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Attribute-based memory Updates (AbU in short) is an interaction mechanism recently introduced for 
adapting the Event-Condition-Action (ECA) programming paradigm to distributed reactive systems, 
such as autonomic and smart IoT device ensembles. In this model, an event (e.g., an input from 
a sensor, or a device state update) can trigger an ECA rule, whose execution can cause the state 
update of (possibly) many remote devices at once; the latter are selected “on the fly” by means of 
predicates over their state, without the need of a central coordinating entity.
However, the combination of different AbU systems may yield unexpected interactions, e.g., when 
a new device is added to an existing secure system, potentially hindering the security of the whole 
ensemble of devices. This can be critical in the IoT, where smart devices are more and more 
pervasive in our daily life.
In this paper, we consider the problem of ensuring security and safety requirements for AbU 
systems (and, in turn, for IoT devices). The first are a form of noninterference, as they correspond 
to avoid forbidden information flows (e.g., information flows violating confidentiality); while the 
second are a form of non-interaction, as they correspond to avoid unintended executions (e.g., 
leading to erroneous/unsafe states).
In order to formally model these requirements, we introduce suitable behavioral equivalences

for AbU. These equivalences are generalizations of hiding bisimilarity, i.e., a kind of weak 
bisimilarity where we can compare systems up to actions at different levels of security. Leveraging 
these behavioral equivalences, we propose (syntactic) sufficient conditions guaranteeing the 
requirements and, then, effective algorithms for statically verifying such conditions.

1. Introduction

In the Event-Condition-Action (ECA) programming paradigm, the behavior of a system is defined by a set of rules of the form “on

Event if Condition do Action” which means: when Event occurs, if Condition is verified then execute Action. Due to its reactive nature, 
this paradigm is well-suited for programming “smart” systems, such as in IoT scenarios [1,2]. ECA systems react to events (as inputs) 
from the environment by performing internal actions, that update the local state, and external actions, that influence the environment 
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itself. Due to their inherently simple yet powerful programming paradigm, all main platforms in the field of Home/Automotive IoT 
(e.g., IFTTT, Samsung SmartThings, Microsoft PowerAutomate, Zapier Zaps, etc.) adopt ECA rules.

Nevertheless, in these platforms, devices cannot directly execute the ECA rules nor directly interact with each other; instead, ECA 
rules are stored and executed on a central coordinator node (often deployed in the cloud, and reachable via the Internet), which 
collects the inputs from the devices and delivers the actions to be performed. Despite its simplicity, this architecture suffers from 
many issues. First, it does not scale well, due to the strongly centralized underlying infrastructure. Secondly, the availability depends 
on the central node, which may be offline or just unreachable due to network problems. Third, the transmission of user’s sensible 
information to remote, unknown, servers on possibly insecure channels raises privacy concerns. Finally, all this data transmission on 
the network introduces delays and increases energy consumption.

To mitigate these issues, the ECA paradigm has been recently extended with Attribute-based memory Updates (AbU) [3], a com-
munication mechanism designed for reactive and distributed programming, that is derived from Attribute-based Communication 
(AbC) [4,5]. In this model, nodes (e.g., IoT devices) can directly communicate with each other and self-coordinate, in a truly decen-
tralized setting, without the need of a central entity. Furthermore, ECA rules are deployed and executed directly on the nodes, thus 
computation moves from the cloud to the edge, akin fog computing. In particular, in AbU an event on a node can cause the update of 
the states of (possibly many) remote nodes, selected “on the fly” by means of ECA rule conditions. For instance, the following rule:

𝑙𝑜𝑔𝑖𝑛 ⋗@(𝑟𝑜𝑙𝑒 = ‘logger’) ∶ 𝑙𝑜𝑔← 𝑙𝑜𝑔 ⋅ 𝑡𝑖𝑚𝑒

means “when the (local) variable 𝑙𝑜𝑔𝑖𝑛 changes, on every node whose 𝑟𝑜𝑙𝑒 is ‘logger’ append my current (local) 𝑡𝑖𝑚𝑒 to the (remote) 
variable 𝑙𝑜𝑔”. Therefore, AbU allows us to propagate effects to collections of nodes at once, abstracting from their identities (or even 
their existence). Hence, AbU seamlessly combines the flexibility of a decentralized, property-driven interaction mechanism (à la AbC) 
with the simplicity of ECA rules. Attribute-based Communication, as well as popular interaction mechanisms used in smart systems 
(e.g., channels, agents, pub/sub, broadcast/multicast, etc.) [4,5], can be encoded in AbU [3].

Nevertheless, the simplicity and expressiveness of the AbU programming model comes to a price: the combination of different 
ECA rules may yield unexpected or unsecure interactions. This may happen when a new node or component is added to an existing 
system, or when two systems independently designed and implemented are joined in the same environment. For instance, adding 
rules publishing content on social networks from a folder on a file server could inadvertently disclose sensitive pictures, e.g., taken 
from a security camera, if these pictures are saved on the same folder. As another example, adding a controller that opens the 
window when the temperature is too high inside a room whose heater is remotely controlled—leading to the possibility to open the 
window when no one is at home, clearing the way for burglary. Therefore, an important problem is how to prevent these unwanted 
interactions between ECA rules.

In this paper, we focus on two kinds of security and safety requirements. The first is a form of noninterference [6]: we aim at 
assessing if an AbU system will never exhibit any information flow violating a given security policy. The second is a form of non-

interaction: we aim at assessing whether different nodes will not interact by acting on common resources in unexpected ways. This is 
a safety requirement, as we aim at avoiding unintended executions, possibly leading to erroneous or unsafe system states.

To formally model and reason about these requirements, we introduce suitable behavioral equivalences between AbU systems, 
following the approach of [2]. These equivalences, called hiding bisimilarities, are (weak) bisimulations hiding the observations that 
are not related to the requirements check (and that would trivially break the equivalence). However, we need to generalize the 
definition of [2] in order to deal with specific aspects of AbU. Indeed, an ECA rule in AbU may update at once resources at different 
levels of security; hence, we have to generalize hiding bisimilarity to compare observations involving different security levels at 
once. Leveraging these equivalences, we propose syntactic sufficient conditions and an algorithm to statically check noninterference 
and non-interaction of AbU systems.

Another aspect, peculiar of IoT scenarios, concerns the interaction with the physical environment. This can introduce implicit

interactions between resources that appear unrelated from the programmer’s point of view. For instance, we may have an interaction 
from the resource controlling a lamp to the resource reading the state of a light sensor; this interaction cannot be deducted from the 
analysis of the ECA rules alone. To deal with this issue, we extend our framework with a notion of semantic dependency, representing 
the implicit interactions given by the environment.

This paper is an extended version of [7,8]. With respect to this work, we generalized the bisimulations for security and safety 
presented in [7]. In particular, both bisimulations now consider also the inputs coming from the environment. Furthermore, the 
bisimulation for security and, hence, the noninterference definition, is given in terms of a generic security lattice, rather than 
the classic two-points (public/private) lattice as in [7]. The calculus of [8] has been extended with invariants, namely conditions 
that nodes have to fulfill during run-time. A new syntactic construct for specifying invariants has been added, together with the 
corresponding semantic rule. Security and safety requirements of [7] have been updated accordingly.

Furthermore, we added a notion of information declassification to the security requirement (i.e., to noninterference) presented 
in [7], adapting the proposed verification algorithm. The verification mechanisms for the security and safety requirements have 
been improved w.r.t. those presented in [7]. In particular, the algorithm for detecting information flows now computes also the 
system’s attack surface, i.e., the set of resources which can be exploited to carry out an attack. Finally, we added a discussion about 
the compositionality of the verification for the security requirement (i.e., of noninterference) presented in [7] and new examples to 
showcase the generality of the calculus presented in [8].

Synopsis In Section 2 we provide a short introduction to AbU, an ECA-inspired calculus extended with Attribute-based memory 
2

Updates. Then, in Section 3 we define some behavioral equivalences for AbU systems, to model two requirements which are crucial 
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when designing secure and safe IoT systems; while in Section 4 we propose two verification mechanisms to statically check the 
previously defined requirements. In Section 5 we deal with the problem of implicit resources interactions and the controlled release 
of sensitive information (i.e., information flows declassification); together with a discussion about the compositionality of the security 
requirement verification. Related work is discussed Section 6, and finally, in Section 7 we draw some conclusions and give directions 
for future work. Full proofs can be found in Appendix A.

2. Attribute-based memory updates in short

In this section we recall AbU [3,9], a calculus merging the simplicity of ECA programming with a powerful distributed commu-
nication mechanism, i.e., attribute-based memory updates. The latter allows a node to update at once the states of many nodes, which 
are selected by means of their attributes. Moreover, in this paper we extend the calculus presented in [3] with the possibility of 
specifying node invariants, i.e., predicates on each node’s state which must be always satisfied. This is useful to avoid erroneous or 
dangerous states, like forbidden trajectories in planning, deadlocks, inconsistent values, etc. These features are introduced without 
sacrificing coding simplicity: ECA rules are still used to program the devices. This programming model turns out to be well suited for 
IoT and smart devices, which can now interact and self-coordinate directly without any central controlling node. We will see some 
examples in Section 2.2.

2.1. AbU syntax and semantics

We present here an overview of the AbU calculus, the interested reader can find a more detailed description in [3,9]. An AbU 
system 𝖲 is basically a list of nodes which execute in parallel:

𝖲 ∶∶=𝑅, 𝜄⟨Σ,Θ⟩ ∣ 𝖲 ∥ 𝖲

Each node 𝑅, 𝜄⟨Σ, Θ⟩ consists of: a set 𝑅 of ECA rules; an invariant 𝜄, namely a boolean expression that the node must satisfy at runtime; 
a state Σ ∈𝕏 → 𝕍 , mapping resources 𝑥 ∈𝕏 to values 𝑣 ∈ 𝕍 ; an execution pool Θ ⊆ (𝕏 × 𝕍 )∗, that is a set Θ = {𝗎𝗉𝖽1, … , 𝗎𝗉𝖽𝑛} of lists 
of pairs of the form (𝑥1, 𝑣1) … (𝑥𝑚, 𝑣𝑚). Each list, called an update, represents a simultaneous multiple update waiting to be applied 
to the state. In the following we will denote the set of updates as 𝕌 = (𝕏 × 𝕍 )∗ =

⋃
𝑖∈ℕ(𝕏 × 𝕍 )𝑖.

The syntax of the rules is defined by the following grammar.

𝗋𝗎𝗅𝖾 ∶∶= 𝖾𝗏𝗍 ⋗ 𝖺𝖼𝗍, 𝗍𝖺𝗌𝗄 𝖼𝗇𝖽 ∶∶= 𝜑 | @𝜑

𝖾𝗏𝗍 ∶∶= 𝑥 | 𝖾𝗏𝗍 𝖾𝗏𝗍 𝜑, 𝜄 ∶∶= 𝚏𝚏 | 𝚝𝚝 | ¬𝜑 | 𝜑 ∧𝜑 | 𝜑 ∨𝜑 | 𝜀⋈ 𝜀

𝖺𝖼𝗍 ∶∶= 𝜖 | 𝑥← 𝜀 𝖺𝖼𝗍 | 𝑥← 𝜀 𝖺𝖼𝗍 𝜀 ∶∶= 𝑣 | 𝑥 | 𝑥 | 𝜀 ⊗ 𝜀

𝗍𝖺𝗌𝗄 ∶∶= 𝖼𝗇𝖽 ∶ 𝖺𝖼𝗍 𝑥 ∈𝕏 𝑣 ∈ 𝕍

An ECA rule 𝖾𝗏𝗍 ⋗ 𝖺𝖼𝗍, 𝗍𝖺𝗌𝗄 has a listening event 𝖾𝗏𝗍, which is a list of resources: when one of the resources in 𝖾𝗏𝗍 is modified, 
the rule is fired, namely the default action 𝖺𝖼𝗍 and 𝗍𝖺𝗌𝗄 are evaluated. Evaluation does not change the resource states immediately; 
instead, it yields update operations which are added to the execution pools, and applied later on. An action is a list of assignments 
of value expressions to local 𝑥 or remote 𝑥 resources. A task consists in a condition 𝖼𝗇𝖽 and an action 𝖺𝖼𝗍. A condition is a boolean 
expression, optionally prefixed with the modifier @: when @ is not present, the task is local; otherwise the task is remote. In local 
tasks, the condition is checked in the local node and, if it holds, the action is evaluated. For remote tasks, on every node where the 
condition holds, the action is evaluated. The evaluation of an action yields an update, which is added to the current node pool in 
the case of default actions and local tasks; and added to remote nodes pools in the case of remote tasks. In the following, in order to 
simplify the notation, when a rule has an empty default action we write 𝖾𝗏𝗍 ⋗ 𝗍𝖺𝗌𝗄 in place of 𝖾𝗏𝗍 ⋗ 𝜖, 𝗍𝖺𝗌𝗄. In the syntax for boolean 
expressions 𝜑 (and invariants 𝜄) and value expressions 𝜀 we left implicit comparison operators, e.g., ⋈∈ {<, ≤, >, ≥, =, ≠}, and binary 
operations, e.g., ⊗∈ {+, −, ∗, ∕}.

The (small-step) semantics of AbU is modeled as a labeled transition system 𝖲1
𝛼
←←←←←←→ 𝖲2 whose labels 𝛼 are given by the grammar:

𝛼 ∶∶= 𝑇 | 𝗎𝗉𝖽 ⊳𝑇 | 𝗎𝗉𝖽▸𝑇
Here, 𝑇 is a finite list of tasks and 𝗎𝗉𝖽 is an update. We have slightly modified the labels with respect to [3] since, in order to 
define the security and safety requirements, we need to observe which resources are updated. A transition can modify the state and 
the execution pool of the nodes but, at the same time, each node does not have a global knowledge about the system. The semantic 
rules are in Fig. 1. Rule (EXEC) executes an update picked from the pool; while rule (INPUT) models an external modification of some 
resources. The execution of an update, or the external change of resources, may trigger some rules of the nodes. Hence, after updating 
a node state, the node launches a discovery phase, for finding new updates to add to the local pool (or some pools of remote nodes), 
3

given by the activation of some rules.
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(EXEC)

𝗎𝗉𝖽 ∈Θ 𝗎𝗉𝖽 = (𝑥1, 𝑣1)…(𝑥𝑘, 𝑣𝑘) Σ′ = Σ[𝑣1∕𝑥1 …𝑣𝑘∕𝑥𝑘] Σ′ ⊧ 𝜄

Θ′′ = Θ ⧵ {𝗎𝗉𝖽} 𝑋 = {𝑥𝑖 | 𝑖 ∈ [1..𝑘] ∧ Σ(𝑥𝑖) ≠ Σ′(𝑥𝑖)}
Θ′ = Θ′′ ∪𝖣𝖾𝖿𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ′) ∪ 𝖫𝗈𝖼𝖺𝗅𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ′) 𝑇 = 𝖤𝗑𝗍𝖳𝖺𝗌𝗄𝗌(𝑅,𝑋,Σ′)

𝑅, 𝜄⟨Σ,Θ⟩ 𝗎𝗉𝖽⊳𝑇
←←←←←←←←←←←←←←←←←←←←←←←←→𝑅, 𝜄⟨Σ′,Θ′⟩

(EXEC-FAIL)
𝗎𝗉𝖽 ∈Θ 𝗎𝗉𝖽 = (𝑥1, 𝑣1)…(𝑥𝑘, 𝑣𝑘) Σ′ = Σ[𝑣1∕𝑥1 …𝑣𝑘∕𝑥𝑘] Σ′ ̸⊧ 𝜄 Θ′ = Θ ⧵ {𝗎𝗉𝖽}

𝑅, 𝜄⟨Σ,Θ⟩ 𝗎𝗉𝖽⊳𝑇
←←←←←←←←←←←←←←←←←←←←←←←←→𝑅, 𝜄⟨Σ,Θ′⟩

(INPUT)

𝑣1,… , 𝑣𝑘 ∈ 𝕍 Σ′ = Σ[𝑣1∕𝑥1 …𝑣𝑘∕𝑥𝑘] 𝑋 = {𝑥1,… , 𝑥𝑘}
Θ′ = Θ ∪𝖣𝖾𝖿𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ′) ∪ 𝖫𝗈𝖼𝖺𝗅𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ′) 𝑇 = 𝖤𝗑𝗍𝖳𝖺𝗌𝗄𝗌(𝑅,𝑋,Σ′)

𝑅, 𝜄⟨Σ,Θ⟩ (𝑥1 ,𝑣1)…(𝑥𝑘,𝑣𝑘 )▸𝑇
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑅, 𝜄⟨Σ′ ,Θ′⟩

(DISC)
Θ′′ = {�𝖺𝖼𝗍�Σ | ∃𝑖 ∈ [1..𝑛] . 𝗍𝖺𝗌𝗄𝑖 = 𝜑 ∶ 𝖺𝖼𝗍 ∧ Σ ⊧ 𝜑} Θ′ = Θ ∪Θ′′

𝑅, 𝜄⟨Σ,Θ⟩ 𝗍𝖺𝗌𝗄1…𝗍𝖺𝗌𝗄𝑛
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑅, 𝜄⟨Σ,Θ′⟩

(STEPL)
𝖲1

𝛼
←←←←←←→ 𝖲′1 𝖲2

𝑇
←←←←←←←→ 𝖲′2

𝖲1 ∥ 𝖲2
𝛼
←←←←←←→ 𝖲′1 ∥ 𝖲

′
2

𝛼∈{𝗎𝗉𝖽⊳𝑇 ,𝗎𝗉𝖽▸𝑇 } (STEPR)
𝖲1

𝑇
←←←←←←←→ 𝖲′1 𝖲2

𝛼
←←←←←←→ 𝖲′2

𝖲1 ∥ 𝖲2
𝛼
←←←←←←→ 𝖲′1 ∥ 𝖲

′
2

𝛼∈{𝗎𝗉𝖽⊳𝑇 ,𝗎𝗉𝖽▸𝑇 }

Fig. 1. Semantics of AbU calculus with invariants.

The discovery phase is composed by two parts, the local and the external one. A node 𝑅, 𝜄⟨Σ, Θ⟩ performs a local discovery by 
means of the functions 𝖣𝖾𝖿𝖴𝗉𝖽𝗌 and 𝖫𝗈𝖼𝖺𝗅𝖴𝗉𝖽𝗌, that add to the local pool Θ all updates originated by the activation of some rules in 
𝑅. The default updates are the updates originated from the default actions of active rules in 𝑅, namely:

𝖣𝖾𝖿𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ) ≜ {�𝖺𝖼𝗍�Σ | ∃𝖾𝗏𝗍 ⋗ 𝖺𝖼𝗍, 𝗍𝖺𝗌𝗄 ∈ 𝖠𝖼𝗍𝗂𝗏𝖾(𝑅,𝑋)}

where 𝖠𝖼𝗍𝗂𝗏𝖾(𝑅, 𝑋) is the set of rules in 𝑅 that listen on resources in 𝑋 and �𝖺𝖼𝗍�Σ is the evaluation of the action 𝖺𝖼𝗍 in the state Σ. The 
latter, it returns an update: �𝑥1 ← 𝜀1… 𝑥𝑛 ← 𝜀𝑛�Σ ≜ (𝑥1, �𝜀1�Σ) … (𝑥𝑛, �𝜀𝑛�Σ), where the evaluation semantics for value expressions 𝜀
is standard. The local updates are the updates originated from the tasks of the active rules in 𝑅 that act only locally (@ is not present 
in the tasks’ condition) and that satisfy the task’s condition, namely:

𝖫𝗈𝖼𝖺𝗅𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ) ≜ {�𝖺𝖼𝗍2�Σ | ∃𝖾𝗏𝗍 ⋗ 𝖺𝖼𝗍1, 𝜑 ∶ 𝖺𝖼𝗍2 ∈ 𝖠𝖼𝗍𝗂𝗏𝖾(𝑅,𝑋) .Σ ⊧ 𝜑}

The satisfiability relation is Σ ⊧ 𝜑 ≜ �𝜑�Σ = 𝗍𝗍, where the evaluation semantics for boolean expressions 𝜑 is standard as well.
The external discovery concerns tasks that contain the modifier @, hence an external node is needed to evaluate the task’s 

condition. When a node needs to evaluate a task involving external nodes, it partially evaluates the task (with its own state) and 
then it sends the partially evaluated task to all other nodes. The latter, receive the task and complete the evaluation, potentially 
adding updates to their pool. In particular, the partial evaluation of tasks works as follows. With {|𝗍𝖺𝗌𝗄|}Σ we denote the task obtained 
from 𝗍𝖺𝗌𝗄 with each occurrence of 𝑥 in the task’s condition and the right-hand sides of the assignments in task’s action replaced with 
the value Σ(𝑥). After that, each instance of 𝑥 in the task’s action is replaced with 𝑥 and the modifier @ is dropped. For instance, 
{|@(𝑥 ≤ 𝑥) ∶ 𝑦← 𝑥 + 𝑦|}[𝑥 ↦1 𝑦 ↦ 0] = (1 ≤ 𝑥) ∶ 𝑦 ← 1 + 𝑦.

Finally, the external tasks are the tasks of active rules in 𝑅 whose condition contains @ (i.e., tasks that require an external node 
to be evaluated), namely:

𝖤𝗑𝗍𝖳𝖺𝗌𝗄𝗌(𝑅,𝑋,Σ) ≜ {|𝗍𝖺𝗌𝗄1|}Σ…{|𝗍𝖺𝗌𝗄𝑛|}Σ
where for each 𝑖 ∈ [1..𝑛] there exists a rule 𝖾𝗏𝗍 ⋗ 𝖺𝖼𝗍, 𝗍𝖺𝗌𝗄𝑖 ∈ 𝖠𝖼𝗍𝗂𝗏𝖾(𝑅, 𝑋) such that 𝗍𝖺𝗌𝗄𝑖 =@𝜑 ∶ 𝖺𝖼𝗍.

Such discovery phase is launched by emitting the labels 𝗎𝗉𝖽 ⊳𝑇 , produced by the rule (EXEC), and 𝗎𝗉𝖽▸ 𝑇 , produced by the rule 
(INPUT). On the other side, when a node receives a list of tasks (executing the rule (DISC) with a label 𝑇 ) it evaluates them and it adds 
to its pool the actions generated by the tasks whose condition is satisfied. The rules (STEPL) and (STEPR), the latter needed to enforce 
symmetry, complete and synchronize (on all nodes in the system) a discovery phase originated by a state change of a node.

The semantics also checks the fulfillment of invariants. Indeed, the rule (EXEC) is applied only when the state modified by the 
update still satisfies the invariant (i.e., Σ′ ⊧ 𝜄); otherwise, rule (EXEC-FAIL) is applied. In this case, the update that would lead to a “bad” 
state is discarded and removed from the pool.

For each node, we define legal execution states the states satisfying the given invariant 𝜄, that is the set {Σ ∣ Σ ⊧ 𝜄}. We assume that 
an AbU system 𝖲 =𝑅1, 𝜄1⟨Σ1, Θ1⟩ ∥… ∥𝑅𝑛, 𝜄𝑛⟨Σ𝑛, Θ𝑛⟩ starts its execution on legal states only, namely for all 𝑖 ∈ [1..𝑛] we have that 
Σ𝑖 ⊧ 𝜄𝑖 at the beginning of the computation.

2.2. AbU in action: IoT and security examples

Drone swarm Consider an IoT scenario where a swarm of drones is in charge of taking specific measurements, randomly picked in 
a large uninhabited area. Each drone is equipped with a battery that periodically needs to be recharged by returning to a docking 
4

station. It may happen that a drone runs out of energy before returning to the charging spot. In this case, the low-battery drone asks 
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for help from its neighbors. If a drone has some energy to share and it is close enough to the requester, it will enter the “rescue 
mode”. We can model this scenario in AbU as follows (without the energy transfer phase, due to space reasons).

Suppose we have four drones. For each drone we have an AbU node with a resource 𝑏𝑎𝑡𝑡𝑒𝑟𝑦, indicating the battery level of the 
drone; a resource 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, indicating where is located the drone; a resource 𝑚𝑜𝑑𝑒, indicating in which operative state is the drone; 
and a resource ℎ𝑒𝑙𝑝𝑃 𝑜𝑠, indicating the position of a drone that needs help. Formally, the AbU system modeling the drone-swarm 
scenario is 𝖲1 ∥ 𝖲2 ∥ 𝖲3 ∥ 𝖲4, where

𝖲1 =𝑅⟨Σ1,∅⟩, 𝖲2 =𝑅⟨Σ2,∅⟩, 𝖲3 =𝑅⟨Σ3,∅⟩, 𝖲4 =𝑅⟨Σ4,∅⟩
and 𝑅 contains, among the others, the following two AbU rules:

𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ⋗@(𝑏𝑎𝑡𝑡𝑒𝑟𝑦 < 5 ∧ 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 > 80) ∶ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠← 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (1)

ℎ𝑒𝑙𝑝𝑃 𝑜𝑠 ⋗ (|𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛− ℎ𝑒𝑙𝑝𝑃 𝑜𝑠| < 7.0) ∶𝑚𝑜𝑑𝑒← ‘rescue’ (2)

Now suppose that the execution states of the drones are the following:

Σ1 = [𝑏𝑎𝑡𝑡𝑒𝑟𝑦↦5 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛↦2.0 𝑚𝑜𝑑𝑒↦ ‘measure’ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠↦0.0]

Σ2 = [𝑏𝑎𝑡𝑡𝑒𝑟𝑦↦81 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛↦15.0 𝑚𝑜𝑑𝑒↦ ‘measure’ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠↦0.0]

Σ3 = [𝑏𝑎𝑡𝑡𝑒𝑟𝑦↦97 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛↦6.0 𝑚𝑜𝑑𝑒↦ ‘measure’ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠↦0.0]

Σ4 = [𝑏𝑎𝑡𝑡𝑒𝑟𝑦↦65 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛↦8.0 𝑚𝑜𝑑𝑒↦ ‘measure’ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠↦0.0]

The rule (1) says that when the current drone battery level is low (𝑏𝑎𝑡𝑡𝑒𝑟𝑦 < 5), then the current drone has to send to all (@) 
neighbors with some energy to share (𝑏𝑎𝑡𝑡𝑒𝑟𝑦 > 80) its position, performing a remote update (ℎ𝑒𝑙𝑝𝑃 𝑜𝑠← 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛). Suppose that 
the battery level of the first drone decreases by 1. Then, the first node can fire the rule (1), since its battery level is low. It pre-
evaluates the task condition, yielding (4 < 5 ∧ 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 > 80), which is sent to the other nodes, together with the pre-evaluation 
of the task action, i.e., ℎ𝑒𝑙𝑝𝑃 𝑜𝑠 ← 2.0. Formally, the rule (INPUT) is applied on 𝖲1, namely 𝑅⟨Σ1,∅⟩ (𝑏𝑎𝑡𝑡𝑒𝑟𝑦,4)▸𝑇

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑅⟨Σ′
1,∅⟩, where 

Σ′
1 = [𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ↦4 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ↦2.0 𝑚𝑜𝑑𝑒 ↦ ‘measure’ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠 ↦0.0] and 𝑇 = (4 < 5 ∧ 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 > 80) ∶ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠 ← 2.0. Among all 

receivers, only the second and the third nodes are interested in the communication, since they are the only drones with battery level 
greater than 80. So they both add to their pool the update (ℎ𝑒𝑙𝑝𝑃 𝑜𝑠, 2.0). Formally, the rule (DISC) is applied on 𝖲2, 𝖲3 and 𝖲4, but 
only on 𝖲2 and 𝖲4 it has some effect, namely 𝑅⟨Σ2,∅⟩ 𝑇

←←←←←←←←→𝑅⟨Σ2,Θ⟩ and 𝑅⟨Σ3,∅⟩ 𝑇
←←←←←←←←→𝑅⟨Σ3,Θ⟩, where Θ = {(ℎ𝑒𝑙𝑝𝑃 𝑜𝑠, 2.0)}. Indeed, 

since 𝖲4 is not interested in the communication, we have 𝑅⟨Σ4,∅⟩ 𝑇
←←←←←←←←→𝑅⟨Σ3,∅⟩. This ends the discovery phase originated by the first 

node. Now, the second and the third nodes can apply an execution step, since their pools are not empty, possibly triggering the rule 
(2). The rule (2), is fired when a drone receives a help request (i.e., when its resource ℎ𝑒𝑙𝑝𝑃 𝑜𝑠 changes) and basically checks if the 
current drone position is close to the requester position (|𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − ℎ𝑒𝑙𝑝𝑃 𝑜𝑠| < 7.0). If it is the case, the current drone enters the 
rescue mode performing a local update (𝑚𝑜𝑑𝑒 ← ‘rescue’). In the example, when the second and the third nodes execute the update 
(ℎ𝑒𝑙𝑝𝑃 𝑜𝑠, 2.0), the task of the rule (2) may be executed. For the second node this does not happen, since |15.0 −2.0| < 7.0 is not true 
(the node is too far from the first node). Instead, |6.0 − 2.0| < 7.0 and the third node can execute the rule task, adding to its pool 
the update (𝑚𝑜𝑑𝑒, ‘rescue’). Formally, suppose that 𝖲2 is chosen for execution, namely we have 𝑅⟨Σ2,Θ⟩ (ℎ𝑒𝑙𝑝𝑃 𝑜𝑠,2.0)⊳𝜖

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑅⟨Σ′
2,∅⟩, by 

applying the rule (EXEC), and Σ′
2 = [𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ↦81 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ↦15.0 𝑚𝑜𝑑𝑒 ↦ ‘measure’ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠 ↦2.0]. In this case, no further rule is 

triggered by the executed update, hence there are no external tasks (denote with 𝜖 in the transition label) and there is nothing to add 
to the node’s local pool. Instead, when 𝖲3 performs the execution step, we have that 𝑅⟨Σ3,Θ⟩ (ℎ𝑒𝑙𝑝𝑃 𝑜𝑠,2.0)⊳𝜖

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑅⟨Σ′
3,Θ

′⟩, by applying 
the rule (EXEC), with Σ′

3 = [𝑏𝑎𝑡𝑡𝑒𝑟𝑦 ↦97 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ↦6.0 𝑚𝑜𝑑𝑒 ↦ ‘measure’ ℎ𝑒𝑙𝑝𝑃 𝑜𝑠 ↦2.0] and Θ′ = {(𝑚𝑜𝑑𝑒, ‘rescue’)}. In this case, the 
execution of the update triggers the rule (2), that it adds an update to the node’s local pool (but no external tasks are generated).

Smart HVAC system In this example, we provide an AbU implementation of a Heating, Ventilation and Air Conditioning (HVAC) 
system, that makes use of device invariants. In this scenario we have three devices connected through a network: the HVAC control 
system, a temperature sensor, and a humidity sensor. To distinguish the devices, a logical resource 𝑛𝑜𝑑𝑒 is used, which takes the 
values ‘system’, ‘tempSens’ and ‘humSens’ on the HVAC control system, the temperature sensor and the humidity sensor, respectively. 
We model such scenario in AbU as follows. The execution state for the HVAC control system is:

Σ𝑠 = [ℎ𝑒𝑎𝑡𝑖𝑛𝑔↦𝚏𝚏 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔↦𝚏𝚏 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒↦0 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦↦0 𝑎𝑖𝑟𝐵𝑢𝑡𝑡𝑜𝑛↦𝚏𝚏 𝑛𝑜𝑑𝑒↦ ‘system’]

while its ECA rules 𝑅𝑠 are:

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ⋗ (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < 18) ∶ ℎ𝑒𝑎𝑡𝑖𝑛𝑔← 𝚝𝚝 (3)

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ⋗ (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 27) ∶ ℎ𝑒𝑎𝑡𝑖𝑛𝑔← 𝚏𝚏 (4)

ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ⋗
(2 + 0.5 ∗ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 ∧ 38 − 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦) ∶ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔← 𝚝𝚝 (5)
5

𝑎𝑖𝑟𝐵𝑢𝑡𝑡𝑜𝑛 ⋗ (𝑎𝑖𝑟𝐵𝑢𝑡𝑡𝑜𝑛 = 𝚝𝚝) ∶ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔← 𝚏𝚏 (6)
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The HVAC control system activates heating and air conditioning according to the values of temperature and humidity, received by 
the sensors. In particular, when the temperature is lower than 18 ◦𝐶 (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < 18) the rule (3) activates the heating (ℎ𝑒𝑎𝑡𝑖𝑛𝑔←
𝚝𝚝). Instead, when the temperature is greater than 27 ◦𝐶 (𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 > 27), then the rule (4) deactivates the heating (ℎ𝑒𝑎𝑡𝑖𝑛𝑔← 𝚏𝚏). 
The air conditioning is turned on (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔← 𝚝𝚝), by means of the rule (5), when the humidity exceeds the upper bound of the 
Givoni’s comfort zone [10].

Instead, the execution state for the temperature and the humidity sensors are:

Σ𝑡 = [𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒↦19 𝑛𝑜𝑑𝑒↦ ‘tempSens’]

Σℎ = [ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦↦40 𝑛𝑜𝑑𝑒↦ ‘humSens’]

while their ECA rules are:

𝑅𝑡 ≜ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ⋗@(𝑛𝑜𝑑𝑒 = ‘system’) ∶ 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒← 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (7)

𝑅ℎ ≜ ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 ⋗@(𝑛𝑜𝑑𝑒 = ‘system’) ∶ ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦← ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 (8)

The rule (7) on the temperature sensor device is simply responsible of signaling changes to the resource 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 to the HVAC 
control system, by selecting all devices that have 𝑛𝑜𝑑𝑒 equals to ‘system’; while the rule (8) does the same for the resource ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦
on the humidity sensor device.

The HVAC control system is also bestowed with a physical button for manually stopping the air conditioning. Indeed, the rule (6)
stops the air conditioning (𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔← 𝚏𝚏) when the button is pressed (𝑎𝑖𝑟𝐵𝑢𝑡𝑡𝑜𝑛 is 𝚝𝚝). Finally, by means of the invariant

𝜄𝑠 = ¬(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 ∧ ℎ𝑒𝑎𝑡𝑖𝑛𝑔)

on the HVAC control system device we specify that no update can result in the activation of both heating and air conditioning 
simultaneously. The complete AbU system is:

𝑅𝑠, 𝜄𝑠⟨Σ𝑠,∅⟩ ∥𝑅𝑡,𝚝𝚝⟨Σ𝑡,∅⟩ ∥𝑅ℎ,𝚝𝚝⟨Σℎ,∅⟩
Note that, the same problem can be modeled by means of a single device, embedding the two sensors and the control system. We 

can model this scenario in AbU with a single device comprising all resources introduced so far and transforming remote rules into 
local ones. This highlights the flexibility of AbU, that is able to model both distributed and centralized ensembles of devices.

Diffie-Hellman key exchange In this last example, we model a well-known security protocol in AbU, that is, the Diffie-Hellman 
key exchange [11]. In such protocol, two parties, Alice and Bob, aim at securely exchange on an untrusted channel a (symmetric) 
cryptographic key, to be used in subsequent (secured) communications. Very briefly, the two parties agree on a prime number 𝑃
and a primitive root 𝐺 modulo 𝑃 (that may be public). At the beginning of the protocol, Alice and Bob secretly chose an integer 
number each, say 𝑝𝐴 and 𝑝𝐵 , and compute a partial key each, say 𝑋𝐴 =𝐺𝑝𝐴 mod 𝑃 and 𝑋𝐵 =𝐺𝑝𝐵 mod 𝑃 . Then, they exchange the 
partial keys and secretly compute the final shared key 𝑘𝑒𝑦 =𝑋𝐵

𝑝𝐴 mod 𝑃 =𝑋𝐴
𝑝𝐵 mod 𝑃 . In AbU, we define a system with two nodes 

𝖲 =𝑅⟨Σ𝐴, ∅⟩ ∥𝑅⟨Σ𝐵, ∅⟩ with the following initial states:

Σ𝐴 = [𝐺↦3 𝑃↦7 𝑛𝑜𝑑𝑒↦ ‘Alice’ 𝑝𝑎𝑟𝑡𝑦↦ ‘Bob’ 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒↦𝚝𝚝 𝑝ℎ𝑎𝑠𝑒1↦𝚏𝚏 𝑝ℎ𝑎𝑠𝑒2↦𝚏𝚏]

Σ𝐵 = [𝐺↦3 𝑃↦7 𝑛𝑜𝑑𝑒↦ ‘Bob’ 𝑝𝑎𝑟𝑡𝑦↦ ‘Alice’ 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒↦𝚏𝚏 𝑝ℎ𝑎𝑠𝑒1↦𝚏𝚏 𝑝ℎ𝑎𝑠𝑒2↦𝚏𝚏]

Each state contains a resource 𝑛𝑜𝑑𝑒, indicating the name of the party it represents (Alice or Bob) and a resource 𝑝𝑎𝑟𝑡𝑦, indicating 
the name of the other party (Bob or Alice). The other resources relate to the Diffie-Hellman protocol, in particular, 𝐺 is the primitive 
root modulo a prime number 𝑃 , on which the two parties agree on. Furthermore, both states comprise the following uninitialized1

resources: 𝑝, 𝑋, 𝑌 , 𝑘𝑒𝑦. The rules 𝑅 for the key exchange protocols are the following:

𝑝 ⋗ (𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 ≠ 𝚝𝚝) ∶𝑋← (𝐺𝑝 mod 𝑃 ) newPrime

𝑝 ⋗ (𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 = 𝚝𝚝) ∶𝑋← (𝐺𝑝 mod 𝑃 ) 𝑝ℎ𝑎𝑠𝑒1← 𝚝𝚝 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒← 𝚏𝚏 newPrimeWithExchange

𝑝ℎ𝑎𝑠𝑒1⋗@(𝑝ℎ𝑎𝑠𝑒1 = 𝚝𝚝 ∧ 𝑛𝑜𝑑𝑒 = 𝑝𝑎𝑟𝑡𝑦) ∶ 𝑌 ←𝑋 𝑝ℎ𝑎𝑠𝑒1← 𝚏𝚏 𝑝ℎ𝑎𝑠𝑒2← 𝚝𝚝 exchangePhase1

𝑝ℎ𝑎𝑠𝑒2⋗@(𝑝ℎ𝑎𝑠𝑒2 = 𝚝𝚝 ∧ 𝑛𝑜𝑑𝑒 = 𝑝𝑎𝑟𝑡𝑦) ∶ 𝑌 ←𝑋 𝑝ℎ𝑎𝑠𝑒2← 𝚏𝚏 exchangePhase2

𝑌 ⋗ (𝚝𝚝) ∶ 𝑘𝑒𝑦← (𝑋𝑌 mod 𝑃 ) computeKey

The first two rules are used when a new integer number is generated by the parties. We have two different rules here since one of 
the party should start the protocol, but not both (as happens also in the Diffie-Hellman protocol, a form of synchronization between 
the parties is needed). Hence, one party (the one having 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 equals to 𝚝𝚝) generates its partial key and starts the protocol 
setting 𝑝ℎ𝑎𝑠𝑒1 to 𝚝𝚝, while the other one just generates its partial key without performing any further update (phases basically 
6

1 Uninitialized resources here means that we do not care about the initial value of such resources.
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simulate session information). The third rule executes the first exchange of the partial key, that is saved in the resource 𝑌 of the 
other device, and sets 𝑝ℎ𝑎𝑠𝑒2 to 𝚝𝚝 on the other device. The fourth rule executes the second exchange of the partial key, completing 
the protocol. When the resource 𝑌 in one of the party is changed, meaning that a partial key is received, the device can readily 
compute (in parallel) the shared key by means of the last ECA rule.

3. Behavioral equivalences for AbU systems

In this section, we provide a semantic characterization of security and safety requirements for AbU systems, based on the notion 
of bisimulation. The security requirement we aim to assess is a form of noninterference [6], adapted to AbU systems. In particular, 
given a security policy defining the allowed information flow between resources, we aim at assessing whether an AbU system is 
secure, namely if it does not exhibit forbidden information flows (for instance, a flow from a confidential resource to a public one). 
Concerning the safety requirement, we consider the following scenario, quite common in the IoT world. We have some nodes, 
equipped with some ECA rules, whose behavior is known and safe for the user, and we have another node, also safe for the user. Is 
the ensemble of all such nodes still safe? This is a sort of non-interaction check, namely, we check whether different nodes interact 
with each other by acting on common resources in a way not intended by the user (leading to possibly inconsistent states).

We define formally these requirements by means of suitable behavioral equivalences between AbU systems, following (and gen-
eralizing) the approach of [2]. Intuitively, we aim at defining two bisimulations that capture, semantically, the security and safety 
requirements. To do so, we need a particular (weak) bisimulation hiding the system labels that are not related to the requirements 
check, and that would trivially break the bisimulation.

In particular, a hiding bisimulation makes non-observable all labels from a given set of labels, hence called hidden. Differently 
from [2], where labels can be either hidden or fully observable, in our approach we can also specify labels that are partially observable. 
Here partially means that we can fix an abstraction on what we can observe about not hidden labels. In other words, partially 
observable labels can be mimicked in the bisimulation game by other labels which are observationally equivalent, fixed a given 
labels abstraction.

Formally, let  be the set of all AbU system labels and ℎ ∈  → ∪ {⋄} a function. We denote with ←←→ℎ the relation involving any 
possible hidden label, i.e., ←←→ℎ≜

⋃
{ 𝛼
←←←←←←→ | ℎ(𝛼) = ⋄}, and with ⇒ℎ its transitive closure, i.e., ⇒ℎ≜ ←←→∗

ℎ
. Then, 

𝛼
⇒ℎ≜⇒ℎ

𝛼
←←←←←←→⇒ℎ means 

that we can perform an arbitrary, possibly empty, sequence of hidden labels, but at least one observable 𝛼 label must be present.

Definition 1 (Hiding bisimulation). Let ℎ ∈  →  ∪ {⋄} be a function. A symmetric relation  between AbU systems is a hiding 
bisimulation w.r.t. ℎ, if and only if for all 𝖲1  𝖲2 and 𝖲1

𝛼
←←←←←←→ 𝖲′1 we have:

• if ℎ(𝛼) = ⋄ then 𝖲2 ⇒ℎ 𝖲
′
2, for some 𝖲2, with 𝖲′1  𝖲′2

• if ℎ(𝛼) ≠ ⋄ then 𝖲2
𝛽

⇒ℎ 𝖲
′
2, for some 𝛽 and 𝖲2, with ℎ(𝛼) =ℎ(𝛽) and 𝖲′1  𝖲′2

and dually for 𝖲2
𝛼
←←←←←←→ 𝖲′2. We say that two AbU systems 𝖲1 and 𝖲2 are hiding bisimilar with respect to ℎ, written 𝖲1 ≈ℎ 𝖲2, if 𝖲1  𝖲2

for some hiding bisimulation , w.r.t. ℎ.

3.1. A bisimulation for security

In real situations (e.g., IoT systems), resources may have different security clearance: e.g., a security camera should definitely not 
leak any information to a resource that publicly hosts pictures on Internet. In the following, we assume a security policy  ∈𝕏 → SL, 
which associates each resource used by an AbU system with a security level 𝓁 ∈ SL, taken from a complete lattice ⟨SL, ⊑, ⊔, ⊓, ⊤, ⊥⟩. 
The lattice consists of a set SL of security levels, an ordering relation ⊑, the join ⊔ and meet ⊓ operators, as well as a top security 
level ⊤ and a bottom security level ⊥. For the sake of simplicity, in the following examples we will consider the standard two-points 
security lattice {𝖫, 𝖧}, where the bottom is 𝖫, representing public data, and the top is 𝖧, representing confidential data. The goal is to 
achieve classic noninterference [6] results stating that an AbU system is interference-free w.r.t. a given security level 𝓁 if its resources 
with clearance 𝓁 or lower are not affected by changes occurring at its resources with clearance 𝓁′ or greater, for a security level 𝓁′

(strictly) greater than 𝓁. So, information can securely flow from a resource 𝑥 to a resource 𝑦 if2 (𝑥) ⊑ (𝑦).
A security policy  induces an equivalence relation between states. Given two states Σ1 and Σ2, we say that they are 𝓁-equivalent 

if they agree on the values associated to all resources with security at most 𝓁.

Definition 2 (𝓁-equivalence). Let  ∈ 𝕏 → SL be a security policy and 𝓁 ∈ SL. We say that the AbU nodes states Σ1 and Σ2 are 
𝓁-equivalent, written Σ1 ≡𝓁 Σ2, if for each resource 𝑥 ∈𝕏 such that (𝑥) ⊑ 𝓁, it is Σ1(𝑥) = Σ2(𝑥).

We can easily extend this notion to arbitrary sets of states yielding from an AbU system. Given an AbU system 𝖲 =
𝑅1, 𝜄1⟨Σ1, Θ1⟩ … 𝑅𝑛, 𝜄𝑛⟨Σ𝑛, Θ𝑛⟩, its state set is Σ = {Σ1, … , Σ𝑛}, comprising the states of all nodes in 𝖲 (we implicitly assume a corre-

spondence between the 𝑖th node in 𝖲 and its corresponding state Σ𝑖 in Σ). In this setting, the state set Σ is 𝓁-equivalent to another 
7

2 The ordering ⊑ for the two-points lattice is trivially defined as: {(𝖫, 𝖫), (𝖫, 𝖧), (𝖧, 𝖧)}.
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state set Σ
′
= {Σ′

1, … , Σ′
𝑛
} when for all 𝑖 ∈ [1..𝑛] we have that Σ𝑖 ≡𝓁 Σ′

𝑖
. In other words, two state sets are 𝓁-equivalent when they are 

element-wise 𝓁-equivalent. We abuse notation by using the symbol ≡𝓁 for both 𝓁-equivalence of states and state sets.
As discussed at the beginning of the section, the goal is to formalize a bisimulation-based notion of noninterference. Intuitively, 

the runtime behavior at the security level 𝓁 or below of an interference-free AbU system does not change when we vary only resources 
with security clearance greater than 𝓁. Similarly to what has been done in [2], a notion of hiding bisimilarity can be used to hide (but 
not to suppress) labels involving changes affecting resources at security level 𝓁 or below. In particular, only the updates involving 
resources with clearance greater than 𝓁 must be hidden, while the updates involving resources with clearance 𝓁 or below must be 
fully observable. Finally, updates with mixed resources must be partially observable (we need to make observable assignments to 
resources at security level 𝓁 or below only). We use the hiding bisimulation of Definition 1, with a specific function ℎ, to define 
noninterference for AbU sets of rule lists and, in turn, for AbU systems.

Given a security level 𝓁, we can define a projection function (⋅)⇂𝓁 ∶ (𝕏 × 𝕍 )∗ → (𝕏 × 𝕍 )∗ that given an update 𝗎𝗉𝖽 returns its 
projection 𝗎𝗉𝖽⇂𝓁 on assignments to resources at security level 𝓁 or below only:

(𝜖)⇂𝓁 = 𝜖 ((𝑥, 𝑣)𝗎𝗉𝖽)⇂𝓁 =

{
(𝑥, 𝑣) (𝗎𝗉𝖽)⇂𝓁 if (𝑥) ⊑ 𝓁

(𝗎𝗉𝖽)⇂𝓁 otherwise.

Now let ℎ𝓁 be a function hiding discovery labels and execution or input labels involving only resources with clearance greater than 
𝓁, and projecting execution or input labels involving mixed resources on their assignments to resources at security level 𝓁 or below 
only. Formally:

ℎ𝓁(𝛼) ≜
⎧⎪⎨⎪⎩
⋄ if 𝛼 = 𝑇

⋄ if 𝛼 = 𝗎𝗉𝖽 ⊳𝑇 or 𝛼 = 𝗎𝗉𝖽▸𝑇 and (𝗎𝗉𝖽)⇂𝓁 = 𝜖

(𝗎𝗉𝖽)⇂𝓁 if 𝛼 = 𝗎𝗉𝖽 ⊳𝑇 or 𝛼 = 𝗎𝗉𝖽▸𝑇 and (𝗎𝗉𝖽)⇂𝓁 ≠ 𝜖

Indeed, when (𝗎𝗉𝖽)⇂𝓁 = 𝜖 we have that all resources in 𝗎𝗉𝖽 have security level greater than 𝓁, namely 𝗎𝗉𝖽 = (𝑥1, 𝑣1) … (𝑥𝑘, 𝑣𝑘) and 
𝓁 ⊏

�
𝑖∈[1..𝑘](𝑥𝑖). Dually, when (𝗎𝗉𝖽)⇂𝓁 ≠ 𝜖 we have that at least one resource in 𝗎𝗉𝖽 has security level less or equal than 𝓁, namely 

𝗎𝗉𝖽 = (𝑥1, 𝑣1) … (𝑥𝑘, 𝑣𝑘) and 
�
𝑖∈[1..𝑘](𝑥𝑖) ⊑ 𝓁. Note that, when an update 𝗎𝗉𝖽 involves resources with clearance at most 𝓁 only, we 

have that (𝗎𝗉𝖽)⇂𝓁 = 𝗎𝗉𝖽, hence the label is fully observable (no abstraction). We call ℎ𝓁 the hiding function for 𝓁-noninterference.
In the following definition, and in the rest of the paper, we make use of some auxiliary notions. Given an AbU system 𝖲 =

𝑅1, 𝜄1⟨Σ1, Θ1⟩ … 𝑅𝑛, 𝜄𝑛⟨Σ𝑛, Θ𝑛⟩, its rule list set is 𝑅= {𝑅1, … , 𝑅𝑛}, comprising the rule lists of all nodes in 𝖲, while its invariants set is 
𝜄 = {𝜄1, … , 𝜄𝑛}, comprising the invariants of all nodes in 𝖲 (again, we implicitly assume a correspondence between the 𝑖-th node in 𝖲
and its corresponding rule list 𝑅𝑖 in 𝑅 and its invariant 𝜄𝑖 in 𝜄).

Given a rule list set 𝑅 = {𝑅1, … , 𝑅𝑛} and an invariants set 𝜄 = {𝜄1, … , 𝜄𝑛}, we define 𝖼𝗈𝗆𝗉(𝑅, 𝜄) as the set comprising all possible 
state sets compatible with 𝑅 and 𝜄. Compatibility here means that states are defined for all and only the resources present in the 
rules and such states are legal for rule invariants. Formally, a state set Σ is compatible with 𝑅 and 𝜄, i.e., Σ ∈ 𝖼𝗈𝗆𝗉(𝑅, 𝜄) when for all 
𝑖 ∈ [1..𝑛] we have:

dom(Σ𝑖) = vars(𝑅𝑖) and Σ𝑖 ⊧ 𝜄𝑖

We also need a “system initialization” function 𝗌𝗒𝗌(𝑅, 𝜄, Σ) that takes a rule list set, invariants set and a (compatible) state set and 
returns an AbU system with all pools empty. Formally, given 𝑅 = {𝑅1, … , 𝑅𝑛}, 𝜄 = {𝜄1, … , 𝜄𝑛} and Σ = {Σ1, … , Σ𝑛} ∈ 𝖼𝗈𝗆𝗉(𝑅, 𝜄), we 
define 𝗌𝗒𝗌(𝑅, 𝜄, Σ) =𝑅1, 𝜄1⟨Σ1, ∅⟩ ∥… ∥𝑅𝑛, 𝜄𝑛⟨Σ𝑛, ∅⟩.
Definition 3 (AbU 𝓁-noninterference). Let  ∈ 𝕏 → SL be a security policy and 𝓁 ∈ SL. We say that the AbU rule list set 𝑅 =
{𝑅1, … , 𝑅𝑛} and invariants set 𝜄 are 𝓁-level interference-free, written 𝓁-𝖭𝖨(𝑅, 𝜄), whenever:

∀Σ,Σ
′
∈ 𝖼𝗈𝗆𝗉(𝑅, 𝜄) .Σ ≡𝓁 Σ

′
⟹ 𝗌𝗒𝗌(𝑅, 𝜄,Σ) ≈ℎ𝓁

𝗌𝗒𝗌(𝑅, 𝜄,Σ
′
)

3.2. An IoT-centric version of noninterference

The mere initialization of 𝖧-level (e.g., confidential) resources might activate a rule, thus leaking information about the occur-

rence/presence of a confidential event. The noninterference of Definition 3 ignores such presence leaks, as it is commonly done in 
language-based security. This design choice is usually justified by the fact that it increases the permissiveness of the enforcement 
mechanisms, but it is not a realistic assumption in the IoT context.

Example 1. Consider the following AbU rule:

𝑚𝑜𝑡𝑖𝑜𝑛 ⋗ (00∶00< 𝑡𝑖𝑚𝑒 ∧ 𝑡𝑖𝑚𝑒 < 06∶00) ∶ 𝑙𝑖𝑔ℎ𝑡← ‘on’

where 𝑚𝑜𝑡𝑖𝑜𝑛 is confidential while 𝑡𝑖𝑚𝑒 and 𝑙𝑖𝑔ℎ𝑡 public (i.e., (𝑚𝑜𝑡𝑖𝑜𝑛) = 𝖧 and (𝑡𝑖𝑚𝑒) = (𝑙𝑖𝑔ℎ𝑡) = 𝖫). Basically, the rule turns 
on the lights when, during the night, some movements in a room are detected. According to Definition 3 (with 𝓁 = 𝖫) there is no 
8

harmful information flows. Nevertheless, observing the (public) resource 𝑙𝑖𝑔ℎ𝑡 we can infer that the (confidential) resource 𝑚𝑜𝑡𝑖𝑜𝑛
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has been changed (i.e., a robber may infer that someone is in the room).
End Example

Note that Definition 3 does not trivially ignore rule triggers, when checking noninterference. Indeed, it is able to capture harmful 
flows generated by rules acting on confidential triggers, as we can see in the following example.

Example 2. Consider the following AbU rules:

𝐺𝑃𝑆 ⋗ (𝐺𝑃𝑆 − 𝑐𝑒𝑛𝑡𝑒𝑟 > 5.0) ∶ 𝑎𝑟𝑒𝑎← ‘exit’ (9)

𝑎𝑟𝑒𝑎 ⋗ (𝚝𝚝) ∶ 𝑙𝑜𝑔← 𝑙𝑜𝑔 ⋅ ‘border crossed at:’ ⋅ 𝑡𝑖𝑚𝑒 (10)

where 𝑎𝑟𝑒𝑎, 𝐺𝑃𝑆 and 𝑐𝑒𝑛𝑡𝑒𝑟 are confidential while 𝑙𝑜𝑔 and 𝑡𝑖𝑚𝑒 public (i.e., (𝑎𝑟𝑒𝑎) = (𝐺𝑃𝑆) = (𝑐𝑒𝑛𝑡𝑒𝑟) = 𝖧 and (𝑙𝑜𝑔) =
(𝑡𝑖𝑚𝑒) = 𝖫). Rule (9) checks when the node exits a specific area, while rule (10) logs when the area borders are crossed (exiting or 
entering the area). Here, we have an information flow from the (confidential) resource 𝐺𝑃𝑆 to the (public) resource 𝑙𝑜𝑔, which is 
not allowed by the security requirement and, indeed, is captured by Definition 3 (with 𝓁 = 𝖫).

End Example

What we want to remark with Example 2 is that Definition 3 is not able to capture presence leaks originated by external changes 
(i.e., inputs), but it is still able to capture presence leaks due to internal resources modifications (i.e., updates execution). In order to 
capture information flows due to generic resource presence leaks, we need a stronger (i.e., more restrictive) requirement.

Given an AbU rule list set 𝑅 = {𝑅1, … , 𝑅𝑛}, an AbU invariants set 𝜄 = {𝜄1, … , 𝜄𝑛} and a security level 𝓁 ∈ SL, we define the 
𝓁-higher events set 𝖾𝗏𝗌𝖾𝗍𝓁(𝑅, 𝜄) of (𝑅, 𝜄) as all the resources with clearance greater than 𝓁 in the events of all rules in 𝑅. Then, the 
𝓁-level twin of (𝑅, 𝜄) is the pair (𝑅𝓁 , 𝜄𝓁) of rule list and invariants set where all resources in 𝖾𝗏𝗌𝖾𝗍𝓁(𝑅, 𝜄) are substituted in 𝑅 and 
𝜄 with their primed version. In particular, each resource in the rule list and in the invariants set is syntactically substituted with 
a renamed version (we assume a denumerable set of resource identifiers, hence we can always assign to the resources to rename 
a ‘fresh’ identifier, not already present in the initial set of names). As an example, the 𝖫-level twin of (𝑅, 𝜄), where 𝑅 is given 
by rules (9) and (10) of Example 2 and 𝜄 ≜ {𝑎𝑟𝑒𝑎 > 0} is (𝑅𝖫, 𝜄𝖫) = ({𝑎𝑟𝑒𝑎′ ⋗ (𝚝𝚝) ∶ 𝑙𝑜𝑔 ← 𝑙𝑜𝑔 ⋅ ‘border crossed at:’ ⋅ 𝑡𝑖𝑚𝑒 𝐺𝑃𝑆′ ⋗
(𝐺𝑃𝑆′ − 𝑐𝑒𝑛𝑡𝑒𝑟 > 5.0) ∶ 𝑎𝑟𝑒𝑎′ ← ‘exit’}, {𝑎𝑟𝑒𝑎′ > 0}). Note that, the resource 𝑐𝑒𝑛𝑡𝑒𝑟 is not modified since it does not belong to the 
set 𝖾𝗏𝗌𝖾𝗍𝖫(𝑅, 𝜄) = {𝑎𝑟𝑒𝑎, 𝐺𝑃𝑆}.

The 𝓁-level twin will be used in the following definition of noninterference. We have taken inspiration from self-composition 
verification mechanisms [12], where a 𝑘-hypersafety [13] verification problem for a program is reduced to a safety verification 
problem on its 𝑘-product program [12]. Indeed, noninterference is a 2-bounded subset-closed hyperproperty [14], so we can, in 
principle, verify it on two copies of the program, where confidential variables are renamed. Consider the case where we rename 
the resources with clearance greater than 𝓁 that rules are listening on (i.e., rules triggers at security levels greater than 𝓁), we 
take 𝓁-equivalent execution states (as for standard noninterference), and we run the two copies of the AbU system (which differ 
syntactically only on rule triggers at security levels greater than 𝓁). If we assume no information flows w.r.t. Definition 3, it is easy 
to see that a change in the behavior at security level 𝓁 or below of the two systems can only be due to presence leaks originated from 
rule triggers at security levels greater than 𝓁. Consider the rule 𝑚𝑜𝑡𝑖𝑜𝑛 ⋗ (00 ∶00 < 𝑡𝑖𝑚𝑒 ∧ 𝑡𝑖𝑚𝑒 < 06 ∶00) ∶ 𝑙𝑖𝑔ℎ𝑡 ← ‘on’ of Example 1, 
that is secure w.r.t. Definition 3, and its 𝖫-level twin 𝑚𝑜𝑡𝑖𝑜𝑛′ ⋗ (00 ∶00 < 𝑡𝑖𝑚𝑒 ∧ 𝑡𝑖𝑚𝑒 < 06 ∶00) ∶ 𝑙𝑖𝑔ℎ𝑡 ← ‘on’. If we execute the two 
rules in isolation, when 𝑚𝑜𝑡𝑖𝑜𝑛 changes we have that in the first case 𝑙𝑖𝑔ℎ𝑡 will take the value ‘𝑜𝑛’, while in the second case nothing 
happens. Hence, we can note a difference in the behavior of the two AbU system, that is due to a presence leak originated by the 
confidential resource 𝑚𝑜𝑡𝑖𝑜𝑛.

Definition 4 (AbU presence-sensitive 𝓁-noninterference). Let  ∈𝕏 → SL be a security policy and 𝓁 ∈ SL. We say that the AbU rule 
list set 𝑅 = {𝑅1, … , 𝑅𝑛} and invariants set 𝜄= {𝜄1, … , 𝜄𝑛} are 𝓁-level presence-sensitive interference-free, written 𝓁-𝖯𝖭𝖨(𝑅, 𝜄), whenever:

∀Σ ∈ 𝖼𝗈𝗆𝗉(𝑅, 𝜄) ∀Σ
′
∈ 𝖼𝗈𝗆𝗉(𝑅𝓁 , 𝜄𝓁) .Σ ≡𝓁 Σ

′
⟹ 𝗌𝗒𝗌(𝑅, 𝜄,Σ) ≈ℎ𝓁

𝗌𝗒𝗌(𝑅𝓁 , 𝜄𝓁 ,Σ
′
)

Using the noninterference notion of Definition 4, the AbU rules of Example 1 are now considered not secure. Presence-sensitive 
noninterference is a stronger requirement than classic (presence-insensitive) noninterference. Indeed, Definition 4 implies Defini-
tion 3, meaning that all AbU systems that satisfy Definition 4 also satisfy Definition 3, but not vice versa (a counter-example is the 
rule in Example 1 that satisfies Definition 3 but not Definition 4). Intuitively, a system satisfies Definition 4 if it does not have neither 
information flows nor presence leaks, while a system satisfies Definition 3 if it does not have information flows, but it may have 
presence leaks. In this sense, the set of systems satisfying Definition 3 is (strictly) larger than the set of systems satisfying Definition 4, 
that is 𝓁-𝖯𝖭𝖨(𝑅, 𝜄) implies 𝓁-𝖭𝖨(𝑅, 𝜄).

3.3. A bisimulation for safety

We provide now a semantic characterization of safe interaction between AbU systems, by which we mean that two systems do 
not exhibit unintended behaviors when deployed together. For instance, consider a node that opens the window when the room 
temperature exceeds a given threshold, and another node equipped with a rule that turns on the thermostat at home when the user 
9

leaves his work location. Both node can be considered safe, in isolation, but when deployed together they may interact with each 
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other, causing an (unexpected) opening of the window when the user is not at home (clearing a way for burglary). Another unsafe 
scenario is when two nodes interact by updating some common resource (of remote nodes) in a inconsistent manner, e.g., a valve 
that is opened by a node and closed by the other at the same time.

Following [2], we would like to say that an AbU system 𝖲 does not interact with, or is transparent for, another system 𝖱 if the 
behavior of 𝖱 when running in parallel with 𝖲 does not differ from its behavior when running in isolation. In particular, we would 
like to say that 𝖲 is transparent for 𝖱 if 𝖲 ∥ 𝖱 ≈ℎ 𝖱 for some bisimilarity ≈ℎ that hides the updates originated from 𝖲.

Let 𝑅𝖲 and 𝑅𝖱 be the rule list sets of 𝖲 and 𝖱, respectively. We can use the hiding bisimulation of Definition 1 to formalize a 
semantic-based notion of rule list sets transparency (and, in turn, of the corresponding systems). Our intention is to hide only those 
updates originated from rules in 𝑅𝖲. Formally:

ℎ𝖲(𝛼) ≜

⎧⎪⎪⎨⎪⎪⎩

⋄ if 𝛼 = 𝑇

⋄ if 𝛼 = 𝗎𝗉𝖽 ⊳𝑇 ∧ 𝗌𝗈𝗎𝗋𝖼𝖾(𝗎𝗉𝖽) =𝑅𝖲

𝛼 if 𝛼 = 𝗎𝗉𝖽▸𝑇

𝛼 if 𝛼 = 𝗎𝗉𝖽 ⊳𝑇 ∧ 𝗌𝗈𝗎𝗋𝖼𝖾(𝗎𝗉𝖽) ≠𝑅𝖲

Here, we assume to have a function 𝗌𝗈𝗎𝗋𝖼𝖾 returning the rule list set that has generated a given update. A mechanism for retrieving 
such information can be easily obtained augmenting AbU nodes with unique identifiers and recording in the AbU system labels 
𝗎𝗉𝖽 ⊳𝑇 the identifier of the node performing the update. Alternatively, we can augment each AbU node with a “group identifier”, 
indicating that the node belongs to 𝖲 or 𝖱, in place of the node identifier (this is quite useful in the IoT, where nodes are often 
anonymous). For the sake of readability, we do not modify the syntax and the semantics of the calculus. We call ℎ𝖲 the hiding 
function for transparency.

Definition 5 (AbU transparency). Let 𝑅𝖲 and 𝜄𝖲 be the rule list and invariant sets for the system 𝖲, and 𝑅𝖱 and 𝜄𝖱 be the rule list 
and invariant sets of the system 𝖱. We say that 𝑅𝖲 and 𝜄𝖲 are transparent for 𝑅𝖱 and 𝜄𝖱, written (𝑅𝖲, 𝜄𝖲) (𝑅𝖱, 𝜄𝖱), if for each 
Σ ∈ 𝖼𝗈𝗆𝗉(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱) we have that:

𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱,Σ) ≈ℎ𝖲
𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱,Σ)

When (𝑅𝖲, 𝜄𝖲) (𝑅𝖱, 𝜄𝖱) and (𝑅𝖱, 𝜄𝖱) (𝑅𝖲, 𝜄𝖲), the two rule list and invariant sets are said independent, written (𝑅𝖲, 𝜄𝖲) (𝑅𝖱, 𝜄𝖱).

In other words, if 𝑅𝖲 and 𝜄𝖲 are transparent for 𝑅𝖱 and 𝜄𝖱, then a system with 𝑅𝖲 as rule list set and 𝜄𝖲 as invariant set does not 
affect in any way the behavior of a system with 𝑅𝖱 as rule list set and 𝜄𝖱 as invariant set.

Example 3. Consider an AbU node managing a security camera. It is equipped with an AbU rule 𝑐𝑎𝑚𝑒𝑟𝑎 ⋗ (𝚝𝚝) ∶ 𝑐𝑙𝑜𝑢𝑑.𝑝𝑟𝑖𝑣𝑎𝑡𝑒←
𝑐𝑎𝑚𝑒𝑟𝑎 that basically uploads an image to the “private” folder of a given cloud service, when the camera detects some movements. 
Then, we can have another node managing the cloud service: when a new picture in the folder “public” is uploaded, the node will post 
it on Instagram. This can be modeled with the rule 𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐 ⋗ (𝚝𝚝) ∶ 𝑖𝑛𝑠𝑡𝑎𝑔𝑟𝑎𝑚.𝑝𝑜𝑠𝑡 ← 𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐, which is self-explanatory. 
Until now, everything is ok, the two nodes are safe, even if executed together. Indeed, Definition 5 is fulfilled: taking 𝖲 as the system 
comprising the camera-node and 𝖱 as the system comprising the cloud-node, we have that 𝖲 and 𝖱 are independent.

Things change if we consider a buggy version of the camera node 𝑐𝑎𝑚𝑒𝑟𝑎 ⋗ (𝚝𝚝) ∶ 𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐← 𝑐𝑎𝑚𝑒𝑟𝑎. In this case, the node 
uploads the sensitive image to the “public” folder, instead to the “private” folder. Now, we have an unintended interaction chain: 
when the camera collects a sensitive image, the latter is automatically posted on Instagram. This interaction is captured by Defini-
tion 5, indeed the system 𝖲 is now not transparent for the system 𝖱.

End Example

3.4. On the compositionality of requirements

Independence (Definition 5) is crucial when we aim at verifying dynamically a given requirement. In fact, suppose to have an 
AbU system 𝖱, that we know to satisfy a given requirement (e.g., termination [3], noninterference, etc.). If we combine (at runtime) 
𝖱 with another AbU system 𝖲 satisfying the same requirement, and we know that the added system is independent from 𝖱, then we 
automatically have that 𝖲 ∥ 𝖱 is compliant with the requirement. In other words, with independent systems we can reason about the 
satisfaction of a given requirement in a compositional way.

Note that, for some kind of properties (e.g., termination [3]) independence is not strictly necessary: transparency is a sufficient 
condition for guaranteeing compositionality. Indeed, if we have that the systems 𝖲 and 𝖱 are both loop-free (which is a sufficient 
condition for termination), and 𝖲 is transparent for 𝖱, then we can conclude that 𝖲 ∥ 𝖱 is loop-free as well.

4. Checking security and safety of AbU systems

In this section, we provide verification mechanisms for effectively checking the safety and security requirements introduced in 
Section 3. They are static, in the sense that they do not require the execution of the AbU systems under test: the check is purely based 
10

on the inspection of systems rules and invariants.
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Algorithm IFRules(𝓁, 𝗋𝗎𝗅𝖾1 … 𝗋𝗎𝗅𝖾𝑛)
1 return

⋃
𝑖∈[1..𝑛] IFSingleRule(𝓁, 𝗋𝗎𝗅𝖾𝑖)

Procedure IFSingleRule(𝓁, 𝑥1… 𝑥𝑛 ⋗ 𝖺𝖼𝗍1, 𝜑 ∶ 𝖺𝖼𝗍2)
2 𝑒𝑣𝑡𝐿𝑒𝑣𝑒𝑙 ∶=

⨆
𝑖∈[1..𝑛] (𝑥𝑖)

3 𝑎𝑠𝑠𝑖𝑔𝑛𝐿𝑒𝑣𝑒𝑙 ∶= Assign(𝖺𝖼𝗍1) ⊓ Assign(𝖺𝖼𝗍2)
4 𝑝𝑟𝑒𝑠𝐿𝑒𝑎𝑘 ∶= 𝑒𝑣𝑡𝐿𝑒𝑣𝑒𝑙 ⋢ 𝓁 ∧ 𝑎𝑠𝑠𝑖𝑔𝑛𝐿𝑒𝑣𝑒𝑙 ⊑ 𝓁
5 𝑐𝑡𝑥 ∶= Const(𝜑)

6 if IFAct(𝓁, 𝖺𝖼𝗍1, 𝜅) ∨ IFAct(𝓁, 𝖺𝖼𝗍2, 𝑐𝑡𝑥)∨𝑝𝑟𝑒𝑠𝐿𝑒𝑎𝑘 then

7 return {𝑥1, … , 𝑥𝑛}
else

8 return ∅
end

Procedure IFAct(𝓁, 𝑥1 ← 𝜀1 … 𝑥𝑛 ← 𝜀𝑛, 𝑐𝑡𝑥)
9 𝑓𝑙𝑜𝑤 ∶= false

10 for 𝑖 = 1 to 𝑛 do

11 𝑖𝑠𝐶𝑜𝑛𝑠𝑡 ∶= Const(𝜀𝑖) ≠ 𝜅̸ ∧ 𝑐𝑡𝑥 ≠ 𝜅̸
12 if (𝑥𝑖) ⊑ 𝓁 ∧ 𝑖𝑠𝐶𝑜𝑛𝑠𝑡 = false then

13 𝑓𝑙𝑜𝑤 ∶= true

end

end

14 return 𝑓𝑙𝑜𝑤

Procedure Assign(𝑥1 ← 𝜀1 … 𝑥𝑛 ← 𝜀𝑛)

15 return
�

𝑖∈[1..𝑛] (𝑥𝑖)

Algorithm 1. Information flows detection algorithm for 𝓁-noninterference.

4.1. Verifying security

In order to provide a syntactic sufficient condition for noninterference we define a verification method detecting potential harmful 
information flows, parametric in the security policy  . The detection process for a list of AbU rules is depicted in Algorithm 1. Given 
a security level 𝓁 ∈ SL, the algorithm computes the set of event resources that trigger rules yielding information flows. Hence, if 
the algorithm returns a non-empty set then the system contains harmful information flows from resources with clearance greater 
than 𝓁 to resources with clearance 𝓁 or below in, at least, one rule (line 1). In this case the whole list of rules does not satisfy 
𝓁-noninterference. The procedure at lines 2..7 of Algorithm 1 looks for information flows inside single rules, and it works as follows.

First, it checks potential presence leaks. Line 2 computes the security level of the rule event: if at least one resource in the 
event is greater than 𝓁 then 𝑒𝑣𝑡𝐿𝑒𝑣𝑒𝑙 is greater than 𝓁, otherwise is 𝓁 or below. Line 3 checks if the default and the task actions 
contain assignments to resources with clearance 𝓁 or below, by means of the procedure at line 14. The latter computes the minimal 
clearance of the resources in the left-hand side of the assignments. Then, in line 4, we check if there is a potential presence leak: 
𝑒𝑣𝑡𝐿𝑒𝑣𝑒𝑙 ⋢ 𝓁 ∧ 𝑎𝑠𝑠𝑖𝑔𝑛𝐿𝑒𝑣𝑒𝑙 ⊑ 𝓁 means that the event contains a resource with clearance greater than 𝓁 (or not comparable with 𝓁) 
and we have assignments to resources with clearance 𝓁 or below in the actions.

Second, it checks potential harmful information flows in the default and the task actions. Line 5 computes a constancy analysis on 
the task condition,3 in order to capture implicit information flows. The function 𝙲𝚘𝚗𝚜𝚝 returns 𝜅 when all resources with clearance 𝓁
or below are constants; and ̸𝜅 otherwise. Here, constancy means that no variety is conveyed from resources with clearance greater 
than 𝓁 (the only ones that may change in Definition 4) to resources with clearance 𝓁 or below (assumed to be initially constant in 
Definition 4). Technically, our constancy analysis detects the presence of resources with clearance greater than 𝓁 inside boolean 𝜑
and value 𝜀 expressions. Line 6 computes the information flows in the default and in the task actions. Implicit flows can only happen 
in the task action, so for the default action we compute explicit information flows only, calling the 𝙸𝙵𝙰𝚌𝚝 function with 𝜅 as context. 
Instead, for the task action, 𝙸𝙵𝙰𝚌𝚝 is called with the context computed by the constancy analysis on the task condition, in order to 
track implicit flows. The procedure returns a non-empty set when presence leaks are detected or when information flows are present 
in the rules actions.

Finally, the procedure at lines 9..14 computes the potential information flows of an action,4 parametric on a given context. It is a 
loop inspecting all assignments of the action. The condition at line 11 performs the check. Only two cases lead to harmful information 
flows: a resource with clearance 𝓁 or below is assigned with a not constant expression (explicit flow); a resource with clearance 𝓁
or below is assigned inside a not constant context (implicit flow). Recall that, not constancy means that variety is conveyed from 
resources with clearance greater than 𝓁 to resources with clearance 𝓁 or below.

Algorithm 1 detects potentially harmful information flows when considering a single list of AbU rules, namely a single node. 
Nevertheless, it is easy to note that the algorithm does not take into account inter-nodes communication, hence the verification on a 
rule list set, i.e., a set of nodes, boils down to the verification on a single rules list comprising all rules in the set. Intuitively, if we 
have a forbidden information flow between two nodes, such information flow must be present internally in one of the nodes as well.

Proposition 1. Consider a rule list set {𝑅1, … , 𝑅𝑛}. Let 𝑅 be the list comprising all rules of all elements in {𝑅1, … , 𝑅𝑛}. Then we have:⋃
𝑖∈[1..𝑛] 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅𝑖) = ∅⟺𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅) = ∅

Theorem 2 (Soundness for security). Let  ∈𝕏 → SL be a security policy and 𝓁 ∈ SL. Consider an AbU rule list set 𝑅 = {𝑅1, … , 𝑅𝑛} and 
invariants set 𝜄 = {𝜄1, … , 𝜄𝑛}. Let 𝑅 be the list comprising all rules of all elements in 𝑅. If 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅) =∅ then 𝓁-𝖯𝖭𝖨(𝑅, 𝜄) holds.

Proof. The proof is quite complex and it requires some preliminary results; see Appendix A.1. □

3 The modifier @ does not influence the analysis, hence we omit it in the algorithm.
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4 Remote updates 𝑥← 𝜀 do not influence the analysis, we omit them in the algorithm.
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Recall that presence-sensitive noninterference implies the classic presence-insensitive version of noninterference. Hence, we can 
extend the soundness result as follows.

Corollary 3 (Soundness for security). Let  ∈ 𝕏 → SL be a security policy and 𝓁 ∈ SL. Consider an AbU rule list set 𝑅 = {𝑅1, … , 𝑅𝑛}
and invariants set 𝜄 = {𝜄1, … , 𝜄𝑛}. Let 𝑅 be the list comprising all rules of all elements in 𝑅. If 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅) =∅ then 𝓁-𝖭𝖨(𝑅, 𝜄) holds.

Example 4. Take the AbU rule of Example 1. We have that Algorithm 1 will correctly mark it as not secure, capturing a presence leak. 
Intuitively, the 𝖫-level resource 𝑙𝑖𝑔ℎ𝑡 is assigned when an 𝖧-level event is present, due to the 𝖧-level resource 𝑚𝑜𝑡𝑖𝑜𝑛. Algorithm 1
computes at line 2 the security level of the rule event 𝑒𝑣𝑡𝐿𝑒𝑣𝑒𝑙 = 𝖧, since (𝑚𝑜𝑡𝑖𝑜𝑛) = 𝖧. The rule action assigns the public variable 
𝑙𝑖𝑔ℎ𝑡, hence 𝑎𝑠𝑠𝑖𝑔𝑛𝐿𝑒𝑣𝑒𝑙 = 𝖫 at line 3. Then, Algorithm 1 checks at line 4 whether the rule contains presence leaks or not. In this 
case, 𝑝𝑟𝑒𝑠𝐿𝑒𝑎𝑘 = 𝐭𝐫𝐮𝐞, since 𝖧 = 𝑒𝑣𝑡𝐿𝑒𝑣𝑒𝑙 ⋢ 𝓁 = 𝖫 and 𝖫 = 𝑎𝑠𝑠𝑖𝑔𝑛𝐿𝑒𝑣𝑒𝑙 ⊑ 𝓁 = 𝖫 are both satisfied (indicating a presence leak). Line
5 computes the constancy analysis on the rule condition. In this case, 𝑐𝑡𝑥 = 𝜅 since no confidential resources are present in the 
rule condition. The procedure IFAct on the rule action returns 𝐟𝐚𝐥𝐬𝐞, since the action context is constant (computed at line 5) and 
the action expression is constant (hence, at line 11, 𝑖𝑠𝐶𝑜𝑛𝑠𝑡 = 𝐭𝐫𝐮𝐞). This means that no information flows are present in the rule 
action. Nevertheless, since 𝑝𝑟𝑒𝑠𝐿𝑒𝑎𝑘 = 𝐭𝐫𝐮𝐞 we have a presence leak and, consequently, the condition at line 6 is satisfied. Hence, 
Algorithm 1 returns the set {𝑚𝑜𝑡𝑖𝑜𝑛}, indicating a violation of Definition 4. An analogous reasoning can be done for the AbU rules of 
Example 2.

Now consider the AbU rule 𝑎𝑐𝑐𝑒𝑠𝑠 ⋗ (𝑢𝑠𝑒𝑟.𝑟𝑜𝑙𝑒 = ‘guest’) ∶ 𝑙𝑜𝑔 ← 𝑢𝑠𝑒𝑟.𝑛𝑎𝑚𝑒 ⋅ 𝑡𝑖𝑚𝑒 that logs the access time of users that have 
role ‘guest’ only. Suppose that the user role is confidential, while all other resources are public (i.e., (𝑎𝑐𝑐𝑒𝑠𝑠) = (𝑢𝑠𝑒𝑟.𝑛𝑎𝑚𝑒) =
(𝑡𝑖𝑚𝑒) = (𝑙𝑜𝑔) = 𝖫 while (𝑢𝑠𝑒𝑟.𝑟𝑜𝑙𝑒) = 𝖧). We have an implicit information flow here (𝖧 to 𝖫), from 𝑢𝑠𝑒𝑟.𝑟𝑜𝑙𝑒 to 𝑙𝑜𝑔. Indeed, 
Algorithm 1 will correctly mark it as not secure: we assign a 𝖫-level resource (𝑙𝑜𝑔) inside an action with a not constant context, 
given by 𝙲𝚘𝚗𝚜𝚝(𝑢𝑠𝑒𝑟.𝑟𝑜𝑙𝑒 = ‘guest’) = 𝜅̸ . Indeed, Algorithm 1 computes 𝑒𝑣𝑡𝐿𝑒𝑣𝑒𝑙 = 𝑎𝑠𝑠𝑖𝑔𝑛𝐿𝑒𝑣𝑒𝑙 = 𝑝𝑟𝑒𝑠𝐿𝑒𝑎𝑘 = 𝖫 and 𝑐𝑡𝑥 = 𝜅̸ , since 
the rule condition contains the confidential resource 𝑢𝑠𝑒𝑟.𝑟𝑜𝑙𝑒. In this case, the procedure IFAct on the rule action returns 𝐭𝐫𝐮𝐞, 
since the action expression is constant but the action context is not constant (hence, at line 11, 𝑖𝑠𝐶𝑜𝑛𝑠𝑡 = 𝐟𝐚𝐥𝐬𝐞). Due to the fact that 
the rule assigns a public resource in a not constant context, at line 13 we have 𝑓𝑙𝑜𝑤 = 𝐭𝐫𝐮𝐞. Hence, Algorithm 1 returns the set 
{𝑎𝑐𝑐𝑒𝑠𝑠}, indicating a violation of Definition 4.

End Example

4.2. Verifying safety

In order to provide a syntactic sufficient condition for transparency we have to individuate the resources that a system may poten-
tially update (sinks) and the resources that may influence a rule behavior (sources). The first are the left-hand sides of assignments in 
rules actions, while the latter are the rules events. In addition to the events, also resources involved in tasks condition and resources 
used in the actions should be considered sources. Indeed, take the AbU rules 𝑥 ⋗ (𝑥 < 3) ∶ 𝑧 ← 4 and 𝑥 ⋗ (𝚝𝚝) ∶ 𝑧 ←𝑤. The resources 
𝑦 and 𝑤 should be considered sources, since their modification by an external node influences the behavior of the rules (even if they 
are not triggers). More formally, let us define

𝖫𝖧𝖲(𝑥1 ← 𝜀1…𝑥𝑛 ← 𝜀𝑛) ≜ {𝑥1,… , 𝑥𝑛} 𝖱𝖧𝖲(𝑥1 ← 𝜀1…𝑥𝑛 ← 𝜀𝑛) ≜
⋃

𝑖∈[1..𝑛] 𝖵𝖺𝗋𝗌(𝜀𝑖)

(which are defined analogously also when the action contains remote assignments 𝑥← 𝜀). The sinks and sources of a rule are:

𝗌𝗇𝗄(𝑥1…𝑥𝑛 ⋗ 𝖺𝖼𝗍1, 𝖼𝗇𝖽 ∶ 𝖺𝖼𝗍2) ≜ 𝖫𝖧𝖲(𝖺𝖼𝗍1) ∪ 𝖫𝖧𝖲(𝖺𝖼𝗍2) sinks

𝗌𝗋𝖼(𝑥1…𝑥𝑛 ⋗ 𝖺𝖼𝗍1, 𝖼𝗇𝖽 ∶ 𝖺𝖼𝗍2) ≜ {𝑥1,… , 𝑥𝑛} ∪ 𝖱𝖧𝖲(𝖺𝖼𝗍1) ∪ 𝖱𝖧𝖲(𝖺𝖼𝗍2) ∪𝖵𝖺𝗋𝗌(𝖼𝗇𝖽) sources

Given an AbU system with rule list set 𝑅 = {𝑅1, … , 𝑅𝑛}, its sinks consist in all sinks of all rules in 𝑅 while its sources consist in all 
sources of all rules in 𝑅. Formally:

𝗌𝗇𝗄(𝑅) ≜
⋃

1≤𝑖≤𝑛 𝗌𝗇𝗄(𝑅𝑖), with 𝗌𝗇𝗄(𝗋𝗎𝗅𝖾1… 𝗋𝗎𝗅𝖾𝑘) ≜
⋃

1≤𝑖≤𝑘 𝗌𝗇𝗄(𝗋𝗎𝗅𝖾𝑖)

𝗌𝗋𝖼(𝑅) ≜
⋃

1≤𝑖≤𝑛 𝗌𝗋𝖼(𝑅𝑖), with 𝗌𝗋𝖼(𝗋𝗎𝗅𝖾1… 𝗋𝗎𝗅𝖾𝑘) ≜
⋃

1≤𝑖≤𝑘 𝗌𝗋𝖼(𝗋𝗎𝗅𝖾𝑖)

It is easy to note that when no sinks of 𝖲 are sources of 𝖱, i.e., when 𝗌𝗇𝗄(𝑅𝖱) ∩ 𝗌𝗋𝖼(𝑅𝖲) = ∅, then 𝖲 is transparent for 𝖱. This 
provides us with a sufficient syntactic condition for transparency, yielding the verification procedure described in Algorithm 2. In 
the nested loops at lines 3..6 we compute the sinks of the first system (𝖲), by collecting all resources in the left-hand sides of all rules 
in the AbU system. Similarly, in the nested loops at lines 7..12 we compute the sources of the second system (𝖱), by collecting all 
resources in events, right-hand sides and conditions of all rules in the AbU system. Finally, the value the algorithm returns depends 
on whether the sinks and the sources share some resources (line 13). If this is the case, the algorithm returns 𝐟𝐚𝐥𝐬𝐞, meaning that the 
first system (𝖲) is not transparent for the second one (𝖱). Conversely, the algorithm returns 𝐭𝐫𝐮𝐞, meaning that the first system is 
transparent for the second one.

Thus, Algorithm 2 implements an easy-to-verify syntactic condition to check our semantic-based notion of safe interaction, 
12

formalized in Definition 5.
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Algorithm TransparencyCheck({𝑅1, … , 𝑅𝑛}, {𝑅′
1 , … , 𝑅′

𝑚
})

1 𝑠𝑖𝑛𝑘𝑠 =∅
2 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 =∅
3 for 𝑖 = 1 to 𝑛 do

4 for 𝑗 = 1 to |𝑅𝑖| do

5 𝑟𝑢𝑙𝑒 ∶= the 𝑗th rule of 𝑅𝑖

6 𝑠𝑖𝑛𝑘𝑠 ∶= 𝑠𝑖𝑛𝑘𝑠 ∪ LeftHandSideVars(𝑟𝑢𝑙𝑒)
end

end

7 for 𝑖 = 1 to 𝑚 do

8 for 𝑗 = 1 to |𝑅′
𝑖
| do

9 𝑟𝑢𝑙𝑒 ∶= the 𝑗th rule of 𝑅′
𝑖

10 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ∶= 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ∪ EventVars(𝑟𝑢𝑙𝑒)
11 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ∶= 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ∪ RightHandSideVars(𝑟𝑢𝑙𝑒)
12 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ∶= 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ∪ ConditionVars(𝑟𝑢𝑙𝑒)

end

end

13 return (𝑠𝑖𝑛𝑘𝑠 ∩ 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 =∅)
Algorithm 2. Transparency check algorithm for AbU systems.

Theorem 4 (Soundness for safety). Let 𝑅𝖲 and 𝜄𝖲 be the rule list and invariant sets for the AbU system 𝖲, and 𝑅𝖱 and 𝜄𝖱 be the rule list and 
invariant sets of the AbU system 𝖱. If 𝚃𝚛𝚊𝚗𝚜𝚙𝚊𝚛𝚎𝚗𝚌𝚢𝙲𝚑𝚎𝚌𝚔(𝑅𝖲, 𝑅𝖱) = 𝐭𝐫𝐮𝐞, then (𝑅𝖲, 𝜄𝖲) (𝑅𝖱, 𝜄𝖱).

Proof. The proof is quite complex and it requires some preliminary results. In order to simplify the reading, we moved the full proof 
to Appendix A.1. □

Example 5. Continuing Example 3, we have independence between (the first version of) the systems, since 𝗌𝗇𝗄({𝑐𝑎𝑚𝑒𝑟𝑎 ⋗ (𝚝𝚝) ∶
𝑐𝑙𝑜𝑢𝑑.𝑝𝑟𝑖𝑣𝑎𝑡𝑒 ← 𝑐𝑎𝑚𝑒𝑟𝑎}) ∩ 𝗌𝗋𝖼({𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐 ⋗ (𝚝𝚝) ∶ 𝑖𝑛𝑠𝑡𝑎𝑔𝑟𝑎𝑚.𝑝𝑜𝑠𝑡 ← 𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐}) = ∅ (and vice versa). Instead, in the case 
of the buggy version of the rules, we have that 𝚃𝚛𝚊𝚗𝚜𝚙𝚊𝚛𝚎𝚗𝚌𝚢𝙲𝚑𝚎𝚌𝚔({𝑐𝑎𝑚𝑒𝑟𝑎 ⋗ (𝚝𝚝) ∶ 𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐 ← 𝑐𝑎𝑚𝑒𝑟𝑎}, {𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐 ⋗
(𝚝𝚝) ∶ 𝑖𝑛𝑠𝑡𝑎𝑔𝑟𝑎𝑚.𝑝𝑜𝑠𝑡 ← 𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐}) = 𝐟𝐚𝐥𝐬𝐞. Indeed, the set 𝗌𝗇𝗄({𝑐𝑎𝑚𝑒𝑟𝑎 ⋗ (𝚝𝚝) ∶ 𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐 ← 𝑐𝑎𝑚𝑒𝑟𝑎}) and the set 
𝗌𝗋𝖼({𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐 ⋗ (𝚝𝚝) ∶ 𝑖𝑛𝑠𝑡𝑎𝑔𝑟𝑎𝑚.𝑝𝑜𝑠𝑡 ← 𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐}) have {𝑐𝑙𝑜𝑢𝑑.𝑝𝑢𝑏𝑙𝑖𝑐} as intersection, capturing the unintended nodes 
interaction.

End Example

4.3. On the completeness of the verification mechanisms

The proposed verification mechanisms are sound, i.e., they do not expose false negatives, but they are not complete, i.e., they may 
expose false positives. Indeed, consider the two AbU rules:

𝑙1 ⋗ (ℎ1) ∶ 𝑙2 ← 3 (11)

𝑙1 ⋗ (¬ℎ1) ∶ 𝑙2 ← 3 (12)

with (𝑙1) = (𝑙2) = 𝖫 and (ℎ1) = 𝖧. Algorithm 1 will flag as not secure an AbU system equipped with these rules, even if there is 
no interference (for both presence-sensitive and presence-insensitive versions). Indeed, independently from the value of ℎ1, we have 
that 𝑙2 always takes the value 3. Another incompleteness witness consists in the following single AbU rule:

ℎ1 ⋗ (𝚝𝚝) ∶ 𝑙2 ← 𝑙2 (13)

which is rejected by our verification mechanism, even if it is actually secure. Indeed, the action 𝑙2 ← 𝑙2 does not change the value of 
any 𝖫-level resource (the update is idempotent).

Similarly, also Algorithm 2 rules out safe systems. For instance, consider a system with the rule list set {𝑥 ⋗ (𝚏𝚏) ∶ 𝑦 ← 3}, 
which is transparent for a system with rule list set {𝑦 ⋗ (𝚝𝚝) ∶ 𝑧 ← 2}, i.e., {𝑥 ⋗ (𝚏𝚏) ∶ 𝑦 ← 3} {𝑦 ⋗ (𝚝𝚝) ∶ 𝑧 ← 2}. We have that 
𝗌𝗇𝗄({𝑥 ⋗ (𝚏𝚏) ∶ 𝑦 ← 3}) ∩ 𝗌𝗋𝖼({𝑦 ⋗ (𝚝𝚝) ∶ 𝑧 ← 2}) = {𝑦}, hence 𝚃𝚛𝚊𝚗𝚜𝚙𝚊𝚛𝚎𝚗𝚌𝚢𝙲𝚑𝚎𝚌𝚔({𝑥 ⋗ (𝚏𝚏) ∶ 𝑦 ← 3}, {𝑦 ⋗ (𝚝𝚝) ∶ 𝑧 ← 2}) = 𝐟𝐚𝐥𝐬𝐞.

Since to check the requirements defined in Section 3 is undecidable, every sound verification mechanism necessarily suffers from 
completeness issues, but we can in some cases improve precision to mitigate the problem. For instance, refining the procedure 𝙸𝙵𝙰𝚌𝚝
of Algorithm 1 by checking whether the left-hand side of an update is syntactically equal to right-hand side, we can spot the false 
positive resulting from rule (13). Indeed, in some cases we can remove false positives by applying simple heuristics that individuate 
syntactic patterns, as the one in rule (13). Instead, more complex cases, as the one represented by rules (11) and (12), require a more 
sophisticated analysis. For instance, in the case of rules (11) and (12) we need an inter-procedural version of the constancy analysis 
13

to rule out such false positive.
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(EXEC)

𝗎𝗉𝖽 ∈Θ 𝗎𝗉𝖽 = (𝑥1, 𝑣1)…(𝑥𝑘, 𝑣𝑘) Σ′ = Σ[𝑣1∕𝑥1 …𝑣𝑘∕𝑥𝑘] Σ′ ⊧ 𝜄

Θ′′ = Θ ⧵ {𝗎𝗉𝖽} 𝑋 = 𝖼𝗅𝗈(,{𝑥𝑖 | 𝑖 ∈ [1..𝑘] ∧ Σ(𝑥𝑖) ≠ Σ′(𝑥𝑖)})
Θ′ = Θ′′ ∪𝖣𝖾𝖿𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ′) ∪ 𝖫𝗈𝖼𝖺𝗅𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ′) 𝑇 = 𝖤𝗑𝗍𝖳𝖺𝗌𝗄𝗌(𝑅,𝑋,Σ′)

𝑅, 𝜄⟨Σ,Θ⟩ 𝗎𝗉𝖽⊳𝑇
←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑅, 𝜄⟨Σ′ ,Θ′⟩

(INPUT)

𝑣1,… , 𝑣𝑘 ∈ 𝕍 Σ′ = Σ[𝑣1∕𝑥1 …𝑣𝑘∕𝑥𝑘] 𝑋 = 𝖼𝗅𝗈(,{𝑥1,… , 𝑥𝑘})
Θ′ = Θ ∪𝖣𝖾𝖿𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ′) ∪ 𝖫𝗈𝖼𝖺𝗅𝖴𝗉𝖽𝗌(𝑅,𝑋,Σ′) 𝑇 = 𝖤𝗑𝗍𝖳𝖺𝗌𝗄𝗌(𝑅,𝑋,Σ′)

𝑅, 𝜄⟨Σ,Θ⟩ (𝑥1 ,𝑣1)…(𝑥𝑘,𝑣𝑘 )▸𝑇
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝑅, 𝜄⟨Σ′ ,Θ′⟩

Fig. 2. Modified AbU semantics rules to account for implicit interactions (remaining rules are as in Fig. 1).

5. Dealing with implicit interactions and declassification

In this section, we consider weakened forms of the requirements presented in Section 3, in order to better model application 
scenarios typical of the IoT.

5.1. Implicit interactions

We now study the challenge posed by implicit interactions that arises whenever two (physical) resources are semantically related, 
though this relation cannot be derived from the syntactic description of the system.

Example 6. Consider the rules 𝑏𝑢𝑡𝑡𝑜𝑛 ⋗@(𝑏𝑢𝑡𝑡𝑜𝑛 = ‘pressed’) ∶ 𝑟𝑜𝑏𝑜𝑡𝐶𝑙𝑒𝑎𝑛𝑒𝑟← ‘on’ and 𝑚𝑜𝑡𝑖𝑜𝑛 ⋗@(𝑚𝑜𝑡𝑖𝑜𝑛 = 𝚝𝚝 ∧ 𝑡𝑖𝑚𝑒 < 12 ∶00) ∶
𝑎𝑙𝑎𝑟𝑚← ‘on’, deployed on different nodes. The first activates a robot cleaner in the house when a button on the phone is pressed. 
The second rings an alarm when some movement in the house is detected, during the morning. Though there are no (syntactic) 
interactions between the two rules, we clearly know that when the robot cleaner starts moving, then the motion sensor is activated 
and consequently the alarm will ring. We cannot catch this interaction with the LTS of Fig. 1, namely we would mark the nodes as 
independent.

End Example

We model these kind of semantic dependencies by means of a binary relation  ⊆𝕏 ×𝕏 on resources such that (𝑥, 𝑦) ∈ when 
the resource 𝑦 may be affected by changes occurring at the resource 𝑥 (which is analogous to the dependency policy of [2]). Note 
that, this information is not syntactically modeled in the calculus; instead, it is an exogenous, “out of band” information, that the 
system developer should provide to rule out “semantic false negatives”. Semantic dependencies can be composed, hence we will 
consider the reflexive and transitive closure of , in order to capture all possible dependencies associated to a resource. We write 
𝖼𝗅𝗈(, 𝑥) to denote the reflexive and transitive closure of the semantic dependencies relation  with respect to the resource 𝑥
only. More generally, given a set of resources 𝑋 ⊆ 𝕏 we define 𝖼𝗅𝗈(, 𝑋) ≜

⋃
𝑥∈𝑋 𝖼𝗅𝗈(, 𝑥). In Example 6 we would have that 

 ≜ {(𝑟𝑜𝑏𝑜𝑡𝐶𝑙𝑒𝑎𝑛𝑒𝑟, 𝑚𝑜𝑡𝑖𝑜𝑛)}, allowing us to capture the semantic dependence between the robot cleaner and the motion sensor.
As mentioned above, if (𝑥, 𝑦) ∈ it means that each time the resource 𝑥 changes then the resource 𝑦 can be somehow affected. 

We can include this abstract information in the discovery phase in the AbU semantics to all the resources affected by 𝑥. In other 
words, when we perform an execution or an input step in the semantics, we discover the actually modified resources and all the 
related resources, given by . Therefore, we can easily define a labeled transitions semantics ←←→, parametric on , for which we 
just have to modify the rules (EXEC) and (INPUT) of the original AbU semantics as depicted in Fig. 2.

Considering again Example 6, when the (EXEC) rule performs the update (𝑟𝑜𝑏𝑜𝑡𝐶𝑙𝑒𝑎𝑛𝑒𝑟, ‘on’) then 𝖼𝗅𝗈(, {𝑟𝑜𝑏𝑜𝑡𝐶𝑙𝑒𝑎𝑛𝑒𝑟}) =
{𝑟𝑜𝑏𝑜𝑡𝐶𝑙𝑒𝑎𝑛𝑒𝑟, 𝑚𝑜𝑡𝑖𝑜𝑛} and, hence, the rule concerning the motion sensor is selected by the discovery. Indeed, the nodes equipped 
with the rules in Example 6 now fail transparency, since in the bisimulation game the system without the cleaner cannot perform the 
update firing the alarm.

5.2. Information declassification

Noninterference is usually considered a too restrictive policy, to be effectively used in real-world applications. Indeed, sometimes 
a controlled release of sensitive information should deliberately allowed. The classic example is a password checking program 
which compares the password provided in input with the actual password, to authenticate a user. This program contains a sensitive 
information flow from the actual password to the output on a public channel, in order to inform a (potentially untrusted) user 
whether or not the authentication has succeeded. Nevertheless, such program is usually accepted as secure, since leaking the entire 
password in this manner is computationally hard. In this setting, this information can be declassified, i.e., it can be safely disclosed 
even if doing so we will technically go against the security policy.

We then extend the AbU calculus with a declassification primitive to support controlled release of sensitive information, in the 
spirit of delimited release [15]. Formally, we introduce a syntactic construct (⋅)𝓁 , with 𝓁 ∈ SL, into expressions syntax. Intuitively, 
(𝜀)𝓁 means that the expression 𝜀, potentially containing data at security level greater than 𝓁, can be declassified to the (lower) 
security level 𝓁. Such construct is used for verification purposes only, hence it does not affect the AbU semantics (Fig. 1). Indeed, 
the evaluation (⋅)𝓁 is equal to the evaluation of 𝜀, namely, �(𝜀)𝓁�Σ = �𝜀�Σ. Furthermore, we forbid nested declassifications, namely 
14

we assume that in (𝜀)𝓁 the expression 𝜀 cannot contain other instances of the declassification construct.
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In order to define noninterference up to declassification, we need a notion of state equivalence which accounts for the declassified 
expressions. Intuitively, we need to consider not only states with equivalent 𝓁 services but also states with equivalent declassified 
expressions. Given an AbU node, with rule list 𝑅, its declassification points are fixed and finite in number. For this reason, we define 
a declassification strategy 𝛿 as a list (𝜀1)𝓁1 … (𝜀𝑛)𝓁𝑛 of declassification construct instances. Note that, in the two-points security lattice 
{𝖫, 𝖧}, only 𝖧 to 𝖫 declassification is meaningful.

Definition 6 (𝓁-equivalence up to declassification). Let  ∈𝕏 → SL be a security policy, 𝓁 ∈ SL a security level and 𝛿 ≜ (𝜀1)𝓁1 … (𝜀𝑛)𝓁𝑛
a declassification strategy. We say that the AbU nodes states Σ1 and Σ2 are 𝓁-equivalent up to declassification 𝛿, written Σ1 ≡

𝛿
𝓁 Σ2, if 

both the following hold:

• for each resource 𝑥 ∈𝕏 we have that (𝑥) ⊑ 𝓁 entails Σ1(𝑥) = Σ2(𝑥) (𝓁-equivalence); and
• for each 𝑖 ∈ [1..𝑛] we have that 𝓁𝑖 ⊑ 𝓁 entails �𝜀𝑖�Σ = �𝜀𝑖�Σ′.

Analogously to the case without declassification, we can extend this notion to arbitrary sets of states yielding from an AbU system: 
the state set Σ = {Σ1, … , Σ𝑛} is 𝓁-equivalent up to declassification 𝛿 to another state set Σ

′
= {Σ′

1, … , Σ′
𝑚
} when for all 𝑖 ∈ [1..𝑛] we 

have that Σ𝑖 ≡𝛿
𝓁 Σ′

𝑖
. Again, we abuse notation by using the symbol ≡𝛿

𝓁 for both 𝓁-equivalence up to declassification 𝛿 of states and 
state sets.

Nothing changes in the definition of hiding bisimulation, hence, we are ready to define (presence-sensitive) noninterference up 
to declassification, by reformulating Definition 4 using the declassified version of state equivalence. We can define the presence-
insensitive version of noninterference up to declassification, by modifying in a similar way Definition 3.

Definition 7 (AbU presence-sensitive 𝓁-noninterference up to declassification). Let  ∈𝕏 → SL be a security policy, 𝓁 ∈ SL a security 
level and 𝛿 ≜ (𝜀1)𝓁1 … (𝜀𝑛)𝓁𝑛 a declassification strategy. We say that the AbU rule list set 𝑅 = {𝑅1, … , 𝑅𝑛} and the invariants set 𝜄
are 𝓁-level presence-sensitive interference-free up to declassification 𝛿, written 𝓁-𝖯𝖭𝖨(𝑅, 𝜄)𝛿 , whenever:

∀Σ ∈ 𝖼𝗈𝗆𝗉(𝑅, 𝜄) ∀Σ
′
∈ 𝖼𝗈𝗆𝗉(𝑅𝓁 , 𝜄𝓁) .Σ ≡𝛿

𝓁 Σ
′
⟹ 𝗌𝗒𝗌(𝑅, 𝜄,Σ) ≈ℎ𝓁

𝗌𝗒𝗌(𝑅𝓁 , 𝜄𝓁 ,Σ
′
)

It is easy to note that Definition 4 implies Definition 7 and for AbU systems without the declassification constructs the two 
definitions coincide.

Verifying security up to declassification In order to verify noninterference up to declassification, we just need to slightly modify 
Algorithm 1. In particular, we have to modify the constancy analysis of expressions, adding the cases where the declassification 
construct appears. The analysis is parametric on the security level 𝓁 on which we check noninterference. If an expression is not 
declassified, the constancy analysis is defined as in Section 4, otherwise it is defined inductively on the structure of 𝜑 as:

𝙲𝚘𝚗𝚜𝚝𝓁((𝚏𝚏)𝓁′ ) = 𝙲𝚘𝚗𝚜𝚝𝓁((𝚝𝚝)𝓁′ ) ≜ 𝜅

𝙲𝚘𝚗𝚜𝚝𝓁((¬𝜑)𝓁′ ) ≜ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜑)𝓁′ )

𝙲𝚘𝚗𝚜𝚝𝓁((𝜑1 ∧𝜑2)𝓁′ ) ≜ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜑1)𝓁′ ) ⋓ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜑2)𝓁′ )

𝙲𝚘𝚗𝚜𝚝𝓁((𝜑1 ∨𝜑2)𝓁′ ) ≜ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜑1)𝓁′ ) ⋓ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜑2)𝓁′ )

𝙲𝚘𝚗𝚜𝚝𝓁((𝜀1 ⋈ 𝜀2)𝓁′ ) ≜ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜀1)𝓁′ ) ⋓ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜀2)𝓁′ )

Here, ⋓ is the join operator of the complete lattice {𝜅, ̸𝜅 }, with partial order ⋐ ≜ {(𝜅, 𝜅), (𝜅, ̸𝜅 ), (̸𝜅 , ̸𝜅 )}. The constancy analysis for 
declassified value expressions is defined inductively on the structure of 𝜀:

𝙲𝚘𝚗𝚜𝚝𝓁((𝑣)𝓁′ ) ≜ 𝜅

𝙲𝚘𝚗𝚜𝚝𝓁((𝑥)𝓁′ ) = 𝙲𝚘𝚗𝚜𝚝𝓁((𝑥)𝓁′ ) ≜

{
𝜅 if (𝓁′ ⊏ (𝑥) ∧ 𝓁′ ⊑ 𝓁) ∨ ((𝑥) ⊑ 𝓁 ∧ 𝓁′ ⊑ 𝓁)
𝜅̸ otherwise

𝙲𝚘𝚗𝚜𝚝𝓁((𝜀1 ⊗ 𝜀2)𝓁′ ) ≜ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜀1)𝓁′ ) ⋓ 𝙲𝚘𝚗𝚜𝚝𝓁((𝜀2)𝓁′ )

Note that, since we cannot declassify rule events, the declassification does not affect in any way the detection of presence leaks.

5.3. Advantages of the AbU model

Compositionality of security In the IoT and, in general, in “smart” systems, it quite common to reconfigure a deployed system. For 
instance, new IoT devices may be added to an already running system, or some deployed devices may be substituted (e.g., in case 
of hardware or software updates). When this happens, it is claimed that the modified system still fulfills the requirements that the 
previous one satisfies. In other words, the newly added or updated nodes should not harm the already deployed ones. For instance, 
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a secure system (w.r.t. Definition 4) should be still secure when we add a new device (i.e., the latter should not add forbidden 
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information flows). Usually, this requires to perform the security check on the whole new system, since in general noninterference 
is not compositional. But, due to its inherently simple control flow structure, in AbU noninterference is compositional. Indeed, if we 
have an information flow involving two ECA rules, then it must be that one of the two rule already exhibits an information flow.

Proposition 5. Let  ∈𝕏 → SL be a security policy and 𝓁 ∈ SL. Let 𝑅𝖲 and 𝜄𝖲 be the rule list and invariant sets for the AbU system 𝖲, and 
𝑅𝖱 and 𝜄𝖱 be the rule list and invariant sets of the AbU system 𝖱. If 𝓁-𝖯𝖭𝖨(𝑅𝖲, 𝜄𝖲), then we have:

𝓁-𝖯𝖭𝖨(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱) ⟺ 𝓁-𝖯𝖭𝖨(𝑅𝖱, 𝜄𝖱)

This tantamount to say that when we have a secure system, possibly composed by thousands of rules, and we want to add a new 
device, possibly composed by few rules, we do not need to analyze again the whole system, since the potential information flow 
violation can only be due to the added rules. This is a huge simplification in term of verification, that follows directly from AbU 
programming paradigm.

Increasing permissiveness Despite declassification, AbU provides another way of increasing the permissiveness of the security veri-
fication mechanism. Consider the case of an IoT system that is not secure, namely that exhibits forbidden information flows w.r.t. 
Definition 4. We can still deploy such system, paying attention to the resources that may yield harmful information flows. Indeed, 
Algorithm 1 provides the set of all events that may lead to insecure scenarios. We call this set the attack surface of an AbU system.

Precisely delimiting the attack surface has two main practical implications. On the one hand, to guarantee security and mitigate 
information leaks, we can simply (externally) monitor the resources that lie in the attack surface. On the other hand, if we add new 
rules to the system, and we check that those rules do not act on the resources in the attack surface, we are guaranteed to not leak 
information in the original system.

Proposition 6. Let 𝖲, 𝖱 be two AbU systems, and let 𝑅𝖲, 𝑅𝖱 and 𝑅𝖲⊕𝑅𝖱 be the list comprising all rules of 𝖲, of 𝖱 and of 𝖲 ∥ 𝖱, respectively. 
If the sinks of 𝖱 do not overlap with the attack surface of 𝖲, then:

𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅𝖲 ⊕𝑅𝖱) ⧵ 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅𝖲) = 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅𝖱)

In other words, if we add the rules of 𝖱 to the rules of 𝖲, we do not introduce in 𝖲 harmful information flows that were not 
already present in 𝖲.

6. Related work

Attribute-based interactions AbU [3] is inspired by the AbC calculus [16,5], from which it takes the idea of attribute-based communi-

cation. AbC is a core calculus of SCEL [17], a language introduced to model Collective Adaptive Systems (CAS) [18] and particularly 
suited for autonomic computing. Like SCEL, AbC adopts a message-based, procedural-oriented model. On the other hand, AbU aims to 
adapt attribute-based communication to fit the ECA programming model, which is data-oriented and rule-based, in a way transparent 
to the user. We refer to [3] for the comparison of AbU with related approaches.

Security and safety of ECA platforms for IoT Security and safety of IoT devices is a critical problem; among many works, we refer 
to recent surveys [19,20] which overview these risks in the IoT from a general point of view. Here, we recall the closely related 
work about security and safety of platforms based on ECA rules and about information-flow control for the IoT. For an overview on 
information-flow control in process algebra, we refer the reader to Focardi and Gorrieri [21].

The ECA paradigm is the standard for programming IoT devices, adopted by all major IoT platforms (like IFTTT, Samsung 
SmartThings, Microsoft PowerAutomate, etc.). In this context, IoT devices are managed by means of apps that users can downloaded 
(and customize) from the platform store. Recent studies point out the security and safety risks regarding this kind of apps, based of 
ECA rules. Surbatovich et al. [22] analyzed a dataset of 20K IFTTT apps, providing an empirical evaluation of potential secrecy and 
integrity violations, including violations due to cross-app interactions. Celik et al. [23,24] proposed some mechanisms to enforce 
(statically and dynamically) cross-app interaction vulnerabilities. Chi et al. [25] proposed a systematic categorization of threats 
arising from unintentional or malicious interaction of apps in IoT platforms. To detect cross-app interactions, they use symbolic 
execution techniques to analyze the apps code. Ding et al. [26] proposed a framework combining device physical channel analysis 
and static analysis to generate all potential interaction chains among IoT apps. They leverage Natural Language Processing to 
identify similarities between services, and proposed a risk-based approach to classify the actual risks of the discovered interaction 
chains. Nguyen et al. [27] designed IoTSan, a verification mechanism based on model-checking to reveal cross-app interaction flows. 
Similarly, SafeChain by Hsu et al. [28] leverage model checking techniques to identify cross-app vulnerabilities in IFTTT apps.

Another line of work focuses on enforcement mechanisms for checking security and safety of a single app, rather than an ensemble 
of apps. Fernandes et al. [29] presented FlowFence, an approach for building secure apps via information-flow tracking and controlled 
declassification. Celik et al. [30] leveraged static taint tracking to identify sensitive data leaks in an IoT app. Bastys et al. [31,32]
identified new attack vectors in IFTTT apps and showed that 30% of apps from their dataset can be subject to such attacks. As a 
countermeasure, they investigated static and dynamic information-flow tracking via security types. Fernandes et al. [33] proposed 
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the use of decentralization and fine-grained authentication tokens to limit privileges and prevent unauthorized actions inside an app.
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Even if grounded by the same programming paradigm, i.e., based on ECA rules, all the above-mentioned work focuses on specific 
platforms, restricting the applicability to specific use cases. Instead, the requirements we propose in this work are built on top of 
AbU, thus providing a general setting in which security and safety can be verified interdependently from the application scenario.

Concerning more general ECA programming, [34,35] presented verification mechanisms to check properties (such as termination, 
confluence, redundant or contradicting rules) on IRON [36], a language based on ECA rules for the IoT domain. Other works proposed 
approaches to verify ECA programs by using Petri Nets [37] and BDD [38]. In [39,1], the authors presented a tool-supported method 
for verifying and controlling the correct interactions of ECA rules. All these works, differently from AbU, are not designed for 
distributed systems.

Information-flow control for the IoT Several works proposed information-flow control for enforcing confidentiality and integrity 
policies in the IoT domain. Newcomb et al. [40] proposed IOTA, a calculus for home automation. Based on the core formalism 
of IOTA, the authors developed an analysis for detecting whenever an event can trigger two conflicting actions, and an analysis 
for determining the action(s) that may influence a given event. Bodei et al. [41] proposed a calculus, IoT-LySa, supporting an 
information-flow analysis that safely approximates the abstract behavior of IoT systems. The calculus adopts asynchronous multi-
party communication among nodes taking care of node proximity. Again, all the above-mentioned work focuses on specific platforms, 
while our approach based on AbU can be easily adapted to multiple application scenarios.

In their seminal work, Volpano and Smith [42] presented a flow-insensitive type system for imperative languages. Flow-insensitive 
type systems result very often too restrictive, rejecting lots of (practically) secure programs. To gain more permissiveness, Hunt and 
Sands [43] proposed a type system for an imperative language which is flow-sensitive. The latter has been further extended by Balliu 
et al. [44,2] in order to fit the IoT setting (in particular, apps based on ECA rules). The proposed type system verifies a notion of 
non-interference based on a suitable hiding bisimulation (a particularly designed weak bisimulation). We take inspiration from [2] to 
define the notion of security and safety requirements of this paper, generalizing the definition of hiding bisimulation.

7. Conclusion

In this paper, we have studied security and safety requirements of AbU systems, a new model for distributed computation 
merging the simplicity of ECA programming with attribute-based communication. AbU is particularly suited to program IoT devices, 
in a decentralized setting. Hence, these requirements can be used to tackle security and safety issues in the IoT. The first is a form of 
noninterference: we can assess if an AbU system does not exhibit forbidden information flows between resources, according to a given 
security policy. The second is a form of non-interaction: we can assess whether different nodes will not interact by acting on shared 
resources in unexpected ways.

To formally capture these requirements we have introduced two suitable bisimulations, generalizing the notion of hiding bisim-

ilarity of [2], in order to deal with specific aspects of AbU systems. Leveraging these definitions, we have then given two sound 
verification mechanisms to statically check noninterference and non-interaction of AbU systems.

In addition, we considered a problem particularly common in the IoT, that is implicit interactions, i.e., not syntactically expressed 
interactions between resources, that may yield unsafe behaviors in IoT devices due to semantic correlations between resources, 
proposing a solution to mitigate such issue. Finally, we investigated the problem of intentional information release. Indeed, in some 
practical scenarios, noninterference is a too restrictive requirement, and a controlled release of confidential information is desirable. 
To this end, we added a declassification mechanism to downgrade the security level of expressions.

Future work Semantic dependencies are an out-of-band information that must be externally provided. Indeed, is not part of the AbU 
language and comes from external environmental factors (e.g., temperature can be influenced by walls insulation). Nevertheless, we 
can leverage Natural Language Processing techniques or machine learning in order to compute (i.e., infer) this information, starting 
from AbU rules. We plan to enhance our verification mechanisms with heuristics for implicit interactions as a future work.

As already mentioned at the end of Section 4, we plan to improve the precision of the information flows detection algorithm. In 
particular, we aim to develop an inter-procedural constancy analysis, leveraging model-checking techniques. In fact, modal and tem-
poral logics are often used for reasoning about correctness of distributed systems, with both fully automatic tools and in interactive 
proof assistants [45–47].

Static analysis is sometimes too restrictive. So, we can move from static to dynamic verification (i.e., runtime monitoring), in 
order to detect violations at runtime of the security and safety requirements. This would enhance permissiveness at the expense of 
soundness. Then, the system developer would be in charge of choosing the strategy that best fits the particular application scenario.

Finally, we plan to develop other requirements, not strictly related to security and safety aspects. Indeed, correctness requirements

are important as well in general as in the IoT context. An example is rules confluence: in some practical IoT scenarios it is important 
to ensure that rules execution order does not impact the overall system behavior. To this end, it can be useful to model AbU systems 
as (graph) rewriting systems, as it has been done for multi-agent systems in, e.g., [48].
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Appendix A. Proofs

A.1. Proofs of Section 4

We recall (and generalize) here the definition of the system initialization function, that takes a rule list set, an invariant set, 
a state set and a pool set, and it returns an AbU system, with the specified rules, invariants, states and pools. Formally, given 
𝑅 = {𝑅1, … , 𝑅𝑛}, 𝜄= {𝜄1, … , 𝜄𝑛}, Σ = {Σ1, … , Σ𝑛} ∈ 𝖼𝗈𝗆𝗉(𝑅, 𝜄) and Θ= {Θ1, … , Θ𝑛}, we define 𝗌𝗒𝗌(𝑅, 𝜄, Σ, Θ) as: 𝑅1, 𝜄1⟨Σ1, Θ1⟩ ∥… ∥
𝑅𝑛, 𝜄𝑛⟨Σ𝑛, Θ𝑛⟩. When all pools are empty we just write 𝗌𝗒𝗌(𝑅, 𝜄, Σ) in place of 𝗌𝗒𝗌(𝑅, 𝜄, Σ, {∅, … , ∅}).

We also recall the notion of 𝓁-level twin (given in Section 3) of a AbU rule list set 𝑅 = {𝑅1, … , 𝑅𝑛} and an invariants set 
𝜄 = {𝜄1, … , 𝜄𝑛}, i.e., the rule list set and invariants set pair (𝑅𝓁 , 𝜄𝓁) where all resources in 𝖾𝗏𝗌𝖾𝗍𝓁(𝑅, 𝜄) are substituted in 𝑅 and 𝜄
with their primed version. Here, the 𝓁-higher events set of (𝑅, 𝜄) is 𝖾𝗏𝗌𝖾𝗍𝓁(𝑅, 𝜄) ≜

⋃
1≤𝑖≤𝑛 𝖾𝗏𝗌𝖾𝗍

𝓁(𝑅𝑖), with 𝖾𝗏𝗌𝖾𝗍𝓁(𝗋𝗎𝗅𝖾1… 𝗋𝗎𝗅𝖾𝑚) ≜⋃
1≤𝑗≤𝑚 𝖾𝗏𝗌𝖾𝗍

𝓁(𝗋𝗎𝗅𝖾𝑗 ) and 𝖾𝗏𝗌𝖾𝗍𝓁(𝑥1… 𝑥𝑘 ⋗ 𝖺𝖼𝗍, 𝗍𝖺𝗌𝗄) ≜ {𝑥𝑖 | 𝑖 ∈ [1..𝑘] ∧ 𝓁 ⊏ (𝑥𝑖)}.

Proof of Theorem 2 We prove here the soundness of the proposed security verification mechanism, namely we prove that if Algo-
rithm 1 marks an AbU system as secure then the system satisfies the (presence-sensitive) noninterference of Definition 4.

Before going in the detail of the proof, we need a preliminary result and an auxiliary definition. Indeed, it is easy to note that 
Algorithm 1 is not affected by resources renaming.

Proposition 7. Consider the rule list set and invariants set pair (𝑅, 𝜄) and its 𝓁-level twin (𝑅𝓁 , 𝜄𝓁). Let 𝑅 and 𝑅𝓁 be the list all rules in 𝑅
and 𝑅𝓁 , respectively. We have that 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅) =∅ ⟺𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅𝓁) =∅.

Indeed, if an AbU system does not contain harmful information flows then also the same system with all resources with security 
level greater than 𝓁 renamed does not contain harmful information flows. Proposition 7 just says that such correspondence also holds 
when considering Algorithm 1: if the procedure IFRules (of Algorithm 1) says that a system is secure (i.e., it does have harmful 
information flows) then such procedure would also say that the renamed system is secure (assuming ‘fresh’ names in the renaming).

Furthermore, we define an equivalence relation between rule list set and invariants set pairs, basically saying that a pair and its 
𝓁-level twin are equivalent. In particular, the pairs (𝑅, 𝜄) and (𝑅′, 𝜄′) are equivalent when (𝑅′, 𝜄′) is the 𝓁-level twin of (𝑅, 𝜄) or (𝑅, 𝜄)
is the 𝓁-level twin of (𝑅′, 𝜄).

Definition 8 (𝓁-level twin equivalence). Given two AbU rule list set and invariants set pairs (𝑅, 𝜄) and (𝑅′, 𝜄′), we say that (𝑅, 𝜄) and 
(𝑅′, 𝜄′) are 𝓁-level twin equivalent, written (𝑅, 𝜄) 

𝓁
≈ (𝑅′, 𝜄′), when:

(𝑅′, 𝜄′) = (𝑅𝓁 , 𝜄𝓁) ∨ (𝑅, 𝜄) = (𝑅′
𝓁 , 𝜄

′
𝓁)

Finally, we need an equivalence between execution pools, saying that two pools are equal except for updates containing renamed 
resources. We say that two updates are primed equivalent when they are identical or when they differ for primed resources only. For 
instance, (𝑙1, 3)(𝑙2, 1) and (𝑙1, 3)(𝑙2, 1) are primed equivalent, (ℎ1, 3)(𝑙2, 1) and (ℎ′1, 3)(𝑙2, 1) are primed equivalent, but (𝑙1, 3)(𝑙2, 1) and 
(ℎ1, 3)(𝑙2, 1) are not primed equivalent. Note that, primed equivalence of updates does consider order. For instance, (𝑙1, 3)(𝑙2, 1) and 
(𝑙′2, 1)(𝑙

′
1, 3) are not primed equivalent.

Definition 9 (Primed equivalence). Given two AbU execution pools Θ1 and Θ2, we say that Θ1 and Θ2 are primed equivalent, written 
Θ1

.
≡ Θ2, when: for each 𝗎𝗉𝖽 in Θ1 there exists 𝗎𝗉𝖽′ in Θ2 such that 𝗎𝗉𝖽 and 𝗎𝗉𝖽′ are primed equivalent; and for each 𝗎𝗉𝖽 in Θ2

there exists 𝗎𝗉𝖽′ in Θ1 such that 𝗎𝗉𝖽 and 𝗎𝗉𝖽′ are primed equivalent.

We can trivially extend the previous definition to pool sets, and we abuse notation by using the same symbol 
.
≡ to denote primed 

equivalence for pools and pool sets.

Theorem 2 (Soundness for security) Let  ∈𝕏 → SL be a security policy and 𝓁 ∈ SL. Consider an AbU rule list set 𝑅 = {𝑅1, … , 𝑅𝑛}
and invariants set 𝜄 = {𝜄1, … , 𝜄𝑛}. Let 𝑅 be the list comprising all rules of all elements in 𝑅. If 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅) =∅ then 𝓁-𝖭𝖨(𝑅, 𝜄) holds.

Proof. Let 𝑅 = {𝑅1, … , 𝑅𝑛} and 𝜄 = {𝜄1, … , 𝜄𝑛}. Let 𝑅 be the list comprising all rules of all elements in {𝑅1, … , 𝑅𝑛}. Assume 
that 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅) = ∅, then we have to prove that for all Σ ∈ 𝖼𝗈𝗆𝗉(𝑅, 𝜄) and Σ

′
∈ 𝖼𝗈𝗆𝗉(𝑅𝓁 , 𝜄𝓁) such that Σ ≡𝓁 Σ′, we have that 

′
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𝗌𝗒𝗌(𝑅, 𝜄, Σ) ≈ℎ𝓁
𝗌𝗒𝗌(𝑅𝓁 , 𝜄𝓁 , Σ ), where ℎ𝓁 maps labels of the form 𝑇 and of the forms (𝑥1, 𝑣1) … (𝑥𝑘, 𝑣𝑘) ⊳𝑇 and (𝑥1, 𝑣1) … (𝑥𝑘, 𝑣𝑘) ▸ 𝑇 , 
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with 𝓁 ⊏
�
𝑖∈[1..𝑛](𝑥𝑖), to ⋄; and maps labels of the forms (𝑥1, 𝑣1) … (𝑥𝑘, 𝑣𝑘) ⊳𝑇 and (𝑥1, 𝑣1) … (𝑥𝑘, 𝑣𝑘) ▸ 𝑇 , with 

�
𝑖∈[1..𝑛](𝑥𝑖) ⊑ 𝓁, 

to (𝑥1, 𝑣1)…(𝑥𝑘, 𝑣𝑘)⇂𝓁 . Let  be the following binary and symmetric relation over AbU systems:

≜

⎧⎪⎪⎨⎪⎪⎩
(𝗌𝗒𝗌(𝑅1, 𝜄1,Σ1,Θ1), 𝗌𝗒𝗌(𝑅2, 𝜄2,Σ2,Θ2))

||||||||||||

𝑅1
𝓁
≈𝑅2 ∧ Σ1 ∈ 𝖼𝗈𝗆𝗉(𝑅1, 𝜄1)∧

Σ2 ∈ 𝖼𝗈𝗆𝗉(𝑅2, 𝜄2) ∧ Σ1 ≡𝓁 Σ2 ∧
𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅1) = ∅∧
𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅2) = ∅∧
Θ1

.
≡Θ2

⎫⎪⎪⎬⎪⎪⎭
where 𝑅1 and 𝑅2 are the lists comprising all rules of all elements in 𝑅1 and 𝑅2, respectively. Note that, given two generic rule 
list sets 𝑅 and 𝑅′, we have that 𝑅

𝓁
≈ 𝑅′ implies 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅) = ∅ iff 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅′) = ∅ (due to Proposition 1 and Proposition 7). By 

definition, (𝗌𝗒𝗌(𝑅, 𝜄, Σ), 𝗌𝗒𝗌(𝑅𝓁 , 𝜄𝓁 , Σ′)) ∈, so we have to prove that  is an AbU hiding bisimulation, parametric on ℎ𝓁 .

Let (𝖲𝑎, 𝖲𝑏) ∈ and 𝖲𝑎
𝛼
←←←←←←→ 𝖲′

𝑎
, for some AbU system label 𝛼. We have to show that there exists a system 𝖲′

𝑏
such that 𝖲𝑏

𝛼

⇒ℎ𝓁
𝖲′
𝑏
, 

with (𝖲′
𝑎
, 𝖲′

𝑏
) ∈. Note that, since AbU rules do not change their syntax during execution, we have that the rule list set of 𝖲𝑎, say 

𝑅𝑎, is the same of the rule list set of 𝖲′
𝑎
, say 𝑅′

𝑎
. This implies that 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅′

𝑎
) = 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅𝑎), where 𝑅′

𝑎
is the list comprising all 

rules of all elements in 𝑅𝑎

′
and 𝑅𝑎 is the list comprising all rules of all elements in 𝑅𝑎 (the same applies for 𝖲𝑏 and 𝖲′

𝑏
). The fact 

that 𝑅′
𝑎

𝓁
≈ 𝑅′

𝑏
follows immediately (the 𝓁-level twin equivalence 

𝓁
≈ is defined in terms of rule lists and invariants sets syntax only, 

but rules syntax does not change during execution). In a similar way, if the state set of 𝖲𝑎, say Σ𝑎, is compatible with 𝑅𝑎 and 𝜄𝑎, then 
also the state set of 𝖲′

𝑎
, say Σ′

𝑎
, is compatible with 𝑅′

𝑎
and 𝜄′

𝑎
, where 𝜄′

𝑎
and 𝜄′

𝑏
are the invariants sets of 𝖲′

𝑎
and 𝖲′

𝑏
, respectively. (the 

same applies for 𝖲𝑏 and 𝖲′
𝑏
). Hence, we just have to prove that there exists 𝖲′

𝑏
such that 𝖲𝑏

𝛼

⇒ℎ𝓁
𝖲′
𝑏
, Σ′

𝑎
≡𝓁 Σ′

𝑏
and Θ′

𝑎

.
≡Θ′

𝑏
, where Θ′

𝑎

and Θ′
𝑏

are the pool sets of 𝖲′
𝑎

and 𝖲′
𝑏
, respectively. The proof proceeds by case analysis on the label 𝛼.

Case 𝛼 = 𝑇 . By definition of the AbU semantics (Fig. 1), the label 𝑇 can only be generated by a system composed by a single node, 
by applying the rule (DISC). That is, 𝖲𝑎 =𝑅, 𝜄⟨Σ𝑎, Θ𝑎⟩, for some node 𝑅, 𝜄⟨Σ𝑎, Θ𝑎⟩, and 𝖲𝑎

𝛼
←←←←←←→ 𝖲′

𝑎
=𝑅, 𝜄⟨Σ𝑎, Θ′

𝑎
⟩, for some pool 

Θ′
𝑎
. Since (𝖲𝑎, 𝖲𝑏) ∈, we have by hypothesis that 𝖲𝑏 is the 𝓁-level twin of 𝖲𝑎. This means that also 𝖲𝑏 is a single node 

system and, in particular, 𝖲𝑏 =𝑅𝓁 , 𝜄𝓁⟨Σ𝑏, Θ𝑏⟩, for some state Σ𝑏 and pool Θ𝑏. By definition of the AbU semantics (Fig. 1), 
we have that a single node can always perform any label 𝑇 ′, by applying the rule (DISC). Hence, 𝖲𝑏 can indeed perform the 
label 𝑇 : 𝑅𝓁 , 𝜄𝓁⟨Σ𝑏,Θ𝑏⟩ 𝑇

←←←←←←←←→𝑅𝓁 , 𝜄𝓁⟨Σ𝑏,Θ′
𝑏
⟩, for some Θ′

𝑏
. Let 𝑇 = 𝗍𝖺𝗌𝗄1… 𝗍𝖺𝗌𝗄𝑛, for some tasks 𝗍𝖺𝗌𝗄1, … , 𝗍𝖺𝗌𝗄𝑛. Since discovery 

rules do not modify node states and rules syntax does not change during execution, all conditions of the bisimulation 
concerning node rules, invariants and states trivially hold. What is left to prove is that Θ′

𝑎

.
≡ Θ′

𝑏
. By definition of the rule 

(DISC), we have that Θ′
𝑎
=Θ𝑎 ∪{�𝖺𝖼𝗍�Σ𝑎 | ∃𝑖 ∈ [1..𝑛] . 𝗍𝖺𝗌𝗄𝑖 = 𝜑 ∶ 𝖺𝖼𝗍∧Σ𝑎 ⊧ 𝜑} and Θ′

𝑏
=Θ𝑏 ∪{�𝖺𝖼𝗍�Σ𝑏 | ∃𝑖 ∈ [1..𝑛] . 𝗍𝖺𝗌𝗄𝑖 = 𝜑 ∶

𝖺𝖼𝗍∧Σ𝑏 ⊧ 𝜑}. Since Θ𝑎

.
≡Θ𝑏 by hypothesis, we just have to prove that Θ̃𝑎 = {�𝖺𝖼𝗍�Σ𝑎 | ∃𝑖 ∈ [1..𝑛] . 𝗍𝖺𝗌𝗄𝑖 = 𝜑 ∶ 𝖺𝖼𝗍∧Σ𝑎 ⊧ 𝜑} 

.
≡

{�𝖺𝖼𝗍�Σ𝑏 | ∃𝑖 ∈ [1..𝑛] . 𝗍𝖺𝗌𝗄𝑖 = 𝜑 ∶ 𝖺𝖼𝗍 ∧ Σ𝑏 ⊧ 𝜑} = Θ̃𝑏. Let Θ̃𝑎 = {𝗎𝗉𝖽1, … , 𝗎𝗉𝖽𝑛} and Θ̃𝑏 = {𝗎𝗉𝖽′1, … , 𝗎𝗉𝖽′
𝑚
}, with 𝑚 ≤ 𝑛. We 

have to prove that for each 𝑖 ∈ [1..𝑛] there exists 𝑗 ∈ [1..𝑚] such that 𝗎𝗉𝖽𝑖 is primed equivalent to 𝗎𝗉𝖽′
𝑗
. Take an arbitrary 

𝑖 ∈ [1..𝑛], if 𝗎𝗉𝖽𝑖 contains only resources with security level greater than 𝓁 then any update in Θ̃𝑏 is primed equivalent 
to 𝗎𝗉𝖽𝑖 (if Θ̃𝑏 is empty we can take any update in Θ𝑏). Otherwise, we have to prove that there exists 𝑗 ∈ [1..𝑚] such that 
(𝗎𝗉𝖽𝑖)⇂𝓁 = (𝗎𝗉𝖽𝑗 )⇂𝓁 , since only resources with security level greater than 𝓁 are renamed. Since 𝖲𝑏 is the 𝓁-level twin of 𝖲𝑎, 
we have that the rules in 𝑅𝓁 differ from the rules in 𝑅 only for resources with security level greater than 𝓁. In addition, 
Σ𝑎 ≡𝓁 Σ𝑏 by hypothesis, hence the two nodes agree on the values of resources with security level less or equal than 𝓁. 
This means that such 𝑗 does not exists only when a task 𝜑 ∶ 𝖺𝖼𝗍 in 𝑇 is such that: (i) 𝜑 contains a resource with security 
level greater than 𝓁 and 𝖺𝖼𝗍 assigns a resource with security level less or equal than 𝓁; or (ii) 𝜑 does not contain any 
resource with security level greater than 𝓁 but 𝖺𝖼𝗍 assigns a resource with security level less or equal than 𝓁 with an 
expression containing a resource with security level greater than 𝓁. Nevertheless, neither (i) nor (ii) can happen, since 
by hypothesis both 𝑅 and 𝑅𝓁 have not information flows from 𝓁′ greater than 𝓁 to 𝓁′′ less or equal than 𝓁 (conditions 
𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅) =∅ and 𝙸𝙵𝚁𝚞𝚕𝚎𝚜(𝑅𝓁) =∅ of the bisimulation). Hence, it follows that (𝖲′

𝑎
, 𝖲′

𝑏
) ∈, with 𝖲′

𝑎
=𝑅, 𝜄⟨Σ𝑎, Θ′

𝑎
⟩ and 

𝖲′
𝑏
=𝑅𝓁 , 𝜄𝓁⟨Σ𝑏, Θ′

𝑏
⟩.

Case 𝛼 = 𝗎𝗉𝖽▸𝑇 . This label can be only generated by an application of the rule (STEPL) (the case of (STEPR) is analogous) of the AbU 
systems semantics (Fig. 1), where one of the nodes in 𝖲𝑎 has applied the rule (INPUT) of the AbU node semantics (Fig. 1). 
Let Σ𝑎 = {Σ𝑎,1, … , Σ𝑎,𝑛} and 𝗎𝗉𝖽 = (𝑥1, 𝑣1) … (𝑥𝑘, 𝑣𝑘). Suppose that the input has been performed by the 𝑖th node, with 
𝑖 ∈ [1..𝑛]. By definition of (INPUT), we have that Σ′

𝑎
= Σ𝑎[Σ′

𝑎,𝑖
∕Σ𝑎,𝑖], with Σ′

𝑎,𝑖
= Σ𝑎,𝑖[𝑣1∕𝑥1… 𝑣𝑘∕𝑥𝑘]. However, an input 

denotes a modification of the resources made by an external entity. Thus, this label does not depend on the actual system 
and can always be performed both by 𝖲𝑎 and 𝖲𝑏 (we have to maintain fairness, i.e., external inputs have to be sent to both 
systems). Note that 𝑅𝑎 and 𝑅𝑏 differ only in some resources with clearance greater than 𝓁, that are renamed, but rules 

structures are identical. Hence, we can assume that the input can be performed by the 𝑖th node of 𝖲𝑏, that is 𝖲𝑏
𝛽

⇒ℎ𝓁
𝖲′
𝑏
, with 

𝛽 = 𝗎𝗉𝖽▸ 𝑇 ′, for some 𝑇 ′. Again, by definition of (INPUT), we have that Σ′
𝑏
= Σ𝑏[Σ′

𝑏,𝑖
∕Σ𝑏,𝑖], with Σ′

𝑏,𝑖
= Σ𝑏,𝑖[𝑣1∕𝑥1… 𝑣𝑘∕𝑥𝑘]. 
19

Since Σ𝑎 ≡𝓁 Σ𝑏 and states are updated in the same manner, we have that Σ′
𝑎
≡𝓁 Σ′

𝑏
. The only problem may arise when 𝗎𝗉𝖽
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contains resources that have been renamed: in this case 𝖲𝑏 cannot update them. But renamed resources can only be on 
resources with clearance greater than 𝓁, hence they do not affect states 𝓁-equivalence. Since we remove from Θ𝑎 and Θ𝑏

a pair of updates primed equivalent, obtaining the pool sets Θ′
𝑎

and Θ′
𝑏
, we have that Θ′

𝑎
and Θ′

𝑏
are primed equivalent. 

Hence, it follows that (𝖲′
𝑎
, 𝖲′

𝑏
) ∈.

Case 𝛼 = 𝗎𝗉𝖽 ⊳𝑇 . This action can be only derived by an application of the rule (STEPL) (the case of (STEPR) is analogous) of the AbU 
systems semantics (Fig. 1), where one of the nodes in 𝖲𝑎 has applied the rule (EXEC) of the AbU node semantics (Fig. 1). 
Suppose that 𝗎𝗉𝖽= (𝑥1, 𝑣1) … (𝑥𝑘, 𝑣𝑘). We have three sub-cases, depending on the security level of the resources 𝑥1, … , 𝑥𝑘.

Sub-case 𝓁 ⊏
�
𝑖∈[1..𝑘](𝑥𝑖). Then, we have that all resources in the update have clearance greater than 𝓁 and, hence, 

ℎ𝓁(𝛼) = ⋄. By definition of AbU hiding bisimulation, 𝛼 can always be mimicked by an arbitrary number (possibly 
0) of hidden actions (i.e., labels 𝛽 such that ℎ𝓁(𝛽) = ⋄). Since Θ𝑎 and Θ𝑏 are primed equivalent, we can select 

𝛽 = 𝗎𝗉𝖽′ ⊳𝑇 ′ such that 𝗎𝗉𝖽 and 𝗎𝗉𝖽′ are primed equivalent, for some 𝑇 ′. Hence, we can perform 𝖲𝑏
𝛽

⇒ℎ𝓁
𝖲′
𝑏
, 

since ℎ𝓁(𝛽) = ⋄. Note that, all resources in 𝗎𝗉𝖽 and 𝗎𝗉𝖽′ have clearance greater than 𝓁, so resources at security 
level 𝓁 or below are not modified, implying Σ′

𝑎
≡𝓁 Σ′

𝑏
. Since we remove from Θ𝑎 and Θ𝑏 a pair of updates primed 

equivalent, obtaining the pool sets Θ′
𝑎

and Θ′
𝑏
, we have that Θ′

𝑎

.
≡Θ′

𝑏
. Hence, it follows that (𝖲′

𝑎
, 𝖲′

𝑏
) ∈.

Sub-case
�
𝑖∈[1..𝑘](𝑥𝑖) ⊑ 𝓁 and 𝓁 ⋢

⨆
𝑖∈[1..𝑘](𝑥𝑖). Then, we have that at least one (but not all) resource in the update is 

at security level 𝓁 or below and, hence, ℎ𝓁(𝛼) = 𝗎𝗉𝖽⇂𝓁 ≠ 𝗎𝗉𝖽. Since Θ𝑎

.
≡Θ𝑏, then there exists 𝗎𝗉𝖽′ in the 𝑖th pool 

of Θ𝑏 such that 𝗎𝗉𝖽 and 𝗎𝗉𝖽′ are primed equivalent. Since primed equivalent updates potentially differ on primed 
resources only and primed resources can only have clearance greater than 𝓁, we have that 𝗎𝗉𝖽′⇂𝓁 = 𝗎𝗉𝖽⇂𝓁 . This 

implies that ℎ𝓁(𝛽) = 𝗎𝗉𝖽⇂𝓁 , where 𝛽 = 𝗎𝗉𝖽′ ⊳𝑇 ′, for some 𝑇 ′. Hence, we can perform 𝖲𝑏
𝛽

⇒ℎ𝓁
𝖲′
𝑏
. Since in both 

systems only resources with clearance greater than 𝓁 are modified, we have that Σ′
𝑎
≡𝓁 Σ′

𝑏
. Finally, since we 

remove from Θ𝑎 and Θ𝑏 a pair of updates primed equivalent, obtaining the pool sets Θ′
𝑎

and Θ′
𝑏
, we have that 

Θ′
𝑎

.
≡Θ′

𝑏
. Hence, it follows that (𝖲′

𝑎
, 𝖲′

𝑏
) ∈.

Sub-case
�
𝑖∈[1..𝑘](𝑥𝑖) ⊑ 𝓁. Then, we have that all resources in the update are at security level 𝓁 or below and, hence, we 

have that ℎ𝓁(𝛼) = 𝗎𝗉𝖽⇂𝓁 = 𝗎𝗉𝖽. Since Θ𝑎

.
≡ Θ𝑏 and 𝗎𝗉𝖽 does not contain primed resources, we have that 𝖲𝑏 can 

perform the same update, i.e., 𝗎𝗉𝖽 is in the 𝑖th pool of Θ𝑏. Hence, we can perform 𝖲𝑏
𝛼

⇒ℎ𝓁
𝖲′
𝑏
. Since both systems 

perform the same action, we trivially have that Σ′
𝑎
≡𝓁 Σ′

𝑏
and Θ′

𝑎

.
≡Θ′

𝑏
. Hence, it follows that (𝖲′

𝑎
, 𝖲′

𝑏
) ∈. □

Proof of Theorem 4 We prove here the soundness of the proposed safety verification mechanism, namely that the syntactic check 
provided in Algorithm 2 implies the (semantic) transparency of Definition 5.

Theorem 4 (Soundness for Safety) Let 𝑅𝖲 and 𝜄𝖲 be the rule list and invariant sets for the AbU system 𝖲, and 𝑅𝖱 and 𝜄𝖱 be the rule list 
and invariant sets of the AbU system 𝖱. If 𝚃𝚛𝚊𝚗𝚜𝚙𝚊𝚛𝚎𝚗𝚌𝚢𝙲𝚑𝚎𝚌𝚔(𝑅𝖲, 𝑅𝖱) = 𝐭𝐫𝐮𝐞, then (𝑅𝖲, 𝜄𝖲) (𝑅𝖱, 𝜄𝖱).

Proof. Let 𝑅𝖲 and 𝜄𝖲 be the rule list and invariant sets for the AbU system 𝖲, and 𝑅𝖱 and 𝜄𝖱 be the rule list and invariant sets of 
the AbU system 𝖱. Assume that 𝚃𝚛𝚊𝚗𝚜𝚙𝚊𝚛𝚎𝚗𝚌𝚢𝙲𝚑𝚎𝚌𝚔(𝑅𝖲, 𝑅𝖱) = 𝐭𝐫𝐮𝐞, that implies 𝗌𝗇𝗄(𝑅𝖲) ∩ 𝗌𝗋𝖼(𝑅𝖱) = ∅. Then, we have to prove 
that for any Σ ∈ 𝖼𝗈𝗆𝗉(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱) we have that 𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ) ≈𝐻𝖲

𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ), where ℎ𝖲 maps labels of the form 𝑇
and 𝗎𝗉𝖽 ⊳𝑇 , with 𝗌𝗈𝗎𝗋𝖼𝖾(𝗎𝗉𝖽) =𝑅𝖲, to ⋄; maps labels of the form 𝗎𝗉𝖽 ⊳𝑇 , with 𝗌𝗈𝗎𝗋𝖼𝖾(𝗎𝗉𝖽) ≠𝑅𝖲, to 𝗎𝗉𝖽 ⊳𝑇 ; and maps labels of the 
form 𝗎𝗉𝖽▸ 𝑇 to 𝗎𝗉𝖽▸ 𝑇 . The proof is by contradiction.

Suppose that 𝚃𝚛𝚊𝚗𝚜𝚙𝚊𝚛𝚎𝚗𝚌𝚢𝙲𝚑𝚎𝚌𝚔(𝑅𝖲, 𝑅𝖱) = 𝐭𝐫𝐮𝐞 but 𝗌𝗒𝗌(𝑅𝖲 ∪ 𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ) ̸≈𝐻𝖲
𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ), for some Σ. This means that 

it does not exist an AbU hiding bisimulation , parametric on 𝐻𝖲, that contains the pair (𝗌𝗒𝗌(𝑅𝖲 ∪ 𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ), 𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ)). 
More precisely, by definition of bisimulation relation, whenever we try to build up a hiding bisimulation , parametric on 𝐻𝖲 and 
containing the pair (𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ), 𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ)), the bisimulation game stops in a pair (𝖲𝑎, 𝖲𝑏), with 𝖲𝑎 and 𝖲𝑏 derivatives 
of 𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ) and 𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ), respectively.

This may happen because of either: 𝖲𝑎 can perform an action labeled 𝛼 that cannot be (weakly) mimicked by 𝖲𝑏 (or vice versa); 
or a mimicking action is always possible but it leads us to pairs of the form (𝖲′

𝑎
, 𝖲′

𝑏
) that do not belong to . Actually, since a 

bisimulation proof is a constructive procedure, we can always assume that the sought relation  is large enough so that the second 
case never applies.

Let 𝖲𝑎 = 𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ𝑎, Θ𝑎) and 𝖲𝑏 = 𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ𝑏, Θ𝑏), derivatives5 of 𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ) and 𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ), respec-
tively. We proceed by case analysis on the action 𝛼 that would distinguish the two elements 𝖲𝑎 and 𝖲𝑏.
20

5 Recall that, when the pool is empty we omit it from the notation 𝗌𝗒𝗌(𝑅, 𝜄, Σ).
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Case 𝛼 = 𝑇 . By definition of the AbU semantics (Fig. 1), the label 𝑇 can only be generated by a system composed by a single node, 
by applying the rule (DISC). This implies that either 𝖲 or 𝖱 must be empty, but empty systems are not allowed by AbU 
syntax. Hence, such case cannot happen.

Case 𝛼 = 𝗎𝗉𝖽▸𝑇 . This action can be only derived by an application of the rule (STEPL) (the case of (STEPR) is analogous) of the AbU 
systems semantics (Fig. 1), where one of the nodes in 𝖲𝑎 has applied the rule (INPUT) of the AbU node semantics (Fig. 1). 
However, this action denotes a modification of the resources made by an external entity. Thus, this action does not depend 
on the actual system and can always be performed by both 𝖲𝑎 and 𝖲𝑏 (we have to maintain fairness, i.e., external inputs 
have to be sent to both systems).

Case 𝛼 = 𝗎𝗉𝖽 ⊳𝑇 . This action can be only derived by an application of the rule (STEPL) (the case of (STEPR) is analogous) of the AbU 
systems semantics (Fig. 1), where one of the nodes in 𝖲𝑎 has applied the rule (EXEC) of the AbU node semantics (Fig. 1). We 
have two sub-cases, depending on the rule set that this node belongs to.

Sub-case 𝗌𝗈𝗎𝗋𝖼𝖾(𝗎𝗉𝖽) =𝑅𝖲. Then, we have that the node belongs to 𝑅𝖲 and, hence, ℎ𝖲(𝛼) = ⋄. By definition of AbU hiding 
bisimulation, 𝛼 can always be mimicked by an arbitrary number (possibly 0) of hidden actions (i.e., labels 𝛽 such 
that ℎ𝖲(𝛽) = ⋄). In particular, the system 𝖲𝑏 is allowed to not progress, without breaking the bisimulation game.

Sub-case 𝗌𝗈𝗎𝗋𝖼𝖾(𝗎𝗉𝖽) ≠𝑅𝖲. Then, we have that the node belongs to 𝑅𝖱 and, hence, ℎ𝖲(𝛼) = 𝗎𝗉𝖽 ⊳𝑇 . As 𝛼 is the distin-
guishing action, it follows that the node reaches different states in 𝖲𝑎 and 𝖲𝑏, leading to the following situation: 
the update 𝗎𝗉𝖽 is possible in 𝖲𝑎 but not in 𝖲𝑏 (or vice versa). Since both rule sets 𝑅𝖲∪𝑅𝖱 and 𝑅𝖱 start in the same 
execution state set Σ (and with all pools empty), the rule set 𝑅𝖱 could exhibit different behaviors if and only if 
it would be affected by 𝑅𝖲. In particular, this means that in the execution trace leading 𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ) to 
𝖲𝑎, one rule in 𝑅𝖲 ∪𝑅𝖱 should have modified either: (i) a resource that a rule in 𝑅𝖱 listens on; or (ii) a resource 
that is accessed by a rule in 𝑅𝖱. Note that, the accessed resource not necessarily has to be used to assign other 
resources: it can be used into task condition in order to modify the rule’s control flow. However, syntactic trans-

parency 𝚃𝚛𝚊𝚗𝚜𝚙𝚊𝚛𝚎𝚗𝚌𝚢𝙲𝚑𝚎𝚌𝚔(𝑅𝖲, 𝑅𝖱) = 𝐭𝐫𝐮𝐞, i.e., 𝗌𝗇𝗄(𝑅𝖲) ∩ 𝗌𝗋𝖼(𝑅𝖱) =∅, is trivially preserved by all derivatives 
of the initial systems (rules do not syntactically change during execution). This ensures that neither case applies.

As it does not exist a distinguishing action 𝛼, it follows that the original systems 𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ) and 𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ) must be 
hiding bisimilar, i.e., 𝗌𝗒𝗌(𝑅𝖲 ∪𝑅𝖱, 𝜄𝖲 ∪ 𝜄𝖱, Σ) ≈𝐻𝖲

𝗌𝗒𝗌(𝑅𝖱, 𝜄𝖱, Σ), where ℎ𝖲 maps labels of the form 𝑇 and 𝗎𝗉𝖽 ⊳𝑇 , with 𝗌𝗈𝗎𝗋𝖼𝖾(𝗎𝗉𝖽) =
𝑅𝖲, to ⋄; maps labels of the form 𝗎𝗉𝖽 ⊳𝑇 , with 𝗌𝗈𝗎𝗋𝖼𝖾(𝗎𝗉𝖽) ≠𝑅𝖲, to 𝗎𝗉𝖽 ⊳𝑇 ; and maps labels of the form 𝗎𝗉𝖽▸ 𝑇 to 𝗎𝗉𝖽▸ 𝑇 . □
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