟𝑜𝑙𝑒 = ‘logger’) ∶ 𝑙𝑜𝑔← 𝑙𝑜𝑔 ⋅ 𝑡𝑖𝑚𝑒

means “when the (local) variable 𝑙𝑜𝑔𝑖𝑛 changes, on every node whose 𝑟𝑜𝑙𝑒 is ‘logger’ append my current (local) 𝑡𝑖𝑚𝑒 to the (remote)
variable 𝑙𝑜𝑔”. Therefore, AbU allows us to propagate effects to collections of nodes at once, abstracting from their identities (or even
their existence). Hence, AbU seamlessly combines the flexibility of a decentralized, property-driven interaction mechanism (à la AbC)
with the simplicity of ECA rules. Attribute-based Communication, as well as popular interaction mechanisms used in smart systems
(e.g., channels, agents, pub/sub, broadcast/multicast, etc.) [4,5], can be encoded in AbU [3].

Nevertheless, the simplicity and expressiveness of the AbU programming model comes to a price: the combination of different
ECA rules may yield unexpected or unsecure interactions. This may happen when a new node or component is added to an existing
system, or when two systems independently designed and implemented are joined in the same environment. For instance, adding
rules publishing content on social networks from a folder on a file server could inadvertently disclose sensitive pictures, e.g., taken
from a security camera, if these pictures are saved on the same folder. As another example, adding a controller that opens the
window when the temperature is too high inside a room whose heater is remotely controlled—leading to the possibility to open the
window when no one is at home, clearing the way for burglary. Therefore, an important problem is how to prevent these unwanted
interactions between ECA rules.

In this paper, we focus on two kinds of security and safety requirements. The first is a form of noninterference [6]: we aim at
assessing if an AbU system will never exhibit any information flow violating a given security policy. The second is a form of non-

interaction: we aim at assessing whether different nodes will not interact by acting on common resources in unexpected ways. This is
a safety requirement, as we aim at avoiding unintended executions, possibly leading to erroneous or unsafe system states.

To formally model and reason about these requirements, we introduce suitable behavioral equivalences between AbU systems,
following the approach of [2]. These equivalences, called hiding bisimilarities, are (weak) bisimulations hiding the observations that
are not related to the requirements check (and that would trivially break the equivalence). However, we need to generalize the
definition of [2] in order to deal with specific aspects of AbU. Indeed, an ECA rule in AbU may update at once resources at different
levels of security; hence, we have to generalize hiding bisimilarity to compare observations involving different security levels at
once. Leveraging these equivalences, we propose syntactic sufficient conditions and an algorithm to statically check noninterference
and non-interaction of AbU systems.

Another aspect, peculiar of IoT scenarios, concerns the interaction with the physical environment. This can introduce implicit

interactions between resources that appear unrelated from the programmer’s point of view. For instance, we may have an interaction
from the resource controlling a lamp to the resource reading the state of a light sensor; this interaction cannot be deducted from the
analysis of the ECA rules alone. To deal with this issue, we extend our framework with a notion of semantic dependency, representing
the implicit interactions given by the environment.

This paper is an extended version of [7,8]. With respect to this work, we generalized the bisimulations for security and safety
presented in [7]. In particular, both bisimulations now consider also the inputs coming from the environment. Furthermore, the
bisimulation for security and, hence, the noninterference definition, is given in terms of a generic security lattice, rather than
the classic two-points (public/private) lattice as in [7]. The calculus of [8] has been extended with invariants, namely conditions
that nodes have to fulfill during run-time. A new syntactic construct for specifying invariants has been added, together with the
corresponding semantic rule. Security and safety requirements of [7] have been updated accordingly.

Furthermore, we added a notion of information declassification to the security requirement (i.e., to noninterference) presented
in [7], adapting the proposed verification algorithm. The verification mechanisms for the security and safety requirements have
been improved w.r.t. those presented in [7]. In particular, the algorithm for detecting information flows now computes also the
system’s attack surface, i.e., the set of resources which can be exploited to carry out an attack. Finally, we added a discussion about
the compositionality of the verification for the security requirement (i.e., of noninterference) presented in [7] and new examples to
showcase the generality of the calculus presented in [8].

Synopsis In Section 2 we provide a short introduction to AbU, an ECA-inspired calculus extended with Attribute-based memory
2

Updates. Then, in Section 3 we define some behavioral equivalences for AbU systems, to model two requirements which are crucial

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

when designing secure and safe IoT systems; while in Section 4 we propose two verification mechanisms to statically check the
previously defined requirements. In Section 5 we deal with the problem of implicit resources interactions and the controlled release
of sensitive information (i.e., information flows declassification); together with a discussion about the compositionality of the security
requirement verification. Related work is discussed Section 6, and finally, in Section 7 we draw some conclusions and give directions
for future work. Full proofs can be found in Appendix A.

2. Attribute-based memory updates in short

In this section we recall AbU [3,9], a calculus merging the simplicity of ECA programming with a powerful distributed commu-
nication mechanism, i.e., attribute-based memory updates. The latter allows a node to update at once the states of many nodes, which
are selected by means of their attributes. Moreover, in this paper we extend the calculus presented in [3] with the possibility of
specifying node invariants, i.e., predicates on each node’s state which must be always satisfied. This is useful to avoid erroneous or
dangerous states, like forbidden trajectories in planning, deadlocks, inconsistent values, etc. These features are introduced without
sacrificing coding simplicity: ECA rules are still used to program the devices. This programming model turns out to be well suited for
IoT and smart devices, which can now interact and self-coordinate directly without any central controlling node. We will see some
examples in Section 2.2.

2.1. AbU syntax and semantics

We present here an overview of the AbU calculus, the interested reader can find a more detailed description in [3,9]. An AbU
system 𝖲 is basically a list of nodes which execute in parallel:

𝖲 ∶∶=𝑅, 𝜄⟨Σ,Θ⟩ ∣ 𝖲 ∥ 𝖲

Each node 𝑅, 𝜄⟨Σ, Θ⟩ consists of: a set 𝑅 of ECA rules; an invariant 𝜄, namely a boolean expression that the node must satisfy at runtime;
a state Σ ∈𝕏 → 𝕍 , mapping resources 𝑥 ∈𝕏 to values 𝑣 ∈ 𝕍 ; an execution pool Θ ⊆ (𝕏 × 𝕍)∗, that is a set Θ = {𝗎𝗉𝖽1, … , 𝗎𝗉𝖽𝑛} of lists
of pairs of the form (𝑥1, 𝑣1) … (𝑥𝑚, 𝑣𝑚). Each list, called an update, represents a simultaneous multiple update waiting to be applied
to the state. In the following we will denote the set of updates as 𝕌 = (𝕏 × 𝕍)∗ =

⋃
𝑖∈ℕ(𝕏 × 𝕍)𝑖.

The syntax of the rules is defined by the following grammar.

𝗋𝗎𝗅𝖾 ∶∶= 𝖾𝗏𝗍 ⋗ 𝖺𝖼𝗍, 𝗍𝖺𝗌𝗄 𝖼𝗇𝖽 ∶∶= 𝜑 | @𝜑

𝖾𝗏𝗍 ∶∶= 𝑥 | 𝖾𝗏𝗍 𝖾𝗏𝗍 𝜑, 𝜄 ∶∶= 𝚏𝚏 | 𝚝𝚝 | ¬𝜑 | 𝜑 ∧𝜑 | 𝜑 ∨𝜑 | 𝜀⋈ 𝜀

𝖺𝖼𝗍 ∶∶= 𝜖 | 𝑥← 𝜀 𝖺𝖼𝗍 | 𝑥← 𝜀 𝖺𝖼𝗍 𝜀 ∶∶= 𝑣 | 𝑥 | 𝑥 | 𝜀 ⊗ 𝜀

𝗍𝖺𝗌𝗄 ∶∶= 𝖼𝗇𝖽 ∶ 𝖺𝖼𝗍 𝑥 ∈𝕏 𝑣 ∈ 𝕍

An ECA rule 𝖾𝗏𝗍 ⋗ 𝖺𝖼𝗍, 𝗍𝖺𝗌𝗄 has a listening event 𝖾𝗏𝗍, which is a list of resources: when one of the resources in 𝖾𝗏𝗍 is modified,
the rule is fired, namely the default action 𝖺𝖼𝗍 and 𝗍𝖺𝗌𝗄 are evaluated. Evaluation does not change the resource states immediately;
instead, it yields update operations which are added to the execution pools, and applied later on. An action is a list of assignments
of value expressions to local 𝑥 or remote 𝑥 resources. A task consists in a condition 𝖼𝗇𝖽 and an action 𝖺𝖼𝗍. A condition is a boolean
expression, optionally prefixed with the modifier @: when @ is not present, the task is local; otherwise the task is remote. In local
tasks, the condition is checked in the local node and, if it holds, the action is evaluated. For remote tasks, on every node where the
condition holds, the action is evaluated. The evaluation of an action yields an update, which is added to the current node pool in
the case of default actions and local tasks; and added to remote nodes pools in the case of remote tasks. In the following, in order to
simplify the notation, when a rule has an empty default action we write 𝖾𝗏𝗍 ⋗ 𝗍𝖺𝗌𝗄 in place of 𝖾𝗏𝗍 ⋗ 𝜖, 𝗍𝖺𝗌𝗄. In the syntax for boolean
expressions 𝜑 (and invariants 𝜄) and value expressions 𝜀 we left implicit comparison operators, e.g., ⋈∈ {<, ≤, >, ≥, =, ≠}, and binary
operations, e.g., ⊗∈ {+, −, ∗, ∕}.

The (small-step) semantics of AbU is modeled as a labeled transition system 𝖲1
𝛼
←←←←←←→ 𝖲2 whose labels 𝛼 are given by the grammar:

𝛼 ∶∶= 𝑇 | 𝗎𝗉𝖽 ⊳𝑇 | 𝗎𝗉𝖽▸𝑇
Here, 𝑇 is a finite list of tasks and 𝗎𝗉𝖽 is an update. We have slightly modified the labels with respect to [3] since, in order to
define the security and safety requirements, we need to observe which resources are updated. A transition can modify the state and
the execution pool of the nodes but, at the same time, each node does not have a global knowledge about the system. The semantic
rules are in Fig. 1. Rule (EXEC) executes an update picked from the pool; while rule (INPUT) models an external modification of some
resources. The execution of an update, or the external change of resources, may trigger some rules of the nodes. Hence, after updating
a node state, the node launches a discovery phase, for finding new updates to add to the local pool (or some pools of remote nodes),
3

given by the activation of some rules.

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

(EXEC)

𝗎𝗉𝖽 ∈Θ 𝗎𝗉𝖽 = (𝑥1, 𝑣1)…(𝑥𝑘, 𝑣𝑘) Σ′ = Σ[𝑣1∕𝑥1 …𝑣𝑘∕𝑥𝑘] Σ′ ⊧ 𝜄

Θ′′ = Θ ⧵ {𝗎𝗉𝖽} 𝑋 = {𝑥𝑖 | 𝑖 ∈ [1..𝑘] ∧ Σ(𝑥𝑖) ≠ Σ′(𝑥𝑖)}
Θ′ = Θ′′ ∪𝖣𝖾𝖿𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ′) ∪ 𝖫𝗈𝖼𝖺𝗅𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ′) 𝑇 = 𝖤𝗑𝗍𝖳𝖺𝗌𝗄𝗌(𝑅,𝑋,Σ′)

𝑅, 𝜄⟨Σ,Θ⟩ 𝗎𝗉𝖽⊳𝑇
←←←←←←←←←←←←←←←←←←←←←←←←→𝑅, 𝜄⟨Σ′,Θ′⟩

(EXEC-FAIL)
𝗎𝗉𝖽 ∈Θ 𝗎𝗉𝖽 = (𝑥1, 𝑣1)…(𝑥𝑘, 𝑣𝑘) Σ′ = Σ[𝑣1∕𝑥1 …𝑣𝑘∕𝑥𝑘] Σ′ ̸⊧ 𝜄 Θ′ = Θ ⧵ {𝗎𝗉𝖽}

𝑅, 𝜄⟨Σ,Θ⟩ 𝗎𝗉𝖽⊳𝑇
←←←←←←←←←←←←←←←←←←←←←←←←→𝑅, 𝜄⟨Σ,Θ′⟩

(INPUT)

𝑣1,… , 𝑣𝑘 ∈ 𝕍 Σ′ = Σ[𝑣1∕𝑥1 …𝑣𝑘∕𝑥𝑘] 𝑋 = {𝑥1,… , 𝑥𝑘}
Θ′ = Θ ∪𝖣𝖾𝖿𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ′) ∪ 𝖫𝗈𝖼𝖺𝗅𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ′) 𝑇 = 𝖤𝗑𝗍𝖳𝖺𝗌𝗄𝗌(𝑅,𝑋,Σ′)

𝑅, 𝜄⟨Σ,Θ⟩ (𝑥1 ,𝑣1)…(𝑥𝑘,𝑣𝑘)▸𝑇
←←→𝑅, 𝜄⟨Σ′ ,Θ′⟩

(DISC)
Θ′′ = {�𝖺𝖼𝗍�Σ | ∃𝑖 ∈ [1..𝑛] . 𝗍𝖺𝗌𝗄𝑖 = 𝜑 ∶ 𝖺𝖼𝗍 ∧ Σ ⊧ 𝜑} Θ′ = Θ ∪Θ′′

𝑅, 𝜄⟨Σ,Θ⟩ 𝗍𝖺𝗌𝗄1…𝗍𝖺𝗌𝗄𝑛
←←→𝑅, 𝜄⟨Σ,Θ′⟩

(STEPL)
𝖲1

𝛼
←←←←←←→ 𝖲′1 𝖲2

𝑇
←←←←←←←→ 𝖲′2

𝖲1 ∥ 𝖲2
𝛼
←←←←←←→ 𝖲′1 ∥ 𝖲

′
2

𝛼∈{𝗎𝗉𝖽⊳𝑇 ,𝗎𝗉𝖽▸𝑇 } (STEPR)
𝖲1

𝑇
←←←←←←←→ 𝖲′1 𝖲2

𝛼
←←←←←←→ 𝖲′2

𝖲1 ∥ 𝖲2
𝛼
←←←←←←→ 𝖲′1 ∥ 𝖲

′
2

𝛼∈{𝗎𝗉𝖽⊳𝑇 ,𝗎𝗉𝖽▸𝑇 }

Fig. 1. Semantics of AbU calculus with invariants.

The discovery phase is composed by two parts, the local and the external one. A node 𝑅, 𝜄⟨Σ, Θ⟩ performs a local discovery by
means of the functions 𝖣𝖾𝖿𝖴𝗉𝖽𝗌 and 𝖫𝗈𝖼𝖺𝗅𝖴𝗉𝖽𝗌, that add to the local pool Θ all updates originated by the activation of some rules in
𝑅. The default updates are the updates originated from the default actions of active rules in 𝑅, namely:

𝖣𝖾𝖿𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ) ≜ {�𝖺𝖼𝗍�Σ | ∃𝖾𝗏𝗍 ⋗ 𝖺𝖼𝗍, 𝗍𝖺𝗌𝗄 ∈ 𝖠𝖼𝗍𝗂𝗏𝖾(𝑅,𝑋)}

where 𝖠𝖼𝗍𝗂𝗏𝖾(𝑅, 𝑋) is the set of rules in 𝑅 that listen on resources in 𝑋 and �𝖺𝖼𝗍�Σ is the evaluation of the action 𝖺𝖼𝗍 in the state Σ. The
latter, it returns an update: �𝑥1 ← 𝜀1… 𝑥𝑛 ← 𝜀𝑛�Σ ≜ (𝑥1, �𝜀1�Σ) … (𝑥𝑛, �𝜀𝑛�Σ), where the evaluation semantics for value expressions 𝜀
is standard. The local updates are the updates originated from the tasks of the active rules in 𝑅 that act only locally (@ is not present
in the tasks’ condition) and that satisfy the task’s condition, namely:

𝖫𝗈𝖼𝖺𝗅𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ) ≜ {�𝖺𝖼𝗍2�Σ | ∃𝖾𝗏𝗍 ⋗ 𝖺𝖼𝗍1, 𝜑 ∶ 𝖺𝖼𝗍2 ∈ 𝖠𝖼𝗍𝗂𝗏𝖾(𝑅,𝑋) .Σ ⊧ 𝜑}

The satisfiability relation is Σ ⊧ 𝜑 ≜ �𝜑�Σ = 𝗍𝗍, where the evaluation semantics for boolean expressions 𝜑 is standard as well.
The external discovery concerns tasks that contain the modifier @, hence an external node is needed to evaluate the task’s

condition. When a node needs to evaluate a task involving external nodes, it partially evaluates the task (with its own state) and
then it sends the partially evaluated task to all other nodes. The latter, receive the task and complete the evaluation, potentially
adding updates to their pool. In particular, the partial evaluation of tasks works as follows. With {|𝗍𝖺𝗌𝗄|}Σ we denote the task obtained
from 𝗍𝖺𝗌𝗄 with each occurrence of 𝑥 in the task’s condition and the right-hand sides of the assignments in task’s action replaced with
the value Σ(𝑥). After that, each instance of 𝑥 in the task’s action is replaced with 𝑥 and the modifier @ is dropped. For instance,
{|@(𝑥 ≤ 𝑥) ∶ 𝑦← 𝑥 + 𝑦|}[𝑥 ↦1 𝑦 ↦ 0] = (1 ≤ 𝑥) ∶ 𝑦 ← 1 + 𝑦.

Finally, the external tasks are the tasks of active rules in 𝑅 whose condition contains @ (i.e., tasks that require an external node
to be evaluated), namely:

𝖤𝗑𝗍𝖳𝖺𝗌𝗄𝗌(𝑅,𝑋,Σ) ≜ {|𝗍𝖺𝗌𝗄1|}Σ…{|𝗍𝖺𝗌𝗄𝑛|}Σ
where for each 𝑖 ∈ [1..𝑛] there exists a rule 𝖾𝗏𝗍 ⋗ 𝖺𝖼𝗍, 𝗍𝖺𝗌𝗄𝑖 ∈ 𝖠𝖼𝗍𝗂𝗏𝖾(𝑅, 𝑋) such that 𝗍𝖺𝗌𝗄𝑖 =@𝜑 ∶ 𝖺𝖼𝗍.

Such discovery phase is launched by emitting the labels 𝗎𝗉𝖽 ⊳𝑇 , produced by the rule (EXEC), and 𝗎𝗉𝖽▸ 𝑇 , produced by the rule
(INPUT). On the other side, when a node receives a list of tasks (executing the rule (DISC) with a label 𝑇) it evaluates them and it adds
to its pool the actions generated by the tasks whose condition is satisfied. The rules (STEPL) and (STEPR), the latter needed to enforce
symmetry, complete and synchronize (on all nodes in the system) a discovery phase originated by a state change of a node.

The semantics also checks the fulfillment of invariants. Indeed, the rule (EXEC) is applied only when the state modified by the
update still satisfies the invariant (i.e., Σ′ ⊧ 𝜄); otherwise, rule (EXEC-FAIL) is applied. In this case, the update that would lead to a “bad”
state is discarded and removed from the pool.

For each node, we define legal execution states the states satisfying the given invariant 𝜄, that is the set {Σ ∣ Σ ⊧ 𝜄}. We assume that
an AbU system 𝖲 =𝑅1, 𝜄1⟨Σ1, Θ1⟩ ∥… ∥𝑅𝑛, 𝜄𝑛⟨Σ𝑛, Θ𝑛⟩ starts its execution on legal states only, namely for all 𝑖 ∈ [1..𝑛] we have that
Σ𝑖 ⊧ 𝜄𝑖 at the beginning of the computation.

2.2. AbU in action: IoT and security examples

Drone swarm Consider an IoT scenario where a swarm of drones is in charge of taking specific measurements, randomly picked in
a large uninhabited area. Each drone is equipped with a battery that periodically needs to be recharged by returning to a docking
4

station. It may happen that a drone runs out of energy before returning to the charging spot. In this case, the low-battery drone asks

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

for help from its neighbors. If a drone has some energy to share and it is close enough to the requester, it will enter the “rescue
mode”. We can model this scenario in AbU as follows (without the energy transfer phase, due to space reasons).

Suppose we have four drones. For each drone we have an AbU node with a resource 𝑏𝑎𝑡𝑡𝑒𝑟𝑦, indicating the battery level of the
drone; a resource 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, indicating where is located the drone; a resource 𝑚𝑜𝑑𝑒, indicating in which operative state is the drone;
and a resource ℎ𝑒𝑙𝑝𝑃 𝑜𝑠, indicating the position of a drone that needs help. Formally, the AbU system modeling the drone-swarm
scenario is 𝖲1 ∥ 𝖲2 ∥ 𝖲3 ∥ 𝖲4, where

𝖲1 =𝑅⟨Σ1,∅⟩, 𝖲2 =𝑅⟨Σ2,∅⟩, 𝖲3 =𝑅⟨Σ3,∅⟩, 𝖲4 =𝑅⟨Σ4,∅⟩
and 𝑅 contains, among the others, the following two AbU rules:

𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ⋗@(𝑏𝑎𝑡𝑡𝑒𝑟𝑦 < 5 ∧ 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 > 80) ∶ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠← 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (1)

ℎ𝑒𝑙𝑝𝑃 𝑜𝑠 ⋗ (|𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛− ℎ𝑒𝑙𝑝𝑃 𝑜𝑠| < 7.0) ∶𝑚𝑜𝑑𝑒← ‘rescue’ (2)

Now suppose that the execution states of the drones are the following:

Σ1 = [𝑏𝑎𝑡𝑡𝑒𝑟𝑦↦5 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛↦2.0 𝑚𝑜𝑑𝑒↦ ‘measure’ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠↦0.0]

Σ2 = [𝑏𝑎𝑡𝑡𝑒𝑟𝑦↦81 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛↦15.0 𝑚𝑜𝑑𝑒↦ ‘measure’ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠↦0.0]

Σ3 = [𝑏𝑎𝑡𝑡𝑒𝑟𝑦↦97 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛↦6.0 𝑚𝑜𝑑𝑒↦ ‘measure’ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠↦0.0]

Σ4 = [𝑏𝑎𝑡𝑡𝑒𝑟𝑦↦65 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛↦8.0 𝑚𝑜𝑑𝑒↦ ‘measure’ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠↦0.0]

The rule (1) says that when the current drone battery level is low (𝑏𝑎𝑡𝑡𝑒𝑟𝑦 < 5), then the current drone has to send to all (@)
neighbors with some energy to share (𝑏𝑎𝑡𝑡𝑒𝑟𝑦 > 80) its position, performing a remote update (ℎ𝑒𝑙𝑝𝑃 𝑜𝑠← 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛). Suppose that
the battery level of the first drone decreases by 1. Then, the first node can fire the rule (1), since its battery level is low. It pre-
evaluates the task condition, yielding (4 < 5 ∧ 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 > 80), which is sent to the other nodes, together with the pre-evaluation
of the task action, i.e., ℎ𝑒𝑙𝑝𝑃 𝑜𝑠 ← 2.0. Formally, the rule (INPUT) is applied on 𝖲1, namely 𝑅⟨Σ1,∅⟩ (𝑏𝑎𝑡𝑡𝑒𝑟𝑦,4)▸𝑇

←←←→𝑅⟨Σ′
1,∅⟩, where

Σ′
1 = [𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ↦4 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ↦2.0 𝑚𝑜𝑑𝑒 ↦ ‘measure’ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠 ↦0.0] and 𝑇 = (4 < 5 ∧ 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 > 80) ∶ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠 ← 2.0. Among all

receivers, only the second and the third nodes are interested in the communication, since they are the only drones with battery level
greater than 80. So they both add to their pool the update (ℎ𝑒𝑙𝑝𝑃 𝑜𝑠, 2.0). Formally, the rule (DISC) is applied on 𝖲2, 𝖲3 and 𝖲4, but
only on 𝖲2 and 𝖲4 it has some effect, namely 𝑅⟨Σ2,∅⟩ 𝑇

←←←←←←←←→𝑅⟨Σ2,Θ⟩ and 𝑅⟨Σ3,∅⟩ 𝑇
←←←←←←←←→𝑅⟨Σ3,Θ⟩, where Θ = {(ℎ𝑒𝑙𝑝𝑃 𝑜𝑠, 2.0)}. Indeed,

since 𝖲4 is not interested in the communication, we have 𝑅⟨Σ4,∅⟩ 𝑇
←←←←←←←←→𝑅⟨Σ3,∅⟩. This ends the discovery phase originated by the first

node. Now, the second and the third nodes can apply an execution step, since their pools are not empty, possibly triggering the rule
(2). The rule (2), is fired when a drone receives a help request (i.e., when its resource ℎ𝑒𝑙𝑝𝑃 𝑜𝑠 changes) and basically checks if the
current drone position is close to the requester position (|𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − ℎ𝑒𝑙𝑝𝑃 𝑜𝑠| < 7.0). If it is the case, the current drone enters the
rescue mode performing a local update (𝑚𝑜𝑑𝑒 ← ‘rescue’). In the example, when the second and the third nodes execute the update
(ℎ𝑒𝑙𝑝𝑃 𝑜𝑠, 2.0), the task of the rule (2) may be executed. For the second node this does not happen, since |15.0 −2.0| < 7.0 is not true
(the node is too far from the first node). Instead, |6.0 − 2.0| < 7.0 and the third node can execute the rule task, adding to its pool
the update (𝑚𝑜𝑑𝑒, ‘rescue’). Formally, suppose that 𝖲2 is chosen for execution, namely we have 𝑅⟨Σ2,Θ⟩ (ℎ𝑒𝑙𝑝𝑃 𝑜𝑠,2.0)⊳𝜖

←←→𝑅⟨Σ′
2,∅⟩, by

applying the rule (EXEC), and Σ′
2 = [𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ↦81 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ↦15.0 𝑚𝑜𝑑𝑒 ↦ ‘measure’ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠 ↦2.0]. In this case, no further rule is

triggered by the executed update, hence there are no external tasks (denote with 𝜖 in the transition label) and there is nothing to add
to the node’s local pool. Instead, when 𝖲3 performs the execution step, we have that 𝑅⟨Σ3,Θ⟩ (ℎ𝑒𝑙𝑝𝑃 𝑜𝑠,2.0)⊳𝜖

←←→𝑅⟨Σ′
3,Θ

′⟩, by applying
the rule (EXEC), with Σ′

3 = [𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ↦97 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ↦6.0 𝑚𝑜𝑑𝑒 ↦ ‘measure’ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠 ↦2.0] and Θ′ = {(𝑚𝑜𝑑𝑒, ‘rescue’)}. In this case, the
execution of the update triggers the rule (2), that it adds an update to the node’s local pool (but no external tasks are generated).

Smart HVAC system In this example, we provide an AbU implementation of a Heating, Ventilation and Air Conditioning (HVAC)
system, that makes use of device invariants. In this scenario we have three devices connected through a network: the HVAC control
system, a temperature sensor, and a humidity sensor. To distinguish the devices, a logical resource 𝑛𝑜𝑑𝑒 is used, which takes the
values ‘system’, ‘tempSens’ and ‘humSens’ on the HVAC control system, the temperature sensor and the humidity sensor, respectively.
We model such scenario in AbU as follows. The execution state for the HVAC control system is:

Σ𝑠 = [ℎ𝑒𝑎𝑡𝑖𝑛𝑔↦𝚏𝚏 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔↦𝚏𝚏 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒↦0 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦↦0 𝑎𝑖𝑟𝐵𝑢𝑡𝑡𝑜𝑛↦𝚏𝚏 𝑛𝑜𝑑𝑒↦ ‘system’]

while its ECA rules 𝑅𝑠 are:

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ⋗ (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < 18) ∶ ℎ𝑒𝑎𝑡𝑖𝑛𝑔← 𝚝𝚝 (3)

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ⋗ (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 27) ∶ ℎ𝑒𝑎𝑡𝑖𝑛𝑔← 𝚏𝚏 (4)

ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ⋗
(2 + 0.5 ∗ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 ∧ 38 − 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦) ∶ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔← 𝚝𝚝 (5)
5

𝑎𝑖𝑟𝐵𝑢𝑡𝑡𝑜𝑛 ⋗ (𝑎𝑖𝑟𝐵𝑢𝑡𝑡𝑜𝑛 = 𝚝𝚝) ∶ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔← 𝚏𝚏 (6)

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

The HVAC control system activates heating and air conditioning according to the values of temperature and humidity, received by
the sensors. In particular, when the temperature is lower than 18 ◦𝐶 (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < 18) the rule (3) activates the heating (ℎ𝑒𝑎𝑡𝑖𝑛𝑔←
𝚝𝚝). Instead, when the temperature is greater than 27 ◦𝐶 (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 27), then the rule (4) deactivates the heating (ℎ𝑒𝑎𝑡𝑖𝑛𝑔← 𝚏𝚏).
The air conditioning is turned on (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔← 𝚝𝚝), by means of the rule (5), when the humidity exceeds the upper bound of the
Givoni’s comfort zone [10].

Instead, the execution state for the temperature and the humidity sensors are:

Σ𝑡 = [𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒↦19 𝑛𝑜𝑑𝑒↦ ‘tempSens’]

Σℎ = [ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦↦40 𝑛𝑜𝑑𝑒↦ ‘humSens’]

while their ECA rules are:

𝑅𝑡 ≜ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ⋗@(𝑛𝑜𝑑𝑒 = ‘system’) ∶ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒← 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (7)

𝑅ℎ ≜ ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 ⋗@(𝑛𝑜𝑑𝑒 = ‘system’) ∶ ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦← ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 (8)

The rule (7) on the temperature sensor device is simply responsible of signaling changes to the resource 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 to the HVAC
control system, by selecting all devices that have 𝑛𝑜𝑑𝑒 equals to ‘system’; while the rule (8) does the same for the resource ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦
on the humidity sensor device.

The HVAC control system is also bestowed with a physical button for manually stopping the air conditioning. Indeed, the rule (6)
stops the air conditioning (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔← 𝚏𝚏) when the button is pressed (𝑎𝑖𝑟𝐵𝑢𝑡𝑡𝑜𝑛 is 𝚝𝚝). Finally, by means of the invariant

𝜄𝑠 = ¬(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 ∧ ℎ𝑒𝑎𝑡𝑖𝑛𝑔)

on the HVAC control system device we specify that no update can result in the activation of both heating and air conditioning
simultaneously. The complete AbU system is:

𝑅𝑠, 𝜄𝑠⟨Σ𝑠,∅⟩ ∥𝑅𝑡,𝚝𝚝⟨Σ𝑡,∅⟩ ∥𝑅ℎ,𝚝𝚝⟨Σℎ,∅⟩
Note that, the same problem can be modeled by means of a single device, embedding the two sensors and the control system. We

can model this scenario in AbU with a single device comprising all resources introduced so far and transforming remote rules into
local ones. This highlights the flexibility of AbU, that is able to model both distributed and centralized ensembles of devices.

Diffie-Hellman key exchange In this last example, we model a well-known security protocol in AbU, that is, the Diffie-Hellman
key exchange [11]. In such protocol, two parties, Alice and Bob, aim at securely exchange on an untrusted channel a (symmetric)
cryptographic key, to be used in subsequent (secured) communications. Very briefly, the two parties agree on a prime number 𝑃
and a primitive root 𝐺 modulo 𝑃 (that may be public). At the beginning of the protocol, Alice and Bob secretly chose an integer
number each, say 𝑝𝐴 and 𝑝𝐵 , and compute a partial key each, say 𝑋𝐴 =𝐺𝑝𝐴 mod 𝑃 and 𝑋𝐵 =𝐺𝑝𝐵 mod 𝑃 . Then, they exchange the
partial keys and secretly compute the final shared key 𝑘𝑒𝑦 =𝑋𝐵

𝑝𝐴 mod 𝑃 =𝑋𝐴
𝑝𝐵 mod 𝑃 . In AbU, we define a system with two nodes

𝖲 =𝑅⟨Σ𝐴, ∅⟩ ∥𝑅⟨Σ𝐵, ∅⟩ with the following initial states:

Σ𝐴 = [𝐺↦3 𝑃↦7 𝑛𝑜𝑑𝑒↦ ‘Alice’ 𝑝𝑎𝑟𝑡𝑦↦ ‘Bob’ 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒↦𝚝𝚝 𝑝ℎ𝑎𝑠𝑒1↦𝚏𝚏 𝑝ℎ𝑎𝑠𝑒2↦𝚏𝚏]

Σ𝐵 = [𝐺↦3 𝑃↦7 𝑛𝑜𝑑𝑒↦ ‘Bob’ 𝑝𝑎𝑟𝑡𝑦↦ ‘Alice’ 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒↦𝚏𝚏 𝑝ℎ𝑎𝑠𝑒1↦𝚏𝚏 𝑝ℎ𝑎𝑠𝑒2↦𝚏𝚏]

Each state contains a resource 𝑛𝑜𝑑𝑒, indicating the name of the party it represents (Alice or Bob) and a resource 𝑝𝑎𝑟𝑡𝑦, indicating
the name of the other party (Bob or Alice). The other resources relate to the Diffie-Hellman protocol, in particular, 𝐺 is the primitive
root modulo a prime number 𝑃 , on which the two parties agree on. Furthermore, both states comprise the following uninitialized1

resources: 𝑝, 𝑋, 𝑌 , 𝑘𝑒𝑦. The rules 𝑅 for the key exchange protocols are the following:

𝑝 ⋗ (𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 ≠ 𝚝𝚝) ∶𝑋← (𝐺𝑝 mod 𝑃) newPrime

𝑝 ⋗ (𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 = 𝚝𝚝) ∶𝑋← (𝐺𝑝 mod 𝑃) 𝑝ℎ𝑎𝑠𝑒1← 𝚝𝚝 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒← 𝚏𝚏 newPrimeWithExchange

𝑝ℎ𝑎𝑠𝑒1⋗@(𝑝ℎ𝑎𝑠𝑒1 = 𝚝𝚝 ∧ 𝑛𝑜𝑑𝑒 = 𝑝𝑎𝑟𝑡𝑦) ∶ 𝑌 ←𝑋 𝑝ℎ𝑎𝑠𝑒1← 𝚏𝚏 𝑝ℎ𝑎𝑠𝑒2← 𝚝𝚝 exchangePhase1

𝑝ℎ𝑎𝑠𝑒2⋗@(𝑝ℎ𝑎𝑠𝑒2 = 𝚝𝚝 ∧ 𝑛𝑜𝑑𝑒 = 𝑝𝑎𝑟𝑡𝑦) ∶ 𝑌 ←𝑋 𝑝ℎ𝑎𝑠𝑒2← 𝚏𝚏 exchangePhase2

𝑌 ⋗ (𝚝𝚝) ∶ 𝑘𝑒𝑦← (𝑋𝑌 mod 𝑃) computeKey

The first two rules are used when a new integer number is generated by the parties. We have two different rules here since one of
the party should start the protocol, but not both (as happens also in the Diffie-Hellman protocol, a form of synchronization between
the parties is needed). Hence, one party (the one having 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 equals to 𝚝𝚝) generates its partial key and starts the protocol
setting 𝑝ℎ𝑎𝑠𝑒1 to 𝚝𝚝, while the other one just generates its partial key without performing any further update (phases basically
6

1 Uninitialized resources here means that we do not care about the initial value of such resources.

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

simulate session information). The third rule executes the first exchange of the partial key, that is saved in the resource 𝑌 of the
other device, and sets 𝑝ℎ𝑎𝑠𝑒2 to 𝚝𝚝 on the other device. The fourth rule executes the second exchange of the partial key, completing
the protocol. When the resource 𝑌 in one of the party is changed, meaning that a partial key is received, the device can readily
compute (in parallel) the shared key by means of the last ECA rule.

3. Behavioral equivalences for AbU systems

In this section, we provide a semantic characterization of security and safety requirements for AbU systems, based on the notion
of bisimulation. The security requirement we aim to assess is a form of noninterference [6], adapted to AbU systems. In particular,
given a security policy defining the allowed information flow between resources, we aim at assessing whether an AbU system is
secure, namely if it does not exhibit forbidden information flows (for instance, a flow from a confidential resource to a public one).
Concerning the safety requirement, we consider the following scenario, quite common in the IoT world. We have some nodes,
equipped with some ECA rules, whose behavior is known and safe for the user, and we have another node, also safe for the user. Is
the ensemble of all such nodes still safe? This is a sort of non-interaction check, namely, we check whether different nodes interact
with each other by acting on common resources in a way not intended by the user (leading to possibly inconsistent states).

We define formally these requirements by means of suitable behavioral equivalences between AbU systems, following (and gen-
eralizing) the approach of [2]. Intuitively, we aim at defining two bisimulations that capture, semantically, the security and safety
requirements. To do so, we need a particular (weak) bisimulation hiding the system labels that are not related to the requirements
check, and that would trivially break the bisimulation.

In particular, a hiding bisimulation makes non-observable all labels from a given set of labels, hence called hidden. Differently
from [2], where labels can be either hidden or fully observable, in our approach we can also specify labels that are partially observable.
Here partially means that we can fix an abstraction on what we can observe about not hidden labels. In other words, partially
observable labels can be mimicked in the bisimulation game by other labels which are observationally equivalent, fixed a given
labels abstraction.

Formally, let  be the set of all AbU system labels and ℎ ∈  → ∪ {⋄} a function. We denote with ←←→ℎ the relation involving any
possible hidden label, i.e., ←←→ℎ≜

⋃
{ 𝛼
←←←←←←→ | ℎ(𝛼) = ⋄}, and with ⇒ℎ its transitive closure, i.e., ⇒ℎ≜ ←←→∗

ℎ
. Then,

𝛼
⇒ℎ≜⇒ℎ

𝛼
←←←←←←→⇒ℎ means

that we can perform an arbitrary, possibly empty, sequence of hidden labels, but at least one observable 𝛼 label must be present.

Definition 1 (Hiding bisimulation). Let ℎ ∈  →  ∪ {⋄} be a function. A symmetric relation  between AbU systems is a hiding
bisimulation w.r.t. ℎ, if and only if for all 𝖲1  𝖲2 and 𝖲1

𝛼
←←←←←←→ 𝖲′1 we have:

• if ℎ(𝛼) = ⋄ then 𝖲2 ⇒ℎ 𝖲
′
2, for some 𝖲2, with 𝖲′1  𝖲′2

• if ℎ(𝛼) ≠ ⋄ then 𝖲2
𝛽

⇒ℎ 𝖲
′
2, for some 𝛽 and 𝖲2, with ℎ(𝛼) =ℎ(𝛽) and 𝖲′1  𝖲′2

and dually for 𝖲2
𝛼
←←←←←←→ 𝖲′2. We say that two AbU systems 𝖲1 and 𝖲2 are hiding bisimilar with respect to ℎ, written 𝖲1 ≈ℎ 𝖲2, if 𝖲1  𝖲2

for some hiding bisimulation , w.r.t. ℎ.

3.1. A bisimulation for security

In real situations (e.g., IoT systems), resources may have different security clearance: e.g., a security camera should definitely not
leak any information to a resource that publicly hosts pictures on Internet. In the following, we assume a security policy  ∈𝕏 → SL,
which associates each resource used by an AbU system with a security level 𝓁 ∈ SL, taken from a complete lattice ⟨SL, ⊑, ⊔, ⊓, ⊤, ⊥⟩.
The lattice consists of a set SL of security levels, an ordering relation ⊑, the join ⊔ and meet ⊓ operators, as well as a top security
level ⊤ and a bottom security level ⊥. For the sake of simplicity, in the following examples we will consider the standard two-points
security lattice {𝖫, 𝖧}, where the bottom is 𝖫, representing public data, and the top is 𝖧, representing confidential data. The goal is to
achieve classic noninterference [6] results stating that an AbU system is interference-free w.r.t. a given security level 𝓁 if its resources
with clearance 𝓁 or lower are not affected by changes occurring at its resources with clearance 𝓁′ or greater, for a security level 𝓁′

(strictly) greater than 𝓁. So, information can securely flow from a resource 𝑥 to a resource 𝑦 if2 (𝑥) ⊑ (𝑦).
A security policy  induces an equivalence relation between states. Given two states Σ1 and Σ2, we say that they are 𝓁-equivalent

if they agree on the values associated to all resources with security at most 𝓁.

Definition 2 (𝓁-equivalence). Let  ∈ 𝕏 → SL be a security policy and 𝓁 ∈ SL. We say that the AbU nodes states Σ1 and Σ2 are
𝓁-equivalent, written Σ1 ≡𝓁 Σ2, if for each resource 𝑥 ∈𝕏 such that (𝑥) ⊑ 𝓁, it is Σ1(𝑥) = Σ2(𝑥).

We can easily extend this notion to arbitrary sets of states yielding from an AbU system. Given an AbU system 𝖲 =
𝑅1, 𝜄1⟨Σ1, Θ1⟩ … 𝑅𝑛, 𝜄𝑛⟨Σ𝑛, Θ𝑛⟩, its state set is Σ = {Σ1, … , Σ𝑛}, comprising the states of all nodes in 𝖲 (we implicitly assume a corre-

spondence between the 𝑖th node in 𝖲 and its corresponding state Σ𝑖 in Σ). In this setting, the state set Σ is 𝓁-equivalent to another
7

2 The ordering ⊑ for the two-points lattice is trivially defined as: {(𝖫, 𝖫), (𝖫, 𝖧), (𝖧, 𝖧)}.

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

state set Σ
′
= {Σ′

1, … , Σ′
𝑛
} when for all 𝑖 ∈ [1..𝑛] we have that Σ𝑖 ≡𝓁 Σ′

𝑖
. In other words, two state sets are 𝓁-equivalent when they are

element-wise 𝓁-equivalent. We abuse notation by using the symbol ≡𝓁 for both 𝓁-equivalence of states and state sets.
As discussed at the beginning of the section, the goal is to formalize a bisimulation-based notion of noninterference. Intuitively,

the runtime behavior at the security level 𝓁 or below of an interference-free AbU system does not change when we vary only resources
with security clearance greater than 𝓁. Similarly to what has been done in [2], a notion of hiding bisimilarity can be used to hide (but
not to suppress) labels involving changes affecting resources at security level 𝓁 or below. In particular, only the updates involving
resources with clearance greater than 𝓁 must be hidden, while the updates involving resources with clearance 𝓁 or below must be
fully observable. Finally, updates with mixed resources must be partially observable (we need to make observable assignments to
resources at security level 𝓁 or below only). We use the hiding bisimulation of Definition 1, with a specific function ℎ, to define
noninterference for AbU sets of rule lists and, in turn, for AbU systems.

Given a security level 𝓁, we can define a projection function (⋅)⇂𝓁 ∶ (𝕏 × 𝕍)∗ → (𝕏 × 𝕍)∗ that given an update 𝗎𝗉𝖽 returns its
projection 𝗎𝗉𝖽⇂𝓁 on assignments to resources at security level 𝓁 or below only:

(𝜖)⇂𝓁 = 𝜖 ((𝑥, 𝑣)𝗎𝗉𝖽)⇂𝓁 =

{
(𝑥, 𝑣) (𝗎𝗉𝖽)⇂𝓁 if (𝑥) ⊑ 𝓁

(𝗎𝗉𝖽)⇂𝓁 otherwise.

Now let ℎ𝓁 be a function hiding discovery labels and execution or input labels involving only resources with clearance greater than
𝓁, and projecting execution or input labels involving mixed resources on their assignments to resources at security level 𝓁 or below
only. Formally:

ℎ𝓁(𝛼) ≜
⎧⎪⎨⎪⎩
⋄ if 𝛼 = 𝑇

⋄ if 𝛼 = 𝗎𝗉𝖽 ⊳𝑇 or 𝛼 = 𝗎𝗉𝖽▸𝑇 and (𝗎𝗉𝖽)⇂𝓁 = 𝜖

(𝗎𝗉𝖽)⇂𝓁 if 𝛼 = 𝗎𝗉𝖽 ⊳𝑇 or 𝛼 = 𝗎𝗉𝖽▸𝑇 and (𝗎𝗉𝖽)⇂𝓁 ≠ 𝜖

Indeed, when (𝗎𝗉𝖽)⇂𝓁 = 𝜖 we have that all resources in 𝗎𝗉𝖽 have security level greater than 𝓁, namely 𝗎𝗉𝖽 = (𝑥1, 𝑣1) … (𝑥𝑘, 𝑣𝑘) and
𝓁 ⊏

�
𝑖∈[1..𝑘](𝑥𝑖). Dually, when (𝗎𝗉𝖽)⇂𝓁 ≠ 𝜖 we have that at least one resource in 𝗎𝗉𝖽 has security level less or equal than 𝓁, namely

𝗎𝗉𝖽 = (𝑥1, 𝑣1) … (𝑥𝑘, 𝑣𝑘) and
�
𝑖∈[1..𝑘](𝑥𝑖) ⊑ 𝓁. Note that, when an update 𝗎𝗉𝖽 involves resources with clearance at most 𝓁 only, we

have that (𝗎𝗉𝖽)⇂𝓁 = 𝗎𝗉𝖽, hence the label is fully observable (no abstraction). We call ℎ𝓁 the hiding function for 𝓁-noninterference.
In the following definition, and in the rest of the paper, we make use of some auxiliary notions. Given an AbU system 𝖲 =

𝑅1, 𝜄1⟨Σ1, Θ1⟩ … 𝑅𝑛, 𝜄𝑛⟨Σ𝑛, Θ𝑛⟩, its rule list set is 𝑅= {𝑅1, … , 𝑅𝑛}, comprising the rule lists of all nodes in 𝖲, while its invariants set is
𝜄 = {𝜄1, … , 𝜄𝑛}, comprising the invariants of all nodes in 𝖲 (again, we implicitly assume a correspondence between the 𝑖-th node in 𝖲
and its corresponding rule list 𝑅𝑖 in 𝑅 and its invariant 𝜄𝑖 in 𝜄).

Given a rule list set 𝑅 = {𝑅1, … , 𝑅𝑛} and an invariants set 𝜄 = {𝜄1, … , 𝜄𝑛}, we define 𝖼𝗈𝗆𝗉(𝑅, 𝜄) as the set comprising all possible
state sets compatible with 𝑅 and 𝜄. Compatibility here means that states are defined for all and only the resources present in the
rules and such states are legal for rule invariants. Formally, a state set Σ is compatible with 𝑅 and 𝜄, i.e., Σ ∈ 𝖼𝗈𝗆𝗉(𝑅, 𝜄) when for all
𝑖 ∈ [1..𝑛] we have:

dom(Σ𝑖) = vars(𝑅𝑖) and Σ𝑖 ⊧ 𝜄𝑖

We also need a “system initialization” function 𝗌𝗒𝗌(𝑅, 𝜄, Σ) that takes a rule list set, invariants set and a (compatible) state set and
returns an AbU system with all pools empty. Formally, given 𝑅 = {𝑅1, … , 𝑅𝑛}, 𝜄 = {𝜄1, … , 𝜄𝑛} and Σ = {Σ1, … , Σ𝑛} ∈ 𝖼𝗈𝗆𝗉(𝑅, 𝜄), we
define 𝗌𝗒𝗌(𝑅, 𝜄, Σ) =𝑅1, 𝜄1⟨Σ1, ∅⟩ ∥… ∥𝑅𝑛, 𝜄𝑛⟨Σ𝑛, ∅⟩.
Definition 3 (AbU 𝓁-noninterference). Let  ∈ 𝕏 → SL be a security policy and 𝓁 ∈ SL. We say that the AbU rule list set 𝑅 =
{𝑅1, … , 𝑅𝑛} and invariants set 𝜄 are 𝓁-level interference-free, written 𝓁-𝖭𝖨(𝑅, 𝜄), whenever:

∀Σ,Σ
′
∈ 𝖼𝗈𝗆𝗉(𝑅, 𝜄) .Σ ≡𝓁 Σ

′
⟹ 𝗌𝗒𝗌(𝑅, 𝜄,Σ) ≈ℎ𝓁

𝗌𝗒𝗌(𝑅, 𝜄,Σ
′
)

3.2. An IoT-centric version of noninterference

The mere initialization of 𝖧-level (e.g., confidential) resources might activate a rule, thus leaking information about the occur-

rence/presence of a confidential event. The noninterference of Definition 3 ignores such presence leaks, as it is commonly done in
language-based security. This design choice is usually justified by the fact that it increases the permissiveness of the enforcement
mechanisms, but it is not a realistic assumption in the IoT context.

Example 1. Consider the following AbU rule:

𝑚𝑜𝑡𝑖𝑜𝑛 ⋗ (00∶00< 𝑡𝑖𝑚𝑒 ∧ 𝑡𝑖𝑚𝑒 < 06∶00) ∶ 𝑙𝑖𝑔ℎ𝑡← ‘on’

where 𝑚𝑜𝑡𝑖𝑜𝑛 is confidential while 𝑡𝑖𝑚𝑒 and 𝑙𝑖𝑔ℎ𝑡 public (i.e., (𝑚𝑜𝑡𝑖𝑜𝑛) = 𝖧 and (𝑡𝑖𝑚𝑒) = (𝑙𝑖𝑔ℎ𝑡) = 𝖫). Basically, the rule turns
on the lights when, during the night, some movements in a room are detected. According to Definition 3 (with 𝓁 = 𝖫) there is no
8

harmful information flows. Nevertheless, observing the (public) resource 𝑙𝑖𝑔ℎ𝑡 we can infer that the (confidential) resource 𝑚𝑜𝑡𝑖𝑜𝑛

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

has been changed (i.e., a robber may infer that someone is in the room).
End Example

Note that Definition 3 does not trivially ignore rule triggers, when checking noninterference. Indeed, it is able to capture harmful
flows generated by rules acting on confidential triggers, as we can see in the following example.

Example 2. Consider the following AbU rules:

𝐺𝑃𝑆 ⋗ (𝐺𝑃𝑆 − 𝑐𝑒𝑛𝑡𝑒𝑟 > 5.0) ∶ 𝑎𝑟𝑒𝑎← ‘exit’ (9)

𝑎𝑟𝑒𝑎 ⋗ (𝚝𝚝) ∶ 𝑙𝑜𝑔← 𝑙𝑜𝑔 ⋅ ‘border crossed at:’ ⋅ 𝑡𝑖𝑚𝑒 (10)

where 𝑎𝑟𝑒𝑎, 𝐺𝑃𝑆 and 𝑐𝑒𝑛𝑡𝑒𝑟 are confidential while 𝑙𝑜𝑔 and 𝑡𝑖𝑚𝑒 public (i.e., (𝑎𝑟𝑒𝑎) = (𝐺𝑃𝑆) = (𝑐𝑒𝑛𝑡𝑒𝑟) = 𝖧 and (𝑙𝑜𝑔) =
(𝑡𝑖𝑚𝑒) = 𝖫). Rule (9) checks when the node exits a specific area, while rule (10) logs when the area borders are crossed (exiting or
entering the area). Here, we have an information flow from the (confidential) resource 𝐺𝑃𝑆 to the (public) resource 𝑙𝑜𝑔, which is
not allowed by the security requirement and, indeed, is captured by Definition 3 (with 𝓁 = 𝖫).

End Example

What we want to remark with Example 2 is that Definition 3 is not able to capture presence leaks originated by external changes
(i.e., inputs), but it is still able to capture presence leaks due to internal resources modifications (i.e., updates execution). In order to
capture information flows due to generic resource presence leaks, we need a stronger (i.e., more restrictive) requirement.

Given an AbU rule list set 𝑅 = {𝑅1, … , 𝑅𝑛}, an AbU invariants set 𝜄 = {𝜄1, … , 𝜄𝑛} and a security level 𝓁 ∈ SL, we define the
𝓁-higher events set 𝖾𝗏𝗌𝖾𝗍𝓁(𝑅, 𝜄) of (𝑅, 𝜄) as all the resources with clearance greater than 𝓁 in the events of all rules in 𝑅. Then, the
𝓁-level twin of (𝑅, 𝜄) is the pair (𝑅𝓁 , 𝜄𝓁) of rule list and invariants set where all resources in 𝖾𝗏𝗌𝖾𝗍𝓁(𝑅, 𝜄) are substituted in 𝑅 and
𝜄 with their primed version. In particular, each resource in the rule list and in the invariants set is syntactically substituted with
a renamed version (we assume a denumerable set of resource identifiers, hence we can always assign to the resources to rename
a ‘fresh’ identifier, not already present in the initial set of names). As an example, the 𝖫-level twin of (𝑅, 𝜄), where 𝑅 is given
by rules (9) and (10) of Example 2 and 𝜄 ≜ {𝑎𝑟𝑒𝑎 > 0} is (𝑅𝖫, 𝜄𝖫) = ({𝑎𝑟𝑒𝑎′ ⋗ (𝚝𝚝) ∶ 𝑙𝑜𝑔 ← 𝑙𝑜𝑔 ⋅ ‘border crossed at:’ ⋅ 𝑡𝑖𝑚𝑒 𝐺𝑃𝑆′ ⋗
(𝐺𝑃𝑆′ − 𝑐𝑒𝑛𝑡𝑒𝑟 > 5.0) ∶ 𝑎𝑟𝑒𝑎′ ← ‘exit’}, {𝑎𝑟𝑒𝑎′ > 0}). Note that, the resource 𝑐𝑒𝑛𝑡𝑒𝑟 is not modified since it does not belong to the
set 𝖾𝗏𝗌𝖾𝗍𝖫(𝑅, 𝜄) = {𝑎𝑟𝑒𝑎, 𝐺𝑃𝑆}.

The 𝓁-level twin will be used in the following definition of noninterference. We have taken inspiration from self-composition
verification mechanisms [12], where a 𝑘-hypersafety [13] verification problem for a program is reduced to a safety verification
problem on its 𝑘-product program [12]. Indeed, noninterference is a 2-bounded subset-closed hyperproperty [14], so we can, in
principle, verify it on two copies of the program, where confidential variables are renamed. Consider the case where we rename
the resources with clearance greater than 𝓁 that rules are listening on (i.e., rules triggers at security levels greater than 𝓁), we
take 𝓁-equivalent execution states (as for standard noninterference), and we run the two copies of the AbU system (which differ
syntactically only on rule triggers at security levels greater than 𝓁). If we assume no information flows w.r.t. Definition 3, it is easy
to see that a change in the behavior at security level 𝓁 or below of the two systems can only be due to presence leaks originated from
rule triggers at security levels greater than 𝓁. Consider the rule 𝑚𝑜𝑡𝑖𝑜𝑛 ⋗ (00 ∶00 < 𝑡𝑖𝑚𝑒 ∧ 𝑡𝑖𝑚𝑒 < 06 ∶00) ∶ 𝑙𝑖𝑔ℎ𝑡 ← ‘on’ of Example 1,
that is secure w.r.t. Definition 3, and its 𝖫-level twin 𝑚𝑜𝑡𝑖𝑜𝑛′ ⋗ (00 ∶00 < 𝑡𝑖𝑚𝑒 ∧ 𝑡𝑖𝑚𝑒 < 06 ∶00) ∶ 𝑙𝑖𝑔ℎ𝑡 ← ‘on’. If we execute the two
rules in isolation, when 𝑚𝑜𝑡𝑖𝑜𝑛 changes we have that in the first case 𝑙𝑖𝑔ℎ𝑡 will take the value ‘𝑜𝑛’, while in the second case nothing
happens. Hence, we can note a difference in the behavior of the two AbU system, that is due to a presence leak originated by the
confidential resource 𝑚𝑜𝑡𝑖𝑜𝑛.

Definition 4 (AbU presence-sensitive 𝓁-noninterference). Let  ∈𝕏 → SL be a security policy and 𝓁 ∈ SL. We say that the AbU rule
list set 𝑅 = {𝑅1, … , 𝑅𝑛} and invariants set 𝜄= {𝜄1, … , 𝜄𝑛} are 𝓁-level presence-sensitive interference-free, written 𝓁-𝖯𝖭𝖨(𝑅, 𝜄), whenever:

∀Σ ∈ 𝖼𝗈𝗆𝗉(𝑅, 𝜄) ∀Σ
′
∈ 𝖼𝗈𝗆𝗉(𝑅𝓁 , 𝜄𝓁) .Σ ≡𝓁 Σ

′
⟹ 𝗌𝗒𝗌(𝑅, 𝜄,Σ) ≈ℎ𝓁

𝗌𝗒𝗌(𝑅𝓁 , 𝜄𝓁 ,Σ
′
)

Using the noninterference notion of Definition 4, the AbU rules of Example 1 are now considered not secure. Presence-sensitive
noninterference is a stronger requirement than classic (presence-insensitive) noninterference. Indeed, Definition 4 implies Defini-
tion 3, meaning that all AbU systems that satisfy Definition 4 also satisfy Definition 3, but not vice versa (a counter-example is the
rule in Example 1 that satisfies Definition 3 but not Definition 4). Intuitively, a system satisfies Definition 4 if it does not have neither
information flows nor presence leaks, while a system satisfies Definition 3 if it does not have information flows, but it may have
presence leaks. In this sense, the set of systems satisfying Definition 3 is (strictly) larger than the set of systems satisfying Definition 4,
that is 𝓁-𝖯𝖭𝖨(𝑅, 𝜄) implies 𝓁-𝖭𝖨(𝑅, 𝜄).

3.3. A bisimulation for safety

We provide now a semantic characterization of safe interaction between AbU systems, by which we mean that two systems do
not exhibit unintended behaviors when deployed together. For instance, consider a node that opens the window when the room
temperature exceeds a given threshold, and another node equipped with a rule that turns on the thermostat at home when the user
9

leaves his work location. Both node can be considered safe, in isolation, but when deployed together they may interact with each

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

other, causing an (unexpected) opening of the window when the user is not at home (clearing a way for burglary). Another unsafe
scenario is when two nodes interact by updating some common resource (of remote nodes) in a inconsistent manner, e.g., a valve
that is opened by a node and closed by the other at the same time.

Following [2], we would like to say that an AbU system 𝖲 does not interact with, or is transparent for, another system 𝖱 if the
behavior of 𝖱 when running in parallel with 𝖲 does not differ from its behavior when running in isolation. In particular, we would
like to say that 𝖲 is transparent for 𝖱 if 𝖲 ∥ 𝖱 ≈ℎ 𝖱 for some bisimilarity ≈ℎ that hides the updates originated from 𝖲.

Let 𝑅𝖲 and 𝑅𝖱 be the rule list sets of 𝖲 and 𝖱, respectively. We can use the hiding bisimulation of Definition 1 to formalize a
semantic-based notion of rule list sets transparency (and, in turn, of the corresponding systems). Our intention is to hide only those
updates originated from rules in 𝑅𝖲. Formally:

ℎ𝖲(𝛼) ≜

⎧⎪⎪⎨⎪⎪⎩

⋄ if 𝛼 = 𝑇

⋄ if 𝛼 = 𝗎𝗉𝖽 ⊳𝑇 ∧ 𝗌𝗈𝗎𝗋𝖼𝖾(𝗎𝗉𝖽) =𝑅𝖲

𝛼 if 𝛼 = 𝗎𝗉𝖽▸𝑇

𝛼 if 𝛼 = 𝗎𝗉𝖽 ⊳𝑇 ∧ 𝗌𝗈𝗎𝗋𝖼𝖾(𝗎𝗉𝖽) ≠𝑅𝖲

Here, we assume to have a function 𝗌𝗈𝗎𝗋𝖼𝖾 returning the rule list set that has generated a given update. A mechanism for retrieving
such information can be easily obtained augmenting AbU nodes with unique identifiers and recording in the AbU system labels
𝗎𝗉𝖽 ⊳𝑇 the identifier of the node performing the update. Alternatively, we can augment each AbU node with a “group identifier”,
indicating that the node belongs to 𝖲 or 𝖱, in place of the node identifier (this is quite useful in the IoT, where nodes are often
anonymous). For the sake of readability, we do not modify the syntax and the semantics of the calculus. We call ℎ𝖲 the hiding
function for transparency.

Definition 5 (AbU transparency). Let 𝑅𝖲 and 𝜄𝖲 be the rule list and invariant sets for the system 𝖲, and 𝑅𝖱 and 𝜄𝖱 be the rule list
and invariant sets of the system 𝖱. We say that 𝑅𝖲 and 𝜄𝖲 are transparent for 𝑅𝖱 and 𝜄𝖱, written (𝑅𝖲, 𝜄𝖲) (𝑅𝖱, 𝜄𝖱), if for each
Σ ∈ 𝖼𝗈𝗆𝗉(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱) we have that:

𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱,Σ) ≈ℎ𝖲
𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱,Σ)

When (𝑅𝖲, 𝜄𝖲) (𝑅𝖱, 𝜄𝖱) and (𝑅𝖱, 𝜄𝖱) (𝑅𝖲, 𝜄𝖲), the two rule list and invariant sets are said independent, written (𝑅𝖲, 𝜄𝖲) (𝑅𝖱, 𝜄𝖱).

In other words, if 𝑅𝖲 and 𝜄𝖲 are transparent for 𝑅𝖱 and 𝜄𝖱, then a system with 𝑅𝖲 as rule list set and 𝜄𝖲 as invariant set does not
affect in any way the behavior of a system with 𝑅𝖱 as rule list set and 𝜄𝖱 as invariant set.

Example 3. Consider an AbU node managing a security camera. It is equipped with an AbU rule 𝑐𝑎𝑚𝑒𝑟𝑎 ⋗ (𝚝𝚝) ∶ 𝑐𝑙𝑜𝑢𝑑.𝑝𝑟𝑖𝑣𝑎𝑡𝑒←
𝑐𝑎𝑚𝑒𝑟𝑎 that basically uploads an image to the “private” folder of a given cloud service, when the camera detects some movements.
Then, we can have another node managing the cloud service: when a new picture in the folder “public” is uploaded, the node will post
it on Instagram. This can be modeled with the rule 𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐 ⋗ (𝚝𝚝) ∶ 𝑖𝑛𝑠𝑡𝑎𝑔𝑟𝑎𝑚.𝑝𝑜𝑠𝑡 ← 𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐, which is self-explanatory.
Until now, everything is ok, the two nodes are safe, even if executed together. Indeed, Definition 5 is fulfilled: taking 𝖲 as the system
comprising the camera-node and 𝖱 as the system comprising the cloud-node, we have that 𝖲 and 𝖱 are independent.

Things change if we consider a buggy version of the camera node 𝑐𝑎𝑚𝑒𝑟𝑎 ⋗ (𝚝𝚝) ∶ 𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐← 𝑐𝑎𝑚𝑒𝑟𝑎. In this case, the node
uploads the sensitive image to the “public” folder, instead to the “private” folder. Now, we have an unintended interaction chain:
when the camera collects a sensitive image, the latter is automatically posted on Instagram. This interaction is captured by Defini-
tion 5, indeed the system 𝖲 is now not transparent for the system 𝖱.

End Example

3.4. On the compositionality of requirements

Independence (Definition 5) is crucial when we aim at verifying dynamically a given requirement. In fact, suppose to have an
AbU system 𝖱, that we know to satisfy a given requirement (e.g., termination [3], noninterference, etc.). If we combine (at runtime)
𝖱 with another AbU system 𝖲 satisfying the same requirement, and we know that the added system is independent from 𝖱, then we
automatically have that 𝖲 ∥ 𝖱 is compliant with the requirement. In other words, with independent systems we can reason about the
satisfaction of a given requirement in a compositional way.

Note that, for some kind of properties (e.g., termination [3]) independence is not strictly necessary: transparency is a sufficient
condition for guaranteeing compositionality. Indeed, if we have that the systems 𝖲 and 𝖱 are both loop-free (which is a sufficient
condition for termination), and 𝖲 is transparent for 𝖱, then we can conclude that 𝖲 ∥ 𝖱 is loop-free as well.

4. Checking security and safety of AbU systems

In this section, we provide verification mechanisms for effectively checking the safety and security requirements introduced in
Section 3. They are static, in the sense that they do not require the execution of the AbU systems under test: the check is purely based
10

on the inspection of systems rules and invariants.

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

Algorithm IFRules(𝓁, 𝗋𝗎𝗅𝖾1 … 𝗋𝗎𝗅𝖾𝑛)
1 return

⋃
𝑖∈[1..𝑛] IFSingleRule(𝓁, 𝗋𝗎𝗅𝖾𝑖)

Procedure IFSingleRule(𝓁, 𝑥1… 𝑥𝑛 ⋗ 𝖺𝖼𝗍1, 𝜑 ∶ 𝖺𝖼𝗍2)
2 𝑒𝑣𝑡𝐿𝑒𝑣𝑒𝑙 ∶=

⨆
𝑖∈[1..𝑛] (𝑥𝑖)

3 𝑎𝑠𝑠𝑖𝑔𝑛𝐿𝑒𝑣𝑒𝑙 ∶= Assign(𝖺𝖼𝗍1) ⊓ Assign(𝖺𝖼𝗍2)
4 𝑝𝑟𝑒𝑠𝐿𝑒𝑎𝑘 ∶= 𝑒𝑣𝑡𝐿𝑒𝑣𝑒𝑙 ⋢ 𝓁 ∧ 𝑎𝑠𝑠𝑖𝑔𝑛𝐿𝑒𝑣𝑒𝑙 ⊑ 𝓁
5 𝑐𝑡𝑥 ∶= Const(𝜑)

6 if IFAct(𝓁, 𝖺𝖼𝗍1, 𝜅) ∨ IFAct(𝓁, 𝖺𝖼𝗍2, 𝑐𝑡𝑥)∨𝑝𝑟𝑒𝑠𝐿𝑒𝑎𝑘 then

7 return {𝑥1, … , 𝑥𝑛}
else

8 return ∅
end

Procedure IFAct(𝓁, 𝑥1 ← 𝜀1 … 𝑥𝑛 ← 𝜀𝑛, 𝑐𝑡𝑥)
9 𝑓𝑙𝑜𝑤 ∶= false

10 for 𝑖 = 1 to 𝑛 do

11 𝑖𝑠𝐶𝑜𝑛𝑠𝑡 ∶= Const(𝜀𝑖) ≠ 𝜅̸ ∧ 𝑐𝑡𝑥 ≠ 𝜅̸
12 if (𝑥𝑖) ⊑ 𝓁 ∧ 𝑖𝑠𝐶𝑜𝑛𝑠𝑡 = false then

13 𝑓𝑙𝑜𝑤 ∶= true

end

end

14 return 𝑓𝑙𝑜𝑤

Procedure Assign(𝑥1 ← 𝜀1 … 𝑥𝑛 ← 𝜀𝑛)

15 return
�

𝑖∈[1..𝑛] (𝑥𝑖)

Algorithm 1. Information flows detection algorithm for 𝓁-noninterference.

4.1. Verifying security

In order to provide a syntactic sufficient condition for noninterference we define a verification method detecting potential harmful
information flows, parametric in the security policy  . The detection process for a list of AbU rules is depicted in Algorithm 1. Given
a security level 𝓁 ∈ SL, the algorithm computes the set of event resources that trigger rules yielding information flows. Hence, if
the algorithm returns a non-empty set then the system contains harmful information flows from resources with clearance greater
than 𝓁 to resources with clearance 𝓁 or below in, at least, one rule (line 1). In this case the whole list of rules does not satisfy
𝓁-noninterference. The procedure at lines 2..7 of Algorithm 1 looks for information flows inside single rules, and it works as follows.

First, it checks potential presence leaks. Line 2 computes the security level of the rule event: if at least one resource in the
event is greater than 𝓁 then 𝑒𝑣𝑡𝐿𝑒𝑣𝑒𝑙 is greater than 𝓁, otherwise is 𝓁 or below. Line 3 checks if the default and the task actions
contain assignments to resources with clearance 𝓁 or below, by means of the procedure at line 14. The latter computes the minimal
clearance of the resources in the left-hand side of the assignments. Then, in line 4, we check if there is a potential presence leak:
𝑒𝑣𝑡𝐿𝑒𝑣𝑒𝑙 ⋢ 𝓁 ∧ 𝑎𝑠𝑠𝑖𝑔𝑛𝐿𝑒𝑣𝑒𝑙 ⊑ 𝓁 means that the event contains a resource with clearance greater than 𝓁 (or not comparable with 𝓁)
and we have assignments to resources with clearance 𝓁 or below in the actions.

Second, it checks potential harmful information flows in the default and the task actions. Line 5 computes a constancy analysis on
the task condition,3 in order to capture implicit information flows. The function 𝙲𝚘𝚗𝚜𝚝 returns 𝜅 when all resources with clearance 𝓁
or below are constants; and ̸𝜅 otherwise. Here, constancy means that no variety is conveyed from resources with clearance greater
than 𝓁 (the only ones that may change in Definition 4) to resources with clearance 𝓁 or below (assumed to be initially constant in
Definition 4). Technically, our constancy analysis detects the presence of resources with clearance greater than 𝓁 inside boolean 𝜑
and value 𝜀 expressions. Line 6 computes the information flows in the default and in the task actions. Implicit flows can only happen
in the task action, so for the default action we compute explicit information flows only, calling the 𝙸𝙵𝙰𝚌𝚝 function with 𝜅 as context.
Instead, for the task action, 𝙸𝙵𝙰𝚌𝚝 is called with the context computed by the constancy analysis on the task condition, in order to
track implicit flows. The procedure returns a non-empty set when presence leaks are detected or when information flows are present
in the rules actions.

Finally, the procedure at lines 9..14 computes the potential information flows of an action,4 parametric on a given context. It is a
loop inspecting all assignments of the action. The condition at line 11 performs the check. Only two cases lead to harmful information
flows: a resource with clearance 𝓁 or below is assigned with a not constant expression (explicit flow); a resource with clearance 𝓁
or below is assigned inside a not constant context (implicit flow). Recall that, not constancy means that variety is conveyed from
resources with clearance greater than 𝓁 to resources with clearance 𝓁 or below.

Algorithm 1 detects potentially harmful information flows when considering a single list of AbU rules, namely a single node.
Nevertheless, it is easy to note that the algorithm does not take into account inter-nodes communication, hence the verification on a
rule list set, i.e., a set of nodes, boils down to the verification on a single rules list comprising all rules in the set. Intuitively, if we
have a forbidden information flow between two nodes, such information flow must be present internally in one of the nodes as well.

Proposition 1. Consider a rule list set {𝑅1, … , 𝑅𝑛}. Let 𝑅 be the list comprising all rules of all elements in {𝑅1, … , 𝑅𝑛}. Then we have:⋃
𝑖∈[1..𝑛] 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅𝑖) = ∅⟺𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅) = ∅

Theorem 2 (Soundness for security). Let  ∈𝕏 → SL be a security policy and 𝓁 ∈ SL. Consider an AbU rule list set 𝑅 = {𝑅1, … , 𝑅𝑛} and
invariants set 𝜄 = {𝜄1, … , 𝜄𝑛}. Let 𝑅 be the list comprising all rules of all elements in 𝑅. If 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅) =∅ then 𝓁-𝖯𝖭𝖨(𝑅, 𝜄) holds.

Proof. The proof is quite complex and it requires some preliminary results; see Appendix A.1. □

3 The modifier @ does not influence the analysis, hence we omit it in the algorithm.
11

4 Remote updates 𝑥← 𝜀 do not influence the analysis, we omit them in the algorithm.

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

Recall that presence-sensitive noninterference implies the classic presence-insensitive version of noninterference. Hence, we can
extend the soundness result as follows.

Corollary 3 (Soundness for security). Let  ∈ 𝕏 → SL be a security policy and 𝓁 ∈ SL. Consider an AbU rule list set 𝑅 = {𝑅1, … , 𝑅𝑛}
and invariants set 𝜄 = {𝜄1, … , 𝜄𝑛}. Let 𝑅 be the list comprising all rules of all elements in 𝑅. If 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅) =∅ then 𝓁-𝖭𝖨(𝑅, 𝜄) holds.

Example 4. Take the AbU rule of Example 1. We have that Algorithm 1 will correctly mark it as not secure, capturing a presence leak.
Intuitively, the 𝖫-level resource 𝑙𝑖𝑔ℎ𝑡 is assigned when an 𝖧-level event is present, due to the 𝖧-level resource 𝑚𝑜𝑡𝑖𝑜𝑛. Algorithm 1
computes at line 2 the security level of the rule event 𝑒𝑣𝑡𝐿𝑒𝑣𝑒𝑙 = 𝖧, since (𝑚𝑜𝑡𝑖𝑜𝑛) = 𝖧. The rule action assigns the public variable
𝑙𝑖𝑔ℎ𝑡, hence 𝑎𝑠𝑠𝑖𝑔𝑛𝐿𝑒𝑣𝑒𝑙 = 𝖫 at line 3. Then, Algorithm 1 checks at line 4 whether the rule contains presence leaks or not. In this
case, 𝑝𝑟𝑒𝑠𝐿𝑒𝑎𝑘 = 𝐭𝐫𝐮𝐞, since 𝖧 = 𝑒𝑣𝑡𝐿𝑒𝑣𝑒𝑙 ⋢ 𝓁 = 𝖫 and 𝖫 = 𝑎𝑠𝑠𝑖𝑔𝑛𝐿𝑒𝑣𝑒𝑙 ⊑ 𝓁 = 𝖫 are both satisfied (indicating a presence leak). Line
5 computes the constancy analysis on the rule condition. In this case, 𝑐𝑡𝑥 = 𝜅 since no confidential resources are present in the
rule condition. The procedure IFAct on the rule action returns 𝐟𝐚𝐥𝐬𝐞, since the action context is constant (computed at line 5) and
the action expression is constant (hence, at line 11, 𝑖𝑠𝐶𝑜𝑛𝑠𝑡 = 𝐭𝐫𝐮𝐞). This means that no information flows are present in the rule
action. Nevertheless, since 𝑝𝑟𝑒𝑠𝐿𝑒𝑎𝑘 = 𝐭𝐫𝐮𝐞 we have a presence leak and, consequently, the condition at line 6 is satisfied. Hence,
Algorithm 1 returns the set {𝑚𝑜𝑡𝑖𝑜𝑛}, indicating a violation of Definition 4. An analogous reasoning can be done for the AbU rules of
Example 2.

Now consider the AbU rule 𝑎𝑐𝑐𝑒𝑠𝑠 ⋗ (𝑢𝑠𝑒𝑟.𝑟𝑜𝑙𝑒 = ‘guest’) ∶ 𝑙𝑜𝑔 ← 𝑢𝑠𝑒𝑟.𝑛𝑎𝑚𝑒 ⋅ 𝑡𝑖𝑚𝑒 that logs the access time of users that have
role ‘guest’ only. Suppose that the user role is confidential, while all other resources are public (i.e., (𝑎𝑐𝑐𝑒𝑠𝑠) = (𝑢𝑠𝑒𝑟.𝑛𝑎𝑚𝑒) =
(𝑡𝑖𝑚𝑒) = (𝑙𝑜𝑔) = 𝖫 while (𝑢𝑠𝑒𝑟.𝑟𝑜𝑙𝑒) = 𝖧). We have an implicit information flow here (𝖧 to 𝖫), from 𝑢𝑠𝑒𝑟.𝑟𝑜𝑙𝑒 to 𝑙𝑜𝑔. Indeed,
Algorithm 1 will correctly mark it as not secure: we assign a 𝖫-level resource (𝑙𝑜𝑔) inside an action with a not constant context,
given by 𝙲𝚘𝚗𝚜𝚝(𝑢𝑠𝑒𝑟.𝑟𝑜𝑙𝑒 = ‘guest’) = 𝜅̸ . Indeed, Algorithm 1 computes 𝑒𝑣𝑡𝐿𝑒𝑣𝑒𝑙 = 𝑎𝑠𝑠𝑖𝑔𝑛𝐿𝑒𝑣𝑒𝑙 = 𝑝𝑟𝑒𝑠𝐿𝑒𝑎𝑘 = 𝖫 and 𝑐𝑡𝑥 = 𝜅̸ , since
the rule condition contains the confidential resource 𝑢𝑠𝑒𝑟.𝑟𝑜𝑙𝑒. In this case, the procedure IFAct on the rule action returns 𝐭𝐫𝐮𝐞,
since the action expression is constant but the action context is not constant (hence, at line 11, 𝑖𝑠𝐶𝑜𝑛𝑠𝑡 = 𝐟𝐚𝐥𝐬𝐞). Due to the fact that
the rule assigns a public resource in a not constant context, at line 13 we have 𝑓𝑙𝑜𝑤 = 𝐭𝐫𝐮𝐞. Hence, Algorithm 1 returns the set
{𝑎𝑐𝑐𝑒𝑠𝑠}, indicating a violation of Definition 4.

End Example

4.2. Verifying safety

In order to provide a syntactic sufficient condition for transparency we have to individuate the resources that a system may poten-
tially update (sinks) and the resources that may influence a rule behavior (sources). The first are the left-hand sides of assignments in
rules actions, while the latter are the rules events. In addition to the events, also resources involved in tasks condition and resources
used in the actions should be considered sources. Indeed, take the AbU rules 𝑥 ⋗ (𝑥 < 3) ∶ 𝑧 ← 4 and 𝑥 ⋗ (𝚝𝚝) ∶ 𝑧 ←𝑤. The resources
𝑦 and 𝑤 should be considered sources, since their modification by an external node influences the behavior of the rules (even if they
are not triggers). More formally, let us define

𝖫𝖧𝖲(𝑥1 ← 𝜀1…𝑥𝑛 ← 𝜀𝑛) ≜ {𝑥1,… , 𝑥𝑛} 𝖱𝖧𝖲(𝑥1 ← 𝜀1…𝑥𝑛 ← 𝜀𝑛) ≜
⋃

𝑖∈[1..𝑛] 𝖵𝖺𝗋𝗌(𝜀𝑖)

(which are defined analogously also when the action contains remote assignments 𝑥← 𝜀). The sinks and sources of a rule are:

𝗌𝗇𝗄(𝑥1…𝑥𝑛 ⋗ 𝖺𝖼𝗍1, 𝖼𝗇𝖽 ∶ 𝖺𝖼𝗍2) ≜ 𝖫𝖧𝖲(𝖺𝖼𝗍1) ∪ 𝖫𝖧𝖲(𝖺𝖼𝗍2) sinks

𝗌𝗋𝖼(𝑥1…𝑥𝑛 ⋗ 𝖺𝖼𝗍1, 𝖼𝗇𝖽 ∶ 𝖺𝖼𝗍2) ≜ {𝑥1,… , 𝑥𝑛} ∪ 𝖱𝖧𝖲(𝖺𝖼𝗍1) ∪ 𝖱𝖧𝖲(𝖺𝖼𝗍2) ∪𝖵𝖺𝗋𝗌(𝖼𝗇𝖽) sources

Given an AbU system with rule list set 𝑅 = {𝑅1, … , 𝑅𝑛}, its sinks consist in all sinks of all rules in 𝑅 while its sources consist in all
sources of all rules in 𝑅. Formally:

𝗌𝗇𝗄(𝑅) ≜
⋃

1≤𝑖≤𝑛 𝗌𝗇𝗄(𝑅𝑖), with 𝗌𝗇𝗄(𝗋𝗎𝗅𝖾1… 𝗋𝗎𝗅𝖾𝑘) ≜
⋃

1≤𝑖≤𝑘 𝗌𝗇𝗄(𝗋𝗎𝗅𝖾𝑖)

𝗌𝗋𝖼(𝑅) ≜
⋃

1≤𝑖≤𝑛 𝗌𝗋𝖼(𝑅𝑖), with 𝗌𝗋𝖼(𝗋𝗎𝗅𝖾1… 𝗋𝗎𝗅𝖾𝑘) ≜
⋃

1≤𝑖≤𝑘 𝗌𝗋𝖼(𝗋𝗎𝗅𝖾𝑖)

It is easy to note that when no sinks of 𝖲 are sources of 𝖱, i.e., when 𝗌𝗇𝗄(𝑅𝖱) ∩ 𝗌𝗋𝖼(𝑅𝖲) = ∅, then 𝖲 is transparent for 𝖱. This
provides us with a sufficient syntactic condition for transparency, yielding the verification procedure described in Algorithm 2. In
the nested loops at lines 3..6 we compute the sinks of the first system (𝖲), by collecting all resources in the left-hand sides of all rules
in the AbU system. Similarly, in the nested loops at lines 7..12 we compute the sources of the second system (𝖱), by collecting all
resources in events, right-hand sides and conditions of all rules in the AbU system. Finally, the value the algorithm returns depends
on whether the sinks and the sources share some resources (line 13). If this is the case, the algorithm returns 𝐟𝐚𝐥𝐬𝐞, meaning that the
first system (𝖲) is not transparent for the second one (𝖱). Conversely, the algorithm returns 𝐭𝐫𝐮𝐞, meaning that the first system is
transparent for the second one.

Thus, Algorithm 2 implements an easy-to-verify syntactic condition to check our semantic-based notion of safe interaction,
12

formalized in Definition 5.

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

Algorithm TransparencyCheck({𝑅1, … , 𝑅𝑛}, {𝑅′
1 , … , 𝑅′

𝑚
})

1 𝑠𝑖𝑛𝑘𝑠 =∅
2 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 =∅
3 for 𝑖 = 1 to 𝑛 do

4 for 𝑗 = 1 to |𝑅𝑖| do

5 𝑟𝑢𝑙𝑒 ∶= the 𝑗th rule of 𝑅𝑖

6 𝑠𝑖𝑛𝑘𝑠 ∶= 𝑠𝑖𝑛𝑘𝑠 ∪ LeftHandSideVars(𝑟𝑢𝑙𝑒)
end

end

7 for 𝑖 = 1 to 𝑚 do

8 for 𝑗 = 1 to |𝑅′
𝑖
| do

9 𝑟𝑢𝑙𝑒 ∶= the 𝑗th rule of 𝑅′
𝑖

10 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ∶= 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ∪ EventVars(𝑟𝑢𝑙𝑒)
11 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ∶= 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ∪ RightHandSideVars(𝑟𝑢𝑙𝑒)
12 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ∶= 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ∪ ConditionVars(𝑟𝑢𝑙𝑒)

end

end

13 return (𝑠𝑖𝑛𝑘𝑠 ∩ 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 =∅)
Algorithm 2. Transparency check algorithm for AbU systems.

Theorem 4 (Soundness for safety). Let 𝑅𝖲 and 𝜄𝖲 be the rule list and invariant sets for the AbU system 𝖲, and 𝑅𝖱 and 𝜄𝖱 be the rule list and
invariant sets of the AbU system 𝖱. If 𝚃𝚛𝚊𝚗𝚜𝚙𝚊𝚛𝚎𝚗𝚌𝚢𝙲𝚑𝚎𝚌𝚔(𝑅𝖲, 𝑅𝖱) = 𝐭𝐫𝐮𝐞, then (𝑅𝖲, 𝜄𝖲) (𝑅𝖱, 𝜄𝖱).

Proof. The proof is quite complex and it requires some preliminary results. In order to simplify the reading, we moved the full proof
to Appendix A.1. □

Example 5. Continuing Example 3, we have independence between (the first version of) the systems, since 𝗌𝗇𝗄({𝑐𝑎𝑚𝑒𝑟𝑎 ⋗ (𝚝𝚝) ∶
𝑐𝑙𝑜𝑢𝑑.𝑝𝑟𝑖𝑣𝑎𝑡𝑒 ← 𝑐𝑎𝑚𝑒𝑟𝑎}) ∩ 𝗌𝗋𝖼({𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐 ⋗ (𝚝𝚝) ∶ 𝑖𝑛𝑠𝑡𝑎𝑔𝑟𝑎𝑚.𝑝𝑜𝑠𝑡 ← 𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐}) = ∅ (and vice versa). Instead, in the case
of the buggy version of the rules, we have that 𝚃𝚛𝚊𝚗𝚜𝚙𝚊𝚛𝚎𝚗𝚌𝚢𝙲𝚑𝚎𝚌𝚔({𝑐𝑎𝑚𝑒𝑟𝑎 ⋗ (𝚝𝚝) ∶ 𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐 ← 𝑐𝑎𝑚𝑒𝑟𝑎}, {𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐 ⋗
(𝚝𝚝) ∶ 𝑖𝑛𝑠𝑡𝑎𝑔𝑟𝑎𝑚.𝑝𝑜𝑠𝑡 ← 𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐}) = 𝐟𝐚𝐥𝐬𝐞. Indeed, the set 𝗌𝗇𝗄({𝑐𝑎𝑚𝑒𝑟𝑎 ⋗ (𝚝𝚝) ∶ 𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐 ← 𝑐𝑎𝑚𝑒𝑟𝑎}) and the set
𝗌𝗋𝖼({𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐 ⋗ (𝚝𝚝) ∶ 𝑖𝑛𝑠𝑡𝑎𝑔𝑟𝑎𝑚.𝑝𝑜𝑠𝑡 ← 𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐}) have {𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐} as intersection, capturing the unintended nodes
interaction.

End Example

4.3. On the completeness of the verification mechanisms

The proposed verification mechanisms are sound, i.e., they do not expose false negatives, but they are not complete, i.e., they may
expose false positives. Indeed, consider the two AbU rules:

𝑙1 ⋗ (ℎ1) ∶ 𝑙2 ← 3 (11)

𝑙1 ⋗ (¬ℎ1) ∶ 𝑙2 ← 3 (12)

with (𝑙1) = (𝑙2) = 𝖫 and (ℎ1) = 𝖧. Algorithm 1 will flag as not secure an AbU system equipped with these rules, even if there is
no interference (for both presence-sensitive and presence-insensitive versions). Indeed, independently from the value of ℎ1, we have
that 𝑙2 always takes the value 3. Another incompleteness witness consists in the following single AbU rule:

ℎ1 ⋗ (𝚝𝚝) ∶ 𝑙2 ← 𝑙2 (13)

which is rejected by our verification mechanism, even if it is actually secure. Indeed, the action 𝑙2 ← 𝑙2 does not change the value of
any 𝖫-level resource (the update is idempotent).

Similarly, also Algorithm 2 rules out safe systems. For instance, consider a system with the rule list set {𝑥 ⋗ (𝚏𝚏) ∶ 𝑦 ← 3},
which is transparent for a system with rule list set {𝑦 ⋗ (𝚝𝚝) ∶ 𝑧 ← 2}, i.e., {𝑥 ⋗ (𝚏𝚏) ∶ 𝑦 ← 3} {𝑦 ⋗ (𝚝𝚝) ∶ 𝑧 ← 2}. We have that
𝗌𝗇𝗄({𝑥 ⋗ (𝚏𝚏) ∶ 𝑦 ← 3}) ∩ 𝗌𝗋𝖼({𝑦 ⋗ (𝚝𝚝) ∶ 𝑧 ← 2}) = {𝑦}, hence 𝚃𝚛𝚊𝚗𝚜𝚙𝚊𝚛𝚎𝚗𝚌𝚢𝙲𝚑𝚎𝚌𝚔({𝑥 ⋗ (𝚏𝚏) ∶ 𝑦 ← 3}, {𝑦 ⋗ (𝚝𝚝) ∶ 𝑧 ← 2}) = 𝐟𝐚𝐥𝐬𝐞.

Since to check the requirements defined in Section 3 is undecidable, every sound verification mechanism necessarily suffers from
completeness issues, but we can in some cases improve precision to mitigate the problem. For instance, refining the procedure 𝙸𝙵𝙰𝚌𝚝
of Algorithm 1 by checking whether the left-hand side of an update is syntactically equal to right-hand side, we can spot the false
positive resulting from rule (13). Indeed, in some cases we can remove false positives by applying simple heuristics that individuate
syntactic patterns, as the one in rule (13). Instead, more complex cases, as the one represented by rules (11) and (12), require a more
sophisticated analysis. For instance, in the case of rules (11) and (12) we need an inter-procedural version of the constancy analysis
13

to rule out such false positive.

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

(EXEC)

𝗎𝗉𝖽 ∈Θ 𝗎𝗉𝖽 = (𝑥1, 𝑣1)…(𝑥𝑘, 𝑣𝑘) Σ′ = Σ[𝑣1∕𝑥1 …𝑣𝑘∕𝑥𝑘] Σ′ ⊧ 𝜄

Θ′′ = Θ ⧵ {𝗎𝗉𝖽} 𝑋 = 𝖼𝗅𝗈(,{𝑥𝑖 | 𝑖 ∈ [1..𝑘] ∧ Σ(𝑥𝑖) ≠ Σ′(𝑥𝑖)})
Θ′ = Θ′′ ∪𝖣𝖾𝖿𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ′) ∪ 𝖫𝗈𝖼𝖺𝗅𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ′) 𝑇 = 𝖤𝗑𝗍𝖳𝖺𝗌𝗄𝗌(𝑅,𝑋,Σ′)

𝑅, 𝜄⟨Σ,Θ⟩ 𝗎𝗉𝖽⊳𝑇
←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑅, 𝜄⟨Σ′ ,Θ′⟩

(INPUT)

𝑣1,… , 𝑣𝑘 ∈ 𝕍 Σ′ = Σ[𝑣1∕𝑥1 …𝑣𝑘∕𝑥𝑘] 𝑋 = 𝖼𝗅𝗈(,{𝑥1,… , 𝑥𝑘})
Θ′ = Θ ∪𝖣𝖾𝖿𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ′) ∪ 𝖫𝗈𝖼𝖺𝗅𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ′) 𝑇 = 𝖤𝗑𝗍𝖳𝖺𝗌𝗄𝗌(𝑅,𝑋,Σ′)

𝑅, 𝜄⟨Σ,Θ⟩ (𝑥1 ,𝑣1)…(𝑥𝑘,𝑣𝑘)▸𝑇
←←→ 𝑅, 𝜄⟨Σ′ ,Θ′⟩

Fig. 2. Modified AbU semantics rules to account for implicit interactions (remaining rules are as in Fig. 1).

5. Dealing with implicit interactions and declassification

In this section, we consider weakened forms of the requirements presented in Section 3, in order to better model application
scenarios typical of the IoT.

5.1. Implicit interactions

We now study the challenge posed by implicit interactions that arises whenever two (physical) resources are semantically related,
though this relation cannot be derived from the syntactic description of the system.

Example 6. Consider the rules 𝑏𝑢𝑡𝑡𝑜𝑛 ⋗@(𝑏𝑢𝑡𝑡𝑜𝑛 = ‘pressed’) ∶ 𝑟𝑜𝑏𝑜𝑡𝐶𝑙𝑒𝑎𝑛𝑒𝑟← ‘on’ and 𝑚𝑜𝑡𝑖𝑜𝑛 ⋗@(𝑚𝑜𝑡𝑖𝑜𝑛 = 𝚝𝚝 ∧ 𝑡𝑖𝑚𝑒 < 12 ∶00) ∶
𝑎𝑙𝑎𝑟𝑚← ‘on’, deployed on different nodes. The first activates a robot cleaner in the house when a button on the phone is pressed.
The second rings an alarm when some movement in the house is detected, during the morning. Though there are no (syntactic)
interactions between the two rules, we clearly know that when the robot cleaner starts moving, then the motion sensor is activated
and consequently the alarm will ring. We cannot catch this interaction with the LTS of Fig. 1, namely we would mark the nodes as
independent.

End Example

We model these kind of semantic dependencies by means of a binary relation  ⊆𝕏 ×𝕏 on resources such that (𝑥, 𝑦) ∈ when
the resource 𝑦 may be affected by changes occurring at the resource 𝑥 (which is analogous to the dependency policy of [2]). Note
that, this information is not syntactically modeled in the calculus; instead, it is an exogenous, “out of band” information, that the
system developer should provide to rule out “semantic false negatives”. Semantic dependencies can be composed, hence we will
consider the reflexive and transitive closure of , in order to capture all possible dependencies associated to a resource. We write
𝖼𝗅𝗈(, 𝑥) to denote the reflexive and transitive closure of the semantic dependencies relation  with respect to the resource 𝑥
only. More generally, given a set of resources 𝑋 ⊆ 𝕏 we define 𝖼𝗅𝗈(, 𝑋) ≜

⋃
𝑥∈𝑋 𝖼𝗅𝗈(, 𝑥). In Example 6 we would have that

 ≜ {(𝑟𝑜𝑏𝑜𝑡𝐶𝑙𝑒𝑎𝑛𝑒𝑟, 𝑚𝑜𝑡𝑖𝑜𝑛)}, allowing us to capture the semantic dependence between the robot cleaner and the motion sensor.
As mentioned above, if (𝑥, 𝑦) ∈ it means that each time the resource 𝑥 changes then the resource 𝑦 can be somehow affected.

We can include this abstract information in the discovery phase in the AbU semantics to all the resources affected by 𝑥. In other
words, when we perform an execution or an input step in the semantics, we discover the actually modified resources and all the
related resources, given by . Therefore, we can easily define a labeled transitions semantics ←←→, parametric on , for which we
just have to modify the rules (EXEC) and (INPUT) of the original AbU semantics as depicted in Fig. 2.

Considering again Example 6, when the (EXEC) rule performs the update (𝑟𝑜𝑏𝑜𝑡𝐶𝑙𝑒𝑎𝑛𝑒𝑟, ‘on’) then 𝖼𝗅𝗈(, {𝑟𝑜𝑏𝑜𝑡𝐶𝑙𝑒𝑎𝑛𝑒𝑟}) =
{𝑟𝑜𝑏𝑜𝑡𝐶𝑙𝑒𝑎𝑛𝑒𝑟, 𝑚𝑜𝑡𝑖𝑜𝑛} and, hence, the rule concerning the motion sensor is selected by the discovery. Indeed, the nodes equipped
with the rules in Example 6 now fail transparency, since in the bisimulation game the system without the cleaner cannot perform the
update firing the alarm.

5.2. Information declassification

Noninterference is usually considered a too restrictive policy, to be effectively used in real-world applications. Indeed, sometimes
a controlled release of sensitive information should deliberately allowed. The classic example is a password checking program
which compares the password provided in input with the actual password, to authenticate a user. This program contains a sensitive
information flow from the actual password to the output on a public channel, in order to inform a (potentially untrusted) user
whether or not the authentication has succeeded. Nevertheless, such program is usually accepted as secure, since leaking the entire
password in this manner is computationally hard. In this setting, this information can be declassified, i.e., it can be safely disclosed
even if doing so we will technically go against the security policy.

We then extend the AbU calculus with a declassification primitive to support controlled release of sensitive information, in the
spirit of delimited release [15]. Formally, we introduce a syntactic construct (⋅)𝓁 , with 𝓁 ∈ SL, into expressions syntax. Intuitively,
(𝜀)𝓁 means that the expression 𝜀, potentially containing data at security level greater than 𝓁, can be declassified to the (lower)
security level 𝓁. Such construct is used for verification purposes only, hence it does not affect the AbU semantics (Fig. 1). Indeed,
the evaluation (⋅)𝓁 is equal to the evaluation of 𝜀, namely, �(𝜀)𝓁�Σ = �𝜀�Σ. Furthermore, we forbid nested declassifications, namely
14

we assume that in (𝜀)𝓁 the expression 𝜀 cannot contain other instances of the declassification construct.

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

In order to define noninterference up to declassification, we need a notion of state equivalence which accounts for the declassified
expressions. Intuitively, we need to consider not only states with equivalent 𝓁 services but also states with equivalent declassified
expressions. Given an AbU node, with rule list 𝑅, its declassification points are fixed and finite in number. For this reason, we define
a declassification strategy 𝛿 as a list (𝜀1)𝓁1 … (𝜀𝑛)𝓁𝑛 of declassification construct instances. Note that, in the two-points security lattice
{𝖫, 𝖧}, only 𝖧 to 𝖫 declassification is meaningful.

Definition 6 (𝓁-equivalence up to declassification). Let  ∈𝕏 → SL be a security policy, 𝓁 ∈ SL a security level and 𝛿 ≜ (𝜀1)𝓁1 … (𝜀𝑛)𝓁𝑛
a declassification strategy. We say that the AbU nodes states Σ1 and Σ2 are 𝓁-equivalent up to declassification 𝛿, written Σ1 ≡

𝛿
𝓁 Σ2, if

both the following hold:

• for each resource 𝑥 ∈𝕏 we have that (𝑥) ⊑ 𝓁 entails Σ1(𝑥) = Σ2(𝑥) (𝓁-equivalence); and
• for each 𝑖 ∈ [1..𝑛] we have that 𝓁𝑖 ⊑ 𝓁 entails �𝜀𝑖�Σ = �𝜀𝑖�Σ′.

Analogously to the case without declassification, we can extend this notion to arbitrary sets of states yielding from an AbU system:
the state set Σ = {Σ1, … , Σ𝑛} is 𝓁-equivalent up to declassification 𝛿 to another state set Σ

′
= {Σ′

1, … , Σ′
𝑚
} when for all 𝑖 ∈ [1..𝑛] we

have that Σ𝑖 ≡𝛿
𝓁 Σ′

𝑖
. Again, we abuse notation by using the symbol ≡𝛿

𝓁 for both 𝓁-equivalence up to declassification 𝛿 of states and
state sets.

Nothing changes in the definition of hiding bisimulation, hence, we are ready to define (presence-sensitive) noninterference up
to declassification, by reformulating Definition 4 using the declassified version of state equivalence. We can define the presence-
insensitive version of noninterference up to declassification, by modifying in a similar way Definition 3.

Definition 7 (AbU presence-sensitive 𝓁-noninterference up to declassification). Let  ∈𝕏 → SL be a security policy, 𝓁 ∈ SL a security
level and 𝛿 ≜ (𝜀1)𝓁1 … (𝜀𝑛)𝓁𝑛 a declassification strategy. We say that the AbU rule list set 𝑅 = {𝑅1, … , 𝑅𝑛} and the invariants set 𝜄
are 𝓁-level presence-sensitive interference-free up to declassification 𝛿, written 𝓁-𝖯𝖭𝖨(𝑅, 𝜄)𝛿 , whenever:

∀Σ ∈ 𝖼𝗈𝗆𝗉(𝑅, 𝜄) ∀Σ
′
∈ 𝖼𝗈𝗆𝗉(𝑅𝓁 , 𝜄𝓁) .Σ ≡𝛿

𝓁 Σ
′
⟹ 𝗌𝗒𝗌(𝑅, 𝜄,Σ) ≈ℎ𝓁

𝗌𝗒𝗌(𝑅𝓁 , 𝜄𝓁 ,Σ
′
)

It is easy to note that Definition 4 implies Definition 7 and for AbU systems without the declassification constructs the two
definitions coincide.

Verifying security up to declassification In order to verify noninterference up to declassification, we just need to slightly modify
Algorithm 1. In particular, we have to modify the constancy analysis of expressions, adding the cases where the declassification
construct appears. The analysis is parametric on the security level 𝓁 on which we check noninterference. If an expression is not
declassified, the constancy analysis is defined as in Section 4, otherwise it is defined inductively on the structure of 𝜑 as:

𝙲𝚘𝚗𝚜𝚝𝓁((𝚏𝚏)𝓁′) = 𝙲𝚘𝚗𝚜𝚝𝓁((𝚝𝚝)𝓁′) ≜ 𝜅

𝙲𝚘𝚗𝚜𝚝𝓁((¬𝜑)𝓁′) ≜ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜑)𝓁′)

𝙲𝚘𝚗𝚜𝚝𝓁((𝜑1 ∧𝜑2)𝓁′) ≜ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜑1)𝓁′) ⋓ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜑2)𝓁′)

𝙲𝚘𝚗𝚜𝚝𝓁((𝜑1 ∨𝜑2)𝓁′) ≜ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜑1)𝓁′) ⋓ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜑2)𝓁′)

𝙲𝚘𝚗𝚜𝚝𝓁((𝜀1 ⋈ 𝜀2)𝓁′) ≜ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜀1)𝓁′) ⋓ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜀2)𝓁′)

Here, ⋓ is the join operator of the complete lattice {𝜅, ̸𝜅 }, with partial order ⋐ ≜ {(𝜅, 𝜅), (𝜅, ̸𝜅), (̸𝜅 , ̸𝜅)}. The constancy analysis for
declassified value expressions is defined inductively on the structure of 𝜀:

𝙲𝚘𝚗𝚜𝚝𝓁((𝑣)𝓁′) ≜ 𝜅

𝙲𝚘𝚗𝚜𝚝𝓁((𝑥)𝓁′) = 𝙲𝚘𝚗𝚜𝚝𝓁((𝑥)𝓁′) ≜

{
𝜅 if (𝓁′ ⊏ (𝑥) ∧ 𝓁′ ⊑ 𝓁) ∨ ((𝑥) ⊑ 𝓁 ∧ 𝓁′ ⊑ 𝓁)
𝜅̸ otherwise

𝙲𝚘𝚗𝚜𝚝𝓁((𝜀1 ⊗ 𝜀2)𝓁′) ≜ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜀1)𝓁′) ⋓ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜀2)𝓁′)

Note that, since we cannot declassify rule events, the declassification does not affect in any way the detection of presence leaks.

5.3. Advantages of the AbU model

Compositionality of security In the IoT and, in general, in “smart” systems, it quite common to reconfigure a deployed system. For
instance, new IoT devices may be added to an already running system, or some deployed devices may be substituted (e.g., in case
of hardware or software updates). When this happens, it is claimed that the modified system still fulfills the requirements that the
previous one satisfies. In other words, the newly added or updated nodes should not harm the already deployed ones. For instance,
15

a secure system (w.r.t. Definition 4) should be still secure when we add a new device (i.e., the latter should not add forbidden

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

information flows). Usually, this requires to perform the security check on the whole new system, since in general noninterference
is not compositional. But, due to its inherently simple control flow structure, in AbU noninterference is compositional. Indeed, if we
have an information flow involving two ECA rules, then it must be that one of the two rule already exhibits an information flow.

Proposition 5. Let  ∈𝕏 → SL be a security policy and 𝓁 ∈ SL. Let 𝑅𝖲 and 𝜄𝖲 be the rule list and invariant sets for the AbU system 𝖲, and
𝑅𝖱 and 𝜄𝖱 be the rule list and invariant sets of the AbU system 𝖱. If 𝓁-𝖯𝖭𝖨(𝑅𝖲, 𝜄𝖲), then we have:

𝓁-𝖯𝖭𝖨(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱) ⟺ 𝓁-𝖯𝖭𝖨(𝑅𝖱, 𝜄𝖱)

This tantamount to say that when we have a secure system, possibly composed by thousands of rules, and we want to add a new
device, possibly composed by few rules, we do not need to analyze again the whole system, since the potential information flow
violation can only be due to the added rules. This is a huge simplification in term of verification, that follows directly from AbU
programming paradigm.

Increasing permissiveness Despite declassification, AbU provides another way of increasing the permissiveness of the security veri-
fication mechanism. Consider the case of an IoT system that is not secure, namely that exhibits forbidden information flows w.r.t.
Definition 4. We can still deploy such system, paying attention to the resources that may yield harmful information flows. Indeed,
Algorithm 1 provides the set of all events that may lead to insecure scenarios. We call this set the attack surface of an AbU system.

Precisely delimiting the attack surface has two main practical implications. On the one hand, to guarantee security and mitigate
information leaks, we can simply (externally) monitor the resources that lie in the attack surface. On the other hand, if we add new
rules to the system, and we check that those rules do not act on the resources in the attack surface, we are guaranteed to not leak
information in the original system.

Proposition 6. Let 𝖲, 𝖱 be two AbU systems, and let 𝑅𝖲, 𝑅𝖱 and 𝑅𝖲⊕𝑅𝖱 be the list comprising all rules of 𝖲, of 𝖱 and of 𝖲 ∥ 𝖱, respectively.
If the sinks of 𝖱 do not overlap with the attack surface of 𝖲, then:

𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅𝖲 ⊕𝑅𝖱) ⧵ 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅𝖲) = 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅𝖱)

In other words, if we add the rules of 𝖱 to the rules of 𝖲, we do not introduce in 𝖲 harmful information flows that were not
already present in 𝖲.

6. Related work

Attribute-based interactions AbU [3] is inspired by the AbC calculus [16,5], from which it takes the idea of attribute-based communi-

cation. AbC is a core calculus of SCEL [17], a language introduced to model Collective Adaptive Systems (CAS) [18] and particularly
suited for autonomic computing. Like SCEL, AbC adopts a message-based, procedural-oriented model. On the other hand, AbU aims to
adapt attribute-based communication to fit the ECA programming model, which is data-oriented and rule-based, in a way transparent
to the user. We refer to [3] for the comparison of AbU with related approaches.

Security and safety of ECA platforms for IoT Security and safety of IoT devices is a critical problem; among many works, we refer
to recent surveys [19,20] which overview these risks in the IoT from a general point of view. Here, we recall the closely related
work about security and safety of platforms based on ECA rules and about information-flow control for the IoT. For an overview on
information-flow control in process algebra, we refer the reader to Focardi and Gorrieri [21].

The ECA paradigm is the standard for programming IoT devices, adopted by all major IoT platforms (like IFTTT, Samsung
SmartThings, Microsoft PowerAutomate, etc.). In this context, IoT devices are managed by means of apps that users can downloaded
(and customize) from the platform store. Recent studies point out the security and safety risks regarding this kind of apps, based of
ECA rules. Surbatovich et al. [22] analyzed a dataset of 20K IFTTT apps, providing an empirical evaluation of potential secrecy and
integrity violations, including violations due to cross-app interactions. Celik et al. [23,24] proposed some mechanisms to enforce
(statically and dynamically) cross-app interaction vulnerabilities. Chi et al. [25] proposed a systematic categorization of threats
arising from unintentional or malicious interaction of apps in IoT platforms. To detect cross-app interactions, they use symbolic
execution techniques to analyze the apps code. Ding et al. [26] proposed a framework combining device physical channel analysis
and static analysis to generate all potential interaction chains among IoT apps. They leverage Natural Language Processing to
identify similarities between services, and proposed a risk-based approach to classify the actual risks of the discovered interaction
chains. Nguyen et al. [27] designed IoTSan, a verification mechanism based on model-checking to reveal cross-app interaction flows.
Similarly, SafeChain by Hsu et al. [28] leverage model checking techniques to identify cross-app vulnerabilities in IFTTT apps.

Another line of work focuses on enforcement mechanisms for checking security and safety of a single app, rather than an ensemble
of apps. Fernandes et al. [29] presented FlowFence, an approach for building secure apps via information-flow tracking and controlled
declassification. Celik et al. [30] leveraged static taint tracking to identify sensitive data leaks in an IoT app. Bastys et al. [31,32]
identified new attack vectors in IFTTT apps and showed that 30% of apps from their dataset can be subject to such attacks. As a
countermeasure, they investigated static and dynamic information-flow tracking via security types. Fernandes et al. [33] proposed
16

the use of decentralization and fine-grained authentication tokens to limit privileges and prevent unauthorized actions inside an app.

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

Even if grounded by the same programming paradigm, i.e., based on ECA rules, all the above-mentioned work focuses on specific
platforms, restricting the applicability to specific use cases. Instead, the requirements we propose in this work are built on top of
AbU, thus providing a general setting in which security and safety can be verified interdependently from the application scenario.

Concerning more general ECA programming, [34,35] presented verification mechanisms to check properties (such as termination,
confluence, redundant or contradicting rules) on IRON [36], a language based on ECA rules for the IoT domain. Other works proposed
approaches to verify ECA programs by using Petri Nets [37] and BDD [38]. In [39,1], the authors presented a tool-supported method
for verifying and controlling the correct interactions of ECA rules. All these works, differently from AbU, are not designed for
distributed systems.

Information-flow control for the IoT Several works proposed information-flow control for enforcing confidentiality and integrity
policies in the IoT domain. Newcomb et al. [40] proposed IOTA, a calculus for home automation. Based on the core formalism
of IOTA, the authors developed an analysis for detecting whenever an event can trigger two conflicting actions, and an analysis
for determining the action(s) that may influence a given event. Bodei et al. [41] proposed a calculus, IoT-LySa, supporting an
information-flow analysis that safely approximates the abstract behavior of IoT systems. The calculus adopts asynchronous multi-
party communication among nodes taking care of node proximity. Again, all the above-mentioned work focuses on specific platforms,
while our approach based on AbU can be easily adapted to multiple application scenarios.

In their seminal work, Volpano and Smith [42] presented a flow-insensitive type system for imperative languages. Flow-insensitive
type systems result very often too restrictive, rejecting lots of (practically) secure programs. To gain more permissiveness, Hunt and
Sands [43] proposed a type system for an imperative language which is flow-sensitive. The latter has been further extended by Balliu
et al. [44,2] in order to fit the IoT setting (in particular, apps based on ECA rules). The proposed type system verifies a notion of
non-interference based on a suitable hiding bisimulation (a particularly designed weak bisimulation). We take inspiration from [2] to
define the notion of security and safety requirements of this paper, generalizing the definition of hiding bisimulation.

7. Conclusion

In this paper, we have studied security and safety requirements of AbU systems, a new model for distributed computation
merging the simplicity of ECA programming with attribute-based communication. AbU is particularly suited to program IoT devices,
in a decentralized setting. Hence, these requirements can be used to tackle security and safety issues in the IoT. The first is a form of
noninterference: we can assess if an AbU system does not exhibit forbidden information flows between resources, according to a given
security policy. The second is a form of non-interaction: we can assess whether different nodes will not interact by acting on shared
resources in unexpected ways.

To formally capture these requirements we have introduced two suitable bisimulations, generalizing the notion of hiding bisim-

ilarity of [2], in order to deal with specific aspects of AbU systems. Leveraging these definitions, we have then given two sound
verification mechanisms to statically check noninterference and non-interaction of AbU systems.

In addition, we considered a problem particularly common in the IoT, that is implicit interactions, i.e., not syntactically expressed
interactions between resources, that may yield unsafe behaviors in IoT devices due to semantic correlations between resources,
proposing a solution to mitigate such issue. Finally, we investigated the problem of intentional information release. Indeed, in some
practical scenarios, noninterference is a too restrictive requirement, and a controlled release of confidential information is desirable.
To this end, we added a declassification mechanism to downgrade the security level of expressions.

Future work Semantic dependencies are an out-of-band information that must be externally provided. Indeed, is not part of the AbU
language and comes from external environmental factors (e.g., temperature can be influenced by walls insulation). Nevertheless, we
can leverage Natural Language Processing techniques or machine learning in order to compute (i.e., infer) this information, starting
from AbU rules. We plan to enhance our verification mechanisms with heuristics for implicit interactions as a future work.

As already mentioned at the end of Section 4, we plan to improve the precision of the information flows detection algorithm. In
particular, we aim to develop an inter-procedural constancy analysis, leveraging model-checking techniques. In fact, modal and tem-
poral logics are often used for reasoning about correctness of distributed systems, with both fully automatic tools and in interactive
proof assistants [45–47].

Static analysis is sometimes too restrictive. So, we can move from static to dynamic verification (i.e., runtime monitoring), in
order to detect violations at runtime of the security and safety requirements. This would enhance permissiveness at the expense of
soundness. Then, the system developer would be in charge of choosing the strategy that best fits the particular application scenario.

Finally, we plan to develop other requirements, not strictly related to security and safety aspects. Indeed, correctness requirements

are important as well in general as in the IoT context. An example is rules confluence: in some practical IoT scenarios it is important
to ensure that rules execution order does not impact the overall system behavior. To this end, it can be useful to model AbU systems
as (graph) rewriting systems, as it has been done for multi-agent systems in, e.g., [48].

CRediT authorship contribution statement

Michele Pasqua: Conceptualization, Formal analysis, Investigation, Methodology, Validation, Writing – original draft, Writing
– review & editing. Marino Miculan: Conceptualization, Investigation, Methodology, Writing – original draft, Writing – review &
17

editing, Funding acquisition.

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Proofs

A.1. Proofs of Section 4

We recall (and generalize) here the definition of the system initialization function, that takes a rule list set, an invariant set,
a state set and a pool set, and it returns an AbU system, with the specified rules, invariants, states and pools. Formally, given
𝑅 = {𝑅1, … , 𝑅𝑛}, 𝜄= {𝜄1, … , 𝜄𝑛}, Σ = {Σ1, … , Σ𝑛} ∈ 𝖼𝗈𝗆𝗉(𝑅, 𝜄) and Θ= {Θ1, … , Θ𝑛}, we define 𝗌𝗒𝗌(𝑅, 𝜄, Σ, Θ) as: 𝑅1, 𝜄1⟨Σ1, Θ1⟩ ∥… ∥
𝑅𝑛, 𝜄𝑛⟨Σ𝑛, Θ𝑛⟩. When all pools are empty we just write 𝗌𝗒𝗌(𝑅, 𝜄, Σ) in place of 𝗌𝗒𝗌(𝑅, 𝜄, Σ, {∅, … , ∅}).

We also recall the notion of 𝓁-level twin (given in Section 3) of a AbU rule list set 𝑅 = {𝑅1, … , 𝑅𝑛} and an invariants set
𝜄 = {𝜄1, … , 𝜄𝑛}, i.e., the rule list set and invariants set pair (𝑅𝓁 , 𝜄𝓁) where all resources in 𝖾𝗏𝗌𝖾𝗍𝓁(𝑅, 𝜄) are substituted in 𝑅 and 𝜄
with their primed version. Here, the 𝓁-higher events set of (𝑅, 𝜄) is 𝖾𝗏𝗌𝖾𝗍𝓁(𝑅, 𝜄) ≜

⋃
1≤𝑖≤𝑛 𝖾𝗏𝗌𝖾𝗍

𝓁(𝑅𝑖), with 𝖾𝗏𝗌𝖾𝗍𝓁(𝗋𝗎𝗅𝖾1… 𝗋𝗎𝗅𝖾𝑚) ≜⋃
1≤𝑗≤𝑚 𝖾𝗏𝗌𝖾𝗍

𝓁(𝗋𝗎𝗅𝖾𝑗) and 𝖾𝗏𝗌𝖾𝗍𝓁(𝑥1… 𝑥𝑘 ⋗ 𝖺𝖼𝗍, 𝗍𝖺𝗌𝗄) ≜ {𝑥𝑖 | 𝑖 ∈ [1..𝑘] ∧ 𝓁 ⊏ (𝑥𝑖)}.

Proof of Theorem 2 We prove here the soundness of the proposed security verification mechanism, namely we prove that if Algo-
rithm 1 marks an AbU system as secure then the system satisfies the (presence-sensitive) noninterference of Definition 4.

Before going in the detail of the proof, we need a preliminary result and an auxiliary definition. Indeed, it is easy to note that
Algorithm 1 is not affected by resources renaming.

Proposition 7. Consider the rule list set and invariants set pair (𝑅, 𝜄) and its 𝓁-level twin (𝑅𝓁 , 𝜄𝓁). Let 𝑅 and 𝑅𝓁 be the list all rules in 𝑅
and 𝑅𝓁 , respectively. We have that 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅) =∅ ⟺𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅𝓁) =∅.

Indeed, if an AbU system does not contain harmful information flows then also the same system with all resources with security
level greater than 𝓁 renamed does not contain harmful information flows. Proposition 7 just says that such correspondence also holds
when considering Algorithm 1: if the procedure IFRules (of Algorithm 1) says that a system is secure (i.e., it does have harmful
information flows) then such procedure would also say that the renamed system is secure (assuming ‘fresh’ names in the renaming).

Furthermore, we define an equivalence relation between rule list set and invariants set pairs, basically saying that a pair and its
𝓁-level twin are equivalent. In particular, the pairs (𝑅, 𝜄) and (𝑅′, 𝜄′) are equivalent when (𝑅′, 𝜄′) is the 𝓁-level twin of (𝑅, 𝜄) or (𝑅, 𝜄)
is the 𝓁-level twin of (𝑅′, 𝜄).

Definition 8 (𝓁-level twin equivalence). Given two AbU rule list set and invariants set pairs (𝑅, 𝜄) and (𝑅′, 𝜄′), we say that (𝑅, 𝜄) and
(𝑅′, 𝜄′) are 𝓁-level twin equivalent, written (𝑅, 𝜄)

𝓁
≈ (𝑅′, 𝜄′), when:

(𝑅′, 𝜄′) = (𝑅𝓁 , 𝜄𝓁) ∨ (𝑅, 𝜄) = (𝑅′
𝓁 , 𝜄

′
𝓁)

Finally, we need an equivalence between execution pools, saying that two pools are equal except for updates containing renamed
resources. We say that two updates are primed equivalent when they are identical or when they differ for primed resources only. For
instance, (𝑙1, 3)(𝑙2, 1) and (𝑙1, 3)(𝑙2, 1) are primed equivalent, (ℎ1, 3)(𝑙2, 1) and (ℎ′1, 3)(𝑙2, 1) are primed equivalent, but (𝑙1, 3)(𝑙2, 1) and
(ℎ1, 3)(𝑙2, 1) are not primed equivalent. Note that, primed equivalence of updates does consider order. For instance, (𝑙1, 3)(𝑙2, 1) and
(𝑙′2, 1)(𝑙

′
1, 3) are not primed equivalent.

Definition 9 (Primed equivalence). Given two AbU execution pools Θ1 and Θ2, we say that Θ1 and Θ2 are primed equivalent, written
Θ1

.
≡ Θ2, when: for each 𝗎𝗉𝖽 in Θ1 there exists 𝗎𝗉𝖽′ in Θ2 such that 𝗎𝗉𝖽 and 𝗎𝗉𝖽′ are primed equivalent; and for each 𝗎𝗉𝖽 in Θ2

there exists 𝗎𝗉𝖽′ in Θ1 such that 𝗎𝗉𝖽 and 𝗎𝗉𝖽′ are primed equivalent.

We can trivially extend the previous definition to pool sets, and we abuse notation by using the same symbol
.
≡ to denote primed

equivalence for pools and pool sets.

Theorem 2 (Soundness for security) Let  ∈𝕏 → SL be a security policy and 𝓁 ∈ SL. Consider an AbU rule list set 𝑅 = {𝑅1, … , 𝑅𝑛}
and invariants set 𝜄 = {𝜄1, … , 𝜄𝑛}. Let 𝑅 be the list comprising all rules of all elements in 𝑅. If 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅) =∅ then 𝓁-𝖭𝖨(𝑅, 𝜄) holds.

Proof. Let 𝑅 = {𝑅1, … , 𝑅𝑛} and 𝜄 = {𝜄1, … , 𝜄𝑛}. Let 𝑅 be the list comprising all rules of all elements in {𝑅1, … , 𝑅𝑛}. Assume
that 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅) = ∅, then we have to prove that for all Σ ∈ 𝖼𝗈𝗆𝗉(𝑅, 𝜄) and Σ

′
∈ 𝖼𝗈𝗆𝗉(𝑅𝓁 , 𝜄𝓁) such that Σ ≡𝓁 Σ′, we have that

′

18

𝗌𝗒𝗌(𝑅, 𝜄, Σ) ≈ℎ𝓁
𝗌𝗒𝗌(𝑅𝓁 , 𝜄𝓁 , Σ), where ℎ𝓁 maps labels of the form 𝑇 and of the forms (𝑥1, 𝑣1) … (𝑥𝑘, 𝑣𝑘) ⊳𝑇 and (𝑥1, 𝑣1) … (𝑥𝑘, 𝑣𝑘) ▸ 𝑇 ,

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

with 𝓁 ⊏
�
𝑖∈[1..𝑛](𝑥𝑖), to ⋄; and maps labels of the forms (𝑥1, 𝑣1) … (𝑥𝑘, 𝑣𝑘) ⊳𝑇 and (𝑥1, 𝑣1) … (𝑥𝑘, 𝑣𝑘) ▸ 𝑇 , with

�
𝑖∈[1..𝑛](𝑥𝑖) ⊑ 𝓁,

to (𝑥1, 𝑣1)…(𝑥𝑘, 𝑣𝑘)⇂𝓁 . Let  be the following binary and symmetric relation over AbU systems:

≜

⎧⎪⎪⎨⎪⎪⎩
(𝗌𝗒𝗌(𝑅1, 𝜄1,Σ1,Θ1), 𝗌𝗒𝗌(𝑅2, 𝜄2,Σ2,Θ2))

||||||||||||

𝑅1
𝓁
≈𝑅2 ∧ Σ1 ∈ 𝖼𝗈𝗆𝗉(𝑅1, 𝜄1)∧

Σ2 ∈ 𝖼𝗈𝗆𝗉(𝑅2, 𝜄2) ∧ Σ1 ≡𝓁 Σ2 ∧
𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅1) = ∅∧
𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅2) = ∅∧
Θ1

.
≡Θ2

⎫⎪⎪⎬⎪⎪⎭
where 𝑅1 and 𝑅2 are the lists comprising all rules of all elements in 𝑅1 and 𝑅2, respectively. Note that, given two generic rule
list sets 𝑅 and 𝑅′, we have that 𝑅

𝓁
≈ 𝑅′ implies 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅) = ∅ iff 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅′) = ∅ (due to Proposition 1 and Proposition 7). By

definition, (𝗌𝗒𝗌(𝑅, 𝜄, Σ), 𝗌𝗒𝗌(𝑅𝓁 , 𝜄𝓁 , Σ′)) ∈, so we have to prove that  is an AbU hiding bisimulation, parametric on ℎ𝓁 .

Let (𝖲𝑎, 𝖲𝑏) ∈ and 𝖲𝑎
𝛼
←←←←←←→ 𝖲′

𝑎
, for some AbU system label 𝛼. We have to show that there exists a system 𝖲′

𝑏
such that 𝖲𝑏

𝛼

⇒ℎ𝓁
𝖲′
𝑏
,

with (𝖲′
𝑎
, 𝖲′

𝑏
) ∈. Note that, since AbU rules do not change their syntax during execution, we have that the rule list set of 𝖲𝑎, say

𝑅𝑎, is the same of the rule list set of 𝖲′
𝑎
, say 𝑅′

𝑎
. This implies that 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅′

𝑎
) = 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅𝑎), where 𝑅′

𝑎
is the list comprising all

rules of all elements in 𝑅𝑎

′
and 𝑅𝑎 is the list comprising all rules of all elements in 𝑅𝑎 (the same applies for 𝖲𝑏 and 𝖲′

𝑏
). The fact

that 𝑅′
𝑎

𝓁
≈ 𝑅′

𝑏
follows immediately (the 𝓁-level twin equivalence

𝓁
≈ is defined in terms of rule lists and invariants sets syntax only,

but rules syntax does not change during execution). In a similar way, if the state set of 𝖲𝑎, say Σ𝑎, is compatible with 𝑅𝑎 and 𝜄𝑎, then
also the state set of 𝖲′

𝑎
, say Σ′

𝑎
, is compatible with 𝑅′

𝑎
and 𝜄′

𝑎
, where 𝜄′

𝑎
and 𝜄′

𝑏
are the invariants sets of 𝖲′

𝑎
and 𝖲′

𝑏
, respectively. (the

same applies for 𝖲𝑏 and 𝖲′
𝑏
). Hence, we just have to prove that there exists 𝖲′

𝑏
such that 𝖲𝑏

𝛼

⇒ℎ𝓁
𝖲′
𝑏
, Σ′

𝑎
≡𝓁 Σ′

𝑏
and Θ′

𝑎

.
≡Θ′

𝑏
, where Θ′

𝑎

and Θ′
𝑏

are the pool sets of 𝖲′
𝑎

and 𝖲′
𝑏
, respectively. The proof proceeds by case analysis on the label 𝛼.

Case 𝛼 = 𝑇 . By definition of the AbU semantics (Fig. 1), the label 𝑇 can only be generated by a system composed by a single node,
by applying the rule (DISC). That is, 𝖲𝑎 =𝑅, 𝜄⟨Σ𝑎, Θ𝑎⟩, for some node 𝑅, 𝜄⟨Σ𝑎, Θ𝑎⟩, and 𝖲𝑎

𝛼
←←←←←←→ 𝖲′

𝑎
=𝑅, 𝜄⟨Σ𝑎, Θ′

𝑎
⟩, for some pool

Θ′
𝑎
. Since (𝖲𝑎, 𝖲𝑏) ∈, we have by hypothesis that 𝖲𝑏 is the 𝓁-level twin of 𝖲𝑎. This means that also 𝖲𝑏 is a single node

system and, in particular, 𝖲𝑏 =𝑅𝓁 , 𝜄𝓁⟨Σ𝑏, Θ𝑏⟩, for some state Σ𝑏 and pool Θ𝑏. By definition of the AbU semantics (Fig. 1),
we have that a single node can always perform any label 𝑇 ′, by applying the rule (DISC). Hence, 𝖲𝑏 can indeed perform the
label 𝑇 : 𝑅𝓁 , 𝜄𝓁⟨Σ𝑏,Θ𝑏⟩ 𝑇

←←←←←←←←→𝑅𝓁 , 𝜄𝓁⟨Σ𝑏,Θ′
𝑏
⟩, for some Θ′

𝑏
. Let 𝑇 = 𝗍𝖺𝗌𝗄1… 𝗍𝖺𝗌𝗄𝑛, for some tasks 𝗍𝖺𝗌𝗄1, … , 𝗍𝖺𝗌𝗄𝑛. Since discovery

rules do not modify node states and rules syntax does not change during execution, all conditions of the bisimulation
concerning node rules, invariants and states trivially hold. What is left to prove is that Θ′

𝑎

.
≡ Θ′

𝑏
. By definition of the rule

(DISC), we have that Θ′
𝑎
=Θ𝑎 ∪{�𝖺𝖼𝗍�Σ𝑎 | ∃𝑖 ∈ [1..𝑛] . 𝗍𝖺𝗌𝗄𝑖 = 𝜑 ∶ 𝖺𝖼𝗍∧Σ𝑎 ⊧ 𝜑} and Θ′

𝑏
=Θ𝑏 ∪{�𝖺𝖼𝗍�Σ𝑏 | ∃𝑖 ∈ [1..𝑛] . 𝗍𝖺𝗌𝗄𝑖 = 𝜑 ∶

𝖺𝖼𝗍∧Σ𝑏 ⊧ 𝜑}. Since Θ𝑎

.
≡Θ𝑏 by hypothesis, we just have to prove that Θ̃𝑎 = {�𝖺𝖼𝗍�Σ𝑎 | ∃𝑖 ∈ [1..𝑛] . 𝗍𝖺𝗌𝗄𝑖 = 𝜑 ∶ 𝖺𝖼𝗍∧Σ𝑎 ⊧ 𝜑}

.
≡

{�𝖺𝖼𝗍�Σ𝑏 | ∃𝑖 ∈ [1..𝑛] . 𝗍𝖺𝗌𝗄𝑖 = 𝜑 ∶ 𝖺𝖼𝗍 ∧ Σ𝑏 ⊧ 𝜑} = Θ̃𝑏. Let Θ̃𝑎 = {𝗎𝗉𝖽1, … , 𝗎𝗉𝖽𝑛} and Θ̃𝑏 = {𝗎𝗉𝖽′1, … , 𝗎𝗉𝖽′
𝑚
}, with 𝑚 ≤ 𝑛. We

have to prove that for each 𝑖 ∈ [1..𝑛] there exists 𝑗 ∈ [1..𝑚] such that 𝗎𝗉𝖽𝑖 is primed equivalent to 𝗎𝗉𝖽′
𝑗
. Take an arbitrary

𝑖 ∈ [1..𝑛], if 𝗎𝗉𝖽𝑖 contains only resources with security level greater than 𝓁 then any update in Θ̃𝑏 is primed equivalent
to 𝗎𝗉𝖽𝑖 (if Θ̃𝑏 is empty we can take any update in Θ𝑏). Otherwise, we have to prove that there exists 𝑗 ∈ [1..𝑚] such that
(𝗎𝗉𝖽𝑖)⇂𝓁 = (𝗎𝗉𝖽𝑗)⇂𝓁 , since only resources with security level greater than 𝓁 are renamed. Since 𝖲𝑏 is the 𝓁-level twin of 𝖲𝑎,
we have that the rules in 𝑅𝓁 differ from the rules in 𝑅 only for resources with security level greater than 𝓁. In addition,
Σ𝑎 ≡𝓁 Σ𝑏 by hypothesis, hence the two nodes agree on the values of resources with security level less or equal than 𝓁.
This means that such 𝑗 does not exists only when a task 𝜑 ∶ 𝖺𝖼𝗍 in 𝑇 is such that: (i) 𝜑 contains a resource with security
level greater than 𝓁 and 𝖺𝖼𝗍 assigns a resource with security level less or equal than 𝓁; or (ii) 𝜑 does not contain any
resource with security level greater than 𝓁 but 𝖺𝖼𝗍 assigns a resource with security level less or equal than 𝓁 with an
expression containing a resource with security level greater than 𝓁. Nevertheless, neither (i) nor (ii) can happen, since
by hypothesis both 𝑅 and 𝑅𝓁 have not information flows from 𝓁′ greater than 𝓁 to 𝓁′′ less or equal than 𝓁 (conditions
𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅) =∅ and 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅𝓁) =∅ of the bisimulation). Hence, it follows that (𝖲′

𝑎
, 𝖲′

𝑏
) ∈, with 𝖲′

𝑎
=𝑅, 𝜄⟨Σ𝑎, Θ′

𝑎
⟩ and

𝖲′
𝑏
=𝑅𝓁 , 𝜄𝓁⟨Σ𝑏, Θ′

𝑏
⟩.

Case 𝛼 = 𝗎𝗉𝖽▸𝑇 . This label can be only generated by an application of the rule (STEPL) (the case of (STEPR) is analogous) of the AbU
systems semantics (Fig. 1), where one of the nodes in 𝖲𝑎 has applied the rule (INPUT) of the AbU node semantics (Fig. 1).
Let Σ𝑎 = {Σ𝑎,1, … , Σ𝑎,𝑛} and 𝗎𝗉𝖽 = (𝑥1, 𝑣1) … (𝑥𝑘, 𝑣𝑘). Suppose that the input has been performed by the 𝑖th node, with
𝑖 ∈ [1..𝑛]. By definition of (INPUT), we have that Σ′

𝑎
= Σ𝑎[Σ′

𝑎,𝑖
∕Σ𝑎,𝑖], with Σ′

𝑎,𝑖
= Σ𝑎,𝑖[𝑣1∕𝑥1… 𝑣𝑘∕𝑥𝑘]. However, an input

denotes a modification of the resources made by an external entity. Thus, this label does not depend on the actual system
and can always be performed both by 𝖲𝑎 and 𝖲𝑏 (we have to maintain fairness, i.e., external inputs have to be sent to both
systems). Note that 𝑅𝑎 and 𝑅𝑏 differ only in some resources with clearance greater than 𝓁, that are renamed, but rules

structures are identical. Hence, we can assume that the input can be performed by the 𝑖th node of 𝖲𝑏, that is 𝖲𝑏
𝛽

⇒ℎ𝓁
𝖲′
𝑏
, with

𝛽 = 𝗎𝗉𝖽▸ 𝑇 ′, for some 𝑇 ′. Again, by definition of (INPUT), we have that Σ′
𝑏
= Σ𝑏[Σ′

𝑏,𝑖
∕Σ𝑏,𝑖], with Σ′

𝑏,𝑖
= Σ𝑏,𝑖[𝑣1∕𝑥1… 𝑣𝑘∕𝑥𝑘].
19

Since Σ𝑎 ≡𝓁 Σ𝑏 and states are updated in the same manner, we have that Σ′
𝑎
≡𝓁 Σ′

𝑏
. The only problem may arise when 𝗎𝗉𝖽

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

contains resources that have been renamed: in this case 𝖲𝑏 cannot update them. But renamed resources can only be on
resources with clearance greater than 𝓁, hence they do not affect states 𝓁-equivalence. Since we remove from Θ𝑎 and Θ𝑏

a pair of updates primed equivalent, obtaining the pool sets Θ′
𝑎

and Θ′
𝑏
, we have that Θ′

𝑎
and Θ′

𝑏
are primed equivalent.

Hence, it follows that (𝖲′
𝑎
, 𝖲′

𝑏
) ∈.

Case 𝛼 = 𝗎𝗉𝖽 ⊳𝑇 . This action can be only derived by an application of the rule (STEPL) (the case of (STEPR) is analogous) of the AbU
systems semantics (Fig. 1), where one of the nodes in 𝖲𝑎 has applied the rule (EXEC) of the AbU node semantics (Fig. 1).
Suppose that 𝗎𝗉𝖽= (𝑥1, 𝑣1) … (𝑥𝑘, 𝑣𝑘). We have three sub-cases, depending on the security level of the resources 𝑥1, … , 𝑥𝑘.

Sub-case 𝓁 ⊏
�
𝑖∈[1..𝑘](𝑥𝑖). Then, we have that all resources in the update have clearance greater than 𝓁 and, hence,

ℎ𝓁(𝛼) = ⋄. By definition of AbU hiding bisimulation, 𝛼 can always be mimicked by an arbitrary number (possibly
0) of hidden actions (i.e., labels 𝛽 such that ℎ𝓁(𝛽) = ⋄). Since Θ𝑎 and Θ𝑏 are primed equivalent, we can select

𝛽 = 𝗎𝗉𝖽′ ⊳𝑇 ′ such that 𝗎𝗉𝖽 and 𝗎𝗉𝖽′ are primed equivalent, for some 𝑇 ′. Hence, we can perform 𝖲𝑏
𝛽

⇒ℎ𝓁
𝖲′
𝑏
,

since ℎ𝓁(𝛽) = ⋄. Note that, all resources in 𝗎𝗉𝖽 and 𝗎𝗉𝖽′ have clearance greater than 𝓁, so resources at security
level 𝓁 or below are not modified, implying Σ′

𝑎
≡𝓁 Σ′

𝑏
. Since we remove from Θ𝑎 and Θ𝑏 a pair of updates primed

equivalent, obtaining the pool sets Θ′
𝑎

and Θ′
𝑏
, we have that Θ′

𝑎

.
≡Θ′

𝑏
. Hence, it follows that (𝖲′

𝑎
, 𝖲′

𝑏
) ∈.

Sub-case
�
𝑖∈[1..𝑘](𝑥𝑖) ⊑ 𝓁 and 𝓁 ⋢

⨆
𝑖∈[1..𝑘](𝑥𝑖). Then, we have that at least one (but not all) resource in the update is

at security level 𝓁 or below and, hence, ℎ𝓁(𝛼) = 𝗎𝗉𝖽⇂𝓁 ≠ 𝗎𝗉𝖽. Since Θ𝑎

.
≡Θ𝑏, then there exists 𝗎𝗉𝖽′ in the 𝑖th pool

of Θ𝑏 such that 𝗎𝗉𝖽 and 𝗎𝗉𝖽′ are primed equivalent. Since primed equivalent updates potentially differ on primed
resources only and primed resources can only have clearance greater than 𝓁, we have that 𝗎𝗉𝖽′⇂𝓁 = 𝗎𝗉𝖽⇂𝓁 . This

implies that ℎ𝓁(𝛽) = 𝗎𝗉𝖽⇂𝓁 , where 𝛽 = 𝗎𝗉𝖽′ ⊳𝑇 ′, for some 𝑇 ′. Hence, we can perform 𝖲𝑏
𝛽

⇒ℎ𝓁
𝖲′
𝑏
. Since in both

systems only resources with clearance greater than 𝓁 are modified, we have that Σ′
𝑎
≡𝓁 Σ′

𝑏
. Finally, since we

remove from Θ𝑎 and Θ𝑏 a pair of updates primed equivalent, obtaining the pool sets Θ′
𝑎

and Θ′
𝑏
, we have that

Θ′
𝑎

.
≡Θ′

𝑏
. Hence, it follows that (𝖲′

𝑎
, 𝖲′

𝑏
) ∈.

Sub-case
�
𝑖∈[1..𝑘](𝑥𝑖) ⊑ 𝓁. Then, we have that all resources in the update are at security level 𝓁 or below and, hence, we

have that ℎ𝓁(𝛼) = 𝗎𝗉𝖽⇂𝓁 = 𝗎𝗉𝖽. Since Θ𝑎

.
≡ Θ𝑏 and 𝗎𝗉𝖽 does not contain primed resources, we have that 𝖲𝑏 can

perform the same update, i.e., 𝗎𝗉𝖽 is in the 𝑖th pool of Θ𝑏. Hence, we can perform 𝖲𝑏
𝛼

⇒ℎ𝓁
𝖲′
𝑏
. Since both systems

perform the same action, we trivially have that Σ′
𝑎
≡𝓁 Σ′

𝑏
and Θ′

𝑎

.
≡Θ′

𝑏
. Hence, it follows that (𝖲′

𝑎
, 𝖲′

𝑏
) ∈. □

Proof of Theorem 4 We prove here the soundness of the proposed safety verification mechanism, namely that the syntactic check
provided in Algorithm 2 implies the (semantic) transparency of Definition 5.

Theorem 4 (Soundness for Safety) Let 𝑅𝖲 and 𝜄𝖲 be the rule list and invariant sets for the AbU system 𝖲, and 𝑅𝖱 and 𝜄𝖱 be the rule list
and invariant sets of the AbU system 𝖱. If 𝚃𝚛𝚊𝚗𝚜𝚙𝚊𝚛𝚎𝚗𝚌𝚢𝙲𝚑𝚎𝚌𝚔(𝑅𝖲, 𝑅𝖱) = 𝐭𝐫𝐮𝐞, then (𝑅𝖲, 𝜄𝖲) (𝑅𝖱, 𝜄𝖱).

Proof. Let 𝑅𝖲 and 𝜄𝖲 be the rule list and invariant sets for the AbU system 𝖲, and 𝑅𝖱 and 𝜄𝖱 be the rule list and invariant sets of
the AbU system 𝖱. Assume that 𝚃𝚛𝚊𝚗𝚜𝚙𝚊𝚛𝚎𝚗𝚌𝚢𝙲𝚑𝚎𝚌𝚔(𝑅𝖲, 𝑅𝖱) = 𝐭𝐫𝐮𝐞, that implies 𝗌𝗇𝗄(𝑅𝖲) ∩ 𝗌𝗋𝖼(𝑅𝖱) = ∅. Then, we have to prove
that for any Σ ∈ 𝖼𝗈𝗆𝗉(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱) we have that 𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ) ≈𝐻𝖲

𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ), where ℎ𝖲 maps labels of the form 𝑇
and 𝗎𝗉𝖽 ⊳𝑇 , with 𝗌𝗈𝗎𝗋𝖼𝖾(𝗎𝗉𝖽) =𝑅𝖲, to ⋄; maps labels of the form 𝗎𝗉𝖽 ⊳𝑇 , with 𝗌𝗈𝗎𝗋𝖼𝖾(𝗎𝗉𝖽) ≠𝑅𝖲, to 𝗎𝗉𝖽 ⊳𝑇 ; and maps labels of the
form 𝗎𝗉𝖽▸ 𝑇 to 𝗎𝗉𝖽▸ 𝑇 . The proof is by contradiction.

Suppose that 𝚃𝚛𝚊𝚗𝚜𝚙𝚊𝚛𝚎𝚗𝚌𝚢𝙲𝚑𝚎𝚌𝚔(𝑅𝖲, 𝑅𝖱) = 𝐭𝐫𝐮𝐞 but 𝗌𝗒𝗌(𝑅𝖲 ∪ 𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ) ̸≈𝐻𝖲
𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ), for some Σ. This means that

it does not exist an AbU hiding bisimulation , parametric on 𝐻𝖲, that contains the pair (𝗌𝗒𝗌(𝑅𝖲 ∪ 𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ), 𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ)).
More precisely, by definition of bisimulation relation, whenever we try to build up a hiding bisimulation , parametric on 𝐻𝖲 and
containing the pair (𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ), 𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ)), the bisimulation game stops in a pair (𝖲𝑎, 𝖲𝑏), with 𝖲𝑎 and 𝖲𝑏 derivatives
of 𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ) and 𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ), respectively.

This may happen because of either: 𝖲𝑎 can perform an action labeled 𝛼 that cannot be (weakly) mimicked by 𝖲𝑏 (or vice versa);
or a mimicking action is always possible but it leads us to pairs of the form (𝖲′

𝑎
, 𝖲′

𝑏
) that do not belong to . Actually, since a

bisimulation proof is a constructive procedure, we can always assume that the sought relation  is large enough so that the second
case never applies.

Let 𝖲𝑎 = 𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ𝑎, Θ𝑎) and 𝖲𝑏 = 𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ𝑏, Θ𝑏), derivatives5 of 𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ) and 𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ), respec-
tively. We proceed by case analysis on the action 𝛼 that would distinguish the two elements 𝖲𝑎 and 𝖲𝑏.
20

5 Recall that, when the pool is empty we omit it from the notation 𝗌𝗒𝗌(𝑅, 𝜄, Σ).

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

Case 𝛼 = 𝑇 . By definition of the AbU semantics (Fig. 1), the label 𝑇 can only be generated by a system composed by a single node,
by applying the rule (DISC). This implies that either 𝖲 or 𝖱 must be empty, but empty systems are not allowed by AbU
syntax. Hence, such case cannot happen.

Case 𝛼 = 𝗎𝗉𝖽▸𝑇 . This action can be only derived by an application of the rule (STEPL) (the case of (STEPR) is analogous) of the AbU
systems semantics (Fig. 1), where one of the nodes in 𝖲𝑎 has applied the rule (INPUT) of the AbU node semantics (Fig. 1).
However, this action denotes a modification of the resources made by an external entity. Thus, this action does not depend
on the actual system and can always be performed by both 𝖲𝑎 and 𝖲𝑏 (we have to maintain fairness, i.e., external inputs
have to be sent to both systems).

Case 𝛼 = 𝗎𝗉𝖽 ⊳𝑇 . This action can be only derived by an application of the rule (STEPL) (the case of (STEPR) is analogous) of the AbU
systems semantics (Fig. 1), where one of the nodes in 𝖲𝑎 has applied the rule (EXEC) of the AbU node semantics (Fig. 1). We
have two sub-cases, depending on the rule set that this node belongs to.

Sub-case 𝗌𝗈𝗎𝗋𝖼𝖾(𝗎𝗉𝖽) =𝑅𝖲. Then, we have that the node belongs to 𝑅𝖲 and, hence, ℎ𝖲(𝛼) = ⋄. By definition of AbU hiding
bisimulation, 𝛼 can always be mimicked by an arbitrary number (possibly 0) of hidden actions (i.e., labels 𝛽 such
that ℎ𝖲(𝛽) = ⋄). In particular, the system 𝖲𝑏 is allowed to not progress, without breaking the bisimulation game.

Sub-case 𝗌𝗈𝗎𝗋𝖼𝖾(𝗎𝗉𝖽) ≠𝑅𝖲. Then, we have that the node belongs to 𝑅𝖱 and, hence, ℎ𝖲(𝛼) = 𝗎𝗉𝖽 ⊳𝑇 . As 𝛼 is the distin-
guishing action, it follows that the node reaches different states in 𝖲𝑎 and 𝖲𝑏, leading to the following situation:
the update 𝗎𝗉𝖽 is possible in 𝖲𝑎 but not in 𝖲𝑏 (or vice versa). Since both rule sets 𝑅𝖲∪𝑅𝖱 and 𝑅𝖱 start in the same
execution state set Σ (and with all pools empty), the rule set 𝑅𝖱 could exhibit different behaviors if and only if
it would be affected by 𝑅𝖲. In particular, this means that in the execution trace leading 𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ) to
𝖲𝑎, one rule in 𝑅𝖲 ∪𝑅𝖱 should have modified either: (i) a resource that a rule in 𝑅𝖱 listens on; or (ii) a resource
that is accessed by a rule in 𝑅𝖱. Note that, the accessed resource not necessarily has to be used to assign other
resources: it can be used into task condition in order to modify the rule’s control flow. However, syntactic trans-

parency 𝚃𝚛𝚊𝚗𝚜𝚙𝚊𝚛𝚎𝚗𝚌𝚢𝙲𝚑𝚎𝚌𝚔(𝑅𝖲, 𝑅𝖱) = 𝐭𝐫𝐮𝐞, i.e., 𝗌𝗇𝗄(𝑅𝖲) ∩ 𝗌𝗋𝖼(𝑅𝖱) =∅, is trivially preserved by all derivatives
of the initial systems (rules do not syntactically change during execution). This ensures that neither case applies.

As it does not exist a distinguishing action 𝛼, it follows that the original systems 𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ) and 𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ) must be
hiding bisimilar, i.e., 𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ) ≈𝐻𝖲

𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ), where ℎ𝖲 maps labels of the form 𝑇 and 𝗎𝗉𝖽 ⊳𝑇 , with 𝗌𝗈𝗎𝗋𝖼𝖾(𝗎𝗉𝖽) =
𝑅𝖲, to ⋄; maps labels of the form 𝗎𝗉𝖽 ⊳𝑇 , with 𝗌𝗈𝗎𝗋𝖼𝖾(𝗎𝗉𝖽) ≠𝑅𝖲, to 𝗎𝗉𝖽 ⊳𝑇 ; and maps labels of the form 𝗎𝗉𝖽▸ 𝑇 to 𝗎𝗉𝖽▸ 𝑇 . □

References

[1] J. Cano, E. Rutten, G. Delaval, Y. Benazzouz, L. Gurgen, ECA rules for IoT environment: a case study in safe design, in: 8th Int. Conf. on Self-Adaptive and
Self-Organizing Systems Workshops, IEEE, USA, 2014, pp. 116–121.

[2] M. Balliu, M. Merro, M. Pasqua, M. Shcherbakov, Friendly fire: cross-app interactions in IoT platforms, ACM Trans. Priv. Secur. 24 (3) (2021) 16:1–16:40,
https://doi .org /10 .1145 /3444963.

[3] M. Miculan, M. Pasqua, A calculus for attribute-based memory updates, in: A. Cerone, P.C. Ölveczky (Eds.), Theoretical Aspects of Computing – ICTAC 2021,
Springer International Publishing, Cham, 2021, pp. 366–385.

[4] Y. Abd Alrahman, R. De Nicola, M. Loreti, On the power of attribute-based communication, in: E. Albert, I. Lanese (Eds.), Formal Techniques for Distributed
Objects, Components, and Systems, Springer Int. Pub., Cham, 2016, pp. 1–18.

[5] Y. Abd Alrahman, R. De Nicola, M. Loreti, Programming interactions in collective adaptive systems by relying on attribute-based communication, Sci. Comput.
Program. 192 (2020) 102428, https://doi .org /10 .1016 /j .scico .2020 .102428.

[6] E. Cohen, Information transmission in computational systems, Oper. Syst. Rev. 11 (1977) 133–139.
[7] M. Pasqua, M. Miculan, On the security and safety of abu systems, in: Proc. SEFM, in: Lecture Notes in Computer Science, vol. 13085, Springer, 2021, pp. 178–198.
[8] M. Pasqua, M. Miculan, Distributed programming of smart systems with event-condition-action rules (short paper), in: Proc. ICTCS, in: CEUR Workshop Pro-

ceedings, vol. 3284, CEUR-WS.org, 2022, pp. 201–206.
[9] M. Pasqua, M. Miculan AbU, A calculus for distributed event-driven programming with attribute-based interaction, Theor. Comput. Sci. 958 (2023) 113841,

https://doi .org /10 .1016 /J .TCS .2023 .113841.
[10] B. Givoni, Comfort, climate analysis and building design guidelines, Energy Build. 18 (1) (1992) 11–23.
[11] W. Diffie, M. Hellman, New directions in cryptography, IEEE Trans. Inf. Theory 22 (6) (1976) 644–654.
[12] G. Barthe, P.R. D’Argenio, T. Rezk, Secure information flow by self-composition, in: Proc. of CSF, 2004, pp. 100–114.
[13] M.R. Clarkson, F.B. Schneider, Hyperproperties, J. Comput. Secur. 18 (6) (2010) 1157–1210, http://dl .acm .org /citation .cfm ?id =1891823 .1891830.
[14] I. Mastroeni, M. Pasqua, Verifying bounded subset-closed hyperproperties, in: A. Podelski (Ed.), Static Analysis, Springer Int. Pub., Cham, 2018, pp. 263–283.
[15] A. Sabelfeld, A.C. Myers, A model for delimited information release, in: International Symposium - Software Security, ISSS, in: Lecture Notes in Computer

Science, vol. 3233, Springer, 2003, pp. 174–191.
[16] Y. Abd Alrahman, R. De Nicola, M. Loreti, F. Tiezzi, R. Vigo, A calculus for attribute-based communication, in: 30th Symposium on Applied Computing, ACM,

2015, pp. 1840–1845.
[17] R. De Nicola, D. Latella, A.L. Lafuente, M. Loreti, A. Margheri, M. Massink, A. Morichetta, R. Pugliese, F. Tiezzi, A. Vandin, The SCEL language: design,

implementation, verification, in: M. Wirsing, M. Hölzl, N. Koch, P. Mayer (Eds.), Soft. Eng. for Collective Autonomic Systems, vol. 8998, Springer, 2015,
pp. 3–71.

[18] S. Anderson, N. Bredeche, A. Eiben, G. Kampis, M. van Steen, Adaptive collective systems: herding black sheep, 2013.
[19] M. Balliu, I. Bastys, A. Sabelfeld, Securing IoT apps, IEEE Secur. Priv. 17 (5) (2019) 22–29, https://doi .org /10 .1109 /MSEC .2019 .2914190.
[20] Z.B. Celik, E. Fernandes, E. Pauley, G. Tan, P. McDaniel, Program analysis of commodity IoT applications for security and privacy: challenges and opportunities,

ACM Comput. Surv. 52 (4) (Aug. 2019), https://doi .org /10 .1145 /3333501.
21

[21] R. Focardi, R. Gorrieri, Classification of security properties (part I: information flow), in: FOSAD, FOSAD’00, Springer-Verlag, 2001, pp. 331–396.

http://refhub.elsevier.com/S0304-3975(24)00152-X/bib943741A0C1B6DDE9EA93096BA60E1D24s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib943741A0C1B6DDE9EA93096BA60E1D24s1
https://doi.org/10.1145/3444963
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib2368DCB49011F299854CE811A9104E8Cs1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib2368DCB49011F299854CE811A9104E8Cs1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib1B07E668A35A139ADB809FDDB9BF7877s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib1B07E668A35A139ADB809FDDB9BF7877s1
https://doi.org/10.1016/j.scico.2020.102428
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib469638E71E6420D909A7DF1815E8190Ds1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib9A520FB12A71E698726B9B9CD1C0F550s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib39C693E0F9FECF8BED8C02D49E95392Ds1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib39C693E0F9FECF8BED8C02D49E95392Ds1
https://doi.org/10.1016/J.TCS.2023.113841
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib0E87CEF47087C4E767001C1FFD175E11s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib853B960F8D1AC9A3DA6188283A241A36s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bibB64C90C50EDECA5E0136679B204C0ACAs1
http://dl.acm.org/citation.cfm?id=1891823.1891830
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib7F53DD5BC0C01EB331706C9DF3456BB5s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib17915C73B18FC6AEC2A55DDCE3A348C6s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib17915C73B18FC6AEC2A55DDCE3A348C6s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bibD40EACBD752957F5D4B807EBF7D2AAC4s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bibD40EACBD752957F5D4B807EBF7D2AAC4s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib194C1E0C82B0713F78565DF51FC85361s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib194C1E0C82B0713F78565DF51FC85361s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib194C1E0C82B0713F78565DF51FC85361s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bibD41DE01B92BE138136E773CF6559DA15s1
https://doi.org/10.1109/MSEC.2019.2914190
https://doi.org/10.1145/3333501
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib29D44DBE0D955EDEA3ADA8AD24B3E969s1

Theoretical Computer Science 998 (2024) 114537M. Pasqua and M. Miculan

[22] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, L. Jia, Some recipes can do more than spoil your appetite: analyzing the security and privacy risks of IFTTT
recipes, in: WWW’17, ACM, 2017, pp. 1501–1510.

[23] Z.B. Celik, P.D. McDaniel, G. Tan, Soteria: automated IoT safety and security analysis, in: USENIX, USENIX Association, Boston, MA, 2018, pp. 147–158, https://
www .usenix .org /conference /atc18 /presentation /celik.

[24] Z.B. Celik, G. Tan, P.D. McDaniel, IoTGuard: dynamic enforcement of security and safety policy in commodity IoT, in: NDSS, The Internet Society, 2019.
[25] H. Chi, Q. Zeng, X. Du, J. Yu, Cross-app interference threats in smart homes: categorization, detection and handling, in: 50th Int. Con. on Dependable Systems

and Networks, 2020, pp. 411–423.
[26] W. Ding, H. Hu, On the safety of IoT device physical interaction control, in: ACM CCS, CCS’18, ACM, 2018, pp. 832–846.
[27] D.T. Nguyen, C. Song, Z. Qian, S.V. Krishnamurthy, E.J.M. Colbert, P. McDaniel, IoTSan: Fortifying the Safety of IoT Systems, in: CoNEXT’18, ACM, 2018,

pp. 191–203.
[28] K. Hsu, Y. Chiang, H. Hsiao SafeChain, Securing trigger-action programming from attack chains, IEEE Trans. Inf. Forensics Secur. 14 (10) (2019) 2607–2622.
[29] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, A. Prakash, FlowFence: practical data protection for emerging IoT application frameworks, in:

USENIX, USENIX Association, 2016, pp. 531–548.
[30] Z.B. Celik, L. Babun, A.K. Sikder, H. Aksu, G. Tan, P.D. McDaniel, A.S. Uluagac, Sensitive information tracking in commodity IoT, in: USENIX, USENIX Association,

2018, pp. 1687–1704.
[31] I. Bastys, M. Balliu, A. Sabelfeld, If this then what? Controlling flows in IoT apps, in: ACM CCS, 2018, pp. 1102–1119.
[32] I. Bastys, F. Piessens, A. Sabelfeld, Tracking information flow via delayed output - addressing privacy in IoT and emailing apps, in: NordSec, in: LNCS, vol. 11252,

Springer, 2018, pp. 19–37.
[33] E. Fernandes, A. Rahmati, J. Jung, A. Prakash, Decentralized action integrity for trigger-action IoT platforms, in: NDSS, The Internet Society, 2018.
[34] C. Vannucchi, M. Diamanti, G. Mazzante, D.R. Cacciagrano, F. Corradini, R. Culmone, N. Gorogiannis, L. Mostarda, F. Raimondi, vIRONy: a tool for analysis and

verification of ECA rules in intelligent environments, in: Int. Conf. on Intell. Environ., S. Korea, IEEE, 2017, pp. 92–99.
[35] C. Vannucchi, M. Diamanti, G. Mazzante, D.R. Cacciagrano, R. Culmone, N. Gorogiannis, L. Mostarda, F. Raimondi, Symbolic verification of event-condition-

action rules in intelligent environments, J. Reliable Intell. Environ. 3 (2) (2017) 117–130, https://doi .org /10 .1007 /s40860 -017 -0036 -z.
[36] F. Corradini, R. Culmone, L. Mostarda, L. Tesei, F. Raimondi, A constrained ECA language supporting formal verification of WSNs, in: 2015 IEEE 29th Interna-

tional Conference on Advanced Information Networking and Applications Workshops, 2015, pp. 187–192.
[37] X. Jin, Y. Lembachar, G. Ciardo, Symbolic verification of ECA rules, in: D. Moldt (Ed.), Joint Proceedings of PNSE’13 and ModBE’13, Milano, Italy, vol. 989,

CEUR-WS.org, 2013, pp. 41–59, http://ceur -ws .org /Vol -989 /paper17 .pdf.
[38] D. Beyer, A. Stahlbauer, BDD-based software verification, Int. J. Softw. Tools Technol. Transf. 16 (5) (2014) 507–518, https://doi .org /10 .1007 /s10009 -014 -

0334 -1.
[39] J. Cano, G. Delaval, E. Rutten, Coordination of ECA rules by verification and control, in: E. Kühn, R. Pugliese (Eds.), Coordination Models and Languages,

Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 33–48.
[40] J.L. Newcomb, S. Chandra, J.-B. Jeannin, C. Schlesinger, M. Sridharan, IOTA: a calculus for Internet of things automation, in: New Ideas, New Paradigms, and

Reflections on Programming and Software, Onward!, 2017, pp. 119–133.
[41] C. Bodei, P. Degano, G.L. Ferrari, L. Galletta, Tracing where IoT data are collected and aggregated, Log. Methods Comput. Sci. 13 (3) (2017) 1–38, https://

doi .org /10 .23638 /LMCS -13(3 :5)2017.
[42] D.M. Volpano, C.E. Irvine, G. Smith, A sound type system for secure flow analysis, J. Comput. Secur. 4 (2/3) (1996) 167–188.
[43] S. Hunt, D. Sands, On flow-sensitive security types, in: Conf. Rec. of the 33rd Symposium on Principles of Programming Languages, POPL’06, ACM, New York,

NY, USA, 2006, pp. 79–90.
[44] M. Balliu, M. Merro, M. Pasqua, Securing cross-app interactions in IoT platforms, in: 32nd IEEE Computer Security Foundations Symposium, IEEE, Hoboken, NJ,

USA, 2019, pp. 319–334.
[45] F. Honsell, M. Miculan, A natural deduction approach to dynamic logic, in: Proc. TYPES, in: Lecture Notes in Computer Science, vol. 1158, Springer, 1995,

pp. 165–182.
[46] M. Miculan, On the formalization of the modal 𝜇-calculus in the calculus of inductive constructions, Inf. Comput. 164 (1) (2001) 199–231, https://doi .org /10 .

1006 /inco .2000 .2902.
[47] K. Chaudhuri, D. Doligez, L. Lamport, S. Merz, Verifying safety properties with the TLA+ proof system, in: International Joint Conference on Automated

Reasoning, Springer, 2010, pp. 142–148.
[48] A. Mansutti, M. Miculan, M. Peressotti, Multi-agent systems design and prototyping with bigraphical reactive systems, in: Proc. DAIS, in: Lecture Notes in
22

Computer Science, vol. 8460, Springer, 2014, pp. 201–208.

http://refhub.elsevier.com/S0304-3975(24)00152-X/bibD51420578DDCF669C1937D2C4683A03Es1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bibD51420578DDCF669C1937D2C4683A03Es1
https://www.usenix.org/conference/atc18/presentation/celik
https://www.usenix.org/conference/atc18/presentation/celik
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib7D30F5DDC2F3031686DBDC29E4867495s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib75DF1E658180449B98DE376FC33D9BC6s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib75DF1E658180449B98DE376FC33D9BC6s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib5C68BAC2A51FB2AE86F0BCE7BEC26B67s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib30211000A3226D36026063F52C49B079s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib30211000A3226D36026063F52C49B079s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bibC17232E5B8A34308D295FC9C26A90E2Cs1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib6F725CFAC43435412654C47440E16933s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib6F725CFAC43435412654C47440E16933s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib93CE35EB0A9618E7CF285318747F3630s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib93CE35EB0A9618E7CF285318747F3630s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib682FFC54EF501F4F3699D8C5C82B440Ds1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib2C05ACD4EFE5583071C4D241ABB49D50s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib2C05ACD4EFE5583071C4D241ABB49D50s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bibDCB8BC29F64DAC584493A0790E98F968s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib7A7D1E2BE18DE13B27EA5E34B30674C4s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib7A7D1E2BE18DE13B27EA5E34B30674C4s1
https://doi.org/10.1007/s40860-017-0036-z
http://refhub.elsevier.com/S0304-3975(24)00152-X/bibE6809D1BFD8DEA096F667D5E490EBAD8s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bibE6809D1BFD8DEA096F667D5E490EBAD8s1
http://ceur-ws.org/Vol-989/paper17.pdf
https://doi.org/10.1007/s10009-014-0334-1
https://doi.org/10.1007/s10009-014-0334-1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib0B80E50EF55387A5A72B7A047920F3AFs1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib0B80E50EF55387A5A72B7A047920F3AFs1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib8248C54931CBD044045E42ECA6C28FBAs1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib8248C54931CBD044045E42ECA6C28FBAs1
https://doi.org/10.23638/LMCS-13(3:5)2017
https://doi.org/10.23638/LMCS-13(3:5)2017
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib4D9CFBBBB0F78D1705C09BA39D32FF41s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bibCCEDBCC9AED385D0248AB6ABF5E31A0Es1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bibCCEDBCC9AED385D0248AB6ABF5E31A0Es1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib09BBED8560F62805419A8A0BAB11CCC3s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib09BBED8560F62805419A8A0BAB11CCC3s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib4A72A648FA9273C5F95AA3C956182051s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib4A72A648FA9273C5F95AA3C956182051s1
https://doi.org/10.1006/inco.2000.2902
https://doi.org/10.1006/inco.2000.2902
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib20471E186B54214596B784A77010D278s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bib20471E186B54214596B784A77010D278s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bibCBEF9BB7F95CC376CEF87B500DAF4845s1
http://refhub.elsevier.com/S0304-3975(24)00152-X/bibCBEF9BB7F95CC376CEF87B500DAF4845s1

	Behavioral equivalences for AbU: Verifying security and safety in distributed IoT systems
	1 Introduction
	2 Attribute-based memory updates in short
	2.1 AbU syntax and semantics
	2.2 AbU in action: IoT and security examples

	3 Behavioral equivalences for AbU systems
	3.1 A bisimulation for security
	3.2 An IoT-centric version of noninterference
	3.3 A bisimulation for safety
	3.4 On the compositionality of requirements

	4 Checking security and safety of AbU systems
	4.1 Verifying security
	4.2 Verifying safety
	4.3 On the completeness of the verification mechanisms

	5 Dealing with implicit interactions and declassification
	5.1 Implicit interactions
	5.2 Information declassification
	5.3 Advantages of the AbU model

	6 Related work
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Proofs
	A.1 Proofs of Section 4

	References

