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Abstract
In control theory, the problem of having available good measurements is of
primary importance in order to perform good tracking and control. Unfor-
tunately, in real-life applications, sensing systems do not provide direct mea-
surements about the pose (and its rate) of mechanical systems, while, in other
situations, measurements are so noisy that require pre-processing to filter out
disturbances and biases. These problems could be faced by using filters and
observers.

In this thesis, we apply a second-order optimal minimum-energy filter con-
structed on Lie groups to several planar bodies. We start by studying the
application of the filter to the matrix Lie group TSE(2), i.e. the tangent bun-
dle of the Special Euclidean group SE(2); moreover, a comparison with the
extended Kalman filter is presented. After that, we consider the Chaplygin
sleigh case, that is a mechanical system with a nonholonomic constraint. Then,
we move our attention to the case of an articulated convoy with hooking con-
straints. Finally, we apply the filter to a real case scenario consisting of a
scaled model representing a parking truck semi-trailer system.

Particular attention is posed to the description of the geometric structure
that underlies the dynamics and to the choice of the measurement equation, the
affine connection, and the other parameters that define the filters. Simulations
show the effectiveness of the proposed filters. The use of Lie groups theory for
designing the filters is challenging, but the accuracy of the results, obtained
considering the geometric structure and the symmetries of the system justifies
the effort.
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List of symbols

Notations used for the design of the filters in this thesis.
G a connected Lie group;
n dimension of the group G;
g, h element of G;
TgG tangent space at g;
g the Lie algebra associated with G;
X, Y elements of the Lie algebra g;
[·, ·] the Lie bracket of g;
g∗ the dual of the Lie algebra g;
µ an element of g∗;
Lg : G→ G left translation Lgh = gh;
ThLg the tangent map of Lg at h ∈ G;
gX shorthand for TeLg(X) ∈ TgG;
⟨·, ·⟩ duality paring ⟨µ,X⟩ = µ(X);
V finite-dimensional vector space;
f : G→ V differentiable map;
df(g) differential of f at g, df(g) : TgG→ V iden-

tifying Tf(g)V with V ;
d1, d2 differentials with respect to individual argu-

ments of a multiple-argument map;
∇XY covariant derivative;
ω : g× g → g connection function associated with ∇;
ωX : g → g ωX(Y ) = ω(X, Y );
ω⇋
Y : g → g ω⇋

Y (X) = ωX(Y );
ω∗
X : g∗ → g∗ ⟨ω∗⇋

X (µ), Y ⟩ = ⟨µ, ωXY ⟩;
ω∗⇋
µ : g → g∗ ⟨ω∗⇋

µ (X), Y ⟩ = ⟨ω∗
X(µ), Y ⟩ = ⟨µ, ωXY ⟩;

ω⇋∗
Y : g∗ → g∗ ⟨ω⇋∗

Y (µ), X⟩ = ⟨µ, ω⇋
Y (X)⟩ = ⟨µ, ωXY ⟩;

T (X, Y ) ∈ g torsion function associated with ω;
TX : g → g partial torsion function TXY = T (X, Y );
Hessf(g) : TgG→ L(TgG, V ) Hessian operator of a twice differentiable

function f : G→ R (or a map f : G→ V );
(ϕ)W : L(W,U) → L(W,V ) exponential functor (·)W applied to a linear

map ϕ : U → V , exponential functor lifts
ϕ to ϕW : L(W,U) → L(W,V ) defined by
ϕW (ψ) = ϕ ◦ ψ;

I : g× g → R inner product on g;
I♯ : g∗ → g ♯-map associated to the inner product I;
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I♭ : g → g∗ ♭-map associated to the inner product I;
ad : g× g → g adjoint map on g;
ad∗ : g× g∗ → g∗ dual adjoint map;
0n×n null matrix of dimension n× n;
In×n identity matrix of dimension n× n.
Ts sample time
δ Dirac delta
E{v} = µ mean value of a causal variable v
Var{v} variance of a causal variable v
σ{v} standard deviation of a causal variable v
rms{v} root mean square of a causal variable v
∇x gradient operator
tr(A) trace of a matrix A
||A||F =

√︁
tr(AAT ) Frobenius norm

SE(2) special Euclidean group in R2

se(2) Lie algebra of SE(2)
ΣI = {ex, ey} inertial frame of reference

Σb = {eb1, eb2}, Σb =
{︂
eb∥, e

b
⊥

}︂
bodies frames of reference

∨ : se(2) → R3 “vee” isomorphism
∧ : R3 → se(2) “wedge” isomorphism
λ = g−1ġ left-trivialized dynamics
δ model error
ε measurement errorˆ︂(·) estimated quantity
J inertia
m mass

In this thesis, we will use the notation G when we will refer to a Lie group
that extends the Lie group SE(2). We will use the same notation for Lie
algebras and their elements.
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Chapter 1

Introduction

In control theory, the problem of having good measurements is of primary
importance in order to perform good tracking and control. Unfortunately, in
real-life applications, the sensing system does not often provide direct mea-
surements about the pose (and its rate) of mechanical systems, while, in other
situations, measurements are noisy and require pre-processing to filter out dis-
turbances and biases. The design of pose estimators for robotic systems is then
of paramount importance to produce an effective regulation on a desired sta-
tionary position and tracking of a reference trajectory, [24]. Moreover, the pose
of the robot is crucial for unmanned aerial and ground vehicles (UAV, UGV)
that exploit SLAM (Simultaneous Localization and Mapping) algorithms for
computing their position and for planning their trajectory [42]. These prob-
lems are solved by designing filters and observers. In the last decades, many
linear and nonlinear, deterministic and stochastic filters/observers have been
proposed in the literature. The most famous approach is based on Kalman
filtering [19] and its many extensions.

The Kalman filter is a recursive algorithm that, through measurements
over time, produces accurate estimates of unknown variables by computing at
run-time the joint probability distribution. The Kalman filter achieved great
success for its simplicity and its wide range of applicability, but it is optimal
only for linear and Gaussian systems: such assumption is usually too strong
in UAV and UGV, where the model is nonlinear and where nonholonomic
constraints may arise and must be taken into account.

After the formulation of its standard form, generalizations aiming at ex-
tending it to nonlinear systems, such as the Extended Kalman Filter (EKF),
have been proposed [1]. The EKF computes at each step the linear approx-
imation of the dynamics and measurement equations and applies the same
algorithm as its linear form.

An attempt to overcome the Gaussian assumption is by using the Unscented
Kalman Filter [18] and the Particle Filter [2] that approximate the probability
density function with a certain number of sampling points and updates their
values according to the past state and current measurements. Nonlinear maps
can then be considered to get more accurate estimations of the mean and
covariance of the state vector.
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Minimum energy filters

Another way to design a filter is by formulating it as an optimization problem.
In [26] the author considers nonlinear dynamics with nonlinear measurement
equations, an initial cost, and a cost functional (energy) in which the incre-
mental cost weights the contribution of the model and measurement errors.
The dynamic programming principle ensures the optimality for the estimated
quantity along the trajectory.

This algorithm presents an innovative way of tackling the problem, but it
does not take into consideration the symmetries and the geometric structure of
the systems that can be described with the theory of Lie groups. A Lie group
is a differentiable manifold that has a continuous operation which gives it a
group structure. From the manifold structure, the Lie group inherits all the
notions related to differentiation, while from the group structure, it inherits
symmetry notions. Thanks to these properties, Lie groups are the natural
mathematical tool to describe mechanical and robotic systems.

The first results that exploit Lie groups to design minimum energy fil-
ters come from the works [33, 34, 35]. Unlike the stochastic approach, both
uncertainty and noise related to model and measurements are considered un-
known deterministic signals and the optimal filter is obtained by minimizing
the square of the estimation error (energy). The solution is obtained by differ-
entiating the boundary conditions of the associated optimal control problem.
It is called second-order optimal in the sense that it is a truncation of the ex-
act solution that would be an infinite dimensional system. The filter takes the
form of a gradient observer coupled with a kind of Riccati differential equa-
tion that updates its output-injection gain (similarly to the standard Kalman
filter).

Outline of the thesis

In Chapter 2 we recall the main results on minimum energy optimal filters and
on second-order optimal filters designed for Lie groups. After that, we design
observers for planar rigid bodies exploiting the second-order filter presented in
[35]. Chapters 3 to 6 are devoted to the application of the second-order filter
to the following cases:

- free rigid body;

- Chaplygin sleigh;

- n-trailer vehicle;

- truck and semi-trailer system.

In all of these cases, we study the geometric structures and the needed oper-
ators exploiting their matrix representations. Then, we design explicitly the
filters with the proofs of the related theorems. The accuracy of the filters is
shown with numerical simulations. They are elaborated using external inputs
that generate the real (nominal) trajectories, while Gaussian white processes
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model plant uncertainty and measurement noises. The measurements are taken
as inputs of the filter to find the estimated trajectories. The general scheme is
reported in Figure 1.1.

Plant

Noise

Commands FilterMeasurements Estimations+

Figure 1.1: Scheme of the simulations setup. The external inputs (i.e. commands) generate
the actual trajectories; Gaussian white noises corrupt the measurements.

Planar rigid body

The literature dealing with Lie groups and dynamic systems focuses mainly on
simple manifolds without examining the case of their tangent bundle. There-
fore filters designed on tangent bundles are less common.

In Chapter 3 we apply the second-order filter to the case of a planar rigid
body ([7]). The dynamics evolves on the tangent bundle TSE(2) of the base
Lie group SE(2) that can be trivialized as the Cartesian product TSE(2) ≃
SE(2) × se(2). The study of this type of manifold is particularly relevant in
real applications. For example, it can represent many marine vehicle systems
such as hovercraft. The dynamics is well described by the Euler-Poincaré
equation for the rigid body that fits well with the formulation via Lie groups.
Particular attention is devoted to the choice of the measurement equations and
we compare three of them. In the last part of this chapter, a comparison with
the extended Kalman filter is presented ([1], [28]), since the second-order filter
could be seen as an improvement of the extended Kalman filter.

Chaplygin sleigh

In real cases, most vehicles are forced to follow only certain trajectories due
to constraints originated by the use of wheels (such as bicycles or cars) or
blades (such as sleighs). When the set of constraints cannot be integrated as
constraints of the position we talk about nonholonomic constraints, [3]. The
presence of a nonholonomic constraint changes the configuration space and a
deeper analysis is needed. In particular, the state space is no more described
by the tangent space of a base manifold, but by a distribution of it.

In Chapter 4 we extend the application of the filter to the case of nonholo-
nomic dynamics. We consider the Chaplygin sleigh, which is a nonholonomic
system that models a planar rigid body supported at three points, two of which
slide freely while the third is a blade located ahead of the center of mass and
that cannot move perpendicularly ([3], [29], [37]). To obtain the correct geo-
metric structure, we exploit Hamel’s approach to adapt the so-called Hamel’s
coordinates to the sleigh ([3], [4], [14], [46]). In this way, one coordinate van-
ishes. In this chapter, we analyze the choice of the affine connection and we
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investigate the conditions that ensure the preservation of the nonholonomic
constraint.

n-trailer vehicle

The study of articulated vehicles has grown in the last decades due to their
use in real-life applications ([20], [23]). These systems model multi-bodies
structures where the rigid bodies are linked by hooking constraints ([6]). They
are very important in robotics and control theory since they can be exploited to
model convoy systems where the first car pulls the trailers. Examples of these
systems are luggage carriers in airports or cars with trailers in warehouses.
A common strategy for deriving the equations of motion for nonholonomic
systems consists in using Hamel’s equations to write the system evolution in
an arbitrary configuration-dependent frame.

In Chapter 5 we shift our attention from rigid bodies to articulated ve-
hicles. We consider the case of a leading car pulling n trailers. In this new
configuration, we consider a minimal set of measurement equations and we de-
sign different filters depending on whether the dynamic parameters are known
or unknown.

Truck and semi-trailer

Special cases of n-trailer vehicles are truck trailer and truck semi-trailer sys-
tems ([10], [36], [43]). This type of system becomes unstable when the vehicles
move in reverse, and this can give rise to the jackknifing problem. These prob-
lems become evident in parking maneuvers. The issue of autonomous or guided
parking, facilitated through the measurements of the external environment or
the knowledge of one’s own state, has been developed in many areas (see e.g.
[31]).

In Chapter 6 we consider the case of a truck semi-trailer system in a parking
area. The experiments were done on a scaled model in a laboratory. All the
measurements are simulated by adding noises to the actual state. In this case,
we consider a likely set of sensors that can be applied in real life. Moreover, we
consider different types of measurements in order to have better estimations
when the system is moving in reverse, in which case the dynamics becomes
unstable.
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Chapter 2

Background on minimum energy
filters

2.1 Maximum-likelihood recursive nonlinear fil-
ter

The construction of a minimum energy filter that we propose was derived and
presented in [26]. The main idea consists in consider the estimation algorithm
as an optimal control problem and exploit optimal control features to provide
the estimation.

We consider a dynamics equation that describes the time evolution of a
noisy system

ẋ(t) = f(x, t) + v(t)

where x is the vector of state dynamic variables, t is the time variable, f is a
(nonlinear) function and v is a white noise, that is,

E{v(t)} = 0, E{v(t1)v′(t2)} = R(t1)δ(t1 − t2). (2.1)

The system is able to take observations through the noisy measurement equa-
tion

y(t) = h(x(t), t) + w(t) (2.2)

with w(t) white noise independent of v(t) and such that

E{w(t)} = 0, E{w(t1)w′(t2)} = Q(t1)δ(t1 − t2). (2.3)

The initial state x(t0) is a random vector with Gaussian distribution with
covariance matrix Λ and mean value µ.

The idea that underlies a minimum energy filter is to find the dynamic
vector x(t) that minimizes the “weighted” errors associated with the starting
state, the model dynamics and the observations. This suggests considering the
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likelihood functional

Jt =+
1

2
[x(t0)− µ]Λ−1[x(t0)− µ]

+
1

2

∫︂ t

t0

{[ẋ(τ)− f(x(τ), τ)]′R−1(τ)[ẋ(τ)− f(x(τ), τ)]

+ [y(τ)− h(x(τ), τ)]′Q−1(τ)[y(τ)− h(x(τ), τ)]}dτ.

(2.4)

Substituting the measurements y(τ) into (2.4), Jt becomes a functional that
depends only on x(τ) for 0 ≤ τ ≤ t. Using Euler-Lagrange equations, it is
possible to determine x∗(τ) that minimizes the functional. This trajectory is
defined on all the time intervals where the measurements are taken, but only
the value obtained at the current (final) time t is used to estimate the current
state: ˆ︁x(t) = x∗[t0,t](t). This implies that, to have an estimator for all t, we
have to continuously calculate the optimal trajectory x∗(t) and take its final
value. Unfortunately, given t0 < t1 < t2, in general x∗[t0,t1](τ) ̸= x∗[t0,t2](τ) for
t0 ≤ τ ≤ t1, which means that the optimal trajectory in [t0, t1] for x∗[t0,t1](τ)

is different from the optimal trajectory in [t0, t1] for x∗[t0,t2](τ). Therefore, the
collected trajectories for the previous intervals of time, cannot be used as
starting trajectories for the actual one (Figure 2.1).

t

x

t

x

t1 t2t0t0 t1

Figure 2.1: Optimal trajectories x∗ for the time intervals [t0, t1] (dashed) and [t0, t2] (contin-
uous). In blue is the measurement. Adding of the measurement between t1 and t2 modifies
the optimal trajectory also in the interval [t0, t1].

In order to improve the computational efficiency of the filter, it is convenient
to rewrite the issue as an optimal control problem. Substituting (2.1) into (2.4),
we obtain

Jt =+
1

2
[x(t0)− µ]Λ−1[x(t0)− µ] +

1

2

∫︂ t

t0

v′(τ)R−1(τ)v(τ)

+ [y(τ)− h(x(τ), τ)]′Q−1(τ)[y(τ)− h(x(τ), τ)]dτ.

(2.5)

In this way, the new purpose is to deal v(t) as an optimal control variable and
find it in order to minimize the functional (2.5) knowing that it is subject to
the differential constraint

ẋ(τ) = f(x(τ), τ) + v(τ). (2.6)
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The Hamiltonian associated with this optimal control problem is then

H(x, p, v, t) =
1

2
v′(τ)R−1(τ)v(τ) + p′(f(x(τ), τ) + v(τ))

+
1

2
[y(τ)− h(x(τ), τ)]′Q−1(τ)[y(τ)− h(x(τ), τ)]

(2.7)

where x, p, v and t are independent variables. Since the Hamiltonian function
is quadratic in v, the optimal choice of v is given by

∇vH = 0 ⇒ v = −R(τ)p (2.8)

and thus, the optimal Hamiltonian is

H∗(x, p, t) =
1

2
p′(τ)R(τ)p(τ) +

1

2
[y(τ)− h(x(τ), τ)]′Q−1(τ)[y(τ)− h(x(τ), τ)]

+ p′(f(x(τ), τ) + v(τ)).

(2.9)

Hamilton’s equations related to Hamiltonian (2.9) are

ẋ(τ) =∇pH
∗(x, p, τ) = f(x, τ)−R(τ)p

ṗ(τ) =−∇xH
∗(x, p, τ) = −fx(x, τ)p+ hx(x, τ)Q

−1(τ)[y(τ)− h(x, τ)]
(2.10)

with boundary conditions

p(t0) = Λ−1[µ− x(t0)], p(t) = 0, (2.11)

where fx, hx are the Jacobian matrices of f and h, respectively. The optimal
estimate ˆ︁x(t) is the final value of the optimal trajectory x∗(t). With this
approach, one has to find the optimal trajectory for every t, and then evaluate
it at the current time to find the optimal estimate. The procedure could be
long and computationally speaking it could be very wasteful. Thus, another
viewpoint that considers the Hamilton-Jacobi theory is preferable.

We define the value function

V (x, t;µ, t0) = min
v(t),t0≤τ≤t

Jt. (2.12)

The Hamilton-Jacobi equation for this function is

∂

∂t
V (x, t;µ, t0) +H∗[x,∇x(x, t;µ, t0), t] = 0 (2.13)

with the boundary condition

V (x, t0;µ, t0) =
1

2
[x(t0)− µ]Λ−1[x(t0)− µ]. (2.14)

Since we have no final conditions on the state variable x (i.e. x(t) is free), the
vector of adjoint variables satisfies p(t) = 0. This are the adjoint variables of
the Hamiltonian function (2.13), and thus, the final condition brings to

∇xV (x, t;µ, t0) = 0. (2.15)
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With this approach, one obtains the solution of V satisfying (2.13), and then,
one computes its root in order to find the optimal estimate ˆ︁x(t).

The procedure described so far allows to identify ˆ︁x(t) solving the partial
differential equation (2.13). The next step consists in write a system of differ-
ential equations that is satisfied by ˆ︁x(t). The total time derivative of (2.15)
is

d

dt

{︁
[∇xV (x, t;µ, t0)]x=ˆ︁x(t)}︁
=

{︃
∇x

[︃
∂V

∂t
(x, t;µ, t0) +∇xV (x, t;µ, t0)

(︃
dˆ︁x(t)
dt

)︃]︃}︃
x=ˆ︁x(t).

(2.16)

Substituting the Hessian matrix Π(x, t;µ, t0)

(Π)ij =
∂2

∂xi∂xj
V (x, t;µ, t0) (2.17)

and (2.13) into (2.16), we obtain

d

dt

{︁
[∇xV (x, t;µ, t0)]x=ˆ︁x(t)}︁
=

{︃
−∇xH

∗[x,∇xV (x, t;µ, t0), t] + Π(x, t;µ, t0)

(︃
dˆ︁x(t)
dt

)︃}︃
x=ˆ︁x(t).

(2.18)

The first addend on the right-hand side can be expanded using the chain rule

∇xH
∗[(x,∇xV (x, t;µ, t0), t)]

= [∇xH
∗(x, p, t)]p=∇xV (x,t;µ,t0) +Π(x, t;µ, t0)[∇pH(x, p, t)]p=∇xV (x,t;µ,t0).

(2.19)

From Hamilton’s equations (2.10)

∇xH
∗[(x,∇xV (x, t;µ, t0), t)]

=− fx(x, t) · ∇xV (x, t;µ, t0) + hx(x, t)Q
−1(t)[y(t)− h(x, t)]

+ Π(x, t;µ, t0)f(x, t)− Π(x, t;µ, t0)R(t) · ∇xV (x, t;µ, t0).

(2.20)

Rewriting equation (2.15) as

[∇xV (x, t;µ, t0)]x=ˆ︁x(t) = 0 (2.21)

and K(x, t) = hx(x, t), substituting these into (2.20), and evaluating alongˆ︁x(t), we end up with

{∇xH
∗[(x,∇xV (x, t;µ, t0), t)]}x=ˆ︁x(t)

= Π(ˆ︁x(t), t;µ, t0)f(ˆ︁x(t), t) +K(ˆ︁x(t), t)Q−1(t)[y(t)− h(ˆ︁x(t), t)]. (2.22)

From equation (2.21), equation (2.18) becomes

{∇xH
∗[x,∇xV (x, t;µ, t0), t]}x=ˆ︁x(t) = Π(ˆ︁x(t), t;µ, t0)(︃dˆ︁x(t)

dt

)︃
. (2.23)
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Assuming non-singularity of the matrix Π, and substituting into equation
(2.22) we finally obtain

dˆ︁x(t)
dt

= f(ˆ︁x(t), t) + Π−1(ˆ︁x(t), t;µ, t0)K(ˆ︁x(t), t)Q−1(t)[y(t)− h(ˆ︁x(t), t)].
(2.24)

This equation, together with the initial condition

ˆ︁x(t0) = µ, (2.25)

is the maximum-likelihood nonlinear filter. Matrix Π−1(ˆ︁x(t), t;µ, t0) corre-
sponds to the error covariance matrix in Kalman-Bucy theory and can be
obtained with an ordinary matrix differential equation of Riccati type with
initial condition

Π−1(t0, t0) = Λ. (2.26)

2.2 Second-order optimal minimum energy fil-
ters on Lie groups

In this section, we recall a second-order optimal minimum energy filter con-
structed on Lie groups. This filter represents the result of the work in [35] and
constitutes the base of the rest of this thesis.

Let us better specify some concepts that are useful for understanding the
filter.

Definition 2.1. (Connection function). A left-invariant affine connection is
an affine connection ∇ on G such that L∗

g(∇XY ) = ∇L∗
gXL

∗
gY for all g ∈ G and

X, Y ∈ X(TG). Such a left-invariant affine connection is fully characterized by
its bilinear connection function ω : g×g → g through the identity ∇gX(gY ) =
gω(X, Y ).

Definition 2.2. (Hessian operator). Given a twice differentiable function
f : G → R we can define the Hessian operator Hess f(g) : TgG → T ∗

gG at a
point g ∈ G by Hess f(g)(gX)(gY ) = d(df(g)(gY ))(gX)−df(g)(∇gX(gY )) for
all gX, gY ∈ TgG.

Definition 2.3. (Exponential functor). Given three vector spaces U , V , W
and a linear map ϕ : U → V , the exponential functor (·)W lifts the map ϕ to
the linear map ϕW : L(W,U) → L(W,V ) defined by ϕW (ψ) = ϕ ◦ ψ.

The optimal filter described in this section proposes the same ideas as
the general maximum-likelihood nonlinear filter described in Section 2.1. In
particular, it is stated as a minimum energy filter constructed on Lie groups.

Since the geometric structure that underlies the dynamics of our system is
a Lie group G, we can write it considering the following deterministic system:

ġ(t) = g(t) [λ(g(t), u(t), t) +Bδ(t)] , g(t0) = g0 (2.27)
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where g(t) ∈ G is the state, u(t) ∈ Rm is an external input, λ : G×Rm×R → g
is the left-trivialized dynamics, δ(t) ∈ Rd is unknown model error, B : Rd → g
is a linear map and g0 is the unknown initial condition at time t0.

The known measurement output y ∈ Rp is given by the following measure-
ment equation:

y(t) = h(g(t), t) +Dε(t) (2.28)

where h : G × R → Rp is the nominal output map, ε ∈ Rp is the unknown
measurement error and D : Rp → Rp is an invertible linear map. This equation
depicts the knowledge the system acquires of its state through sensors.

In order to settle the filter as an optimal control problem, it is necessary
to define a cost functional to be minimized. We choose

J(δ, ε, g0; t, t0) = min
(g(·),δ(·))

m(g(t0), t, t0) +

∫︂ t

t0

ℓ(δ(τ), ε(τ), t, τ)dτ (2.29)

where
m(g0, t, t0) := 1/2e−α(t−t0)m0(g0), (2.30)

ℓ(δ, ε, t, τ) := 1/2e−α(t−t0)(R(δ) +Q(ε)). (2.31)

Equation (2.30) represents an initial cost where m0 : G → R is a bounded
smooth function with a unique global minimum on G that encodes the a-priori
information about the state at time t0. Equation (2.31), instead, represents
an incremental cost. The two quadratic forms R : Rd → R and Q : Rp → R
measure the instantaneous energy of model error R(δ) and measurement error
Q(ε).

The filter takes as input the measurement y(τ) and the input u(τ) and
produces the filter estimate ˆ︁g(t). The error signals δ and ε are modelled as
unknown deterministic functions of time. Together with the initial conditions
g0, these three signals are unknown in the optimization problem. Each choice
of this triple corresponds to a different state trajectory g(τ). The principle of
minimum energy filter consists in finding the “best” trajectory that minimizes
the cost functional induced by the signals (δ(τ), ε(τ), g0) for τ ∈ [t0, t].

The filter estimation ˆ︁g(t) coincides with the optimal minimum trajectory
at time t, that means ˆ︁g(t) := g∗[t0,t](t). The minimum energy filter should be
posed and solved on the interval [t0, t]. Based on the same idea presented in
Section (2.1), it is not necessary to solve the optimization problem for each
new time t and then evaluate the optimal estimate ˆ︁g(t), because we can exploit
the dynamic programming principle and apply the Hamilton-Jacobi-Bellman
equation in terms of the value function. The new approach based on Lie
group theory provides a new formulation that takes care of the symmetry and
geometry of the system. Here we state the second-order optimal minimum
energy filter designed for Lie groups systems.

Theorem 2.1. Consider the system define by (2.27) and (2.28) with the energy
cost functional (2.29)-(2.31). Then the second-order-optimal minimum-energy
filter ˆ︁g is given by

ˆ︁g−1ˆ︁ġ = λt(ˆ︁g, u) +K(t)rt(ˆ︁g), ˆ︁g(t0) = ˆ︁g0 (2.32)
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where K(t) : g∗ → g is a (time-varying) second-order-optimal symmetric gain
operator satisfying the perturbed Riccati operator (2.35) given below,

ˆ︁g0 = argming∈Gm0(g), (2.33)

and the residual rt(ˆ︁g) ∈ g∗ is computed as

rt(ˆ︁g) = TeL
∗ˆ︁g[(︁(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁g)))︁ ◦ dht(ˆ︁g)]. (2.34)

The perturbed Riccati equation for K is

K̇ =− α ·K + A ◦K +K ◦ A∗ −K ◦ E ◦K
+B ◦R−1 ◦B∗ − ωKr ◦K −K ◦ ω∗

Kr

(2.35)

with initial condition K(t0) = X−1
0 . The operators X0 : g → g∗, A(t) : g → g,

and E(t) : g → g∗ are given by

X0 = TeL
∗ˆ︁g0 ◦ Hessm0(ˆ︁g) ◦ TeLˆ︁g0 (2.36)

A(t) = d1λt(ˆ︁g, u) ◦ TeLˆ︁g − adλt(ˆ︁g,u) − Tλt(ˆ︁g,u) (2.37)

E(t) = −TeL∗ˆ︁g ◦ [︁(︁(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁g)))︁Tˆ︁gG ◦ Hessht(ˆ︁g)
− (dht(ˆ︁g))∗ ◦ (D−1)∗ ◦Q ◦D−1 ◦ dht(ˆ︁g)]︁ ◦ TeLˆ︁g. (2.38)

The symbol ◦ denotes the composition between maps, Kr is a shorthand
notation for K(t)rt(ˆ︁g) and ωKr is the connection form that depends on the
chosen affine connection. R and Q are two symmetric positive definite matrices
representative of the quadratic forms R and Q.

Proof. See Appendix C.

As can be seen, the theorem describes a second-order filter since the gain
K, solved by a Riccati equation (2.35), is a second-order approximation of
the analytical solution that appears considering the Hamilton-Jacobi-Bellman
equation (see Appendix C).

The residual rt considers the difference between the real measurements
and the estimated one. Through this operator, the estimation errors, that
belong to Rp, are mapped onto the dual of the Lie algebra g. Operator A
represents the coefficient of the linear part of the Riccati equation. The first
term d1λ(ˆ︁g, u) ◦ TeLˆ︁g is the differential of the left-trivialized dynamics with
respect to the group elements that, together with the adjoint operator adλ(ˆ︁g,u),
provide a linearization for the trivialized dynamics, while the last term Tλ(ˆ︁g,u)
is the torsion that takes care of the choice of the connection function adopted.
The operator E represents the second-order term of the Riccati equation that
does not depend on the gain, while the operator ωKr represents the second-
order term that depends on the gain.

We notice that the residual rt, the operatorsK, A, E, the starting condition
X0 and the connection function ω are all defined on the Lie algebra of the Lie
group or on its dual.
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The filter does not require any hypothesis on the model and measurement
errors, which are treated as deterministic but unknown functions. This implies
that it is not necessary to provide a statistical description for the errors as
instead is required in stochastic filters. In real life, model errors represent un-
certainty related to model dynamics (e.g. uncertainty on masses, inertias,...),
while measurement errors affect the precision of the sensors. In the thesis, we
will simulate them as Gaussian variables in the simulations to get a realistic
representation. In the case of dynamics constructed on tangent bundle, we will
add model errors only on the velocity evolution of the system and not on the
kinematics ([35]).

20



Chapter 3

Second-order optimal filter applied
to a free rigid body 1

In this chapter, we study the second-order optimal filter applied to the case
of a planar free rigid body. We will focus in particular on the study of the
geometric structure that underlies the dynamics and the impacts of different
measurement equations. The last part of the chapter is devoted to a compar-
ison with the extended Kalman filter.

3.1 Free rigid body dynamics in TSE(2)

The free rigid body that we consider is shown in Figure 3.1.
We consider an inertial frame of reference ΣI = {ex, ey} integral to the

ground and a body reference frame Σb = {eb1, eb2} attached to the rigid body
with the origin of the axes settled on the center of mass (x, y). We indicate
with θ the angle between ex and eb1 that represents the orientation of the body.
We will refer to the triple (θ, x, y) as the pose of the body. This pose is an
element g ∈ SE(2) and admits a well-known matrix representation given by

g =

⎡⎣cos θ − sin θ x
sin θ cos θ y
0 0 1

⎤⎦ .
SE(2) is a matrix Lie group, called special Euclidean group, that features the
rigid motion of the Euclidean space on R2, comprising all translations and
rotations. Its Lie algebra is indicated with se(2), and an element ηg ∈ se(2)

1This chapter is based on the following publications:
▷ Rigo D., Segala C., Sansonetto N., & Muradore R. (2022). Second-order-optimal filter on
Lie groups for planar rigid bodies. IEEE Transactions on Automatic Control.
▷ Rigo D., Sansonetto N., & Muradore R. (2021, December). A comparison between the
Extended Kalman Filter and a Minimum-Energy Filter in the TSE(2) case. In 2021 60th
IEEE Conference on Decision and Control (CDC) (pp. 6175-6180). IEEE.
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Figure 3.1: Planar free rigid body.

admits the matrix representation

ηg =

⎡⎣ 0 −ηθ ηx

ηθ 0 ηy

0 0 0

⎤⎦ .
We introduce the Lie algebra isomorphisms ∨ : se(2) → R3 and ∧ : R3 → se(2)
as ⎡⎣ 0 −ηθ ηx

ηθ 0 ηy

0 0 0

⎤⎦∨

=

⎡⎣ηθηx
ηy

⎤⎦ ,
⎡⎣ηθηx
ηy

⎤⎦∧

=

⎡⎣ 0 −ηθ ηx

ηθ 0 ηy

0 0 0

⎤⎦ ,
between the Lie algebra (R3, ⋆) and the matrix Lie algebra (se(2), [·, ·]), where
⋆ : R3 × R3 → R3 is the Lie bracket operation defined as⎡⎣ηθ1ηx1

ηy1

⎤⎦ ⋆
⎡⎣ηθ2ηx2
ηy2

⎤⎦ =

⎡⎣ 0
ηy1η

θ
2 − ηθ1η

y
2

ηθ1η
x
2 − ηx1η

θ
2

⎤⎦ , (3.1)

and [·, ·] is the usual matrix commutator (see e.g. [25]). The adjoint operator
adηg ∈ L(se(2); se(2)) of ηg ∈ g admits the matrix representation

adηg =

⎡⎣ 0 0 0
vy 0 −ω
−vx ω 0

⎤⎦ ,
while its dual ad∗

ηg ∈ L(se(2)∗; se(2)∗) satisfies ad∗
ηg = (adηg)

T .
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The space of velocities has the same structure as the Lie algebra g, and
thus a generic element Ω can be written as

Ω =

⎡⎣0 −ω vx

ω 0 vy

0 0 0

⎤⎦ .
With reference to the rigid body in Figure 3.1, ω represents the angular velocity
while the couple (vx, vy) denotes the linear velocity of the body written in body
coordinate.

Given the dual basis {ê1, ê2, ê3} on se(2)∗, we denote by I the constant
inertia tensor

I = Jê1 ⊗ ê1 +mê2 ⊗ ê2 +mê3 ⊗ ê3 (3.2)

with matrix representation (in the standard basis for R3, see [7])

I = diag(J,m,m) (3.3)

where J is the inertia along the axis passing to the center of mass and or-
thogonal to the plane and with m the mass of the rigid body. We denote by
u = (τ/J, F/m, 0)T the control inputs that are functions of time such that τ
and F act respectively as a torque applied around the center of mass and a
force applied along the body first axis as shown in Figure 3.1.

The dynamics of the body evolves on TSE(2), the tangent bundle of G :=
SE(2) that we can identify with G = SE(2)×se(2) via left translation, [7], and
is given by the Euler-Poincarè equation

g−1ġ = Ω (3.4)

Ω̇ = I♯ad∗
ΩI♭Ω + u∧ (3.5)

with (g,Ω) ∈ G. In component-wise form, the system can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̇ = ω

ẋ = vx cos θ − vy sin θ

ẏ = vx sin θ + vy cos θ

ω̇ = τ/J

v̇1 = ωvy + F/m

v̇2 = −ωvx.

(3.6)

To take into account unmodelled dynamics in (3.4)-(3.5) we consider the
unknown error δ (modelled as a normalized Gaussian white noise) and the
mapping

B : R3 → se(2)× se(2)

δ ↦→ (03×3, (B2δ)
∧)

(3.7)

with B2 ∈ R3×3. The full dynamic equations thus become

g−1ġ = Ω (3.8)
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Ω̇ = I♯ad∗
ΩI♭Ω + u∧ + (B2δ)

∧ (3.9)

where the model error δ does not affect the reconstruction equation g−1ġ = Ω.
In extended form, we can summarize the contribution of the model errors with
the vector ξ = (0, 0, 0, ξω, ξvx , ξvy), and rewrite the dynamics as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̇ = ω

ẋ = vx cos θ − vy sin θ

ẏ = vx sin θ + vy cos θ

ω̇ = τ/J + ξω

v̇1 = ωvy + F/m+ ξvx
v̇2 = −ωvx + ξvy .

(3.10)

3.2 The SE(2)× se(2) structure

In this section, we present some mathematical tools to better face the compu-
tations in SE(2)× se(2).

Let (g,Ω) be an element of G = SE(2) × se(2), we represent it in matrix
form as ⎡⎣g 0 0

0 I Ω
0 0 I

⎤⎦ .
The group operation is

(g,Ω) · (f,Ψ) = (gf,Ω +Ψ),

that in matrix form reads⎡⎣g 0 0
0 I Ω
0 0 I

⎤⎦⎡⎣f 0 0
0 I Ψ
0 0 I

⎤⎦ =

⎡⎣gf 0 0
0 I Ω +Ψ
0 0 I

⎤⎦ , (3.11)

and lets to define the left translation on G as

L(g,Ω)(f,Ψ) = (gf,Ω +Ψ).

The unit element of this group is e = (I, 0) and for each (g,Ω) its inverse is
(g−1,−Ω).

The Lie algebra of the (product) group G is the (product) algebra g =
se(2)× se(2), whose generic element (ηg, ηΩ) can be represented as⎡⎣ηg 0 0

0 0 ηΩ

0 0 0

⎤⎦ .
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(g, [·, ·])

SE(2)×se(2)
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Lie groups

Lie algebras

Figure 3.2: Geometric scheme for TSE(2).

g with the matrix commutator is isomorphic (as Lie algebra) with (R6, ∗) where⎡⎢⎢⎢⎢⎢⎢⎣
ηθ1
ηx1
ηy1
ηω1
ηv

x

1

ηv
y

1

⎤⎥⎥⎥⎥⎥⎥⎦ ∗

⎡⎢⎢⎢⎢⎢⎢⎣
ηθ2
ηx2
ηy2
ηω2
ηv

x

2

ηv
y

2

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0

ηy1η
θ
2 − ηθ1η

y
2

ηθ1η
x
2 − ηx1η

θ
2

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ .

The geometric scheme for TSE(2) is summarized in Figure 3.2.
We define the “product” between an element of G and an element of its Lie

algebra as
(g,Ω) ∗ (ηg, ηΩ) = (gηg, ηΩ),

that in matrix form reads:⎡⎣g 0 0
0 I Ω
0 0 I

⎤⎦⎡⎣ηg 0 0
0 0 ηΩ

0 0 0

⎤⎦ =

⎡⎣gηg 0 0
0 0 ηΩ

0 0 0

⎤⎦ .
The tangent map is

T(I,0)L(g,Ω)(η
g, ηΩ) = (gηg, ηΩ).

Eventually, we define the Lie algebra operation

(ηg, ηΩ) ⋆ (ηf , ηΨ) =
(︂
ηgηf , 0

)︂
,

that in matrix form is⎡⎣ηg 0 0
0 0 ηΩ

0 0 0

⎤⎦⎡⎣ηf 0 0
0 0 ηΨ

0 0 0

⎤⎦ =

⎡⎣ηgηf 0 0
0 0 0
0 0 0

⎤⎦ .
The adjoint representation of the Lie algebra into itself is

ad(ηg ,ηΩ)(η
f , ηΨ) = (adηgη

f , 0)

and its matrix form is represented by the 6× 6 matrix

ad(ηg ,ηv) =

[︃
adηg 03×3

03×3 03×3

]︃
. (3.12)

In order to feature the notion of differentiation of vector fields on G, it is
necessary to introduce an affine connection. A left-invariant affine connection
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∇ on G is characterized by its bilinear connection function ω : g × g → g
through the identity ∇gX(gY ) = gω(X, Y ) for all X, Y ∈ g (see, e.g., [27],
[13]). Thus ∇XY ∈ g, and, since this map is R-linear, it is a multiplication in g.
We choose skew-symmetric connection function of the form ∇XY = λ[X, Y ],
λ ∈ R (see e.g. [9], [30]). For example, the choices λ = 0, 1

2
, 1 define the (-),

(0), (+) Cartan-Schouten connections, that have negative, null and positive
torsion, respectively.

Recall that given the control system ġ = f(g, u, t), the left-trivialization of
f is defined as λ(g, u, t) := g−1f(g, u, t). In our case we obtain from (3.4)-(3.5)

ġ = f(g, u, t) =
(︁
gΩ, I♯ad∗

ΩI♭Ω + u∧
)︁

and

λ(g, u, t) = (g−1,−Ω)
(︁
gΩ, I♯ad∗

ΩI♭Ω + u∧
)︁

=
(︁
Ω, I♯ad∗

ΩI♭Ω + u∧
)︁
∈ se(2)× se(2).

3.3 Free rigid body optimal filters

The second-order optimal filter minimizes the cost functional (2.29)-(2.31)
where the initial cost map is given by

m0(g) =
1

2
∥I − g−1(t)g0∥2F (3.13)

where ∥·∥2F stands for the Frobenius norm, and where the matrix representation
of the form R is

R = BTB, B =

[︃
03×3

B2

]︃
. (3.14)

The estimation of G ∋ g := (g,Ω) is provided using the measurement
equation

y(t) = h(g(t), t) +Dε(t), (3.15)

where h(g(t), t) is the output map and ε represents the unknown measurement
error (modelled as a normalized Gaussian white noise). We design three dif-
ferent filters using three different measurement equations: velocity, velocity
and pose, velocity and two GPS-like antennas. For all of these scenarios we
consider the Cartan-Schouten (0)-connection form ω(0) = 1

2
ad (see e.g. [22]).

In what follows we will use ηg = (ηg, ηΩ) = (ηθ, ηx, ηy, ηω, ηv
x
, ηv

y
)T ∈ R6

to indicate the vector form of an element of the Lie algebra g and gηg =
(gηg, ηΩ) = TeLg(η

g) = (θ′, x′, y′, ω′, vx′, vy′)T ∈ R6 for the vector form of an
element of the tangent space TgG where θ′ = ηθ, x′ = ηx cos θ − ηy sin θ,
y′ = ηx sin θ + ηy cos θ, ω′ = ηω, vx′ = ηv

x , vy ′ = ηv
y . We will denote with ˆ︁· an

estimated variable.
We are now ready to design three different filters corresponding to the three

different measurement equations.
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First case

In the first case, the measurement equation is given by

h1(g(t), t) = (Ω)∨ =

⎡⎣ωvx
vy

⎤⎦ (3.16)

that represents the velocities provided, for example, by an IMU and an odome-
ter. For simplicity, the D matrix in (3.15) takes the form

D1 = diag{d3, d4, d4}, di ∈ R+, (3.17)

while the Q matrix associated to the quadratic form Q in (2.31) becomes

Q1 = diag{q3, q4, q4}, qi ∈ R+. (3.18)

Proposition 3.1. Consider the dynamic system (3.8)-(3.9) with measure-
ment equation (2.28) where the output map h and the linear map D are given
by (3.16) and (3.17), respectively. Consider the cost functional (2.29)-(2.31)
where the initial cost m0 is given by (3.13) and the matrix representation of the
forms R, Q are given by (3.14) and (3.18), respectively. Then the second-order
optimal filter is

ˆ︁g−1ˆ︁ġ = ˆ︁Ω + (K11r
g +K12r

Ω)∧ˆ︁Ω̇ = I♯ad∗ˆ︁ΩI♭ˆ︁Ω + u∧ + (K21r
g +K22r

Ω)∧
(3.19)

where the residual rt =
[︁
rg rΩ

]︁
, with rg, rΩ ∈ R3, is

rt =

[︃
rg

rΩ

]︃T
=

[︄
03×1

diag
{︂

q3
d23
, q4
d24
, q4
d24

}︂
(y − ˆ︁y)

]︄T
, (3.20)

and ˆ︁y = (ˆ︁Ω)∨. (3.21)

The second-order optimal gain K =

[︃
K11 K12

K21 K22

]︃
is the solution of the perturbed

matrix Riccati differential equation

K̇ = −αK + AK +KAT −KEK +BR−1BT

−W (K, rt)K −KW (K, rt)
T

(3.22)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 1 0 0

−ˆ︁vy 0 ˆ︁ω 0 1 0ˆ︁vx −ˆ︁ω 0 0 0 1
0 0 0 0 0 0
0 0 0 ˆ︁vy 0 ˆ︁ω
0 0 0 −ˆ︁vx −ˆ︁ω 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.23)
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E =

[︄
03×3 03×3

03×3 diag
{︂

q3
d23
, q4
d24
, q4
d24

}︂]︄
, (3.24)

BR−1BT =

[︃
03×3 03×3

03×3 B2R
−1BT

2

]︃
, (3.25)

W (K, rt) =

[︃
1
2
ad(K11rg+K12rΩ)∧ 03×3

03×3 03×3

]︃
. (3.26)

The initial conditions for the estimation and the operator K are

ˆ︁g(t0) = g0 (3.27)
K(t0) = diag{1/2, 1, 1, 1/2, 1, 1}. (3.28)

Proof. The proof is split into different sections to make it more readable.

Computation of rt

The expression for the residual rt(ˆ︁g) ∈ g∗ is defined as

rt(ˆ︁g) = TeL
∗ˆ︁g[(︁(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁g)))︁ ◦ dht(ˆ︁g)]. (3.29)

Given TeLˆ︁g(ηg) ∈ Tˆ︁gG, we have that the differential of ht in ˆ︁g applied to
TeLˆ︁g(ηg) is

dht(ˆ︁g)(TeLˆ︁g(ηg)) = d

ds

⃓⃓⃓
s=0

(ˆ︁Ω(s))∨ = (ηΩ)∨,

and we can write the operator dht(ˆ︁g) as

dht(ˆ︁g) = [︁03×3 I3×3

]︁
. (3.30)

From (3.21) and the definition of the matrices (3.17) and (3.18) it follows that

(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁g)) = [︃diag{︃ q3
d23
,
q4
d24
,
q4
d24

}︃
(y − ˆ︁y)]︃T . (3.31)

Using (3.30) and (3.31) we obtain

rt(ˆ︁g) = [︃diag{︃ q3
d23
,
q4
d24
,
q4
d24

}︃
(y − ˆ︁y)]︃T [︁03×3 I3×3

]︁
=
[︂
01×3

(︂
diag

{︂
q3
d23
, q4
d24
, q4
d24

}︂
(y − ˆ︁y))︂]︂T .

Computation of A

The operator A represents the coefficients of the linear part of the Riccati
equation and its formula A(t) : g → g is given by:

A(t) = d1λt(ˆ︁g, u) ◦ TeLˆ︁g − adλt(ˆ︁g,u) − Tλt(ˆ︁g,u). (3.32)
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Given TeLˆ︁g(ηg) ∈ Tˆ︁gG, we have

d1λ(ˆ︁g, u)(TeLˆ︁g(ηg)) = d

ds

⃓⃓⃓
s=0

[︃
λg(s)
λΩ(s)

]︃

=
d

ds

⃓⃓⃓
s=0

⎡⎢⎢⎢⎢⎢⎢⎣
ˆ︁ω(s)ˆ︁vx(s)ˆ︁vy(s)
τ/Jˆ︁ωˆ︁vy + F/m
−ˆ︁ωˆ︁vx

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
ˆ︁ω′ˆ︁vx′ˆ︁vy′
0ˆ︁ω′ˆ︁vy + ˆ︁ωˆ︁vy′

−ˆ︁ω′ˆ︁vx − ˆ︁ωˆ︁vx′

⎤⎥⎥⎥⎥⎥⎥⎦
(3.33)

and thus

d1λ(ˆ︁g, u) ◦ TeLˆ︁g =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 ˆ︁vy 0 ˆ︁ω
0 0 0 −ˆ︁vx −ˆ︁ω 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.34)

The adjoint matrix representation (3.12) implies

adλt(ˆ︁g,u) =
⎡⎢⎢⎣

0 0 0 01×3ˆ︁vy 0 −ˆ︁ω 01×3

−ˆ︁vx ˆ︁ω 0 01×3

03×1 03×1 03×1 03×3

⎤⎥⎥⎦ . (3.35)

Considering the Cartan-Schouten (0)-connection form ω(0) = 1
2
ad, the torsion

function T vanishes (see [22]), thus, in matrix form, it is given by

Tλt(ˆ︁g,u) =
[︃
03×3 03×3

03×3 03×3

]︃
. (3.36)

Using (3.34), (3.35) and (3.36) we obtain the matrix (3.23).

Computation of E

The function E(t) in (2.38) extended to the group G is E(t) : g → g∗ and
takes the form

E(t) = −TeL∗ˆ︁g ◦ [︁(︁(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁g)))︁Tˆ︁gG ◦ Hessht(ˆ︁g)
−(dht(ˆ︁g))∗ ◦ (D−1)∗ ◦Q ◦D−1 ◦ dht(ˆ︁g)]︁ ◦ TeLˆ︁g.

(3.37)

The dual operators (dht(ˆ︁g))∗ and TeL∗ˆ︁g are (dht(ˆ︁g))T and (TeLˆ︁g)T respectively.
We can find the compositions

(dht(ˆ︁g))∗ ◦ (D−1)∗ ◦Q ◦D−1 ◦ dht(ˆ︁g) = diag

{︃
0, 0, 0,

q3
d23
,
q4
d24
,
q4
d24

}︃
(3.38)
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and

(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁g)) = [︂diag{︂ q3
d23
, q4
d24
, q4
d24

}︂
(y − ˆ︁y)]︂T . (3.39)

The Hessian of ht in ˆ︁g applied to TeLˆ︁g(ηg) is the null operator since it is the
differential of (3.30), which is constant. Combining (3.38) and (3.39) with the
tangent operator and its dual, we end up with

E =

[︄
03×3 03×3

03×3 diag
{︂

q3
d23
, q4
d24
, q4
d24

}︂]︄
.

Computation of W

From the adjoint matrix form (3.12) and recalling that we consider the Cartan-
Schouten (0)-connection ([33, 34]), we have

W (K, rt) =
1

2
ad((K11rg+K12rΩ)∧, (K21rg+K22rΩ)∧) =

[︃
1
2
ad(K11rg+K12rΩ)∧ 03×3

03×3 03×3

]︃
.

Initial condition

The initial condition for the filter is given by (2.33) while the initial condition
for the gain is K(t0) = X−1

0 where the operators X0 : g → g∗ satisfies (2.36).
We rewrite m0 as

m0(g) =
1

2
∥I − g−1(t)g0∥2F =

1

2
tr
[︁
(I9×9 − g−1g0)

T (I9×9 − g−1g0)
]︁
. (3.40)

From (3.11) it easily follows

I9×9 − g−1g0 =

⎡⎣I3×3 − g−1g0 03×3 03×3

03×3 03×3 Ω0 − Ω
03×3 03×3 03×3

⎤⎦ (3.41)

and thus

(I9×9 − g−1g0)
T (I9×9 − g−1g0)

=

⎡⎣(I3×3 − g−1g0)
T (I3×3 − g−1g0) 03×3 03×3

03×3 03×3 03×3

03×3 03×3 (Ω0 − Ω)T (Ω0 − Ω)

⎤⎦ . (3.42)

Computing the trace we obtain

m0(g) =
1

2
[4(1− cos (θ − θ0)) + (x− x0)

2 + (y − y0)
2

+ 2(ω − ω0)
2 + (vx − vx0 )

2 + (vy − vy0)
2]

(3.43)

and from (2.33) it follows that ˆ︁g(t0) = g0.
The Hessian of the function m0 at a point g ∈ G is defined as

Hessm0(g)(gX)(gY ) = d(dm0(g)(gY ))(gX)− dm0(g)(∇gX(gY ))
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for all gX, gY ∈ TgG. The differential of m0 is given by

dm0(g) =
[︁
2 sin (θ − θ0) (x− x0) (y − y0) 2(ω − ω0) (vx − vx0 ) (vy − vy0)

]︁
(3.44)

while, given TeLˆ︁g(ηg1) = (ˆ︁gηg1 , ηΩ1), TeLˆ︁g(ηg2) = (ˆ︁gηg2 , ηΩ2) ∈ TgG, the affine
connection yields

∇(ˆ︁gηg1 ,ηΩ1 )(ˆ︁gηg2 , ηΩ2) =
1

2

⎡⎢⎢⎢⎢⎢⎢⎣

0ˆ︁θ′2ˆ︁y′1 − ˆ︁θ′1ˆ︁y′2
−ˆ︁θ′2ˆ︁x′1 + ˆ︁θ′1ˆ︁x′2

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.45)

Combining (3.44) and (3.45) we obtain

dm0(ˆ︁g)(∇TeLˆ︁g(ηg1 )(TeLˆ︁g(ηg2)))
=
[︂
(x− x0)(ˆ︁θ′2ˆ︁y′1 − ˆ︁θ′1ˆ︁y′2) + (y − y0)(−ˆ︁θ′2ˆ︁x′1 + ˆ︁θ′1ˆ︁x′2)]︂ (3.46)

that evaluating in ˆ︁g0 produces

dm0(ˆ︁g0)(∇TeLˆ︁g(ηg1 )(TeLˆ︁g(ηg2))) = 0. (3.47)

The double differential takes the form

d(dm0(g)(gY ))(gX) = diag{2 cos (θ − θ0), 1, 1, 2, 1, 1} (3.48)

that, evaluating in ˆ︁g0, produces

d(dm0(g)(gY ))(gX) = diag{2, 1, 1, 2, 1, 1} (3.49)

and thus, from (3.47) and (3.49)

Hessm0(ˆ︁g0) = diag{2, 1, 1, 2, 1, 1}. (3.50)

From
K(t0) = X−1

0 = TeL
∗ˆ︁g0 ◦ Hessm0(ˆ︁g0) ◦ TeLˆ︁g0 (3.51)

we obtain the initial condition of K(t0)

K(t0) = (TeLˆ︁g0)−1(Hessm0(ˆ︁g0))−1(TeL
∗ˆ︁g0)−1

= diag{1/2, 1, 1, 1/2, 1, 1}.
(3.52)

This computation ends the proof.
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Second case

In the second case, we consider as measurement equation

h2(g(t), t) =

⎡⎢⎢⎢⎢⎢⎢⎣
θ(t)
x(t)
y(t)
ω(t)
vx(t)
vy(t)

⎤⎥⎥⎥⎥⎥⎥⎦ (3.53)

in which we measure both the pose (θ, x, y) and the velocity components
(ω, vx, vy). The D and Q matrices in this case take the forms

D2 = diag{d1, d2, d2, d3, d4, d4}, di ∈ R+, (3.54)

Q2 = diag{q1, q2, q2, q3, q4, q4}, qi ∈ R+. (3.55)

Proposition 3.2. Consider the dynamic system (3.8)-(3.9) with measure-
ment equation (2.28) where the output map h and the linear map D are given
by (3.53) and (3.54), respectively. Consider the cost functional (2.29)-(2.31)
where the initial cost m0 is given by (3.13) and the matrix representation of the
forms R, Q are given by (3.14) and (3.55), respectively. Then the second-order
optimal filter is

ˆ︁g−1ˆ︁ġ = ˆ︁Ω + (K11r
g +K12r

Ω)∧ˆ︁Ω̇ = I♯ad∗ˆ︁ΩI♭ˆ︁Ω + u∧ + (K21r
g +K22r

Ω)∧
(3.56)

where the residual rt is

rt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1
d21
(y1 − ˆ︁y1)

q2
d22
cos(θ)(y2 − ˆ︁y2) + q2

d22
sin(θ)(y3 − ˆ︁y3)

− q2
d22
sin(θ)(y2 − ˆ︁y2) + q2

d22
cos(θ)(y3 − ˆ︁y3)

q3
d23
(y4 − ˆ︁y4)

q4
d24
(y5 − ˆ︁y5)

q4
d24
(y6 − ˆ︁y6)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

The second-order optimal gain K =

[︃
K11 K12

K21 K22

]︃
is the solution of the perturbed

matrix Riccati differential equation

K̇ = −αK + AK +KAT −KEK +BR−1BT

−W (K, rt)K −KW (K, rt)
T

(3.57)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 1 0 0

−ˆ︁vy 0 ˆ︁ω 0 1 0ˆ︁vx −ˆ︁ω 0 0 0 1
0 0 0 0 0 0
0 0 0 ˆ︁vy 0 ˆ︁ω
0 0 0 −ˆ︁vx −ˆ︁ω 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.58)
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E =

[︄
F 03×3

03×3 diag
{︂

q3
d23
, q4
d24
, q4
d24

}︂]︄
with

F =

⎡⎢⎣
q1
d21

− q2
2d22

(y3 − ˆ︁y3) q2
2d22

(y2 − ˆ︁y2)
q2
2d22

(y3 − ˆ︁y3) q2
d22

0

− q2
2d22

(y2 − ˆ︁y2) 0 q2
d22

⎤⎥⎦ ,

BR−1BT =

[︃
03×3 03×3

03×3 B2R
−1BT

2

]︃
,

W (K, rt) =

[︃
1
2
ad(K11rg+K12rΩ)∧ 03×3

03×3 03×3

]︃
.

The initial conditions for the estimation and the operator K are

ˆ︁g(t0) = g0 (3.59)
K(t0) = diag{1/2, 1, 1, 1/2, 1, 1}. (3.60)

Proof. Computation of rt

The extension of (2.34) to the group G is given by (3.29). Given TeLˆ︁g(ηg) ∈
Tˆ︁gG, the differential of ht in ˆ︁g applied to TeLˆ︁g(ηg) is

dht(ˆ︁g)(TeLˆ︁g(ηg)) = d

ds

⃓⃓⃓
s=0

[︃
(ˆ︁g(s))∨
(ˆ︁Ω(s))∨

]︃
=

[︃
(ηˆ︁g)∨
(η

ˆ︁Ω)∨
]︃
,

and we can write the operator dht(ˆ︁g) as

dht(ˆ︁g) = I6×6. (3.61)

From the definition of the matrices (3.54) and (3.55) it follows that

(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁g)) =
=

[︃
diag

{︃
q1
d21
,
q2
d22
,
q2
d22
,
q3
d23
,
q4
d24
,
q4
d24

}︃
(y − ˆ︁y)]︃T . (3.62)

Evaluating TeL∗ˆ︁g on (3.62) the result follows.

Computation of A

As in the proof of Proposition 3.1.
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Computation of E

We can find the compositions

(dht(ˆ︁g))∗ ◦ (D−1)∗ ◦Q ◦D−1 ◦ dht(ˆ︁g) = diag

{︃
q1
d21
,
q2
d22
,
q2
d22
,
q3
d23
,
q4
d24
,
q4
d24

}︃
(3.63)

and

(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁g)) = [︃diag{︃ q1
d21
,
q2
d22
,
q2
d22
,
q3
d23
,
q4
d24
,
q4
d24

}︃
(y − ˆ︁y)]︃T .

(3.64)

Given the twice differentiable function ht : G→ R6 and TeLˆ︁g(ηg1) = (ˆ︁gηg1 , ηΩ1),
TeLˆ︁g(ηg2) = (ˆ︁gηg2 , ηΩ2) ∈ TgG, the Hessian operator Hessht(g) : TgG → TgG

∗

is defined by

Hessh(ˆ︁g)(TeLˆ︁g(ηg1))(TeLˆ︁g(ηg2)) =d(dh(ˆ︁g)(TeLˆ︁g(ηg2)))(TeLˆ︁g(ηg1))
− dh(ˆ︁g)(∇TeLˆ︁g(ηg1 )(TeLˆ︁g(ηg2))) (3.65)

and we have that

d(dht(ˆ︁g)(ˆ︁gηg2 , ηΩ2))(ˆ︁gηg1 , ηΩ1) =
d

ds

⃓⃓⃓
s=0

[︁
(ˆ︁gηg2 , ηΩ2)

]︁
=
[︁
01×6

]︁
. (3.66)

Moreover, since we are working with Cartan-Schouten (0)-connection, we get

∇(ˆ︁gηg1 ,ηΩ1 )(ˆ︁gηg2 , ηΩ2) =
1

2
ˆ︁g ad(ηg1 ,ηΩ1 )(η

g2 , ηΩ2) =
1

2
(ˆ︁g adηg1η

g2 , 0) (3.67)

where

ˆ︁g adηg1η
g2 =

1

2

⎡⎣ 0

(ˆ︁vy1ˆ︁ω2 − ˆ︁ω1ˆ︁vy2) cos ˆ︁θ − (−ˆ︁vx1 ˆ︁ω2 + ˆ︁ω1ˆ︁vx2 ) sin ˆ︁θ
(ˆ︁vy1ˆ︁ω2 − ˆ︁ω1ˆ︁vy2) sin ˆ︁θ + (−ˆ︁vx1 ˆ︁ω2 + ˆ︁ω1ˆ︁vx2 ) cos ˆ︁θ

⎤⎦ (3.68)

and so

dht(ˆ︁g)(∇(ˆ︁gηg1 ,ηΩ1 )(ˆ︁gηg2 , ηΩ2)) =
1

2

⎡⎢⎢⎢⎢⎢⎢⎣

0ˆ︁θ′2ˆ︁y′1 − ˆ︁θ′1ˆ︁y′2
−ˆ︁θ′2ˆ︁x′1 + ˆ︁θ′1ˆ︁x′2

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.69)

Thus, the Hessian evaluated in (ˆ︁gηg1 , ηΩ1) and (ˆ︁gηg2 , ηΩ2) takes the form

Hessht(ˆ︁g)(ˆ︁gηg1 , ηΩ1)(ˆ︁gηg2 , ηΩ2) = −1

2

⎡⎢⎢⎢⎢⎢⎢⎣

0ˆ︁θ′2ˆ︁y′1 − ˆ︁θ′1ˆ︁y′2
−ˆ︁θ′2ˆ︁x′1 + ˆ︁θ′1ˆ︁x′2

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.70)
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From (3.64) and (3.70) it follows that(︁
(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁g)))︁Tˆ︁gG ◦ Hessht(ˆ︁g) = [︃ F 03×3

03×3 03×3

]︃
(3.71)

with

F =

⎡⎢⎣ 0 − q2
2d22

(y3 − ˆ︁y3) q2
2d22

(y2 − ˆ︁y2)
q2
2d22

(y3 − ˆ︁y3) 0 0

− q2
2d22

(y2 − ˆ︁y2) 0 0

⎤⎥⎦
Combining (3.63) and (3.71) the result follows.

Computation of W

As in the proof of Proposition 3.1.

Initial condition

As in the proof of Proposition 3.1.

Third case

In the third case, we consider a measurement equation given by

h3(g(t), t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t) + ℓ cos(θ(t))
y(t) + ℓ sin(θ(t))
x(t)− ℓ cos(θ(t))
y(t)− ℓ sin(θ(t))

ω(t)
vx(t)
vy(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.72)

which models two GPS-like systems at distance ℓ from the center of mass (first
four rows), an IMU and an odometer (last three rows). The GPS measurements
are the positions of two antennas attached to the body at distance ℓ from the
center of gravity as shown in Figure 3.3. The D and Q matrices become

D3 = diag{d2, d2, d2, d2, d3, d4, d4}, di ∈ R+, (3.73)

Q3 = diag{q2, q2, q2, q2, q3, q4, q4}, qi ∈ R+. (3.74)

Proposition 3.3. Consider the dynamic system (3.8)-(3.9) with measure-
ment equation (2.28) where the output map h and the linear map D are given
by (3.72) and (3.73), respectively. Consider the cost functional (2.29)-(2.31)
where the initial cost m0 is given by (3.13) and the matrix representation of the
forms R, Q are given by (3.14) and (3.74), respectively. Then the second-order
optimal filter is

ˆ︁g−1ˆ︁ġ = ˆ︁Ω + (K11r
g +K12r

Ω)∧ˆ︁Ω̇ = I♯ad∗ˆ︁ΩI♭ˆ︁Ω + u∧ + (K21r
g +K22r

Ω)∧
(3.75)
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Figure 3.3: Planar rigid body with two antennas.

where the residual rt is

rt =

[︃
rg

rΩ

]︃
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−(˜︁y1 − ˜︁y3)ℓ sin ˆ︁θ + (˜︁y2 − ˜︁y4)ℓ cos ˆ︁θ
(˜︁y1 + ˜︁y3) cos ˆ︁θ + (˜︁y2 + ˜︁y4) sin ˆ︁θ
−(˜︁y1 + ˜︁y3) sin ˆ︁θ + (˜︁y2 + ˜︁y4) cos ˆ︁θ˜︁y5˜︁y6˜︁y7

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

, (3.76)

and
R7 ∋ ˜︁y =

[︃
diag

{︃
q2
d22
,
q2
d22
,
q2
d22
,
q2
d22
,
q3
d23
,
q4
d24
,
q4
d24

}︃]︃
(y − ˆ︁y). (3.77)

The second-order optimal gain K =

[︃
K11 K12

K21 K22

]︃
is the solution of the perturbed

matrix Riccati differential equation

K̇ = −αK + AK +KAT −KEK +BR−1BT

−W (K, rt)K −KW (K, rt)
T

(3.78)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 1 0 0

−ˆ︁vy 0 ˆ︁ω 0 1 0ˆ︁vx −ˆ︁ω 0 0 0 1
0 0 0 0 0 0
0 0 0 ˆ︁vy 0 ˆ︁ω
0 0 0 −ˆ︁vx −ˆ︁ω 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.79)
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E =

[︃
E1 03×3

03×3 I3×3

]︃
, E1 =

⎡⎣a1,1 a1,2 a1,3
a2,1 2 0
a3,1 0 2

⎤⎦ , (3.80)

with

a1,1 =(˜︁y1 − ˜︁y3)ℓ cos ˆ︁θ + (˜︁y2 − ˜︁y4)ℓ sin ˆ︁θ + 2ℓ2,

a1,2 =− 1

2
(˜︁y2 + ˜︁y4) cos ˆ︁θ + 1

2
(˜︁y1 + ˜︁y3) sin ˆ︁θ,

a1,3 =+
1

2
(˜︁y2 + ˜︁y4) sin ˆ︁θ + 1

2
(˜︁y1 + ˜︁y3) cos ˆ︁θ,

a2,1 =+
1

2
(˜︁y2 + ˜︁y4) cos ˆ︁θ − 1

2
(˜︁y1 + ˜︁y3) sin ˆ︁θ,

a3,1 =− 1

2
(˜︁y2 + ˜︁y4) sin ˆ︁θ − 1

2
(˜︁y1 + ˜︁y3) cos ˆ︁θ,

BR−1BT =

[︃
03×3 03×3

03×3 B2R
−1BT

2

]︃
,

W (K, rt) =

[︃
1
2
ad(K11rg+K12rΩ)∧ 03×3

03×3 03×3

]︃
. (3.81)

The initial conditions for the estimation and the operator K are

ˆ︁g(t0) = g0 (3.82)
K(t0) = diag{1/2, 1, 1, 1/2, 1, 1}. (3.83)

Proof. Computation of rt
The extension of (2.34) to the group G is given by (3.29). Given TeLˆ︁g(ηg) ∈
Tˆ︁gG, the differential of h in ˆ︁g applied to TeLˆ︁g(ηg) is

dh(ˆ︁g)(TeLˆ︁g(ηg)) = d

ds

⃓⃓⃓
s=0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ˆ︁x(s) + ℓ cos ˆ︁θ(s)ˆ︁y(s) + ℓ sin ˆ︁θ(s)ˆ︁x(s)− ℓ cos ˆ︁θ(s)ˆ︁y(s)− ℓ sin ˆ︁θ(s)ˆ︁ω(s)ˆ︁vx(s)ˆ︁vy(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ˆ︁x′ − ℓ ˆ︁θ′ sin ˆ︁θˆ︁y′ + ℓ ˆ︁θ′ cos ˆ︁θˆ︁x′ + ℓ ˆ︁θ′ sin ˆ︁θˆ︁y′ − ℓ ˆ︁θ′ cos ˆ︁θˆ︁ω′ˆ︁vx′ˆ︁vy′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.84)

and thus we can write the operator dht(ˆ︁g) as

dht(ˆ︁g) =
⎡⎢⎢⎢⎢⎢⎣
−ℓ sin ˆ︁θ 1 0 01×3

+ℓ cos ˆ︁θ 0 1 01×3

+ℓ sin ˆ︁θ 1 0 01×3

−ℓ cos ˆ︁θ 0 1 01×3

03×1 03×1 03×1 I3×3

⎤⎥⎥⎥⎥⎥⎦ . (3.85)
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From the definition of the matrices (3.73) and (3.74) it follows that

(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁g)) =
=

[︃
diag

{︃
q2
d22
,
q2
d22
,
q2
d22
,
q2
d22
,
q3
d23
,
q4
d24
,
q4
d24

}︃
(y − ˆ︁y)]︃T , (3.86)

composing (3.85) and (3.86), and evaluating TeL∗ˆ︁˜︁g, we obtain (2.34).

Computation of A

As in the proof of Proposition 3.1.

Computation of E

The function E(t) in (2.38) extended to the group G is E(t) : g → g∗ and
takes the form (3.37). Now we can find the compositions

(dht(ˆ︁g))∗ ◦ (D−1)∗ ◦Q ◦D−1 ◦ dht(ˆ︁g) = diag

{︃
2ℓ2

q2
d22
, 2
q2
d22
, 2
q2
d22
,
q3
d23
,
q4
d24
,
q4
d24

}︃
(3.87)

and

(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁g)) = [︃diag{︃ q2
d22
,
q2
d22
,
q2
d22
,
q2
d22
,
q3
d23
,
q4
d24
,
q4
d24

}︃
(y − ˆ︁y)]︃T .

(3.88)

Given the twice differentiable function ht : G→ R7 and TeLˆ︁g(ηg1) = (ˆ︁gηg1 , ηΩ1),
TeLˆ︁g(ηg2) = (ˆ︁gηg2 , ηΩ2) ∈ TgG, the Hessian operator Hessht(g) : TgG → TgG

∗

is defined by

Hessh(ˆ︁g)(TeLˆ︁g(ηg1))(TeLˆ︁g(ηg2)) =d(dh(ˆ︁g)(TeLˆ︁g(ηg2)))(TeLˆ︁g(ηg1))
− dh(ˆ︁g)(∇TeLˆ︁g(ηg1 )(TeLˆ︁g(ηg2))). (3.89)

We have

d(dht(ˆ︁g)(TeLˆ︁g(ηg2)))(TeLˆ︁g(ηg1)) =

=
d

ds

⃓⃓⃓
s=0

⎡⎢⎢⎢⎢⎢⎣
ˆ︁x′2 − ˆ︁θ′2ℓ sin ˆ︁θ(s)ˆ︁y′2 + ˆ︁θ′2ℓ cos ˆ︁θ(s)ˆ︁x′2 + ˆ︁θ′2ℓ sin ˆ︁θ(s)ˆ︁y′2 − ˆ︁θ′2ℓ cos ˆ︁θ(s)

03×1

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
−ˆ︁θ′1ˆ︁θ′2ℓ cos ˆ︁θ
−ˆ︁θ′1ˆ︁θ′2ℓ sin ˆ︁θ
+ˆ︁θ′1ˆ︁θ′2ℓ cos ˆ︁θ
+ˆ︁θ′1ˆ︁θ′2ℓ sin ˆ︁θ

03×1

⎤⎥⎥⎥⎥⎥⎦ .
(3.90)

Since we are working with the Cartan-Schouten (0)-connection, we end up
with

∇(ˆ︁gηg1 ,ηΩ1 )(ˆ︁gηg2 , ηΩ2) =
1

2
ˆ︁g ad(ηg1 ,ηΩ1 )(η

g2 , ηΩ2) =
1

2
(ˆ︁g adηg1η

g2 , 0) (3.91)
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and so

dht(ˆ︁g)(∇(ˆ︁gηg1 ,ηΩ1 )(ˆ︁gηg2 , ηΩ2)) =
1

2

⎡⎢⎢⎢⎢⎢⎣
+ˆ︁θ′2ˆ︁y′1 − ˆ︁θ′1ˆ︁y′2
−ˆ︁θ′2ˆ︁x′1 + ˆ︁θ′1ˆ︁x′2
+ˆ︁θ′2ˆ︁y′1 − ˆ︁θ′1ˆ︁y′2
−ˆ︁θ′2ˆ︁x′1 + ˆ︁θ′1ˆ︁x′2

03×1

⎤⎥⎥⎥⎥⎥⎦ . (3.92)

The Hessian evaluated in (ˆ︁gηg1 , ηΩ1) and (ˆ︁gηg2 , ηΩ2) takes the form

Hessht(ˆ︁g)(ˆ︁gηg1 , ηΩ1)(ˆ︁gηg2 , ηΩ2) =

⎡⎢⎢⎢⎢⎢⎣
−ˆ︁θ′1ˆ︁θ′2ℓ cos ˆ︁θ − 1

2
ˆ︁θ′2ˆ︁y′1 + 1

2
ˆ︁θ′1ˆ︁y′2

−ˆ︁θ′1ˆ︁θ′2ℓ sin ˆ︁θ + 1
2
ˆ︁θ′2ˆ︁x′1 − 1

2
ˆ︁θ′1ˆ︁x′2

+ˆ︁θ′1ˆ︁θ′2ℓ cos ˆ︁θ − 1
2
ˆ︁θ′2ˆ︁y′1 + 1

2
ˆ︁θ′1ˆ︁y′2

+ˆ︁θ′1ˆ︁θ′2ℓ sin ˆ︁θ + 1
2
ˆ︁θ′2ˆ︁x′1 − 1

2
ˆ︁θ′1ˆ︁x′2

03×1

⎤⎥⎥⎥⎥⎥⎦ . (3.93)

From (3.88) and (3.93) it follows that(︁
(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁g)))︁Tˆ︁gG ◦ Hessht(ˆ︁g) =⎡⎢⎢⎣

a1,1 −1
2
(˜︁y2 + ˜︁y4) 1

2
(˜︁y1 + ˜︁y3) 01×3

1
2
(˜︁y2 + ˜︁y4) 0 0 01×3

−1
2
(˜︁y1 + ˜︁y3) 0 0 01×3

03×1 03×1 03×1 03×3

⎤⎥⎥⎦ , (3.94)

where a1,1 = −˜︁y1ℓ cos ˆ︁θ − ˜︁y2ℓ sin ˆ︁θ + ˜︁y3ℓ cos ˆ︁θ + ˜︁y4ℓ sin ˆ︁θ. In conclusion, com-
bining (3.87) and (3.94) with TeL∗ˆ︁˜︁g and TeLˆ︁˜︁g the result follows.

Computation of W

As in the proof of Proposition 3.1.

Initial condition

As in the proof of Proposition 3.1.

3.4 Simulations and discussions
In this section we explain how the second-order optimal minimum-energy filters
on TSE(2) ≃ SE(2)× se(2) works.

The inertia tensor of the planar rigid body under consideration (in Figure
3.1 and Figure 3.3) is diagonal

I =

⎡⎣J 0 0
0 m 0
0 0 m

⎤⎦ ,
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where the inertia along the z axis is J = 6.125 kgm2 and the mass is m =
125 kg. The matrix representation of I♯ is equal to the inverse of I and I♭ = I, as
well. We consider the control inputs τ = 50 sin( 1

50
t) and F = sin(t) with total

simulation time T = 60 s. These inputs are used to generate the trajectory g.
To solve all the differential equations we use a Runge-Kutta 4th order

method with integration step Ts = 1ms. The initial conditions are θ(0) = π/6
rad, x(0) = 1m, y(0) = 2m, ω(0) = 0 rad/s, vx(0) = 0m/s and vy(0) = 0m/s.
The matrices B2, R and B related to the model uncertainty (2.27), (2.35) are

B2 = diag{0.1, 0.1, 0.1},

B =

[︃
03×3

B2

]︃
,

R = BTB.

Case 1: only velocity measurement

The measured output is obtained by adding a Gaussian white noise with zero
mean and standard deviation depending on D1. For the matrices D1 and Q1

in (3.17) and (3.18), we choose d3 = 0.1, d4 = 0.1 and qi = d2i , i = 3, 4. The
results of the numerical simulation are shown in Figure 3.5. Comparing the ac-
tual and filtered poses, it can be seen that without measurements on the group
elements we have little biases on x, y, and θ. This is not surprising because
the state of the system (3.4)-(3.5) is not observable with the measurement
equation (3.16) (see e.g. [16], [40]).

Case 2: positions and velocity measurements

In the case of measurement equation (3.53), the measured output is obtained
by adding a Gaussian white noise with zero mean and standard deviation,
depending on D2, to the pose obtained integrating (3.8) and to the velocities
obtained integrating (3.9). For the matrices D2 and Q2 in (3.54) and (3.55)
respectively, we chose d1 = 1, d2 = 0.5, d3 = 0.1, d4 = 0.1 and qi = d2i ,
i = 1, ..., 4. The initial conditions of the filter are as before. The results of the
numerical simulation are shown in Figure 3.6. The filter works well both on
the poses and on the velocities. The system is now fully observable.

Case 3: antennas and velocity measurements

The measurement (3.72) is obtained by adding a Gaussian white noise with
zero mean and standard deviation depending on D3 to the velocities computed
integrating (3.9) and to the “antennas” components x1 = x + ℓ cos(θ), y1 =
x+ ℓ sin(θ), x2 = x− ℓ cos(θ), y2 = x− ℓ sin(θ) where we chose ℓ = 0.4m. For
the matrix D3 in (3.73) we chose d2 = 0.5, d3 = 0.1, d4 = 0.1. For the matrix
Q3 in (3.74) we choose qi = d2i , i = 2, ..., 4. The initial conditions of the filter,
the actual and measured velocities, are as before, while the “antennas” outputs
are shown in Figure 3.4. The results of the numerical simulation are given in
Figure 3.4. Also in this case, the system is observable.
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Figure 3.4: Nominal (black) and measured (blue) GPS antennas for the third case.

The three filters proposed in this chapter estimate the pose and velocity of a
planar rigid body. Its dynamics is governed by the Euler-Poincaré equation for
rigid body that fits well with the formulation via Lie groups. In particular, the
underlying geometric structure is represented by the tangent bundle TSE(2) of
the special Euclidean group SE(2). The application of the second-order filter is
made more feasible thanks to the Lie algebra isomorphism between g and R3.
The choice of the measurement equation affects the accuracy of the filter. The
first one has as measurement inputs the angular and linear velocity. As can be
seen, this filter does not provide good estimations for the pose since the system
is not observable. Anyway, the accuracy of the velocity is good. This type of
filter can be considered when only measurements on the velocity are available,
or when the other measurements on the pose are not accessible. The second
filter has as input all the dynamic variables and provides good estimations for
all of the dynamic variables. This represents the optimal case when all the
sensors provide direct measurements. The third case has as input the angular
and linear velocity and the position of two antennas integral to the body. This
filter is based on GPS-like and odometer and IMU-like measurements and is
the most relevant for applications.
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Figure 3.5: Nominal (black), measured (blue), filtered (red) trajectories on the left and their
errors (green) on the right for the first case.
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Figure 3.6: Nominal (black), measured (blue), filtered (red) trajectories on the left and their
errors (green) on the right for the second case.
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Figure 3.7: Nominal (black), measured (blue), filtered (red) trajectories on the left and their
errors (green) on the right for the third case.
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3.5 A comparison with the extended Kalman fil-
ter

In this section, we compare the second-order filter, derived for the two anten-
nas case, with the extended Kalman filter. There exist two main versions of
the extended Kalman filter: the continuous and the discrete. We treat the
continuous version since the second-order filter constructed on Lie group is a
continuous version too.

The extended Kalman filter does not require any particular geometric struc-
ture for the dynamics. Thus, we can consider the full dynamic equation (3.10),
written as

ẋ = f(x, u) + ξ

where x = (θ, x, y, ω, vx, vy)T and where the model error ξ = (0, 0, 0, ξω, ξvx , ξvy)
T

is modelled as a Gaussian white noise with variance RK : ξ ∼ N (0, RK(t)). We
consider the case of two GPS-like and odometer/IMU sensors studied in Sec-
tion 3.3 (Figure 3.3). The measurement equation is thus given by

y(t) = h3(x(t), t) + ε

where h3 is provided by equation (3.72) and ε is the measurement error mod-
elled as a Gaussian white noise with variance QK : ε ∼ N (0, QK(t)). From
these definitions and from equations (3.7) and (3.73), we have

RK =

[︃
03×3 03×3

03×3 BT
2 B2

]︃
, QK = DT

3D3.

We now design the continuous time extended Kalman filter for the free rigid
body case. For a rigorous treatment on Kalman filter and extended Kalman
filter see e.g. [1], [17], [28].

Proposition 3.4. For the dynamic model described by (3.10) and (3.72), the
estimation ˆ︁x(t) and the gain P (t) are given by

- initial conditions:ˆ︁x(t0) = E[x(t0)], K(t0) = Var[x(t0)], (3.95)

- predict-update:ˆ︁ẋ(t) = f(ˆ︁x(t), u(t)) + P (t)(y(t)− h3(ˆ︁x(t))), (3.96)

K̇(t) = F (t)K(t) +K(t)F (t)T − P (t)H(t)K(t) +RK(t), (3.97)
P (t) = K(t)H(t)TQK(t)

−1, (3.98)

where

F (t) =
∂f

∂x

⃓⃓⃓⃓
x=ˆ︁x(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

−ˆ︁vx sin ˆ︁θ − ˆ︁vy cos ˆ︁θ 0 0 0 cos ˆ︁θ − sin ˆ︁θˆ︁vx cos ˆ︁θ − ˆ︁vy sin ˆ︁θ 0 0 0 sin ˆ︁θ − cos ˆ︁θ
0 0 0 0 0 0
0 0 0 ˆ︁vy 0 ˆ︁ω
0 0 0 −ˆ︁vx −ˆ︁ω 0

⎤⎥⎥⎥⎥⎥⎥⎦
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and

H(t) =
∂h3
∂x

⃓⃓⃓⃓
x=ˆ︁x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ℓ sin ˆ︁θ 1 0 0 0 0

ℓ cos ˆ︁θ 0 1 0 0 0

ℓ sin ˆ︁θ 1 0 0 0 0

−ℓ cos ˆ︁θ 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We will refer to the second-order optimal filter derived in Proposition 3.3
as FL, and to the extended Kalman filter derived in Proposition 3.4 as FK .
The formulations of the two Propositions are similar: both try to estimate the
state variables considering the correction of the dynamic equation obtained by
adding a “gain” that has to satisfy a Riccati-like equation. The main difference
between the two approaches regards the fact that FK does not take into con-
sideration the geometry of the system. Moreover, FL allows more freedom in
the construction of the filter. Firstly, in the choice of the connection function
ω that describes the derivation on the tangent space, that is not necessary
for FK since the geometric differential structure is neglected. The presence
of the initial term (2.30) in the cost function (2.29) enables us to have more
choices in the starting initial condition of FL. Finally, the presence of the
forms R and Q in the incremental cost (2.31) of (2.29) let us weigh the contri-
bution of the variances of the model and measurement errors. It should also
be taken into consideration that the construction of the Kalman filter started
from the hypothesis of linearity of the dynamics and Gaussianity of the errors,
the second-order filter, instead, does not require them.

In order to better investigate the relation of the filters FK and FL, it could
be useful the following Proposition.

Proposition 3.5. Under the hypothesis of linear dynamics and quadratic cost,
the second-order optimal filter and the extended Kalman filter are equivalent.

Proof. We consider the state variables x = (x1, ..., xn)
T and the dynamic linear

system ẋ = Fx, in extended form⎧⎪⎨⎪⎩
ẋ1 = F11x1 + · · ·+ F1nxn

...
ẋn = Fn1x1 + · · ·+ Fnnxn

(3.99)

where Fij, i, j = 1, ..., n are the components of the matrix F . This system
evolves in Rn, that is a Lie group with the addition operation. A matrix Lie
group representation for an element x ∈ Rn is given by g ∈ G where G is the
matrix Lie group

G :=

{︃[︃
In×n x
01×n 1

]︃
∈ GL(n+ 1), x ∈ Rn

}︃
. (3.100)
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The matrix multiplication produces[︃
In×n x1
01×n 1

]︃ [︃
In×n x2
01×n 1

]︃
=

[︃
In×n x1 + x2
01×n 1

]︃
(3.101)

from which we can derive the inverse of g

g−1 =

[︃
In×n −x
01×n 1

]︃
. (3.102)

The Lie algebra g of G is given by

g :=

{︃[︃
0n×n ηx

01×n 0

]︃
∈ R(n+1)×(n+1), ηx ∈ Rn

}︃
(3.103)

with the Lie bracket [·, ·]g = 0(n+1)×(n+1). We define the Lie algebra isomor-
phism ∧ : g → Rn from the Lie algebra g with Lie bracket [·, ·]g to the Lie
algebra Rn with Lie bracket [·, ·]Rn = 0n,1. It follows that, given an element
ηg ∈ g, the matrix representation of the adjoint operator is null

adηg = 0(n+1)×(n+1). (3.104)

The tangent map and its dual are the identity matrix.
The dynamics is described by

g−1ġ = λt (3.105)

and since we consider a linear system, the left-trivialized dynamics has the
vector representation (in the Lie algebra Rn)

λt =

⎡⎢⎣λx1

...
λxn

⎤⎥⎦ =

⎡⎢⎣F11x1 + · · ·+ F1nxn
...

Fn1x1 + · · ·+ Fnnxn

⎤⎥⎦ = Fx. (3.106)

The differential of the left-trivialized dynamics λt is dλt = F .
For the measurement equation we choose

ht =

⎡⎢⎣H11x1 + · · ·+H1nxn
...

Hp1x1 + · · ·+Hpnxn

⎤⎥⎦ = Hx (3.107)

where H ∈ Rp×n. The differential of the measurement equation ht is dht = H.
Now with these considerations, we can prove the equivalence of the filters.

To emphasize the additional property of the group operation, we will use as
argument of the functions the wordings x. Moreover, we will drop the time
dependence when not needed.

The hypothesis of quadratic cost leads us to rewrite Equation (2.29) as

J(δ, ε, x0; t, t0) =

∫︂ t

t0

ℓ(δ(τ), ε(τ), t, τ)dτ (3.108)
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which means that the initial cost equation (2.30) evaluated in x0 is equal to
zero

m(x0, t, t0) = 1/2e−α(t−t0)m0(x0) = 0. (3.109)

We choose the starting quadratic cost

m0(x0, t, t0) =
1

2
(x− E[x0])TVar[x0]−1(x− E[x0]). (3.110)

This equation attains its minimum at E[x(t0)]) which proves that

ˆ︁x0 = E[x(t0)]. (3.111)

Its Hessian at t0 is

Hessm0(x(t0), t, t0) = Var[x(t0)]
−1. (3.112)

The starting condition for the operator K of the second-order filter is the
inverse of X0 in equation (2.36), and thus

K(t0) = Var[x(t0)]. (3.113)

The incremental cost in (2.31), with the choices α = 0 and the matrix form
for R and Q equal to the identity matrix, becomes

ℓ(δ, ε, t, τ) = ⟨δ, δ⟩+ ⟨ε, ε⟩. (3.114)

From the construction of the Lie group G and the derivation of the various
maps and operators, the residual in (2.34) takes the form

rt(ˆ︁x) = TeL
∗ˆ︁x[(︁(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁x)))︁ ◦ dht(ˆ︁x)]

= [
(︁
(D−1)TD−1(y − ht(ˆ︁x)))︁TH]T

= HTQ−1
K (y − ht(ˆ︁x)) (3.115)

where with QK = DTD we define the variance of the measurement error.
The operator A is defined in (2.37) and takes the form

A(t) = d1λt(ˆ︁x, u) ◦ TeLˆ︁x − adλt(ˆ︁x,u) − Tλt(ˆ︁x,u) = F (3.116)

since the dynamics is linear and both the adjoint operator and torsion are the
null matrix.

The operator E is defined in (2.38) and takes the form

E = −TeL∗ˆ︁x ◦ [︁(︁(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁x)))︁Tˆ︁xG ◦ Hessht(ˆ︁x)
−(dht(ˆ︁x))∗ ◦ (D−1)∗ ◦Q ◦D−1 ◦ dht(ˆ︁x)]︁ ◦ TeLˆ︁x.

(3.117)
The Hessian operator in this case is a 3-dimensional tensor with all the entries
equal to zero since the measurement equation is linear. From the definition of
QK = DTD it follows that

E = HTQ−1
K H. (3.118)
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The connection function is the null operator since the Lie bracket operator
vanishes.

With the new operators, the Riccati equation (2.35) becomes

K̇ =− α ·K + A ◦K +K ◦ A∗ −K ◦ E ◦K
+B ◦R−1 ◦B∗ − ωKr ◦K −Kω∗

Kr

=FK +KF T −KHTQ−1
K HK +RK

(3.119)

where RK = BTB is the matrix variance of model error.
From (3.105) and (3.106) it follows that we can rewrite (2.32) as

ˆ︁ẋ = Fˆ︁x +Krt(ˆ︁x)
= Fˆ︁x +KHTQ−1

K (y − ht(ˆ︁x)). (3.120)

From the equations (3.119) and (3.120) and defining P = KHTQ−1
K , we obtain

the Kalman filter form.

3.6 Comparison and simulations
In these simulations, we show how the two filters FL and FK work when we
set them in the same conditions. With this, we mean that we choose the
parameters of the optimal problem filter FL (initial conditions, operators R
and Q, etc.) as done in Proposition 3.5. For the inertia tensor of the planar
rigid body under consideration (3.2) we set J = 6.125 kgm2 and m = 125 kg.
We consider the control inputs uω = 10 sin(1

2
t) and uv = 1

2
sin(1

5
t), with total

simulation time T = 60 s. The initial conditions are θ(0) = π/6 rad, x(0) =
1m, y(0) = 2m, ω(0) = 0 rad/s, vx(0) = 0m/s and vy(0) = 0m/s. The
forgetting factor α in (2.35) will take the value α = 0. The matrices R and
Q related to the incremental cost function are the identity matrices. The
matrix B2 in (3.9) related to model error is B2 = diag{bω, bvx , bvy} and thus

RK =

[︃
03×3 03×3

03×3 BT
2 B2

]︃
where we put bω = 0.1, bvx = 0.1, bvy = 0.1. The

matrix D3 related to measurement error is given by (3.73) and QK = DT
3D3,

where we choose d2 = 0.5, d3 = 0.1, d4 = 0.1. We consider two time steps of
Ts = 1ms and Ts = 10ms. In Figure 3.8 and 3.9 are shown the trajectories
for the dynamic variables filtered with both filters. As can be noticed, FL and
FK results overlap almost perfectly. This is due to the fact that, even if the
dynamics is nonlinear, the integration step is sufficiently small to consider the
dynamics almost linear. This aspect is clear in Table 3.1, where the mean,
the standard deviation and the root mean square of the difference between the
reference and filtered trajectories

∆θ := θ − ˆ︁θ, ∆x := x− ˆ︁x, · · ·

are shown.
It is known that the Kalman filter produces the optimal estimations for lin-

ear systems with quadratic costs and Gaussian errors. Proposition 3.5 and the
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fact that in the simulations the extended Kalman filter and the second-order
filter on Lie groups present the same behavior show that, in these cases, the re-
sults of the two filters are comparable. The major difference concerns the fact
the second-order one allows to have more freedom in choosing the parameters
(matrices R, B, connection function...). Another important difference regards
that the differential equation for the gain operator K is defined on the whole
tangent space in the Kalman case, while it evolves on the Lie algebra in the
geometric filter case. The corrected Lie algebra components are then mapped
onto the tangent space through the left-trivialized dynamics. This suggests
that in the case of fast dynamics, with a longer sampling time, the second-
order filter could perform better since it considers the geometric structure of
the system between samples. As future works, it could be worthwhile to design
a discrete version of this filter and compare it with the discrete Kalman filter.

Table 3.1: Mean, standard deviation and root mean square values of the errors for Ts = 1ms
and Ts = 10ms.

Ts EKF TSE(2) 2nd order
µ σ rms µ σ rms

∆θ [mrad] 1.8 6.6 6.9 1.9 6.8 7.0
∆x [mm] -0.2 7.1 7.1 0.2 7.4 7.4

1ms ∆y [mm] 0.3 7.1 7.1 0.0 7.6 7.6
∆ω

[︁
mrad

s

]︁
0.0 1.9 1.9 0.1 1.9 1.9

∆vx
[︁
mm
s

]︁
0.2 3.5 3.5 0.1 3.4 3.4

∆vy
[︁
mm
s

]︁
-0.2 2.4 2.4 -0.2 2.6 2.6

∆θ [mrad] -6.8 16.4 17.8 -5.9 17.6 18.6
∆x [mm] 4.9 31.6 32.0 5.7 32.0 32.5

10ms ∆y [mm] -3.6 23.2 23.5 -5.2 26.0 26.5
∆ω

[︁
mrad

s

]︁
0.5 5.8 5.8 0.7 5.8 5.8

∆vx
[︁
mm
s

]︁
2.5 10.3 10.6 2.2 9.5 9.8

∆vy
[︁
mm
s

]︁
-0.1 6.7 6.8 -0.0 7.7 7.7
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Figure 3.8: Measured (sky-blue), nominal (black), filtered with the Second-order filter (red),
and filtered with extended Kalman filter (blue) trajectories on the left and their errors on
the right with time step Ts = 1ms.
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Figure 3.9: Measured (sky-blue), nominal (black), filtered with the Second-order filter (red),
and filtered with extended Kalman filter (blue) trajectories on the left and their errors on
the right with time step Ts = 10ms.
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Chapter 4

Second-order optimal filter applied
to the Chaplygin sleigh1

In this chapter, we apply the second-order filter to the Chaplygin sleigh which
is a planar rigid body with nonholonomic constraint (see e.g. [3], [29], [37]).
The main difficulty is represented by the fact that the presence of nonholonomic
constraint modifies the state space and some considerations have to be taken.
The recognition of the geometric structure is obtained through the use of
Hamel’s equations. A relevant importance in this type of filter is represented
by the choice of the affine connection ([9], [27], [30]).

4.1 The Chaplygin sleigh

The Chaplygin sleigh is a nonholonomic system that models a planar rigid body
supported at three points, two of which slide freely while the third is a blade
at distance a from the center of mass and that cannot move perpendicularly.
Let Σb =

{︂
eb∥, e

b
⊥

}︂
be the right-handed body frame attached to the Chaplygin

sleigh centered at the contact point between the blade and the ground with
the eb∥-axis aligned with the blade, and let ΣI = {ex, ey} be an inertial frame
(also called space frame) fixed in space as shown in Figure 4.1.

The configuration space is SE(2) with coordinates q = (θ, x, y), where
(x, y) denote the position of the contact point of the blade in the plane, and
θ is the angle that the blade forms with the horizontal axis ex. The velocity
components, also named quasi velocities or Hamel’s velocities, with respect to
the body frame Σb are (ω, v, v⊥), where ω is the angular velocity, v and v⊥
are the (linear) velocities of the body along the eb∥ and eb⊥ axes, respectively.
The nonholonomic constraint imposes that the orthogonal component v⊥ of
the velocity with respect to the blade vanishes, namely v⊥ = 0. In the inertial
frame, where (θ̇, ẋ, ẏ) are the components of the velocity, the constraint reads

1This chapter is based on the work
▷ Rigo D., Sansonetto N., & Muradore R. Second-order-optimal filtering on SE(2)× R2 for
the Chaplygin sleigh (accepted) presented at System & Control Letters.
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a

Figure 4.1: Planar rigid body where the blade is indicated with a thicker segment and the
two passive supporting wheels as •.

as
ẋ sin θ − ẏ cos θ = 0. (4.1)

The velocities (θ̇, ẋ, ẏ) and quasi-velocities (ω, v, v⊥) are related by

ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω. (4.2)

The nonholonomic constraint (4.1) defines a constant rank-2 distribution D on
the configuration space locally generated by

Xv = cos θ
∂

∂x
+ sin θ

∂

∂y
, Xω =

∂

∂θ
, (4.3)

called constrained manifold. The state space, that is the constrained manifold,
can be therefore identified with SE(2)×R2 and parameterized by (θ, x, y, ω, v).

The center of mass (xc, yc) is settled at distance a from the contact point
(x, y) according to the equations

(xc, yc) = (x+ a cos θ, y + a sin θ). (4.4)

We denote by J the inertia along the axis passing to the center of mass and
orthogonal to the plane and with m the mass of the rigid body. The control
inputs u(t) = (τ(t), F (t)) are functions of time that act respectively as a torque
applied around the contact point and a force applied to the center of the body
frame along eb∥ as shown in Figure 4.1.

In order to put in evidence the geometric structure of the dynamics, it is
useful to consider Hamel’s approach to the equations of motion of nonholo-
nomic system (see [3], [4]). Hamel’s equations with external input are then

mv̇ = maω2 + F,

(J +ma2)ω̇ = −mavω + τ.
(4.5)
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Equations (4.5) together with (4.2) define the motion of the Chaplygin sleigh
with external forces. We stress the fact that the constrained manifold D can
be identified with SE(2) × R2, and therefore it can be endowed with a Lie
group structure.

Since we assume that our model is not perfectly accurate, we add a model
error that consists of an additive term that takes into account unmodelled
dynamics and uncertainty on the parameters’ values. According to [35], it
only affects the evolution of the velocity of the system and not the kinematics.
This error is denoted by ξ(t) = (ξω(t), ξv(t))

T and is modelled as a Gaussian
white noise with zero mean and diagonal and positive definite variance Σ.

The controlled Chaplygin sleigh equations are then (see e.g. [3])⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θ̇(t) = ω(t)

ẋ(t) = v(t) cos θ(t)

ẏ(t) = v(t) sin θ(t)

ω̇(t) = − ma
J+ma2

ω(t)v(t) + 1
J+ma2

τ(t) + ξω(t)

v̇(t) = aω(t)2 + 1
m
F (t) + ξv(t).

(4.6)

The measurement equation is given by

y(t) = h(g(t)) +Dε(t) (4.7)

where

h(g(t)) =

⎡⎢⎢⎢⎢⎢⎢⎣
x(t) + ℓ cos(θ(t))
y(t) + ℓ sin(θ(t))
x(t)− ℓ cos(θ(t))
y(t)− ℓ sin(θ(t))

ω(t)
v(t)

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.8)

represents a GPS-like system that provides the position of two antennas on
the rigid body located at distance ℓ to the origin of the body frame Σb (see
Figure 4.2), and an INS-like system that measures the angular velocity ω and
the linear velocity v along the eb∥ axis. The measurement noise ε is modelled
as a Gaussian white noise with zero mean and diagonal and positive definite
variance Λ.

4.2 The SE(2)× R2 structure

We recall that, given the Lie algebra se(2) of SE(2), we introduce the Lie
algebra isomorphism ∧ : R3 → se(2)

Ω =

⎡⎣ηθηx
ηy

⎤⎦ ↦−→ Ω∧ = ηg =

⎡⎣ 0 −ηθ ηx

ηθ 0 ηy

0 0 0

⎤⎦ (4.9)
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Figure 4.2: Planar rigid body with two antennas .

from the Lie algebra (R3, ⋆) to the matrix Lie algebra (se(2), [·, ·]), where ⋆ :
R3 × R3 → R3 is the Lie bracket operation defined as⎡⎣ηθ1ηx1

ηy1

⎤⎦ ⋆
⎡⎣ηθ2ηx2
ηy2

⎤⎦ =

⎡⎣ 0
ηy1η

θ
2 − ηθ1η

y
2

ηθ1η
x
2 − ηx1η

θ
2

⎤⎦ , (4.10)

and [·, ·] is the usual matrix commutator.
The tangent bundle TSE(2) is isomorphic to SE(2)× se(2) via left transla-

tion; since we impose the nonholonomic constraint v⊥ = 0, a sub-bundle of it
describes the admissible velocities. The velocity pair V = (ω, v)T is an element
of R2 that is a Lie group with respect to the sum operation, with abelian Lie
algebra R2. The elements of such Lie algebra are denoted by ηV = (ηω, ηv).

An element g = (g, V ) ∈ G := SE(2) × R2 can be represented by a 6 × 6
matrix

g =

⎡⎣ g 03×2 03×1

02×3 I2×2 V
01×3 01×2 1

⎤⎦ , (4.11)

and the group operation is defined by

(g, V ) · (f,W ) = (gf, V +W ) (4.12)

with unit element e = (I3×3, 02×1) and inverse (g, V )−1 = (g−1,−V ). The
Lie algebra g = se(2) × R2 of G can be identified, up to Lie algebra isomor-
phism, with R5. We exploit this isomorphism to work on R5 and to report the
operators that appear in the optimal filter equations in their matrix forms.

Let ηg = (ηg, ηV ) be an element of g, the matrix form of the adηg operator
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is given by the 5× 5 matrix

adηg =

⎡⎢⎢⎣
0 0 0 01×2

ηy 0 −ηθ 01×2

−ηx ηθ 0 01×2

02×1 02×1 02×1 02×2

⎤⎥⎥⎦ . (4.13)

Finally, the matrix representation of the tangent map is

TeLg =

⎡⎢⎢⎣
1 0 0 01×2

0 cos θ − sin θ 01×2

0 sin θ cos θ 01×2

02×1 02×1 02×1 I2×2

⎤⎥⎥⎦ (4.14)

whose dual map matrix representation TeL∗
g satisfies TeL∗

g = (TeLg)
T .

4.3 Chaplygin sleigh optimal filter
We rewrite equation (4.6) using the geometric structure outlined in Section 4.2
as

ġ(t) = g(t)(λ(g(t), u(t)) +Bδ(t)), g(t0) = g0, (4.15)

where g(t) = (g(t), V (t)) ∈ G is the state, u(t) ∈ R2 is the input, δ(t) is a
Gaussian white noise with zero mean and unit variance, B : R2 → g is a linear
map with matrix representation B ∈ R5×2

B =

[︃
03×2

B2

]︃
, B2 =

[︃
bω 0
0 bv

]︃
(4.16)

such that B2δ(t) is a zero mean white Gaussian noise with variance Σ = BTB,
and λ : G×R2 → g is the left-trivialized dynamics (4.18). The function λ can
be rewritten splitting it into its SE(2) and R2 components obtaining

g−1ġ = λg
∧, V̇ = λV +B2δ (4.17)

where λ = (λg
∧, λV ) ∈ g. In particular, the expressions for λg and λV are

λg(g, u) =

⎡⎣ωv
0

⎤⎦ , λV (g, u) =

[︃
− ma

J+ma2
ωv + 1

J+ma2
τ

aω2 + 1
m
F

]︃
. (4.18)

The measurement equation (4.7) can be then rewritten as

y(t) = h(g(t)) +Dε(t) (4.19)

where h : G → R6 is the output map (4.8), ε ∈ R6 is the measurement error
and D : R6 → R6 is an invertible linear map with the property that ε = Dε
(i.e., Λ = DTD, ε is a Gaussian white noise with zero mean and unit variance).
We choose for the matrix D in (4.7) the matrix form

D = diag{d2, d2, d2, d2, d3, d4}. (4.20)
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For the cost functional to minimize (2.29)-(2.31), we consider α = 0 and
the initial cost

m0(g) =
1

2
∥I − g−1(t)g0∥2F (4.21)

where ∥·∥2F stands for the Frobenius norm, while for the matrix representation
of the forms R and Q we choose

R = diag{rω, rv}, (4.22)
Q = diag{q2, q2, q2, q2, q3, q4}. (4.23)

We define the weighted output error ˜︁y as

˜︁y =

[︃
diag

(︃
q2
d22
,
q2
d22
,
q2
d22
,
q2
d22
,
q3
d23
,
q4
d24

)︃]︃
(y − ˆ︁y) ∈ R6. (4.24)

In this section, we use the Cartan-Schouten (0)-connection given by ω(0) =
1
2
ad [34].

The following proposition is an extension of the theorems in [35], [32] to
the nonholonomic case, and represents the second-order-optimal filter tailored
for the Chaplygin sleigh case.

Proposition 4.1. Consider the dynamic system (4.15) with measurement
equation (4.19) where the output map h and the linear map D are given by
(4.8) and (4.20), respectively and where the operator B takes the form (4.16).
Consider the cost functional (2.29)-(2.31) where the initial cost m0 is given by
(4.21) and the matrix representation of the forms R, Q are given by (4.22)
and (4.23), respectively. Then the second-order optimal filter is

ˆ︁g−1ˆ︁ġ = (ˆ︁ω, ˆ︁v, 0)∧ + (K11r
g +K12r

V )∧ (4.25)ˆ︁V̇ =

[︃
− ma

J+ma2
ˆ︁ωˆ︁v + τ

J+ma2

aˆ︁ω2 + F
m

]︃
+ (K21r

g +K22r
V ) (4.26)

where the residual r is

r =

[︃
rg

rV

]︃T
=

⎡⎢⎢⎢⎢⎢⎣
−(˜︁y1 − ˜︁y3)ℓ sin ˆ︁θ + (˜︁y2 − ˜︁y4)ℓ cos ˆ︁θ
(˜︁y1 + ˜︁y3) cos ˆ︁θ + (˜︁y2 + ˜︁y4) sin ˆ︁θ
−(˜︁y1 + ˜︁y3) sin ˆ︁θ + (˜︁y2 + ˜︁y4) cos ˆ︁θ˜︁y5˜︁y6

⎤⎥⎥⎥⎥⎥⎦
T

. (4.27)

The optimal gain K = (K11, K12;K21, K22) : (R5)∗ → R5 (with K11 ∈ R3×3,
K12 ∈ R3×2, K21 ∈ R2×3 and K22 ∈ R2×2) is the solution of the perturbed
matrix Riccati differential equation

K̇ = −αK + AK +KAT −KEK +BR−1BT

−W (K, r)K −KW (K, r)T
(4.28)
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where

A =

⎡⎢⎢⎢⎢⎣
0 0 0 1 0
0 0 ˆ︁ω 0 1ˆ︁v −ˆ︁ω 0 0 0
0 0 0 − ma

J+ma2
ˆ︁v − ma

J+ma2
ˆ︁ω

0 0 0 2aˆ︁ω 0

⎤⎥⎥⎥⎥⎦ , (4.29)

E =

⎡⎢⎢⎢⎢⎢⎣
a1,1 a1,2 a1,3 0 0
a2,1 2 q2

d22
0 0 0

a3,1 0 2 q2
d22

0 0

0 0 0 q3
d23

0

0 0 0 0 q4
d24

⎤⎥⎥⎥⎥⎥⎦ (4.30)

with

a1,1 =(˜︁y1 − ˜︁y3)ℓ cos ˆ︁θ + (˜︁y2 − ˜︁y4)ℓ sin ˆ︁θ + 2
q2
d22
ℓ2,

a1,2 =− 1

2
(˜︁y2 + ˜︁y4) cos ˆ︁θ + 1

2
(˜︁y1 + ˜︁y3) sin ˆ︁θ,

a1,3 =+
1

2
(˜︁y2 + ˜︁y4) sin ˆ︁θ + 1

2
(˜︁y1 + ˜︁y3) cos ˆ︁θ,

a2,1 =+
1

2
(˜︁y2 + ˜︁y4) cos ˆ︁θ − 1

2
(˜︁y1 + ˜︁y3) sin ˆ︁θ,

a3,1 =− 1

2
(˜︁y2 + ˜︁y4) sin ˆ︁θ − 1

2
(˜︁y1 + ˜︁y3) cos ˆ︁θ,

and
W (K, r) =

[︃
1
2
ad(K11rg+K12rV )∧ 03×2

02×3 02×2

]︃
. (4.31)

The initial conditions for the equations (4.25)-(4.26) and (4.28) are

ˆ︁g(t0) = g0 (4.32)
K(t0) = diag{1/2, 1, 1, 1/2, 1, 1}. (4.33)

Proof. In what follows we will use ηg = (ηθ, ηx, ηy, ηω, ηv)T ∈ R5 to indi-
cate the vector form of an element of the Lie algebra g and with TeLˆ︁g(ηg) =
(θ′, x′, y′, ω′, v′)T the vector form of an element of the tangent space Tˆ︁gG.

Computation of r

According to [35], [32], the residual r ∈ (R5)∗ is given by

r(ˆ︁g) = TeL
∗ˆ︁g
[︂(︁
(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁ ◦ dh(ˆ︁g)]︂ . (4.34)

From the definition of the matrices D and Q it follows that

(D−1)∗ ◦Q ◦D−1(y − h
(︁ˆ︁g)︁) = ˜︁yT . (4.35)
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Given TeLˆ︁g(ηg) ∈ R5, the differential of h in ˆ︁g applied to TeLˆ︁g(ηg) is

dh
(︁ˆ︁g)︁(TeLˆ︁g(ηg)) =

=
d

ds

⃓⃓⃓
s=0

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ˆ︁x(s) + ℓ cos ˆ︁θ(s)ˆ︁y(s) + ℓ sin ˆ︁θ(s)ˆ︁x(s)− ℓ cos ˆ︁θ(s)ˆ︁y(s)− ℓ sin ˆ︁θ(s)ˆ︁ω(s)ˆ︁v(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ˆ︁x′ − ℓ ˆ︁θ′ sin ˆ︁θˆ︁y′ + ℓ ˆ︁θ′ cos ˆ︁θˆ︁x′ + ℓ ˆ︁θ′ sin ˆ︁θˆ︁y′ − ℓ ˆ︁θ′ cos ˆ︁θˆ︁ω′ˆ︁v′

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

(4.36)

and we can write the operator dh
(︁ˆ︁g)︁ as

dh
(︁ˆ︁g)︁ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−ℓ sin ˆ︁θ 1 0 0 0

+ℓ cos ˆ︁θ 0 1 0 0

+ℓ sin ˆ︁θ 1 0 0 0

−ℓ cos ˆ︁θ 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.37)

Using (4.37) and (4.35) we obtain(︁
(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁ ◦ dh(ˆ︁g) =
=

⎡⎢⎢⎢⎢⎣
−(˜︁y1 − ˜︁y3)ℓ sin ˆ︁θ + (˜︁y2 − ˜︁y4)ℓ cos ˆ︁θ˜︁y1 + ˜︁y3˜︁y2 + ˜︁y4˜︁y5˜︁y6

⎤⎥⎥⎥⎥⎦
T

.
(4.38)

Evaluating TeL∗ˆ︁g on (4.38) we finally get (4.27).

Computation of A

The expression for the operator A : R5 → R5 is

A = d1λ(ˆ︁g, u) ◦ TeLˆ︁g − adλ(ˆ︁g,u) − Tλ(ˆ︁g,u). (4.39)

Given TeLˆ︁g(ηg) ∈ R5, the differential of λ is

d1λ(ˆ︁g, u)(TeLˆ︁g(ηg)) = d

ds

⃓⃓⃓
s=0

[︃
λg(s)
λV (s)

]︃
=

=
d

ds

⃓⃓⃓
s=0

⎡⎢⎢⎢⎢⎣
ˆ︁ω(s)ˆ︁v(s)
0

−maˆ︁ω(s)ˆ︁v(s)
J+ma2

+ τ
J+ma2

aˆ︁ω2(s) + F
m

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
ˆ︁ω′ˆ︁v′
0

−ma(ˆ︁ωˆ︁v′+ˆ︁vˆ︁ω′)
J+ma2

2aˆ︁ωˆ︁ω′

⎤⎥⎥⎥⎥⎦
(4.40)
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and thus

d1λ(ˆ︁g, u) ◦ TeLˆ︁g =

⎡⎢⎢⎢⎢⎣
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 − maˆ︁v

J+ma2
− maˆ︁ω

J+ma2

0 0 0 2aˆ︁ω 0

⎤⎥⎥⎥⎥⎦ . (4.41)

The adjoint matrix representation (4.13) implies

adλ(ˆ︁g,u) =
⎡⎢⎢⎣

0 0 0 01×2

0 0 −ˆ︁ω 01×2

−ˆ︁v ˆ︁ω 0 01×2

02×1 02×1 02×1 02×2

⎤⎥⎥⎦ . (4.42)

Since we consider the Cartan-Schouten (0)-connection form ω(0) = 1
2
ad, the

torsion function Tλ(ˆ︁g,u) vanishes (see [22]), thus, in matrix form, it is given by

Tλ(ˆ︁g,u) =
[︃
03×3 03×2

02×3 02×2

]︃
. (4.43)

Using (4.41), (4.42) and (4.43) we obtain (4.29).

Computation of E

The operator E : R5 → (R5)∗ takes the form

E =− TeL
∗ˆ︁g ◦ [︁(︁(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁Tˆ︁gG ◦ Hessh(ˆ︁g)

− (dh(ˆ︁g))∗ ◦ (D−1)∗ ◦Q ◦D−1 ◦ dh(ˆ︁g)]︁ ◦ TeLˆ︁g.
(4.44)

From (4.37) and the definitions of the matrices D and Q we can find the
composition

(dh
(︁ˆ︁g)︁)∗ ◦ (D−1)∗ ◦Q ◦D−1 ◦ dh

(︁ˆ︁g)︁ =
= diag

(︃
2
q2
d22
ℓ2, 2

q2
d22
, 2
q2
d22
,
q3
d23
,
q4
d24

)︃
.

(4.45)

The function (︁
(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁ : R6 → (R6)∗

in lifted through the exponential functor (·)Tˆ︁gG to the linear map(︁
(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁Tˆ︁gG : L(Tˆ︁gG,R6) → L(Tˆ︁gG, (R6)∗)

defined as(︁
(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁Tˆ︁g(ξ) = (︁(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁ ◦ ξ.
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Let TeLˆ︁g(ηg1) = (ˆ︁θ′1, ˆ︁x′1, ˆ︁y′1, ˆ︁ω′
1, ˆ︁v′1)T , TeLˆ︁g(ηg2) = (ˆ︁θ′2, ˆ︁x′2, ˆ︁y′2, ˆ︁ω′

2, ˆ︁v′2)T ∈ Tˆ︁gG
be two vector fields, then the Hessian matrix is defined by

Hessh(ˆ︁g)(TeLˆ︁g(ηg1))(TeLˆ︁g(ηg2)) =d(dh(ˆ︁g)(TeLˆ︁g(ηg2)))(TeLˆ︁g(ηg1))
− dh(ˆ︁g)(∇TeLˆ︁g(ηg1 )(TeLˆ︁g(ηg2))), (4.46)

from the choice of Cartan-Schouten (0)-connection, we get

∇TeLˆ︁gηg1 (TeLˆ︁gηg2) = 1

2
TeLˆ︁g(adηg1η

g2). (4.47)

The Hessian evaluated in TeLˆ︁gηg1 and TeLˆ︁gηg2 is therefore

Hessh(ˆ︁g)(TeLˆ︁gηg1)(TeLˆ︁gηg2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−ˆ︁θ′1ˆ︁θ′2ℓ cos ˆ︁θ − 1
2
ˆ︁θ′2ˆ︁y′1 + 1

2
ˆ︁θ′1ˆ︁y′2

−ˆ︁θ′1ˆ︁θ′2ℓ sin ˆ︁θ + 1
2
ˆ︁θ′2ˆ︁x′1 − 1

2
ˆ︁θ′1ˆ︁x′2

+ˆ︁θ′1ˆ︁θ′2ℓ cos ˆ︁θ − 1
2
ˆ︁θ′2ˆ︁y′1 + 1

2
ˆ︁θ′1ˆ︁y′2

+ˆ︁θ′1ˆ︁θ′2ℓ sin ˆ︁θ + 1
2
ˆ︁θ′2ˆ︁x′1 − 1

2
ˆ︁θ′1ˆ︁x′2

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.48)

From (4.35) and (4.48) it follows that(︁
(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁Tˆ︁gG ◦ Hessh(ˆ︁g) =⎡⎢⎢⎣

a1,1 −1
2
(˜︁y2 + ˜︁y4) 1

2
(˜︁y1 + ˜︁y3) 01×2

1
2
(˜︁y2 + ˜︁y4) 0 0 01×2

−1
2
(˜︁y1 + ˜︁y3) 0 0 01×2

02×1 02×1 02×1 02×2

⎤⎥⎥⎦ , (4.49)

a1,1 =− ˜︁y1ℓ cos ˆ︁θ − ˜︁y2ℓ sin ˆ︁θ + ˜︁y3ℓ cos ˆ︁θ + ˜︁y4ℓ sin ˆ︁θ.
In conclusion, combining (4.45) and (4.49) with TeL

∗ˆ︁g and TeLˆ︁g, the matrix
(4.30) is obtained.

Computation of W

From the adjoint matrix form (4.13) and the Cartan-Schouten (0)-connection
(see, e.g., [33],[34]), we have

W (K, r) =
1

2
ad((K11rg+K12rV )∧,(K21rg+K22rV )∧)

=

[︃
1
2
ad(K11rg+K12rV )∧ 03×2

02×3 02×2

]︃
.

(4.50)

Initial condition

The initial condition for the filter is given by (2.33) while the initial condition
for the gain is K(t0) = X−1

0 where the operator X0 : g → g∗ satisfies (2.36).
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We rewrite m0 as

m0(g) =
1

2
∥I − g−1(t)g0∥2F =

1

2
tr
[︁
(I6×6 − g−1g0)

T (I6×6 − g−1g0)
]︁
. (4.51)

From (4.12) it follows

I6×6 − g−1g0 =

⎡⎣I3×3 − g−1g0 03×2 03×1

02×3 02×2 V0 − V
01×3 01×2 01×1

⎤⎦ (4.52)

and thus

(I6×6 − g−1g0)
T (I6×6 − g−1g0)

=

⎡⎣(I3×3 − g−1g0)
T (I3×3 − g−1g0) 03×2 03×1

02×3 02×2 02×1

01×3 01×2 (V0 − V )T (V0 − V )

⎤⎦ . (4.53)

Computing the trace we obtain

m0(g) =
1

2
[4(1− cos (θ − θ0)) + (x− x0)

2 + (y − y0)
2

+ 2(ω − ω0)
2 + (v − v0)

2]
(4.54)

and from (2.33) it follows that ˆ︁g(t0) = g0.
The Hessian of the function m0 at a point g ∈ G is defined as

Hessm0(g)(gX)(gY ) = d(dm0(g)(gY ))(gX)− dm0(g)(∇gX(gY ))

for all gX, gY ∈ TgG. The differential of m0 is given by

dm0(g) =
[︁
2 sin (θ − θ0) (x− x0) (y − y0) 2(ω − ω0) (v − v0)

]︁
(4.55)

while, given TeLˆ︁g(ηg1) = (ˆ︁gηg1 , ηV1), TeLˆ︁g(ηg2) = (ˆ︁gηg2 , ηV2) ∈ TgG, the affine
connection yields

∇(ˆ︁gηg1 ,ηV1 )(ˆ︁gηg2 , ηV2) =
1

2

⎡⎢⎢⎢⎢⎣
0ˆ︁θ′2ˆ︁y′1 − ˆ︁θ′1ˆ︁y′2

−ˆ︁θ′2ˆ︁x′1 + ˆ︁θ′1ˆ︁x′2
0
0

⎤⎥⎥⎥⎥⎦ . (4.56)

Combining (4.55) and (4.56) we obtain

dm0(ˆ︁g)(∇TeLˆ︁g(ηg1 )(TeLˆ︁g(ηg2)))
=
[︂
(x− x0)(ˆ︁θ′2ˆ︁y′1 − ˆ︁θ′1ˆ︁y′2) + (y − y0)(−ˆ︁θ′2ˆ︁x′1 + ˆ︁θ′1ˆ︁x′2)]︂ (4.57)

that evaluating in ˆ︁g0 produces

dm0(ˆ︁g0)(∇TeLˆ︁g(ηg1 )(TeLˆ︁g(ηg2))) = 0. (4.58)
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The double differential takes the form

d(dm0(g)(gY ))(gX) = diag{2 cos (θ − θ0), 1, 1, 2, 1} (4.59)

that, evaluating in ˆ︁g0, produces

d(dm0(g)(gY ))(gX) = diag{2, 1, 1, 2, 1} (4.60)

and thus, from (4.58) and (4.60)

Hessm0(ˆ︁g0) = diag{2, 1, 1, 2, 1, 1}. (4.61)

From
K(t0) = X−1

0 = (TeL
∗ˆ︁g0 ◦ Hessm0(ˆ︁g0) ◦ TeLˆ︁g0)−1 (4.62)

we obtain the initial condition of K(t0)

K(t0) = (TeLˆ︁g0)−1(Hessm0(ˆ︁g0))−1(TeL
∗ˆ︁g0)−1

= diag{1/2, 1, 1, 1/2, 1}.
(4.63)

This computation ends the proof.

Remark 1. If one considers the case where only GPS measurements (the first
four lines in (4.8)) are available, then the residual r and the matrix E become:

r =

⎡⎢⎢⎢⎣
−(˜︁y1 − ˜︁y3)ℓ sin ˆ︁θ + (˜︁y2 − ˜︁y4)ℓ cos ˆ︁θ
(˜︁y1 + ˜︁y3) cos ˆ︁θ + (˜︁y2 + ˜︁y4) sin ˆ︁θ
−(˜︁y1 + ˜︁y3) sin ˆ︁θ + (˜︁y2 + ˜︁y4) cos ˆ︁θ

02×1

⎤⎥⎥⎥⎦
T

, (4.64)

E =

⎡⎢⎢⎢⎣
a1,1 a1,2 a1,3 01×2

a2,1 2 q2
d22

0 01×2

a3,1 0 2 q2
d22

01×2

02×1 02×1 02×1 02×2

⎤⎥⎥⎥⎦ . (4.65)

The state is still observable using a computation similar to [40].

4.4 Optimal filter with nonholonomic constraint
The aim of this section is to investigate under which conditions the filter pre-
serves the nonholonomic constraint (4.1), that the formulation in Section 4.3
cannot guarantee. The preservation of the nonholonomic constraint produces
more feasible trajectories that will be more suitable for control implementa-
tions.

We first observe that, if the dynamics does not present model errors, the
nonholonomic information is enclosed by the left trivialized dynamics, in par-
ticular by its “group” part

λg(g, u) =

⎡⎣ωv
0

⎤⎦ , (4.66)
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where the last entry is equal to 0, because it represents v⊥, that is the orthog-
onal projection of the linear velocity with respect to the first axis direction. In
order to preserve the constraint, it is necessary to “force” the filter to keep such
value equal to 0 on the right-hand side of the equations (4.25)-(4.26). It is not
possible to act directly on the filter parameters in order to impose the third
component of the residual (4.27) be always 0, thus, it is necessary to operate
on the gain operator K structure whose dynamics is governed by the Riccati
equation (4.28).

Whenever the third row and column of the operator K in (4.28) are 0,
the product KEK has the third row and column equal to 0, whatever the
components of E. Moreover, since the system has only model errors that
apply to the dynamics that model the evolution of the velocity and not to the
kinematics, the term BR−1BT has non-null components only on the last 2× 2
submatrix. The analysis can be therefore limited to the study of the operators
A and W and on the choice of the connection function. Continuing working
with skew-symmetric connection functions (see e.g. [9], [30]), a choice of the
connection could be ∇XY = λ[X, Y ] with λ ∈ R. A generic version of the
operator A provided in (4.29) suggests, for our purposes, to set λ = 0, which
corresponds to the Cartan Schouten (-)-connection ω(−) = 0 and produces

A =

⎡⎢⎢⎢⎢⎣
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 − ma

J+ma2
ˆ︁v − ma

J+ma2
ˆ︁ω

0 0 0 2aˆ︁ω 0

⎤⎥⎥⎥⎥⎦ . (4.67)

With this choice, the operator W is represented by

W = 05×5, (4.68)

and then the products W (K, r)K and KTW (K, r) have the third rows and
columns equal to 0. The new matrix representation for the operator E be-
comes:

E =

⎡⎢⎢⎢⎢⎢⎣
a1,1 0 0 0 0
0 2 q2

d22
0 0 0

0 0 2 q2
d22

0 0

0 0 0 q3
d23

0

0 0 0 0 q4
d24

⎤⎥⎥⎥⎥⎥⎦ (4.69)

with

a1,1 =(˜︁y1 − ˜︁y3)ℓ cos ˆ︁θ + (˜︁y2 − ˜︁y4)ℓ sin ˆ︁θ + 2
q2
d22
ℓ2.

The preservation of the nonholonomic constraint is then granted by choos-
ing the initial conditions of the operator K as

K(t0) =

⎡⎣12×2 02×1 02×2

01×2 01×1 01×2

02×2 02×1 12×2

⎤⎦ . (4.70)
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4.5 Simulations and discussions
In this section, we show how the second-order optimal filter applied to the
Chaplygin sleigh works in simulated scenarios. We set J = 6.125 kgm2, m =
125 kg, a = 0.3 m and ℓ = 0.2 m. We consider the control inputs τ(t) =
10 sin ((1/2)t) and F (t) = (1/2) sin ((1/5)t). The total simulation time is T =
20 s. The initial conditions are θ(0) = π/6 rad, x(0) = 1m, y(0) = 2m,
ω(0) = 0 rad/s and v(0) = 0m/s. For the matrix D we choose d2 = 0.4,
d3 = d4 = 0.2, while for the matrix B2 we choose bω = bv = 10. To solve all
the differential equations we used a Runge-Kutta 4th order method with steps
Ts = 10ms and Ts = 1ms.

Figures 4.3 and 4.4 show how the filters work with a sample time of 10ms
in the cases of Cartan-Scouten (-)-connection (λ = 0) and Cartan-Scouten
(0)-connection (λ = 1/2) using both GPS and INS devices and only GPS. The
estimation errors are calculated with respect to the nominal values

∆θ := θ − ˆ︁θ, ∆x := x− ˆ︁x, · · · .

Figures 4.5 and 4.6 show the same trajectories and errors in the case of a
sample time of 1ms. Table 4.1 and Table 4.2 compare the mean, the standard
deviation and the root mean square values of the errors obtained by applying
the second-order filter in the GPS+INS and GPS cases, with both connection
functions, using Ts = 10ms and Ts = 1ms, respectively.

The filter designed on the Chaplygin sleigh using the Cartan-Schouten (0)-
connection provides a good estimation both for the pose and the velocity, even
if the two antennas do not measure directly the position of the contact point of
the blade nor the orientation. The filter designed using the Cartan-Schouten
(-)-connection has less accurate estimations but preserves the nonholonomic
constraint. With no INS measurements, the accuracy of the velocities for the
Cartan-Schouten (-)-connection gets worse, but it allows to gain precision on
the positions. Instead, for the Cartan-Schouten (0)-connection the addition
of the INS measurements improves all the estimations. In both cases, a finer
sampling of measurements greatly improves the accuracy of the estimates as
can be seen by comparing the Ts = 10ms and Ts = 1ms cases.
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Table 4.1: Mean, standard deviation and root mean square values of the errors for Ts = 10ms
for the cases λ = 1/2 and λ = 0 (in bracket).

GPS+INS GPS
µ σ rms µ σ rms

∆θ [mrad] 28.7 41.1 50.1 -2.1 180.5 180.4
(71.1) (32.7) (78.2) (-6.8) (194.7) (194.8)

∆x [mm] -0.3 19.2 19.2 4.9 66.8 67.0
(-37.8) (122.6) (128.3) (-13.8) (77.9) (79.1)

∆y [mm] -20.5 30.9 37.1 -11.6 59.3 60.4
(-281.0) (177.6) (332.3) (-51.9) (103.2) (115.5)

∆ω [mm/rad] 12.3 94.2 95.0 -2.5 208.8 208.8
(12.3) (94.2) (95.0) ( 4.4) (203.8) (203.8)

∆v [mm/rad] 4.9 99.4 99.5 0.0 249.5 249.4
( 4.8) (99.4) (99.4) (15.4) (251.9) (252.3)

Table 4.2: Mean, standard deviation and root mean square values of the errors for Ts = 1ms
for the cases λ = 1/2 and λ = 0 (in bracket).

GPS+INS GPS
µ σ rms µ σ rms

∆θ [mrad] -0.1 6.6 6.6 -6.1 44.4 44.8
( 4.9) ( 9.2) (10.4) (-4.0) (57.0) (57.1)

∆x [mm] 8.3 9.5 12.6 5.5 20.9 21.7
(-0.4) (18.0) (18.0) (-8.8) (31.9) (33.1)

∆y [mm] -6.1 7.3 9.5 -5.1 16.3 17.1
(-28.6) (22.0) (36.1) (-33.5) (36.6) (49.6)

∆ω [mm/rad] 1.5 31.2 31.2 -1.1 54.2 54.2
( 1.5) (31.2) (31.2) (-0.4) (57.1) (57.1)

∆v [mm/rad] -1.8 33.9 33.9 2.8 77.1 77.2
(-1.9) (33.9) (33.9) ( 1.0) (80.0) (80.0)
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Figure 4.3: Nominal (black), measured (blue), filtered with λ = 1/2 (green) and filtered
with λ = 0 (red) trajectories on the left and their corresponding errors on the right with
GPS and INS in the case Ts = 10ms.
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Figure 4.4: Nominal (black), measured (blue), filtered with λ = 1/2 (green) and filtered
with λ = 0 (red) trajectories on the left and their corresponding errors on the right with
only GPS in the case Ts = 10ms.
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Figure 4.5: Nominal (black), measured (blue), filtered with λ = 1/2 (green) and filtered
with λ = 0 (red) trajectories on the left and their corresponding errors on the right with
GPS and INS in the case Ts = 1ms.
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Figure 4.6: Nominal (black), measured (blue), filtered with λ = 1/2 (green) and filtered
with λ = 0 (red) trajectories on the left and their corresponding errors on the right with
only GPS in the case Ts = 1ms.
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Chapter 5

Second-order optimal filter applied
to an n-articulated vehicle system1

In this chapter, we design the second-order optimal filter for an articulated
n-trailer vehicle when masses and inertias parameters are (i) known at each
instant of time, (ii) unknown but time-invariant, treated as constants, (iii)
unknown and time-varying and thus treated as state variables and filtered.
The nature of the nonholonomic and hooking constraints allows us to estimate
the other dynamic variables like the poses of the trailers and their velocities.

5.1 The dynamics of an articulated n-trailer ve-
hicle with different masses and inertias

The system that we consider consists of a leading car B0, that pulls n trailers
B1,...,Bn. The leading car and each trailer are connected as shown in Figure
5.1 for the case n = 2. We denote with (x0, y0) the midpoint of the wheels’
axis of the leading car and with (xj, yj) the midpoint of the wheels’ axis of
the trailers with respect to the inertial frame ΣI = {ex, ey}. We consider
n + 1 right-handed body frames Σj = {ej∥, e

j
⊥}, j = 0, ..., n attached to Bj,

centered at (xj, yj) with the ej∥-axes aligned with the wheels and the ej⊥-axes
perpendicular to them. The orientation of each body Bj is determined by the
angle θj between the axis ej∥ aligned with the wheels and the ex axis of the
inertial frame. The configuration space of the system is the n+3 dimensional
manifold Q = SE(2) × Tn, where SE(2) is the special Euclidean group on R2

that describes the pose of the leading car, and Tn is the n−dimensional torus
that identifies the angles between the bodies B0, ...,Bn. The leading car and
the trailers are subjected to nonholonomic constraints that do not allow them
to move in the orthogonal direction with respect to the axis e0∥, e

1
∥,..., e

n
∥ i.e.,

ẋj sin θj − ẏj cos θj = 0, j = 0, 1, ..., n. (5.1)

1This chapter is based on the work
▷ Rigo D., Sansonetto N., & Muradore R. Second-order optimal filtering for planar rigid
body with trailers and unknown parameters (submitted).
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Figure 5.1: Articulated vehicle with 2 trailers.

These constraints define a rank 2 distribution D on Q (see [6]). We denote the
angles between subsequent bodies in the convoy by

αj = θj−1 − θj, j = 1, ..., n.

These new angle coordinates are a base of Tn and are useful since they do not
change under the SE(2) action given by (see [6])

g · (x, y, θ0, θ1..., θn)
= (x cosφ− y sinφ+ r, x sinφ+ y cosφ+ s, θ + φ, θ1 + φ..., θ + φ)

where

g =

⎡⎣cosφ − sinφ r
sinφ cosφ s
0 0 1

⎤⎦ ∈ SE(2).

We denote with (xc, yc) the center of mass of B0 at distance a from (x0, y0):

xc = x0 + a cos θ0, yc = y0 + a sin θ0. (5.2)

The leading car is modelled as a Chaplygin sleigh presented in Section 4. Each
trailer is connected to the previous one with a rigid link of length ℓ and the
hooks of the convoy define the 2n holonomic constraints

xj + ℓ cos θj − xj−1 = 0, yj + ℓ cos θj − yj−1 = 0, j = 1, ..., n, (5.3)

that can be read also as

xj = x0 − ℓ

j∑︂
k=1

cos θk, yj = y0 − ℓ

j∑︂
k=1

sin θk, j = 1, ..., n. (5.4)
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From this we can rewrite the nonholonomic constraints (5.1) as

ẋ sin θj − ẏ cos θj + ℓ

j∑︂
k=1

cos (θj − θk)θ̇k = 0, j = 0, ..., n. (5.5)

We assume that the leading car has a total mass m0 and moment of inertia
around its center of mass J0, and the j−th trailer has the center of mass
lying in the midpoint of the axis (xj, yj), total mass of mj and moment of
inertia Jj around (xj, yj). The velocity components of the leading car are
(v, v⊥, ω), where v and v⊥ are the (linear) velocities of the body along the e0∥
and e0⊥ axes, respectively, and ω is the angular velocity. The nonholonomic
constraint imposes that the orthogonal component v⊥ vanishes. The linear
and angular velocities of the trailers can be obtained by exploiting the hooking
and nonholonomic constraints, so v and ω are enough to describe the whole
dynamics of the articulated n−trailer. The state space of the system is then
given by SE(2)× Tn × R2. The control inputs u(t) = (F (t), τ(t)) consist of a
linear force F applied to the center of the body frame along e0∥ and a torque τ
applied around (x0, y0). The following theorem is an extension of Theorem 1
presented in [6] in the case of different masses and inertias.

Theorem 5.1. The reduced equations of motion of the n-trailer vehicle with
masses m0, m1,...,mn and inertias J0, J1,...,Jn and control inputs F and τ are
given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ0 = v cos θ0

ẏ0 = v sin θ0

θ0̇ = ω

α̇1 = ω − v sinα1

ℓ

α̇k = v
ℓ

(︂∏︁k−2
j=1 cosαk

)︂
(sinαk−1 − cosαk−1 sinαk) k = 2, ..., n

v̇ = − 1
2R(α)

(︂∑︁n
k=1Ak

∂R(α)
∂αk

)︂
v2 + Q(α)

ℓ2R(α)
vω + m0a

R(α)
ω2 + F

R(α)

ω̇ = − m0avω
J0+m0a2

+ τ
J0+m0a2

(5.6)

where the coefficients Ak are

Ak =
1

ℓ

(︄
k−2∏︂
j=1

cosαj

)︄
(sinαk−1 − cosαk−1 sinαk) (5.7)

and

Q(α) :=

(︄
− J1

2
+ ℓ2

n∑︂
j=1

mj

(︄
j∏︂

k=2

cos2 αk

)︄

+
1

2

n∑︂
j=2

(︄
Jj

(︄
j−1∏︂
k=2

cos2 αk

)︄
sin2 αj

)︄)︄
cosα1 sinα1,

(5.8)
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R(α) :=m0 +
n∑︂

j=1

(︄
mj

j∏︂
k=1

cos2 αk

)︄
+

1

ℓ2

n∑︂
j=1

(︄
Jj

(︄
j−1∏︂
k=1

cos2 αk

)︄
sin2 αj

)︄
.

(5.9)

Proof. The construction of the kinematic system for (5.6) (i.e., the equations
for ẋ0, ẏ0, θ̇0, α1̇ , and αk̇ ) follows exactly the one proposed in [6], thus we will
focus on the dynamic part.

Differentiating the equations (5.2) and (5.4), and adding the contributions
of all the bodies we obtain the Lagrangian function of the system

L =
1

2

(︄
(J0 +m0a

2)θ̇
2

0 +
(︂
m0 +

n∑︂
j=1

mj

)︂
(ẋ20 + ẏ20)

+ 2m0aθ̇0(ẏ0 cos θ0 − ẋ0 sin θ0) + 2ℓ
n∑︂

j=1

mj

n∑︂
k=1

θ̇k(ẋ0 sin θk − ẏ0 cos θk)

+
n∑︂

k=1

(︂
Jk +

n∑︂
j=k

mjℓ
2
)︂
θ̇
2

k + 2ℓ2
n∑︂

i=1

n∑︂
k=i+1

n∑︂
j=k

θ̇iθ̇k cos (θi − θk)

)︄
.

(5.10)

The nonholonomic constraints in (5.5) do not impose any restriction on the
value of θ̇0 = ω, thus we can apply the forced Euler-Lagrange equation to the
Lagrangian (5.10) finding

ω̇ = − m0avω

J0 +m0a2
+

τ

J0 +m0a2
.

where we set τ as the external torque.
To find the equations of motion of v, we exploit the constrained Lagrangian

Lc that is the restriction of L to the constraint distribution D. First of all, we
notice that

ẋ0 = v cos θ0, ẏ0 = v sin θ0, θ0̇ = ω, θ̇k =
v sinαk

ℓ

k−1∏︂
j=1

cosαj, k = 1, ..., n

and that, if j ≥ 1, we have

ẋ2j + ẏ2j = v2
j∏︂

k=1

cosαk.

It follows that the kinetic energy of the j−th trailer is given by

Kj =
1

2

(︂
Jj θ̇

2

j +mj(ẋ
2
j + ẏ2j)

)︂
=
v2

2

(︄
j−1∏︂
k=1

cos2 αk

)︄(︄
Jj
ℓ2

sin2 αj +mj cos
2 αj

)︄
,

while for j = 0, the leading car, we have

K0 =
1

2

(︂
J0θ̇

2
+m0(ẋ

2
c + ẏ2c)

)︂
=

1

2

(︂
(J0 +m0a

2)ω2 +m0v
2
)︂
.
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Adding up all the contributions of the body in the convoy, we get the con-
strained Lagrangian

Lc =
1

2

(︁
R(α)v2 + (J0 +m0a

2)ω2
)︁

where R(α) is given by (5.9). Following the approach in [6] and [14] (in the
case of an external force F ) we obtain the equations of motion

d

dt

(︃
∂Lc

∂v

)︃
= −C1

12ω
∂Lc

∂v
− C2

12ω
∂Lc

∂ω
+

n∑︂
k=1

Ak
∂Lc

∂αk

+ F

where

C1
12 =

Q(α)

ℓ2R(α)
, C2

12 = − m0a

J0 +m0a2

with Q(α) and R(α) given by (5.8) and (5.9), respectively, and thus

d

dt
(R(α)v) = −Q(α)

ℓ2
vω +m0aω

2 +
1

2

n∑︂
k=1

Ak
∂R(α)

∂αk

v2 + F. (5.11)

From the derivative of the product, the left-hand side becomes

d

dt
(R(α)v) = v

n∑︂
k=1

∂R(α)

∂αk

α̇k +R(α)v̇. (5.12)

Then from (5.6) and (5.7), the derivative of the angles can be written as

α̇1 = ω + vA1, α̇k = vAk, k = 2, ..., n, (5.13)

while from (5.8) and (5.9) we have

∂R(α)

∂α1

= −2Q(α)

ℓ2
. (5.14)

Substituting (5.12), (5.13) and (5.14) into (5.11) we finally obtain

v̇ = − 1

2R(α)

(︄
n∑︂

k=1

Ak
∂R(α)

∂αk

)︄
v2 +

Q(α)

ℓ2R(α)
vω +

m0a

R(α)
ω2 +

F

R(α)
.

5.2 The SE(2)× Tn × R2 structure

From here on, we will indicate the pose (θ0, x0, y0) as (θ, x, y) in order to not
burden the notation.
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The state space of the n−trailer system is given by the Lie group G =
SE(2) × Tn × R2. An element g ∈ G admits the following block-diagonal
matrix representation

g =

⎡⎢⎢⎢⎢⎢⎣
g

A1

. . .
An

V

⎤⎥⎥⎥⎥⎥⎦
with

g =

⎡⎣cos θ − sin θ x
sin θ cos θ y
0 0 1

⎤⎦ , Ak =

[︃
cosαk − sinαk

sinαk cosαk

]︃
, V =

⎡⎣1 0 v
0 1 ω
0 0 1

⎤⎦ ,
where x, y, θ, αk, v, ω are defined in Section 5.1. The group operation is given
by the matrix multiplication

g1 · g2 =

⎡⎢⎢⎢⎢⎢⎣
g1g2

A1
1A

2
1

. . .
A1

nA
2
n

V 1V 2

⎤⎥⎥⎥⎥⎥⎦ . (5.15)

The unit element of this group is the identity matrix and the inverse operation
is the matrix inversion. The generic element ηg of the Lie algebra g of G can
be represented as

ηg =

⎡⎢⎢⎢⎢⎢⎣
ηg

ηA1

. . .
ηAn

ηV

⎤⎥⎥⎥⎥⎥⎦
where

ηg =

⎡⎣ 0 −ηθ ηx

ηθ 0 ηy

0 0 0

⎤⎦ , ηAk =

[︃
0 −ηαk

ηαk 0

]︃
, ηV =

⎡⎣0 0 ηv

0 0 ηω

0 0 0

⎤⎦ ,
and zero on the other entries. For convenience, we define the Lie algebra
isomorphism ∧ : Rn+5 → g as ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ηx

ηy

ηθ

ηα1

...
ηαn

ηv

ηω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∧

= ηg
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from the Lie algebra (Rn+5, ⋆) to the Lie algebra (g, [·, ·]), where [·, ·] is the
usual matrix commutator and where ⋆ : Rn+5 × Rn+5 → Rn+5 is the Lie
bracket operation defined as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ηx1
ηy1
ηθ1
ηα1
1
...
ηαn
1

ηv1
ηω1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⋆

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ηx2
ηy2
ηθ2
ηα1
2
...
ηαn
2

ηv2
ηω2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ηy1η
θ
2 − ηθ1η

y
2

ηθ1η
x
2 − ηx1η

θ
2

0
0
...
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(see, e.g., [25]). Given ηg1 ∈ g, the adjoint operator adηg1 ∈ L(g; g) admits the
matrix representation

adηg1 =

⎡⎢⎢⎣
0 −ηθ1 ηy1 01×(n+2)

ηθ1 0 −ηx1 01×(n+2)

0 0 0 01×(n+2)

0(n+2)×1 0(n+2)×1 0(n+2)×1 0(n+2)×(n+2)

⎤⎥⎥⎦ . (5.16)

It is useful to notice that the tangent map for left matrix multiplication is also
left matrix multiplication: TeLg(η

g) = gηg ∈ TgG (see [7]). Given g ∈ G the
left multiplication tangent map admits the following matrix representation

TeLg =

⎡⎢⎢⎣
cos θ − sin θ 0 01×(n+2)

sin θ cos θ 0 01×(n+2)

0 0 1 01×(n+2)

0(n+2)×1 0(n+2)×1 0(n+2)×1 I(n+2)×(n+2)

⎤⎥⎥⎦
while its dual operator matrix representation satisfies TeL∗

g = (TeLg)
T .

Using this geometric construction, we can rewrite the dynamics (5.6) as

ġ(t) = g(t)λ(g(t), u(t), t)∧, g(t0) = g0, (5.17)

where g(t) ∈ G is the state, u(t) ∈ R2 is the input and λ : G×R2×R → Rn+5

is the left-trivialized dynamics

λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ cos θ + ẏ sin θ
−ẋ sin θ + ẏ cos θ

θ̇
α̇1
...
α̇k
...
v̇
ω̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
0
ω

ω − v sinα1

ℓ...
v
ℓ

(︂∏︁k−2
j=1 cosαk

)︂
(sinαk−1 − cosαk−1 sinαk)

...
− 1

2R(α)

(︂∑︁n
k=1Ak

∂R(α)
∂αk

)︂
v2 + Q(α)

ℓ2R(α)
vω + m0a

R(α)
ω2

− m0avω
J0+m0a2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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5.3 n-articulated vehicle system optimal filter
In order to take into account the inaccuracy of the dynamics we add the
unknown error δ ∈ R2 (modelled as a normalized Gaussian white noise with
zero mean and unitary variance) and the map B : R2 → g to (5.6) to obtain
the system

ġ(t) = g(t)(λ(g(t), u(t), t)∧ +Bδ(t)), g(t0) = g0. (5.18)

Since the kinematic reconstruction equation is supposed to be correct, we
choose B in such a way that it admits the matrix representation

B =

⎡⎣0n+3,1 0n+3,1

bv 0
0 bω

⎤⎦ (5.19)

meaning that we add a correction only on the dynamic part. The measurement
function is

y(t) = h(g(t), t) +Dε(t) =

[︃
y1
y2

]︃
(5.20)

where h : G× R → Rp is the nominal output map defined as

h(g(t), t) =

[︃
x(t)
y(t)

]︃
(5.21)

that represents a GPS antenna settled at (x, y), ε ∈ R2 is the unknown mea-
surement error (modelled as a normalized Gaussian white noise with zero mean
and diagonal and unitary variance) and D : R2 → R2 is an invertible linear
map

D := diag {d1, d2} . (5.22)

The knowledge of the position of the leading car is sufficient to observe the
whole system as can be seen by noting that the co-distribution matrix

H =

⎡⎢⎢⎢⎣
dhi
dLfhi

...
dLn−1

f hi

⎤⎥⎥⎥⎦ ∈ Rpn×n (5.23)

has full rank, where Lfh is the Lie derivative of h with respect to f (see, e.g.,
[16] [40]). The tests of the observations for the case n = 1 and n = 2 were
done by the use of Matlab’s symbolic calculus.

For the cost functional to minimize (2.29)-(2.31), we consider α = 0, the
initial cost

m0(g) =
1

2
∥I − g−1(t)g0∥2F (5.24)

where ∥·∥2F stands for the Frobenius norm, and the matrix representations for
the two forms R and Q as

R := diag {rv, rω} (5.25)
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Q := diag {qv, qω} (5.26)

respectively.
We are now ready to design the second-order optimal filter for the dynamic

system (5.18) which minimizes the cost functional (2.29)-(2.31) using the mea-
surement equation (5.20). We consider the Cartan-Shouten (0)-connection
form ω(0) = 1

2
ad. This choice is justified by the fact that this connection has

null torsion (see [22]) and works better than the others as highlighted in [35].

Proposition 5.1. Consider the dynamic system (5.18) with measurement
equation (5.20) where the output map h and the linear map D are given by
(5.21) and (5.22), respectively and where the operator B takes the form (5.19).
Consider the cost functional (2.29)-(2.31) where the initial cost m0 is given by
(5.24) and the matrix representation of the forms R, Q are given by (5.25)
and (5.26), respectively. Then the second-order optimal filter is

ˆ︁g−1ˆ︁ġ =(︂λt(ˆ︁g, u) +K(t)rt(ˆ︁g))︂∧, ˆ︁g(t0) = ˆ︁g0
where the residual r is

rt(ˆ︁g) =
⎡⎣ ˜︁y1 cos ˆ︁θ + ˜︁y2 sin ˆ︁θ−˜︁y1 sin ˆ︁θ + ˜︁y2 cos ˆ︁θ

0(n+3)×1

⎤⎦T

. (5.27)

The optimal gain K : (Rn+5)∗ → Rn+5 is the solution of the perturbed matrix
Riccati differential equation

K̇ = −αK + AK +KAT −KEK +BR−1BT −W (K, r)K −KW (K, r)T

where the matrix forms of the operators A(t) : g → g, E(t) : g → g∗ and
W (K, t) : g → g are given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ˆ︁ω 0 0 · · · 0 1 0
−ˆ︁ω 0 +ˆ︁v 0 · · · 0 0 0
0 0 0 0 · · · 0 0 1
0 0 0 ∂α̇1

∂α1
· · · ∂α̇1

∂αn

∂α̇1

∂v
∂α̇1

∂ω
...

...
...

...
...

...
...

0 0 0 ∂α̇n

∂α1
· · · ∂α̇n

∂αn

∂α̇n

∂v
∂α̇n

∂ω

0 0 0 ∂v̇
∂α1

· · · ∂v̇
∂αn

∂v̇
∂v

∂v̇
∂ω

0 0 0 ∂ω̇
∂α1

· · · ∂ω̇
∂αn

∂ω̇
∂v

∂ω̇
∂ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.28)

E =

⎡⎢⎢⎣
E11 E12 E13 01×(n+2)

E21 E22 E23 01×(n+2)

E31 E32 E33 01×(n+2)

0(n+2)×1 0(n+2)×1 0(n+2)×1 0(n+2)×(n+2)

⎤⎥⎥⎦ (5.29)

with

E11 =
q1
d21

cos2 ˆ︁θ + q2
d22

sin2 ˆ︁θ, (5.30)
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E12 = − q1
d21

cos ˆ︁θ sin ˆ︁θ + q2
d22

cos ˆ︁θ sin ˆ︁θ, (5.31)

E13 =
1

2
˜︁y2 cos ˆ︁θ − 1

2
˜︁y1 sin ˆ︁θ, (5.32)

E21 = − q1
d21

cos ˆ︁θ sin ˆ︁θ + q2
d22

cos ˆ︁θ sin ˆ︁θ, (5.33)

E22 =
q1
d21

sin2 ˆ︁θ + q2
d22

cos2 ˆ︁θ, (5.34)

E23 = −1

2
˜︁y2 sin ˆ︁θ − 1

2
˜︁y1 cos ˆ︁θ, (5.35)

E31 = −1

2
˜︁y2 cos ˆ︁θ + 1

2
˜︁y1 sin ˆ︁θ, (5.36)

E32 =
1

2
˜︁y2 sin ˆ︁θ + 1

2
˜︁y1 cos ˆ︁θ, (5.37)

E33 = 0, (5.38)

and

W (K, r) =
1

2
ad(Kr)∧ . (5.39)

The initial conditions for the estimator and the gain areˆ︁g(t0) = g0 (5.40)
K(t0) = diag{1, 1, 1/2, 1, ..., 1, 1/2, 1}. (5.41)

Proof. In what follows we will use ηg = (ηx, ηy, ηθ, ηα1 , ..., ηαn , ηv, ηω)T ∈ Rn+5

to indicate the vector form of an element of the Lie algebra g and with
TeLˆ︁g(ηg) = (x′, y′, θ′, α′

1, ..., α
′
n, v

′, ω′)T the vector form of an element of the
tangent space Tˆ︁gG.

Computation of r

According to [35], the residual r ∈ (R5)∗ is given by

r(ˆ︁g) = TeL
∗ˆ︁g
[︂(︁
(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁ ◦ dh(ˆ︁g)]︂ .

Given TeLˆ︁g(ηg) ∈ Rn+5, the differential of h in ˆ︁g applied to TeLˆ︁g(ηg) is

dh
(︁ˆ︁g)︁(TeLˆ︁g(ηg)) = d

ds

⃓⃓⃓
s=0

[︃ˆ︁x(s)ˆ︁y(s)
]︃
=

[︃ˆ︁x′ˆ︁y′
]︃
,

and we can write the operator dh
(︁ˆ︁g)︁ as

dh
(︁ˆ︁g)︁ = [︃1 0 01×(n+3)

0 1 01×(n+3)

]︃
. (5.42)

Defining the weighted errors˜︁y = (D−1)∗ ◦Q ◦D−1(y − h
(︁ˆ︁g)︁) = [︁˜︁y1 ˜︁y2]︁T ∈ R2 (5.43)

and using (5.42) we obtain(︁
(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁ ◦ dh(ˆ︁g) = [︁˜︁y1 ˜︁y2 01×(n+3)

]︁
. (5.44)

Evaluating TeL∗ˆ︁g on (5.44) we get (5.27).

82



Computation of A

The formula for the operator A : Rn+5 → Rn+5 is

A = d1λ(ˆ︁g, u) ◦ TeLˆ︁g − adλ(ˆ︁g,u) − Tλ(ˆ︁g,u).
Given TeLˆ︁g(ηg) ∈ Rn+5, the differential of λ is

d1λ(ˆ︁g, u)(TeLˆ︁g(ηg)) = d

ds

⃓⃓⃓
s=0

λ(s) =

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ˆ︁v′
0ˆ︁ω′ˆ︁ω′ − ˆ︁v′ sin ˆ︁α′

1

ℓ...ˆ︁v′
ℓ

(︂∏︁k−2
j=1 cos ˆ︁α′

k

)︂
(sin ˆ︁α′

k−1 − cos ˆ︁α′
k−1 sin ˆ︁α′

k)
...

− 1
2R(ˆ︁α′)

(︂∑︁n
k=1

ˆ︁A′
k
∂R(ˆ︁α′)
∂ˆ︁α′

k

)︂ˆ︁v′2 + Q(ˆ︁α′)
ℓ2R(ˆ︁α′)

ˆ︁v′ˆ︁ω′ + m0a
R(ˆ︁α′)

ˆ︁ω′2

− m0aˆ︁v′ˆ︁ω′

J0+m0a2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.45)

The adjoint matrix representation (5.16) implies

adλ(ˆ︁g,u) =
⎡⎢⎢⎣

0 −ˆ︁ω 0 01×(n+2)ˆ︁ω 0 −ˆ︁v 01×(n+2)

0 0 0 01×(n+2)

0(n+2)×1 0(n+2)×1 0(n+2)×1 0(n+2)×(n+2)

⎤⎥⎥⎦ . (5.46)

Since we consider the Cartan-Schouten (0)-connection form ω(0) = 1
2
ad, the

torsion function Tλ(ˆ︁g,u) vanishes (see [22]), thus, in matrix form, it is given by

Tλ(ˆ︁g,u) = [︁0(n+5)×(n+5)

]︁
. (5.47)

Using the differential form of (5.45), the adjoint matrix (5.46) and the torsion
(5.47), we obtain (5.28).

Computation of E

The operator E : Rn+5 → (Rn+5)∗ takes the form

E = −TeL∗ˆ︁g ◦ [︁(︁(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁Tˆ︁gG ◦ Hessh(ˆ︁g)
−(dh(ˆ︁g))∗ ◦ (D−1)∗ ◦Q ◦D−1 ◦ dh(ˆ︁g)]︁ ◦ TeLˆ︁g.

From (5.42) and the definitions of the matrices D and Q, we can find the
composition

(dh
(︁ˆ︁g)︁)∗ ◦ (D−1)∗ ◦Q ◦D−1 ◦ dh

(︁ˆ︁g)︁ =
= diag

(︃
q1
d21

cos2 ˆ︁θ + q2
d22

sin2 ˆ︁θ, q1
d21

sin2 ˆ︁θ + q2
d22

cos2 ˆ︁θ, 0, ..., 0)︃ . (5.48)
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Let TeLˆ︁g(ηg1) = (ˆ︁θ′1, ˆ︁x′1, ˆ︁y′1, ˆ︁ω′
1, ˆ︁v′1)T , TeLˆ︁g(ηg2) = (ˆ︁θ′2, ˆ︁x′2, ˆ︁y′2, ˆ︁ω′

2, ˆ︁v′2)T ∈ Tˆ︁gG be
two vector fields, then the Hessian matrix is defined by

Hessh(ˆ︁g)(TeLˆ︁g(ηg1))(TeLˆ︁g(ηg2)) =d(dh(ˆ︁g)(TeLˆ︁g(ηg2)))(TeLˆ︁g(ηg1))
− dh(ˆ︁g)(∇TeLˆ︁g(ηg1 )(TeLˆ︁g(ηg2))),

and from the choice of Cartan-Schouten (0)-connection, we get

∇TeLˆ︁gηg1 (TeLˆ︁gηg2) = 1

2
TeLˆ︁g(adηg1η

g2).

The Hessian evaluated in TeLˆ︁gηg1 and TeLˆ︁gηg2 is therefore

Hessh(ˆ︁g)(TeLˆ︁gηg1)(TeLˆ︁gηg2) =
⎡⎣−1

2
ˆ︁θ′2ˆ︁y′1 + 1

2
ˆ︁θ′1ˆ︁y′2

+1
2
ˆ︁θ′2ˆ︁x′1 − 1

2
ˆ︁θ′1ˆ︁x′2

0(n+3)×1

⎤⎦ . (5.49)

From (5.43) and (5.49) it follows that

(︁
(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁Tˆ︁gG ◦ Hessh(ˆ︁g) =⎡⎢⎢⎣

0 0 −˜︁y2 01×(n+2)

0 0 ˜︁y1 01×(n+2)˜︁y2 −˜︁y1 0 01×(n+2)

0(n+2)×1 0(n+2)×1 0(n+2)×1 0(n+2)×(n+2)

⎤⎥⎥⎦ . (5.50)

In conclusion, combining (5.48) and (5.50) with TeL
∗ˆ︁g and TeLˆ︁g, the matrix

(5.29) is obtained.

Computation of W

From the adjoint matrix form (5.16) and recalling that we consider the Cartan-
Schouten (0)-connection (see, e.g., [33],[34]), we have

W (K, r) =
1

2
ad(Kr)∧ .

Initial condition

The initial condition for the filter is given by (2.33) while the initial condition
for the gain is K(t0) = X−1

0 where the operators X0 : g → g∗ satisfies (2.36).
We rewrite m0 as

m0(g) =
1

2
∥I − g−1(t)g0∥2F

=
1

2
tr
[︁
(I(n+5)×(n+5) − g−1g0)

T (I(n+5)×(n+5) − g−1g0)
]︁
.

(5.51)
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From (5.15) it follows

I(n+5)×(n+5) − g−1g0

=

⎡⎢⎢⎢⎢⎢⎣
I3×3 − g−1g0

I2×2 − A−1
1 A1(0)

. . .
I2×2 − A−1

n An(0)

I3×3 − V −1V0

⎤⎥⎥⎥⎥⎥⎦
(5.52)

and thus

(I(n+5)×(n+5) − g−1g0)
T (I(n+5)×(n+5) − g−1g0) =

⎡⎢⎢⎢⎢⎢⎣
Mg

MA1

. . .
MAn

MV

⎤⎥⎥⎥⎥⎥⎦
(5.53)

where

Mg = (I3×3 − g−1g0)
T (I3×3 − g−1g0),

MAk
= (I2×2 − A−1

n An(0))
T (I2×2 − A−1

n An(0)), k = 1, ..., n,

MV = (I3×3 − V −1V0)
T (I3×3 − V −1V0).

Computing the trace we obtain

m0(g) =
1

2
[4(1− cos (θ − θ0)) + (x− x0)

2 + (y − y0)
2

+
n∑︂

k=1

[2− 2 cos (αk − αk(0))] + 2(ω − ω0)
2 + (v − v0)

2]
(5.54)

and from (2.33) it follows that ˆ︁g(t0) = g0.
The Hessian of the function m0 at a point g ∈ G is defined as

Hessm0(g)(gX)(gY ) = d(dm0(g)(gY ))(gX)− dm0(g)(∇gX(gY ))

for all gX, gY ∈ TgG. The differential of m0 is given by

dm0(g) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x− x0)
(y − y0)

2 sin (θ − θ0)
...

sin (αk − αk(0))
...

2(ω − ω0)
(v − v0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(5.55)
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while, given TeLˆ︁g(ηg1) = ˆ︁gηg1 , TeLˆ︁g(ηg2) = ˆ︁gηg2 ∈ TgG, the affine connection
yields

∇ˆ︁gηg1ˆ︁gηg2 = 1

2

⎡⎢⎢⎢⎢⎢⎣
ˆ︁θ′2ˆ︁y′1 − ˆ︁θ′1ˆ︁y′2

−ˆ︁θ′2ˆ︁x′1 + ˆ︁θ′1ˆ︁x′2
0
...
0

⎤⎥⎥⎥⎥⎥⎦ . (5.56)

Combining (5.55) and (5.56) we obtain

dm0(ˆ︁g)(∇ˆ︁gηg1ˆ︁gηg2) = [︂(x− x0)(ˆ︁θ′2ˆ︁y′1 − ˆ︁θ′1ˆ︁y′2) + (y − y0)(−ˆ︁θ′2ˆ︁x′1 + ˆ︁θ′1ˆ︁x′2)]︂
(5.57)

that evaluating in ˆ︁g0 produces

dm0(ˆ︁g0)(∇ˆ︁gηg1ˆ︁gηg2) = 0. (5.58)

The double differential takes the form

d(dm0(g)(gY ))(gX)

= diag{1, 1, 2 cos (θ − θ0), cos (α1 − α1(0)), ..., cos (αn − αn(0)), 2, 1}
(5.59)

that, evaluating in ˆ︁g0, produces

d(dm0(g)(gY ))(gX) = diag{1, 1, 2, 1, ..., 1, 2, 1} (5.60)

and thus, from (5.58) and (5.60)

Hessm0(ˆ︁g0) = diag{1, 1, 2, 1, ..., 1, 2, 1}. (5.61)

From
K(t0) = X−1

0 = (TeL
∗ˆ︁g0 ◦ Hessm0(ˆ︁g0) ◦ TeLˆ︁g0)−1 (5.62)

we obtain the initial condition of K(t0)

K(t0) = (TeLˆ︁g0)−1(Hessm0(ˆ︁g0))−1(TeL
∗ˆ︁g0)−1

= diag{1, 1, 1/2, 1, ..., 1, 1/2, 1}.
(5.63)

5.4 The system with uncertain masses and iner-
tias

In this section, we aim to provide the second-order optimal filter for the convoy
system in case of unknown but time-invariant masses and inertias. To do this,
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we treat masses and inertias as state variables that are constant along the
motion. The new dynamic equations become:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

α̇1 = ω − v sinα1

ℓ

α̇k = v
ℓ

(︂∏︁k−2
j=1 cosαk

)︂
(sinαk−1 − cosαk−1 sinαk) k = 2, ..., n

v̇ = − 1
2R(α)

(︂∑︁n
k=1Ak

∂R(α)
∂αk

)︂
v2 + Q(α)

ℓ2R(α)
vω + m0a

R(α)
ω2 + F

R(α)

ω̇ = − m0avω
J0+m0a2

+ τ
J0+m0a2

ṁk = 0 k = 0, ..., n

J̇k = 0 k = 0, ..., n

(5.64)

where the coefficients Ak, Q(α) and R(α) are given as before by (5.7), (5.8)
and (5.9), respectively. The geometric structure that underlies the dynamics
(5.64) is featured by the Lie group G = SE(2)×Tn×R2×R2(n+1). As done in
Section 5.2, we can describe the group operation, the Lie algebra, the adjoint
operator and the tangent map accordingly. Evaluating the rank of the matrix
(5.23) on this system, we can check the observability. The dynamics with
model error (modelled as a normalized Gaussian) is given by

ġ(t) = g(t)(λ(g(t), u(t), t)∧ +Bδ(t)), g(t0) = g0. (5.65)

with B : R2+2(n+1) → g. The matrix representation of R and B related to the
new filter are

R = diag (rv, rω, rm0 , ..., rmn , rJ0 , ..., rJn) , ri ∈ R+, (5.66)

B =

[︃
0n+3,2n+4)

B2

]︃
, (5.67)

B2 = diag (bv, bω, bm0 , ..., bmn , bJ0 , ..., bJn) , bi ∈ R+, (5.68)

since the new model error has now 2 + 2(n+ 1) components. The parameters
bm0 , ..., bmn , bJ0 , ..., bJn are needed to estimate masses and inertias and their
values are a trade-off between promptness and accuracy.

Proposition 5.2. Consider the dynamic system (5.65) with measurement
equation (5.20) where the output map h and the linear map D are given by
(5.21) and (5.22), respectively and where the operator B takes the form (5.67).
Consider the cost functional (2.29)-(2.31) where the initial cost m0 is given by
(5.24) and the matrix representation of the forms R, Q are given by (5.66)
and (5.26), respectively. Then the second-order optimal filter isˆ︁g−1ˆ︁ġ =(λt(ˆ︁g, u) +K(t)rt(ˆ︁g))∧, ˆ︁g(t0) = ˆ︁g0
where the residual r is

rt(ˆ︁g) =
⎡⎣ ˜︁y1 cos ˆ︁θ + ˜︁y2 sin ˆ︁θ−˜︁y1 sin ˆ︁θ + ˜︁y2 cos ˆ︁θ

0(3n+5)×1

⎤⎦T

.
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The optimal gain K : (R3n+7)∗ → R3n+7 is the solution of the perturbed matrix
Riccati differential equation

K̇ = −αK + AK +KAT −KEK +BR−1BT −W (K, r)K −KW (K, r)T

where the matrix forms of the operators A(t) : g → g, E(t) : g → g∗ and
W (K, t) : g → g are given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ˆ︁ω 0 0 · · · 0 1 0 0 · · · 0
−ˆ︁ω 0 ˆ︁v 0 · · · 0 0 0 0 · · · 0
0 0 0 0 · · · 0 0 1 0 · · · 0
0 0 0 ∂α̇1

∂α1
· · · ∂α̇1

∂αn

∂α̇1

∂v
∂α̇1

∂ω
∂α̇1

∂m0
· · · ∂α̇1

∂Jn...
...

...
...

...
...

...
...

...
0 0 0 ∂α̇n

∂α1
· · · ∂α̇n

∂αn

∂α̇n

∂v
∂α̇n

∂ω
∂α̇n

∂m0
· · · ∂α̇n

∂Jn

0 0 0 ∂v̇
∂α1

· · · ∂v̇
∂αn

∂v̇
∂v

∂v̇
∂ω

∂v̇
∂m0

· · · ∂v̇
∂Jn

0 0 0 ∂ω̇
∂α1

· · · ∂ω̇
∂αn

∂ω̇
∂v

∂ω̇
∂ω

∂ω̇
∂m0

· · · ∂ω̇
∂Jn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

E =

⎡⎢⎢⎣
E11 E12 E13 01×(3n+4)

E21 E22 E23 01×(3n+4)

E31 E32 E33 01×(3n+4)

0(3n+4)×1 0(3n+4)×1 0(3n+4)×1 0(3n+4)×(3n+4)

⎤⎥⎥⎦
with

E11 =
q1
d21

cos2 ˆ︁θ + q2
d22

sin2 ˆ︁θ,
E12 = − q1

d21
cos ˆ︁θ sin ˆ︁θ + q2

d22
cos ˆ︁θ sin ˆ︁θ,

E13 =
1

2
˜︁y2 cos ˆ︁θ − 1

2
˜︁y1 sin ˆ︁θ,

E21 = − q1
d21

cos ˆ︁θ sin ˆ︁θ + q2
d22

cos ˆ︁θ sin ˆ︁θ,
E22 =

q1
d21

sin2 ˆ︁θ + q2
d22

cos2 ˆ︁θ,
E23 = −1

2
˜︁y2 sin ˆ︁θ − 1

2
˜︁y1 cos ˆ︁θ,

E31 = −1

2
˜︁y2 cos ˆ︁θ + 1

2
˜︁y1 sin ˆ︁θ,

E32 =
1

2
˜︁y2 sin ˆ︁θ + 1

2
˜︁y1 cos ˆ︁θ,

E33 = 0,

and

W (K, r) =
1

2
ad(Kr)∧ .

Proof. The proof is similar to the one for Proposition 5.1 and is not reported
for the sake of space.
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5.5 Simulations and discussions
In this section, we show how the second-order optimal filter applied to the
convoy works. We will consider the cases n = 1, n = 2 and compare three
different filters:

- F1, where we consider perfectly known masses and inertias at every in-
stant of time;

- F2, where the masses and inertias change but they are known only at
the initial configuration;

- F3, where we consider masses and inertias as state variables and we filter
them (Section 5.4).

We set the initial conditions at x(0) = y(0) = 0m, θ(0) = α1(0) = α2(0) = 0
rad, v(0) = 0m/s and ω(0) = 0 rad/s. We consider the control inputs

F (t) = 1.5(t/(1 + t)) + 1.5 sin(t/5),

τ(t) = 1.5(t/(1 + t)) + 1.5 sin(t/9).

The total simulation time is T = 200 s, while we put ℓ = 0.8m and a = 0.2m.
We start with known values for masses and inertias, and at time 100 s

they change their values, according to Table 5.1. The variations simulate the
unknown change of weights due to the addition of new luggage or new packages
to a convoy in an airport or warehouse. For the matrix D and Q we choose
dx = dy = 0.5 and qx = qy = 0.25 respectively, while for the matrix B we
choose bm0 = bm1 = bm2 = bJ0 = bJ1 = bJ2 = 50, bv = bω = 0.1.

Table 5.1: Values of masses and inertias.

t [s] 0− 100 100− 200
m0 [kg] 100 130
m1 [kg] 12 16
m2 [kg] 10 12
J0 [kgm

2] 7 9
J1 [kgm

2] 4 5
J2 [kgm

2] 3 4

To solve the differential equations of the dynamic systems (5.6) and (5.64)
we used a 4-th order Runge-Kutta method, while to solve the equations of
the filters we used a forward Euler method with step Ts = 10ms. The 2D
trajectories of the leading car on the plane are shown in Figure 5.2a (n = 1)
and Figure 5.2b (n = 2), while the error time-series of the state variables
for the filters F1, F2 and F3 are shown in Figure 5.3 (n = 1) and Figure
5.4 (n = 2). We can observe that in the first 100 s of the simulations all
filters work well, with slightly better results for the filters that know the exact
values of the parameters. The drastic change of masses and inertias values
produces a variation of the trajectories, and while the filter F2 (with constant
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masses and inertia) fails to align with correct values, the filter F3 (that filters
also the parameters), after a settling period, produces excellent results and
comparable with the filter F1 (that know the exact values at each instant of
time). To better highlight the difference among the filters, we report in Table
5.2 the mean, the standard deviation and the root mean square values of the
errors

∆x := x− ˆ︁x, ∆y := y − ˆ︁y, · · ·

in the two time intervals I1 = [0, 100) and I2 = [100, 200]. These results
highlight how the filter F3 produces better estimates compared with F2, com-
parable with F1.

We can observe that all the state variables can be estimated, even if the
measurement equation provides only the position (x, y) of the first leading car.
The observability of pose and velocity is possible thanks to the nonholonomic
and hooking constraints.

Table 5.2: Mean, standard deviation and root mean square value of the errors for n = 1 and
n = 2.

T F1 F2 F3

n µ σ rms µ σ rms µ σ rms
∆x [mm] 18.0 24.4 30.4 18.0 24.4 30.4 16.5 36.7 40.2
∆y [mm] -10.5 24.3 26.5 -10.5 24.3 26.5 -9.6 35.0 36.3

I1 ∆θ [mrad] -3.5 26.9 27.1 -3.5 26.9 27.1 -5.8 40.6 41.0
n = 1 ∆α1 [mrad] -3.5 18.4 18.7 -3.5 18.4 18.7 -4.4 27.4 27.7

∆v
[︁
mm
s

]︁
0.1 4.9 4.9 0.1 4.9 4.9 0.6 11.5 11.5

∆ω
[︂
mrad

s

]︂
-0.5 2.4 2.4 -0.5 2.4 2.4 -1.8 7.7 7.9

∆x [mm] 1.4 28.0 28.1 202.8 205.2 288.5 3.7 35.4 35.6
∆y [mm] 0.4 28.0 28.0 151.5 230.7 276.0 -1.9 34.2 34.2

I2 ∆θ [mrad] 0.1 1.7 1.7 44.0 30.9 53.8 1.5 5.2 5.4
n = 1 ∆α1 [mrad] 0.0 0.0 0.0 2.3 1.6 2.8 0.2 0.4 0.4

∆v
[︁
mm
s

]︁
-0.3 5.3 5.3 11.7 11.0 16.1 0.5 10.0 10.0

∆ω
[︂
mrad

s

]︂
0.0 0.1 0.1 7.3 4.7 8.7 0.5 1.1 1.2

∆x [mm] 19.4 24.5 31.3 19.4 24.5 31.3 16.9 37.3 41.0
∆y [mm] -11.1 26.2 28.5 -11.1 26.2 28.5 -11.3 36.1 37.8
∆θ [mrad] -3.9 30.6 30.9 -3.9 30.6 30.9 -6.7 47.2 47.7

I1 ∆α1 [mrad] -3.1 20.3 20.6 -3.1 20.3 20.6 -4.8 32.0 32.4
n = 2 ∆α2 [mrad] -13.5 242.7 243.1 -13.5 242.7 243.1 17.2 202.0 202.7

∆v
[︁
mm
s

]︁
0.7 9.5 9.5 0.7 9.5 9.5 0.6 14.5 14.5

∆ω
[︂
mrad

s

]︂
-0.4 2.8 2.8 -0.4 2.8 2.8 -2.0 9.0 9.2

∆x [mm] 2.6 26.9 27.0 104.3 234.3 256.4 4.5 35.2 35.5
∆y [mm] 0.5 29.3 29.3 217.7 207.9 301.0 -0.6 34.6 34.6
∆θ [mrad] 0.1 1.7 1.7 47.1 33.0 57.5 1.8 5.3 5.6

I2 ∆α1 [mrad] -0.0 0.1 0.1 2.6 1.8 3.2 0.2 0.4 0.5
n = 2 ∆α2 [mrad] -0.0 0.1 0.1 2.6 1.8 3.2 0.2 0.4 0.5

∆v
[︁
mm
s

]︁
0.5 5.9 6.0 12.1 8.8 15.0 0.6 10.2 10.2

∆ω
[︂
mrad

s

]︂
-0.0 0.1 0.1 7.8 5.1 9.3 0.6 1.2 1.3
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(a) 2D Trajectory of the leading car for n = 1 (b) 2D Trajectory of the leading car for n = 2

Figure 5.2

Figure 5.3: Trajectories errors for the filters F1, F2 and F3 for n = 1.
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Figure 5.4: Trajectories errors for the filters F1, F2 and F3 for n = 2.
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Chapter 6

Second-order optimal filter applied
to a truck semi-trailer system in a
real case model1

In this chapter, we apply the second-order optimal filter to a scale model of
a truck semi-trailer system engaged in a parking maneuver (Figure 6.1). The
measured trajectories are obtained by adding noises to the poses provided by
a motion capture optical system in order to reproduce a real-case scenario. We
apply the second-order filter simulating different measurement equations that
correspond to the cases where GPS and LIDAR sensors are available or not
([12], [39], [41]).

(a) Truck and semi-trailer in a real parking area (b) Truck and semi-trailer model with a reduction
ratio of 1:13.3 in Automotive lab

Figure 6.1

1This chapter is based on the work
▷ Rigo D., Saccon A., Sansonetto N., & Muradore R. State Estimation for a Tractor Semi-
trailer System using a Minimum-Energy Filter (submitted).
This work was done at Eindhoven University of Technology under the supervision of prof.
Alessandro Saccon within the Dynamics and Control group and with the assistance of the
Automotive Lab people.
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6.1 Kinematics of truck semi-trailer systems

The system under study is an articulated vehicle composed of a leading truck
and a semi-trailer (Figure 6.2). It moves in a maneuvering area and its goal
is to park in a docking station. We consider an inertial frame of reference
ΣI = {ex, ey} attached to this docking station with the origin in the final
target, and a right-handed body frame Σb =

{︂
eb∥, e

b
⊥

}︂
on the truck, centered

in the midpoint of the rear wheels (x1, y1).
The configuration space of the truck is SE(2) with coordinates (x1, y1, α)

with respect to the inertial frame, where α is the angle that the truck forms
with the inertial frame. At distance ℓ1 from (x1, y1), the pair (x0, y0) represents
the midpoint of the front wheels.

Also the configuration space of the trailer is given by SE(2) with coordinates
(x2, y2, β). The pair (x2, y2) represents the position of the midpoint of the rear
wheels, and β is the angle the semi-trailer forms with respect to the inertial
frame. The semi-trailer is hooked to the truck through an articulation point
(x1c , y1c) at distance (ℓ1c) from (x1, y1), while ℓ2 is the distance between (x2, y2)
and the articulation point.

The truck is modelled as a rigid body with a nonholonomic constraint given
by

ẋ1 sinα− ẏ1 cosα = 0 (6.1)

while the nonholonomic constraint for the semi-trailer is given by

ẋ2 sin β − ẏ2 cos β = 0. (6.2)

They do not allow orthogonal components of the velocities.
The lateral velocity of the front wheels, expressed in the chassis frame,

is equal to V1 tan θ, where V1 is the vehicle forward velocity at the rear axle
and θ is the front wheels’ steering angle. Similarly, the lateral velocity of the
attachment point (x1c , y1c) is equal to V2 tanα, where V2 is the velocity at the
rear axle of the trailer.

The equations of motion for the truck semi-trailer system are then given
by ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ = V1 cosα

ẏ = V1 sinα

α̇ = 1
ℓ1
V1 tan θ

β̇ = 1
ℓ2
(V1 sin γ1 − α̇ℓ1c cos γ1)

(6.3)

where V2 = V1 cos γ1− α̇ℓ1c sin γ1 and γ1 = α−β is the angle between the truck
and the trailer.

6.2 The SE(2)× SO(2) structure

In order to apply the second-order filter to the system (6.3) it is necessary to
investigate its geometric structure. The state space that underlies the kine-
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β

α
γ

θ

ℓ2
ℓ1c

ℓ1

(x2, y2)

(x1, y1)

(x0, y0)

(x1c, y1c)

eiy

eix

eb2

eb1

Figure 6.2: Scheme of truck semi-trailer model.

matics (6.3) is the Lie group

G = SE(2)× SO(2) (6.4)

whose generic element g ∈ G admits the matrix representation

g =

⎡⎢⎢⎢⎢⎣
cosα − sinα x 0 0
sinα cosα y 0 0
0 0 1 0 0
0 0 0 cos β − sin β
0 0 0 sin β cos β

⎤⎥⎥⎥⎥⎦ . (6.5)

Given the Lie algebra g = se(2) × so(2), we introduce the Lie algebra
isomorphism ∧ : R4 → se(2)× so(2)

⎡⎢⎢⎣
ηx

ηy

ηα

ηβ

⎤⎥⎥⎦
∧

∼=

⎡⎢⎢⎢⎢⎣
0 −ηα ηx 0 0
ηα 0 ηy 0 0
0 0 0 0 0
0 0 0 0 −ηβ
0 0 0 ηβ 0

⎤⎥⎥⎥⎥⎦ (6.6)

from the Lie algebra (R4, ⋆) to the matrix Lie algebra (se(2), [·, ·]), where ⋆ :
R3 × R3 → R3 is the Lie bracket operation defined as⎡⎢⎢⎣

ηx1
ηy1
ηα1
ηβ1

⎤⎥⎥⎦ ⋆
⎡⎢⎢⎣
ηx2
ηy2
ηα2
ηβ2

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−ηα1 η

y
2 + ηα2 η

y
1

ηα1 η
x
2 − ηα2 η

x
1

0
0

⎤⎥⎥⎦ (6.7)

and [·, ·] is the usual matrix commutator (see, e.g., [25]).
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The left-trivialization dynamics of (6.3), obtained from λ∧ = g−1ġ, is given
by λ = (λx, λy, λα, λβ) where

λx = V1

λy = 0

λα =
1

ℓ
V1 tan θ

λβ =
1

ℓ
V1 sin (α− β) +

ℓ1c
ℓ2

1

ℓ
V1 tan θ cos (α− β).

(6.8)

The tangent map and the adjoint representation are given by

TeLg =

⎡⎢⎢⎣
cosα − sinα 0 0
sinα cosα 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , (6.9)

ad(ηΩ)∧ =

⎡⎢⎢⎣
0 −ηα ηy 0
ηα 0 −ηx 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ , (6.10)

respectively.
The choice of the connection function ω on the Lie algebra is related to

the choice of a left-invariant affine connection ∇ on the Lie group. We use the
so-called Cartan-Schouten (0)-connection, characterized by ω(0) = 1

2
ad, that

has the following matrix representation

ω(0) =
1

2

⎡⎢⎢⎣
0 −ηα ηy 0
ηα 0 −ηx 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ . (6.11)

This decision is justified by the fact that it has null torsion and results in
better estimations (see [22]).

6.3 Truck semi-trailer optimal filter
To take into account unmodelled kinematics in (6.3) we consider the unknown
error δ (modelled as a normalized Gaussian white noise) and the mapping

B : R4 → g. (6.12)

With these definitions, we rewrite the kinematics as

ġ(t) = g(t) [λ(g(t), u(t), t) +Bδ(t)] , g(t0) = g0. (6.13)

For the first part of the maneuver, when the truck is far away from the
docking station, we assume to measure the position of two GPS devices settled
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Figure 6.3: LIDAR e GPS devices

in (x0, y0) and (x2, y2). Since the use of GPS is not sufficient during the
maneuver that requires great precision (especially when reversing), we combine
them with other sensors. In the second part of the maneuver, when the vehicle
is sufficiently close to the final target, we simulate a LIDAR device settled at
the docking station, with the purpose of helping the truck during the reversing
(see Figure 6.3). This LIDAR provides the pose of the trailer through a laser
scan and thus the position of (x2, y2) and the angle β. This is justified because,
when reversing during the parking maneuver, the LIDAR can spot only the
semi-trailer, therefore it can improve only its pose. Summarizing, the two
measurement equations

yi(t) = hi(g(t), t) +Diεi(t), i = 1, 2, (6.14)

have the following output maps:

h1(g(t), t) =

⎡⎢⎢⎣
x0GPS

y0GPS

x2GPS

y2GPS

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x+ ℓ1 cosα|GPS

y + ℓ1 sinα|GPS

x+ ℓ1c cosα− ℓ2 cos β|GPS

y + ℓ1c sinα− ℓ2 sin β|GPS

⎤⎥⎥⎦ , (6.15)

h2(g(t), t) =

⎡⎢⎢⎢⎢⎣
x0GPS

y0GPS

x2LIDAR

y2LIDAR

β2LIDAR

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
x+ ℓ1 cosα|GPS

y + ℓ1 sinα|GPS

x+ ℓ1c cosα− ℓ2 cos β|LIDAR

y + ℓ1c sinα− ℓ2 sin β|LIDAR

β|LIDAR

⎤⎥⎥⎥⎥⎦ . (6.16)

The second-order optimal filter minimizes the cost functional (2.29)-(2.31)
with the initial cost map given by

m0(g) =
1

2
∥I − g−1(t)g0∥2F (6.17)
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where ∥·∥2F stands for the Frobenius norm, and the matrix representations of
the quadratic forms R in (2.31) and of the operator B in (6.12) are given by

R :=diag {rx, ry, rα, rβ} , (6.18)
B :=diag {bx, by, bα, bβ} . (6.19)

The matrix representations of the quadratic forms Q in (2.31) and of the
operator D in (6.14) in the first part of the maneuver are given by

Q :=diag {q1, q1, q1, q1} , (6.20)
D :=diag {d1, d1, d1, d1} . (6.21)

while in the second part are

Q :=diag {q1, q1, q2, q2, q3} , (6.22)
D :=diag {d1, d1, d2, d2, d3} . (6.23)

For the first filter we define the weighted output error ˜︁y as

˜︁y =

[︃
diag

(︃
q1
d21
,
q1
d21
,
q1
d21
,
q1
d21

)︃]︃
(y − ˆ︁y) ∈ R4 (6.24)

while for the second as

˜︁y =

[︃
diag

(︃
q1
d21
,
q1
d21
,
q2
d22
,
q2
d22
,
q3
d23

)︃]︃
(y − ˆ︁y) ∈ R5. (6.25)

Proposition 6.1. Consider the dynamic system (6.13) with output map h
and with linear map D given by (6.15) and (6.21), respectively, and where the
operator B takes the form (6.19). Consider the cost functional (2.29)-(2.31)
where the initial cost m0 is given by (6.17) and the matrix representation of the
forms R, Q are given by (6.18) and (6.20), respectively. Then the second-order
optimal filter is

ˆ︁g−1ˆ︁ġ = λt(ˆ︁g, u) +K(t)rt(ˆ︁g), ˆ︁g(t0) = ˆ︁g0 (6.26)

where the residual r is

rt =

⎡⎢⎢⎣
(˜︁y1 + ˜︁y3) cos ˆ︁α + (˜︁y2 + ˜︁y4) sin ˆ︁α
−(˜︁y1 + ˜︁y3) sin ˆ︁α + (˜︁y2 + ˜︁y4) cos ˆ︁α

−˜︁y1ℓ1 sin ˆ︁α + ˜︁y2ℓ1 cos ˆ︁α− ˜︁y3ℓ1c sin ˆ︁α + ˜︁y4ℓ1c cos ˆ︁α˜︁y3ℓ2 sin ˆ︁β − ˜︁y4ℓ2 cos ˆ︁β
⎤⎥⎥⎦

T

. (6.27)

The optimal gain K : (R4)∗ → R4 is the solution of the perturbed matrix Riccati
differential equation

K̇ = −cK + AK +KAT −KEK +BR−1BT

−W (K, r)K −KW (K, r)T
(6.28)
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with

A(t) =

⎡⎢⎢⎣
0 a12 0 0
a21 0 a23 0
0 0 0 0
0 0 a43 a44

⎤⎥⎥⎦ (6.29)

where

a12 =
1

ℓ
V1 tan θ

a21 = −1

ℓ
V1 tan θ

a23 = −V1

a43 =
1

ℓ2
V1 cos (ˆ︁α− ˆ︁β)− ℓ1C

ℓ2

1

ℓ
V1 tan θ sin (ˆ︁α− ˆ︁β)

a44 = − 1

ℓ2
V1 cos (ˆ︁α− ˆ︁β) + ℓ1C

ℓ2

1

ℓ
V1 tan θ sin (ˆ︁α− ˆ︁β),

and

E(t) =

⎡⎢⎢⎣
E11 E12 E13 E14

E21 E22 E23 E24

E31 E32 E33 E34

E41 E42 E43 E44

⎤⎥⎥⎦ (6.30)

where

E11 = e11 cos
2 ˆ︁α + e21 cos ˆ︁α sin ˆ︁α + e12 cos ˆ︁α sin ˆ︁α + e22 sin

2 ˆ︁α
E12 = −e11 cos ˆ︁α sin ˆ︁α− e21 sin

2 ˆ︁α + e12 cos
2 ˆ︁α + e22 cos ˆ︁α sin ˆ︁α

E13 = e13 cos ˆ︁α + e23 sin ˆ︁α
E14 = e14 cos ˆ︁α + e24 sin ˆ︁α
E21 = −e11 cos ˆ︁α sin ˆ︁α + e21 cos

2 ˆ︁α− e12 sin
2 ˆ︁α + e22 cos ˆ︁α sin ˆ︁α

E22 = e11 sin
2 ˆ︁α− e21 cos ˆ︁α sin ˆ︁α− e12 cos ˆ︁α sin ˆ︁α + e22 cos

2 ˆ︁α
E23 = −e13 sin ˆ︁α + e23 cos ˆ︁α
E24 = −e14 sin ˆ︁α + e24 cos ˆ︁α
E31 = e31 cos ˆ︁α + e32 sin ˆ︁α
E32 = −e31 sin ˆ︁α + e32 cos ˆ︁α
E33 = e33

E34 = e34

E41 = e41 cos ˆ︁α + e42 sin ˆ︁α
E42 = −e41 sin ˆ︁α + e42 cos ˆ︁α
E43 = e34

E44 = e44

e11 = 2
q1
d21

e12 = 0
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e13 = − q1
d21
ℓ1 sin ˆ︁α− q1

d21
ℓ1c sin ˆ︁α− 1

2
(ˆ︁y2 + ˆ︁y4)

e14 =
q1
d21
ℓ2 sin ˆ︁β

e21 = 0

e22 = 2
q1
d21

e23 =
q1
d21
ℓ1 cos ˆ︁α +

q1
d21
ℓ1c cos ˆ︁α +

1

2
(ˆ︁y1 + ˆ︁y3)

e24 = − q1
d21
ℓ2 cos ˆ︁β

e31 = − q1
d21
ℓ1 sin ˆ︁α− q1

d21
ℓ1c sin ˆ︁α +

1

2
(ˆ︁y2 + ˆ︁y4)

e32 =
q1
d21
ℓ1 cos ˆ︁α +

q1
d21
ℓ1c cos ˆ︁α− 1

2
(ˆ︁y1 + ˆ︁y3)

e33 =
q1
d21
ℓ21 +

q1
d21
ℓ21c + ˜︁y1ℓ1 cos ˆ︁α + ˜︁y2ℓ1 sin ˆ︁α− ˜︁y3ℓ1c cos ˆ︁α− ˜︁y4ℓ1c sin ˆ︁α

e34 = − q1
d21
ℓ1cℓ2 sin ˆ︁α sin ˆ︁β − q1

d21
ℓ1cℓ2 cos ˆ︁α cos ˆ︁β

e41 =
q1
d21
ℓ2 sin ˆ︁β

e42 = − q1
d21
ℓ2 cos ˆ︁β

e43 = − q1
d21
ℓ1cℓ2 sin ˆ︁α sin ˆ︁β − q1

d21
ℓ1cℓ2 cos ˆ︁α cos ˆ︁β

e44 =
q1
d21
ℓ22 − ˜︁y3ℓ2 cos ˆ︁β − ˜︁y4ℓ2 sin ˆ︁β

and with

W (K, r) =
1

2
ad(Kr)∧ . (6.31)

The initial conditions for the equations (6.26) and (6.28) are

ˆ︁g(t0) = g0 (6.32)
K(t0) = diag{1, 1, 1/2, 1}. (6.33)

Proof. In what follows we will use ηg = (ηx, ηy, ηα, ηβ)T ∈ R4 to indicate
the vector form of an element of the Lie algebra g and with TeLˆ︁g(ηg) =

(x′, y′, α′, β′)T the vector form of an element of the tangent space Tˆ︁gG.
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Computation of r

Given TeLˆ︁g(ηg) ∈ R4, the differential of h in ˆ︁g applied to TeLˆ︁g(ηg) is

dh
(︁ ˆ︁g )︁(TeLˆ︁g(ηg)) = d

ds

⃓⃓⃓
s=0

⎡⎢⎢⎣
ˆ︁x(s) + ℓ1 cos ˆ︁α(s)ˆ︁y(s) + ℓ1 sin ˆ︁α(s)ˆ︁x(s) + ℓ1c cos ˆ︁α(s)− ℓ2 cos ˆ︁β(s)ˆ︁y(s) + ℓ1c sin ˆ︁α(s)− ℓ2 sin ˆ︁β(s)

⎤⎥⎥⎦

=

⎡⎢⎢⎣
ˆ︁x′ − ℓ1 ˆ︁α′ sin ˆ︁αˆ︁y′ + ℓ1 ˆ︁α′ cos ˆ︁αˆ︁x′ − ℓ1c ˆ︁α′ sin ˆ︁α + ℓ2 ˆ︁β′ sin ˆ︁βˆ︁y′ + ℓ1c ˆ︁α′ cos ˆ︁α− ℓ2 ˆ︁β′ cos ˆ︁β

⎤⎥⎥⎦ ,
(6.34)

and we can write the operator dh
(︁ ˆ︁g )︁ as

dh
(︁ ˆ︁g )︁ =

⎡⎢⎢⎣
1 0 −ℓ1 sin ˆ︁α 0
0 1 ℓ1 cos ˆ︁α 0

1 0 −ℓ1c sin ˆ︁α ℓ2 sin ˆ︁β
0 1 ℓ1c cos ˆ︁α −ℓ2 cos ˆ︁β

⎤⎥⎥⎦ . (6.35)

Thus, we obtain(︁
(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁ ◦ dh(ˆ︁g) =
=

⎡⎢⎢⎣
(˜︁y1 + ˜︁y3)
(˜︁y2 + ˜︁y4)

−˜︁y1ℓ1 sin ˆ︁α + ˜︁y2ℓ1 cos ˆ︁α− ˜︁y3ℓ1c sin ˆ︁α + ˜︁y4ℓ1c cos ˆ︁α˜︁y3ℓ2 sin ˆ︁β − ˜︁y4ℓ2 cos ˆ︁β
⎤⎥⎥⎦ . (6.36)

Evaluating TeL∗ˆ︁g on (6.36) we finally get (6.27).

Computation of A

The expression for the operator A : R4 → R4 is (2.37). Given TeLˆ︁g(ηg) ∈ R4,
the differential of λ is

d1λ(ˆ︁g, u)(TeLˆ︁g(ηg)) = d

ds

⃓⃓⃓
s=0

λ(s)

=
d

ds

⃓⃓⃓
s=0

⎡⎢⎢⎣
V1
0

1
ℓ
V1 tan θ

1
ℓ
V1 sin (ˆ︁α(s)− ˆ︁β(s)) + ℓ1c

ℓ2
1
ℓ
V1 tan θ cos (ˆ︁α(s)− ˆ︁β(s))

⎤⎥⎥⎦ (6.37)

and thus

d1λ(ˆ︁g, u) ◦ TeLˆ︁g =
⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 a43 a44

⎤⎥⎥⎦ (6.38)
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where

a43 =
1

ℓ2
V1 cos (ˆ︁α− ˆ︁β)− ℓ1C

ℓ2

1

ℓ
V1 tan θ sin (ˆ︁α− ˆ︁β)

a44 = − 1

ℓ2
V1 cos (ˆ︁α− ˆ︁β) + ℓ1C

ℓ2

1

ℓ
V1 tan θ sin (ˆ︁α− ˆ︁β). (6.39)

The adjoint matrix representation (6.10) implies

adλ(ˆ︁g,u) =
⎡⎢⎢⎣

0 −1
ℓ
V1 tan θ 0 0

1
ℓ
V1 tan θ 0 V1 0

0 0 0 0
0 0 0 0

⎤⎥⎥⎦ . (6.40)

Since we consider the Cartan-Schouten (0)-connection form ω(0) = 1
2
ad, the

torsion function Tλ(ˆ︁g,u) vanishes (see [22]), thus, in matrix form, it is given by

Tλ(ˆ︁g,u) = 04×4. (6.41)

Using (6.38), (6.40) and (6.41) we obtain (6.29).

Computation of E

The operator E : R4 → (R4)∗ takes the form (2.38). From (6.35) and the
definitions of the matrices D and Q we can find the composition

(dh
(︁ ˆ︁g )︁)∗ ◦ (D−1)∗ ◦Q ◦D−1 ◦ dh

(︁ ˆ︁g )︁ =
⎡⎢⎢⎣
ϵ11 ϵ12 ϵ13 ϵ14
ϵ21 ϵ22 ϵ23 ϵ24
ϵ31 ϵ32 ϵ33 ϵ34
ϵ41 ϵ42 ϵ43 ϵ44

⎤⎥⎥⎦ (6.42)

where

ϵ11 = 2
q1
d21

ϵ12 = ϵ21 = 0

ϵ13 = ϵ31 = − q1
d21
ℓ1 sin ˆ︁α− q1

d21
ℓ1c sin ˆ︁α

ϵ14 = ϵ41 =
q1
d21
ℓ2 sin ˆ︁β

ϵ22 = 2
q1
d21

ϵ23 = ϵ32 =
q1
d21
ℓ1 cos ˆ︁α +

q1
d21
ℓ1c cos ˆ︁α

ϵ24 = ϵ42 = − q1
d21
ℓ2 cos ˆ︁β

ϵ33 =
q1
d21
ℓ21 +

q1
d21
ℓ21c

ϵ34 = ϵ43 = − q1
d21
ℓ1cℓ2 sin ˆ︁α sin ˆ︁β − q1

d21
ℓ1cℓ2 cos ˆ︁α cos ˆ︁β
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ϵ44 =
q1
d21
ℓ22.

The function (︁
(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁ : R4 → (R4)∗

in lifted through the exponential functor (·)Tˆ︁gG to the linear map(︁
(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁Tˆ︁gG : L(Tˆ︁gG,R4) → L(Tˆ︁gG, (R4)∗)

defined as(︁
(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁Tˆ︁g(ξ) = (︁(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁ ◦ ξ.

Let TeLˆ︁g(ηg1) = (ˆ︁x′1, ˆ︁y′1, ˆ︁α′
1,
ˆ︁β′
1)

T , TeLˆ︁g(ηg2) = (ˆ︁x′2, ˆ︁y′2, ˆ︁α′
2,
ˆ︁β′
2)

T ∈ Tˆ︁gG be two
vector fields, then the Hessian matrix is defined by

Hessh(ˆ︁g)(TeLˆ︁g(ηg1))(TeLˆ︁g(ηg2)) =d(dh(ˆ︁g)(TeLˆ︁g(ηg2)))(TeLˆ︁g(ηg1))
− dh(ˆ︁g)(∇TeLˆ︁g(ηg1 )(TeLˆ︁g(ηg2))), (6.43)

from the choice of Cartan-Schouten (0)-connection, we get

∇TeLˆ︁gηg1 (TeLˆ︁gηg2) = 1

2
TeLˆ︁g(adηg1η

g2). (6.44)

The Hessian evaluated in TeLˆ︁gηg1 and TeLˆ︁gηg2 is therefore

Hessh(ˆ︁g)(TeLˆ︁gηg1)(TeLˆ︁gηg2) =

=

⎡⎢⎢⎣
−ˆ︁α′

1ˆ︁α′
2ℓ1 cos ˆ︁α− 1

2
ˆ︁α′
2ˆ︁y′1 + 1

2
ˆ︁α′
1ˆ︁y′2

−ˆ︁α′
1ˆ︁α′

2ℓ1 sin ˆ︁α + 1
2
ˆ︁α′
2ˆ︁x′1 − 1

2
ˆ︁α′
1ˆ︁x′2

−ˆ︁α′
1ˆ︁α′

2ℓ1c cos ˆ︁α + ˆ︁β′
1
ˆ︁β′
2ℓ2 cos ˆ︁β − 1

2
ˆ︁α′
2ˆ︁y′1 + 1

2
ˆ︁α′
1ˆ︁y′2

−ˆ︁α′
1ˆ︁α′

2ℓ1c sin ˆ︁α + ˆ︁β′
1
ˆ︁β′
2ℓ2 sin ˆ︁β + 1

2
ˆ︁α′
2ˆ︁x′1 − 1

2
ˆ︁α′
1ˆ︁x′2

⎤⎥⎥⎦ . (6.45)

It follows that(︁
(D−1)∗ ◦Q ◦D−1(y − h(ˆ︁g)))︁Tˆ︁gG ◦ Hessh(ˆ︁g) =⎡⎢⎢⎣

0 0 1
2
(˜︁y2 + ˜︁y4) 0

0 0 −1
2
(˜︁y1 + ˜︁y3) 0

−1
2
(˜︁y2 + ˜︁y4) 1

2
(˜︁y1 + ˜︁y3) e33 0

0 0 0 ˜︁y3ℓ2 cos ˆ︁β + ˜︁y4ℓ2 sin ˆ︁β
⎤⎥⎥⎦ , (6.46)

e3,3 =− ˜︁y1ℓ1 cos ˆ︁α− ˜︁y2ℓ1 sin ˆ︁α + ˜︁y3ℓ1c cos ˆ︁α + ˜︁y4ℓ1c sin ˆ︁α.
In conclusion, combining (6.42) and (6.46) with TeL

∗ˆ︁g and TeLˆ︁g, the matrix
(6.30) is obtained.

Computation of W

Equation (6.31) follows from the choice of the Cartan-Schouten (0)-connection.
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Initial condition

The initial condition for the filter is given by (2.33) while the initial condition
for the gain is K(t0) = X−1

0 where the operators X0 : g → g∗ satisfies (2.36).
We rewrite m0 as

m0(g) =
1

2
∥I − g−1(t)g0∥2F =

1

2
tr
[︁
(I5×5 − g−1g0)

T (I5×5 − g−1g0)
]︁
. (6.47)

Computing the trace we obtain

m0(g) =
1

2
[4(1− cos (α− α0)) + (x− x0)

2 + (y − y0)
2 + 2(1− cos (β − β0))]

(6.48)

and from (2.33) it follows that ˆ︁g(t0) = g0.
The Hessian of the function m0 at a point g ∈ G is defined as

Hessm0(g)(gX)(gY ) = d(dm0(g)(gY ))(gX)− dm0(g)(∇gX(gY ))

for all gX, gY ∈ TgG. The differential of m0 is given by

dm0(g) =
[︁
2 sin (α− α0) (x− x0) (y − y0) sin(β − β0)

]︁
(6.49)

while, given TeLˆ︁g(ηg1) = ˆ︁gηg1 , TeLˆ︁g(ηg2) = ˆ︁gηg2 ∈ TgG, the affine connection
yields

∇(ˆ︁gηg1 )(ˆ︁gηg2) = 1

2

⎡⎢⎢⎣
ˆ︁α′
2ˆ︁y′1 − ˆ︁α′

1ˆ︁y′2
−ˆ︁α′

2ˆ︁x′1 + ˆ︁α′
1ˆ︁x′2

0
0

⎤⎥⎥⎦ . (6.50)

Combining (6.49) and (6.50) we obtain

dm0(ˆ︁g)(∇TeLˆ︁g(ηg1 )(TeLˆ︁g(ηg2)))
=
[︁
(x− x0)(ˆ︁α′

2ˆ︁y′1 − ˆ︁α′
1ˆ︁y′2) + (y − y0)(−ˆ︁α′

2ˆ︁x′1 + ˆ︁α′
1ˆ︁x′2)]︁ (6.51)

that evaluating in ˆ︁g0 produces

dm0(ˆ︁g0)(∇TeLˆ︁g(ηg1 )(TeLˆ︁g(ηg2))) = 0. (6.52)

The double differential takes the form

d(dm0(g)(gY ))(gX) = diag{1, 1, 2 cos (α− α0), cos (β − β0)} (6.53)

that, evaluating in ˆ︁g0, produces

d(dm0(g)(gY ))(gX) = diag{1, 1, 2, 1} (6.54)

and thus, from (6.52) and (6.54)

Hessm0(ˆ︁g0) = diag{1, 1, 2, 1}. (6.55)
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From
K(t0) = X−1

0 = TeL
∗ˆ︁g0 ◦ Hessm0(ˆ︁g0) ◦ TeLˆ︁g0 (6.56)

we obtain the initial condition of K(t0)

K(t0) = (TeLˆ︁g0)−1(Hessm0(ˆ︁g0))−1(TeL
∗ˆ︁g0)−1

= diag{1, 1, 1/2, 1}.
(6.57)

This computation ends the proof.

For the second case (reversing maneuver with LIDAR sensor) we have the
following Proposition. The proof is similar to the previous one and is omitted.

Proposition 6.2. Consider the dynamic system (6.13) with output map h and
the linear map D are given by (6.16) and (6.23), respectively and where the
operator B takes the form (6.19). Consider the cost functional (2.29)-(2.31)
where the initial cost m0 is given by (6.17) and the matrix representation of the
forms R, Q are given by (6.18) and (6.22), respectively. Then the second-order
optimal filter is ˆ︁g−1ˆ︁ġ = λt(ˆ︁g, u) +K(t)rt(ˆ︁g), ˆ︁g(t0) = ˆ︁g0 (6.58)

where the residual r is

rt =

⎡⎢⎢⎢⎢⎣
(˜︁y1 + ˜︁y3) cos ˆ︁α + (˜︁y2 + ˜︁y4) sin ˆ︁α
−(˜︁y1 + ˜︁y3) sin ˆ︁α + (˜︁y2 + ˜︁y4) cos ˆ︁α

−˜︁y1ℓ1 sin ˆ︁α + ˜︁y2ℓ1 cos ˆ︁α− ˜︁y3ℓ1c sin ˆ︁α + ˜︁y4ℓ1c cos ˆ︁α˜︁y3ℓ2 sin ˆ︁β − ˜︁y4ℓ2 cos ˆ︁β˜︁y5

⎤⎥⎥⎥⎥⎦
T

. (6.59)

The optimal gain K =: (R4)∗ → R4 is the solution of the perturbed matrix
Riccati differential equation

K̇ = −cK + AK +KAT −KEK +BR−1BT

−W (K, r)K −KW (K, r)T
(6.60)

with

A(t) =

⎡⎢⎢⎣
0 a12 0 0
a21 0 a23 0
0 0 0 0
0 0 a43 a44

⎤⎥⎥⎦ (6.61)

where

a12 =
1

ℓ
V1 tan θ

a21 = −1

ℓ
V1 tan θ

a23 = −V1

a43 =
1

ℓ2
V1 cos (ˆ︁α− ˆ︁β)− ℓ1C

ℓ2

1

ℓ
V1 tan θ sin (ˆ︁α− ˆ︁β)

a44 = − 1

ℓ2
V1 cos (ˆ︁α− ˆ︁β) + ℓ1C

ℓ2

1

ℓ
V1 tan θ sin (ˆ︁α− ˆ︁β),
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and

E(t) =

⎡⎢⎢⎣
E11 E12 E13 E14

E21 E22 E23 E24

E31 E32 E33 E34

E41 E42 E43 E44

⎤⎥⎥⎦ (6.62)

where

E44 =
q3
d23
ℓ22 sin

2 ˆ︁β +
q4
d24
ℓ22 cos

2 ˆ︁β +
q5
d25

− ˜︁y3ℓ2 cos ˆ︁β − ˜︁y4ℓ2 sin ˆ︁β
E11 = e11 cos

2 ˆ︁α + e21 cos ˆ︁α sin ˆ︁α + e12 cos ˆ︁α sin ˆ︁α + e22 sin
2 ˆ︁α

E12 = −e11 cos ˆ︁α sin ˆ︁α− e21 sin
2 ˆ︁α + e12 cos

2 ˆ︁α + e22 cos ˆ︁α sin ˆ︁α
E13 = e13 cos ˆ︁α + e23 sin ˆ︁α
E14 = e14 cos ˆ︁α + e24 sin ˆ︁α
E21 = −e11 cos ˆ︁α sin ˆ︁α + e21 cos

2 ˆ︁α− e12 sin
2 ˆ︁α + e22 cos ˆ︁α sin ˆ︁α

E22 = e11 sin
2 ˆ︁α− e21 cos ˆ︁α sin ˆ︁α− e12 cos ˆ︁α sin ˆ︁α + e22 cos

2 ˆ︁α
E23 = −e13 sin ˆ︁α + e23 cos ˆ︁α
E24 = −e14 sin ˆ︁α + e24 cos ˆ︁α
E31 = e31 cos ˆ︁α + e32 sin ˆ︁α
E32 = −e31 sin ˆ︁α + e32 cos ˆ︁α
E33 = e33

E34 = e34

E41 = e41 cos ˆ︁α + e42 sin ˆ︁α
E42 = −e41 sin ˆ︁α + e42 cos ˆ︁α
E43 = e34

E44 = e44

e11 =
q1
d21

+
q2
d22

e12 = 0

e13 = − q1
d21
ℓ1 sin ˆ︁α− q2

d22
ℓ1c sin ˆ︁α− 1

2
(ˆ︁y2 + ˆ︁y4)

e14 =
q2
d22
ℓ2 sin ˆ︁β

e21 = 0

e22 =
q1
d21

+
q2
d22

e23 =
q1
d21
ℓ1 cos ˆ︁α +

q2
d22
ℓ1c cos ˆ︁α +

1

2
(ˆ︁y1 + ˆ︁y3)

e24 = − q2
d22
ℓ2 cos ˆ︁β

e31 = − q1
d21
ℓ1 sin ˆ︁α− q2

d22
ℓ1c sin ˆ︁α +

1

2
(ˆ︁y2 + ˆ︁y4)
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e32 =
q1
d21
ℓ1 cos ˆ︁α +

q2
d22
ℓ1c cos ˆ︁α− 1

2
(ˆ︁y1 + ˆ︁y3)

e33 =
q1
d21
ℓ21 +

q2
d22
ℓ21c + ˜︁y1ℓ1 cos ˆ︁α + ˜︁y2ℓ1 sin ˆ︁α− ˜︁y3ℓ1c cos ˆ︁α− ˜︁y4ℓ1c sin ˆ︁α

e34 = − q2
d22
ℓ1cℓ2 sin ˆ︁α sin ˆ︁β − q2

d22
ℓ1cℓ2 cos ˆ︁α cos ˆ︁β

e41 =
q2
d22
ℓ2 sin ˆ︁β

e42 = − q2
d22
ℓ2 cos ˆ︁β

e43 = − q2
d22
ℓ1cℓ2 sin ˆ︁α sin ˆ︁β − q2

d22
ℓ1cℓ2 cos ˆ︁α cos ˆ︁β

e44 =
q2
d22
ℓ22 +

q3
d23

− ˜︁y3ℓ2 cos ˆ︁β − ˜︁y4ℓ2 sin ˆ︁β
and

W (K, r) =
1

2
ad(Kr)∧ . (6.63)

The initial conditions for the equations (6.58) and (6.28) areˆ︁g(t0) = g0 (6.64)
K(t0) = I5×5. (6.65)

6.4 Laboratory setting
The experimental validations were conducted on truck and semi-trailer scaled
models at the Automotive Lab, Eindhoven University of Technology, within
the project TruckLab (Figure 6.4). The operating space in the laboratory is
7m × 7m including a docking station and 3 tractors and semi-trailers. The
laboratory is equipped with motion capture cameras Primex13 and, together
with markers attached to the scaled vehicles, allows to have a position accuracy
of about ±20mm; so we can consider such measurements as the (true) reference
trajectories. The scaled vehicles operate on ROS (Robot Operating System)
and are configured with Turtlebot3 Waffle Pi software architecture. The scaled
model vehicles are a faithful reproduction of real truck semi-trailer vehicles,
with a reduction ratio of 1:13.3. The model dimensions in Figure 6.2 are listed
in Table 6.1.

element cm
ℓ1 28
ℓ1c 5.5
ℓ2 56.7

Table 6.1: Model datasheet

The steering angle is measured with a combination of odometer and IMU
measurements. The steering wheels of the scale reproductions have a maximum
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Figure 6.4: Automotive Laboratory (Eindhoven University of Technology)

steering angle θ of ±38 deg. Thus, we impose the inequality −38 deg ≤ θ ≤
+38 deg.

Another constraint is represented by the so-called jackknifing, which is a
condition where the articulation angle between the tractor and the semi-trailer
becomes very large. This problem can arise when driving forward and applying
a large steering angle, or, when driving backward (in this case the vehicle
configuration is unstable), a small constant steering input in the articulation
angle will grow until the cabin collides with the semi-trailer. This condition
results in the inequality −100 deg ≤ γ1 ≤ +100 deg.

6.5 Simulations and discussions
To simulate noisy measurements given by the GPS and LIDAR devices, we
add Gaussian white noises to the reference trajectories provided by the optic
cameras. The standard deviations of these measurement errors are reported
in Table 6.2.

measure standard deviation
x0GPS

5 m
y0GPS

5 m
x2GPS

5 m
y2GPS

5 m
x2LIDAR

0.10 m
y2LIDAR

0.10 m
β

LIDAR
0.02 rad

Table 6.2: Measurement errors

The linear velocity of the truck is obtained by adding to the reference
velocity a Gaussian white noise with standard deviation of 0.1m/s.
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The matrix representations of the quadratic forms R and the linear oper-
ator B are

R :=diag {1, 1, 1, 1} ,
B :=diag {0.1, 0.1, 0.1, 0.1} .

The matrix representations of the quadratic forms Q and the linear operator
D in the first part of the maneuver are

Q :=diag {1, 1, 1, 1} ,
D :=diag {0.5, 0.5, 0.5, 0.5} ,

while for the second part, they are

Q :=diag {1, 1, 1, 1, 1} ,
D :=diag {0.5, 0.5, 0.5, 0.5, 0.5} .

To solve the differential equations, we use a forward Euler method with a
sample time of Ts = 10ms.

(a) Parking maneuver for the dataset 1 (b) Parking maneuver for the dataset 2

Figure 6.5

In Figure 6.5a and Figure 6.5b we show the maneuvers of the truck semi-
trailer system for two datasets both consisting in pose, steering angle and
linear velocity trajectories. In Figure 6.6 and 6.7 we report the graphs of the
reference, measured (corrupted by noises) and filtered trajectories. The first
vertical line corresponds to the instant when the vehicle starts the reversing
maneuver, while the second one to the instant when the filter uses also the
LIDAR sensor. As can be seen, the filter performs well even if the noises are
large. The final errors due to filter approximation are acceptable if compared
with the parking space, the dimension of the vehicles and the sensors’ accuracy.

The addition of the LIDAR measurements significantly improves the preci-
sion of the filter and allows to have better estimations in the final part of the
maneuvering. Another advantage of considering a LIDAR sensor is highlighted
by its ductility of being able to be settled both on the semi-trailer or on the
docking station, having the characteristic of detecting nearby physical objects.
For this reason, the choice of using a single LIDAR on the docking station for
several vehicles can be cost-effective.
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Figure 6.6: References (black), measured with GPS (blue) measured with LIDAR (green)
and filtered (red) inputs and trajectories for dataset 1
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Figure 6.7: References (black), measured with GPS (blue) measured with LIDAR (green)
and filtered (red) inputs and trajectories for dataset 2

111



112



Chapter 7

Conclusions and future works

In this thesis, we dealt with the design of second-order optimal filters based on
the Lie group theory and applied to planar rigid bodies. This filter is part of
the so-called minimum energy filters since its optimality is achieved considering
a quadratic cost function in the model and measurement errors. The dynamics
evolves on Lie groups, and this lets us consider its trivialization and take into
account the symmetries of the system. The advantages of this filter are many,
such as (1) it does not require any hypothesis on the errors, treating them as
deterministic functions, (2) the Lie group structure lets use global coordinates,
and so we only need to use a single chart. It is a second-order optimal filter
since, for the exact derivation of the filter, it would be necessary to solve an
infinite dimension Hamilton-Jacobi-Bellman (HJB) equation, and thus, our
filter relies on a second-order approximation of the value function.

We first applied the filter to the case of a free planar rigid body whose un-
derlying dynamics evolves on the tangent bundle of the special Euclidean group
on the plane. This case occurs for example in many marine vehicle systems
such as hovercraft, or in planar rigid bodies without constraints. We started
our analysis by investigating the matrix Lie group structure that underlies the
dynamics described by Euler-Poincaré equation for a free rigid body. An im-
portant aspect of this work is the description of the Lie algebra homomorphism
between se(2) and R3. Particular attention was paid to the choice of the mea-
surement equation and its relation with the observability of the system. After
that, we compared this filter with the extended Kalman filter. We highlighted
that under the hypothesis of linearity and Gaussianity of the errors the two
filters are equivalent. The filter on Lie groups proved to have almost the same
behavior of the extended Kalman filter and thus the former can be seen as an
extension of the latter.

Since in real life most vehicles are subject to constraints originated by
the use of wheels (such as bicycles or cars) or blades (such as sleighs), we
studied the design of second-order filters applied to nonholonomic systems. In
particular, we examine the Chaplygin sleigh, which is a nonholonomic system
that models a planar rigid body supported at three points, two of which slide
freely while the third is a blade at distance a from the center of mass and that
cannot move perpendicularly. From a geometric point of view, the presence
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of a nonholonomic constraint changes the state space and thus, it is no more
described as the tangent space of a base manifold, but by a distribution of
it. We derived the Lie group matrix representation and the related concepts
in light of this distribution. Particular attention was devoted to the left-
trivialized dynamics. In general, the filter does not preserve the nonholonomic
constraint due to the presence of non-null components on the gain-residual
term. Thus, we investigated the conditions that ensure the preservation of
the nonholonomic constraint by properly choosing the affine connection which
guarantees that the orthogonal velocity is equal to zero by design.

After that, we shifted our focus to articulated vehicle systems. These sys-
tems model multi-body vehicles composed of rigid bodies connected by hooking
constraints such as luggage carriers in airports or cars with trailers in ware-
houses. We considered the case of a leading car pulling n trailers with different
masses and inertias. The use of Hamel’s coordinates to write the dynamic equa-
tions allows to derive the Lie group structure for this system. We designed
three second-order optimal filters where the masses and inertias are (i) known
at each instant of time, (ii) unknown but time-invariant, (iii) unknown and
time-varying and thus treated as dynamic variables and estimated. The latter
can be applied for example in case of consumption of fuel, or if some weights
are loaded or unloaded from the trailers (e.g. in an airport or warehouse).

In the last case we studied the application of the filter to a scaled model
of a truck semi-trailer system in a parking area. This work was done in co-
operation with the Dynamics and Control group and with the Automotive
Lab at Eindhoven University of Technology. The measurements are obtained
by adding artificial noise to the ones obtained using motion capture cameras.
We consider different types of measurements in order to have better estima-
tions when the system is moving reversing, in which case the dynamics become
unstable.

In the thesis, we investigated many aspects that characterize the filter,
such as the choice of the measurement equations, the choice of the connection
function, and the presence of nonholonomic and hooking constraints.

In the future, we plan to extend these results to bodies whose dynamics no
longer evolve on the plane but in space, such as drones, airplanes or satellites.
Another important research topic could be the study of stability. This result
will be not trivial since the residual r is within the Riccati equation, and it
makes the study of the convergence of the Riccati-like equation and the anal-
ysis of the stability of the non-linear time-invariant system quite challenging.
Finally, an important theoretical result could be the formulation of the discrete
version of the filter, as done for the Kalman filter. The current version requires
measurements at each instant of time: this hypothesis is not feasible in real-life
applications. A discrete version would be better tailored to the sampling time
of the sensing system and a continuous time. Discrete measurement equations
would allow to estimate the state between measurements.
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Appendix A

Review of differential geometry

In this appendix, we report the main topics of differential geometry theory.
For a complete treatment see e.g. [5], [7], [8], [11], [13], [22].

Before giving the standard definitions of differential geometry, we provide
the notion of tensor that will be useful in the discussion.

Definition A.1. (Tensor product of vector spaces). Let V and W be two
vector spaces. The tensor product of V and W denoted by V ⊗W is a vector
space with a bilinear map ⊗ : V × W → V ⊗ W such that, given a vector
space Z and a bilinear map φ : V ×W → Z, then there exists a unique linear
map φ : V ⊗W ×Z such that φ = φ ◦⊗, namely φ(v, w) = φ(v⊗w) for every
v ∈ V and w ∈ W .

It is possible to extend this definition to an arbitrary product of vector
spaces V1 ⊗ V2 ⊗ · · · ⊗ Vn.

Definition A.2. (Tensor of type (r, s)). Let V be a vector space and V ∗ its
dual. A tensor of type (r, s) is a multilinear map

T r
s : V ∗ × · · · × V ∗⏞ ⏟⏟ ⏞

r

×V × · · · × V⏞ ⏟⏟ ⏞
s

→ R.

A tensor T r
s ∈ L(V ∗, ..., V ∗, V, ..., V ;R) is an element of the product tensor

space
⊗r

s(V ) := V ⊗r ⊗ (V ∗)⊗s = V ⊗ ...⊗ V⏞ ⏟⏟ ⏞
r

⊗V ∗ ⊗ ...⊗ V ∗⏞ ⏟⏟ ⏞
s

.

The study of differential geometry revolves around the notion of differen-
tiable manifold. Before giving its definition, it is necessary to introduce the
concepts of charts, atlases and differentiable structures. These concepts let to
describe a manifold putting it in relation to open spaces in Rn.

Definition A.3. (Charts, atlases, differentiable structures). Let S be a set.

- A chart for S is a pair (U , ϕ) where U is a subset of S and ϕ : U → Rn

is an injection for which ϕ(U) is an open subset of Rn.

115



- For r ∈ N ∪ {∞}, a Cr−atlas for S is a collection A = {(Ua, ϕa)}a∈A of
charts with the properties that S =

⋃︁
a∈A Aa and, whenever Ua∩Ub ̸= ∅,

ϕa(Ua∩Ub) and ϕb(Ua∩Ub) are open subsets of Rn and the map ϕb ◦ϕ−1
a :

ϕa(Ua ∩ Ub) → ϕb(Ua ∩ Ub) is a Cr−diffeomorphism.

- Two Cr−atlases A1 and A2 are equivalent if A1∪A2 is also a Cr−atlas. A
Cr−differentiable structure on S is an equivalence class of atlases under
this equivalence relation.

Definition A.4. (Manifolds). A Cr−differentiable manifold M is a set S
with a Cr−differentiable structure. If all charts take values in Rn, then n is
the dimension of the manifold.

Roughly speaking, a manifold represents a set that “locally looks like” an
open set of Rn. Using the definition of charts and atlases, it is possible to
define a set of coordinates x1, .., xn, which allows locating the points on the
manifold.

Definition A.5. (Differentiable function). Let M be an n−dimensional man-
ifold and A an atlas. A function f :M → R is said to be differentiable of class
Ck if the composition f ◦ϕ−1 is differentiable of class Ck for every chart (U , ϕ)
in the atlas A.

The set of all differentiable functions from M to R will be denoted by
C∞(M).

Definition A.6. (Differentiable map between manifolds). Let M and N be
two manifolds, and let f :M → N be a continuous map between them. Then
f is said to be differentiable of class Ck if for any pair of charts (U , ϕ) of M
and (V , ψ) of N , the composition ψ ◦ f ◦ ϕ−1 if a differentiable map of class
Ck. If f and f−1 are bijections of class Ck, then f is diffeomorphism of class
Ck.

In order to define the notion of tangent vector and thus of tangent space
at a point x of a manifold, it is useful to introduce the notion of differentiable
curve.

Definition A.7. (Differentiable curve). A curve at x ∈ M is a function
γ : I →M , where I is an interval of R containing 0 and such that I(0) = x.

Two curves γ1, γ2 are said to be equivalent at x if in a coordinate chart
(U , ϕ) with x ∈ U , the local representative of γ1 and γ2 have the same derivative
at 0. This equivalence is independent of the chart chosen. We will write
γ1 ∼x γ2 to indicate that γ1 and γ2 are equivalent at x. This is an equivalence
relation [γ]x.

Definition A.8. (Tangent vector). Let M be a manifold. A tangent vector v
at x ∈M is the equivalence class [γ]x.

Definition A.9. (Tangent space). The tangent space of M at x is the set of
all tangent vectors of M at x and will be denoted by TxM .
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The tangent space TxM is a vector space with basis
{︁

∂
∂x1 , ...,

∂
∂xn

}︁
where

x1, .., xn is the set of coordinates.

Definition A.10. (Tangent bundle). The tangent bundle TM is the set of all
tangent space TxM of all x ∈M :

TM =
⋃︂
x∈M

TxM.

It can be proven that, given an n−dimensional differentiable manifold M ,
the tangent bundle TM is a differentiable manifold with dimension 2n. The
canonical projection, π : TM → M is the mapping defined by π(v) = x when
v ∈ TxM , thus π−1(x) = TxM .

Definition A.11. (Tangent map). Let M and N be two differentiable mani-
folds and let ϕ :M → N be a Ck-map. Then the tangent map Tϕ : TM → TN
maps the vector v = [γ]x ∈ TxM into the vector Tϕ(x)ϕ(v) = [ϕ◦γ]ϕ(x) ∈ Tϕ(x)N .

Definition A.12. (Submersion, immersion, embedding). Let M and N be
two manifolds and f :M → N be a smooth map. Then f is

- a submersion if its differential is surjective at each point;

- an immersion if its differential is injective at each point;

- an embedding if it is an immersion and it is a homeomorphism onto
f(M).

Definition A.13. (Submanifold). If N ⊂ M and the inclusion i : N → M is
an embedding, then N is a submanifold of M .

Definition A.14. (Vector fields). A vector field X of class Ck on M is a
function that assigns to each point x ofM a vector v ∈ TxM whose components
in the frames of any local coordinates (U , ϕ) are functions of class Ck on the
domain U of the coordinates.

The set of all vector fields on a manifold M is denoted by X(M).
The tangent space in a point x forms a vector space in which tangent

vectors live. A related concept is that of cotangent space, namely the dual of
the tangent space where are defined the linear applications on vectors.

Definition A.15. (Cotangent vector). Let M be a differentiable manifold and
x ∈ M . A cotangent vector of M at x is a linear operator α : TxM → R that
associates to each vector v in TxM a real number.

Definition A.16. (Cotangent space). Let M be a differentiable manifold.
The cotangent space of M at x, denoted by T ∗

xM , is the set of all cotangent
vectors of M at x.

The cotangent space T ∗
xM is a covector space with basis

{︁
dx1, ..., dxn

}︁
where

dxi
∂

∂xj
=

{︄
1 if i = j

0 if i ̸= j.
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M

x
vx

α

TxM

T ∗
xM

Figure A.1: Tangent and cotangent space in a point x. To view it, the cotangent bundle is
depicted as a vector space and cotangent vectors as vectors.

Definition A.17. (Cotangent bundle). The cotangent bundle T ∗M is the set
of all cotangent space T ∗

xM of all x ∈M :

T ∗M =
⋃︂
x∈M

T ∗
xM.

The tangent and cotangent bundle, together with differentiable functions,
let us to define the pull-back and the push-forward.

Definition A.18. (Pull-back of a real-function). Let M and N be two differ-
entiable manifolds, consider a diffeomorphism ϕ :M → N and a differentiable
function f : N → R. Then the pull-back of f under ϕ is defined by ϕ∗f = f ◦ϕ.

Definition A.19. (Pull-back and push-forward of a vector field). Let M and
N be two differentiable manifolds, and consider a diffeomorphism ϕ :M → N .
Then:

- the pull-back of Y ∈ X(N) is the vector field ϕ∗Y ∈ X(M) defined as
ϕ∗Y = Tϕ−1 ◦ Y ◦ ϕ;

- the push-forward of X ∈ X(M) is the vector field ϕ∗X ∈ X(N) defined
as ϕ∗Y = Tϕ ◦X ◦ ϕ−1.

Via a vector field on a manifold M it is possible to construct a curve whose
tangent vector in each point is equal to the value of the vector field. A wider
concept is that of a flow.

Definition A.20. (Integral curve). An integral curve γ : I → M is a differ-
entiable curve at x ∈M for a vector field X, if γ′(t) = X(γ(t)) and γ(0) = x.

Definition A.21. (Flow). Let X ∈ X(M). A flow of X is a differentiable
map ΦX : U × I → M , where I ∈ R is an interval containing 0 and U is an
open subset of M , such that, for any x ∈ U , the map ΦX(x, t) is an integral
curve of X with ΦX(x, 0) = x. We will use ΦX

t (x) for ΦX(x, t).
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It is possible to define the concept of a derivation of a function with respect
to a vector field. In a similar way one could define the derivative of a vector
field with respect to a vector field. These are called Lie derivatives.

Definition A.22. (Lie derivative of a function). Let M be a differentiable
manifold, X be a vector field with flow ΦX

t , f : M → R be a function. Then
the Lie derivative of f at x with respect to X is given by

LXf(x) =(Xf)(x) = Xx[f ]

= lim
t→0

(︃
(ΦX

t )
∗f − f

t

)︃
(x) = lim

t→0

(︃
f((ΦX

t )
∗(x))− f(x)

t

)︃
.

In local coordinates, the Lie derivative of f at x with respect to X is given
by

LXf(x) = ⟨df(x), X(x)⟩.

Definition A.23. (Lie derivative of vector fields). Let M be a differentiable
manifold and X, Y ∈M . Then the Lie derivative of Y at x with respect to X
is given by

LXY = lim
t→0

(︃
(ΦX

t )
∗Y − Y

t

)︃
.

Definition A.24. (Commutator of vector fields). Given X, Y ∈ X(M), the
vector fields commutator [·, ·] : X(M)×X(M) → X(M) is defined as [X, Y ](f) =
X(Y f)− Y (X(f)) for all f ∈ C∞(M).

Proposition A.1. Let X, Y ∈ X(M). Then LXY = [X, Y ].

We have already presented the notion of a submanifold of a manifold M as
a subset of M that is also a manifold of a smaller dimension. It is possible to
introduce a similar concept for what concern the tangent space considering a
linear subspace that we call distribution. The Frobenius theorem allows us to
understand under which conditions a distribution represents the tangent space
of a submanifold.

Definition A.25. (Distribution). Let M be a differentiable manifold of di-
mension m. A distribution D of dimension n < m, is a map that assigns to
each point x ∈M a vector subspace Dx of TxM of dimension n.

Definition A.26. (Integrable submanifold). A submanifold N of M is called
an integral manifold of a distribution D, if TxN = Dx for any point x ∈ N .
If an integral manifold of D exists through each point of M , D is said to be
completely integrable.

Definition A.27. (Involutive distribution). A distribution D is said to be
involutive if for every X, Y ∈ D we have that [X, Y ] ∈ D.

Theorem A.1. (Frobenius theorem). A distribution D of a manifold M is
completely integrable if and only if it is involutive.
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Let’s define now an important object called affine connection. An affine
connection on a smooth manifold connects nearby tangent spaces, thus it per-
mits tangent vector fields to be differentiated as if they were functions on the
manifold with values in a fixed vector space.

Definition A.28. (Affine connection). Let M be a smooth manifold and let
X(M) be the space of vector fields on M . Then an affine connection ∇ on M
is a bilinear map

X(M)× X(M) → X(M)

(X, Y ) ↦→ ∇XY
(A.1)

such that

i) ∇fXY = f∇XY for each X, Y ∈ X(TM) and each f ∈ C∞(M);

ii) ∇XfY = f∇XY + (LXf)Y for each X, Y ∈ X(TM) and each f ∈
C∞(M).

The vector field ∇XY is called covariant derivative of Y with respect to X.

An affine connection can be described using its projections on the element
of the base. These projections are called Christoffel symbols.

Definition A.29. (Christoffel symbols). Let M be a differentiable manifold
with connection ∇, and let (x1, ..., xn) be coordinates in a chart (U , ϕ). For
each i, j ∈ {1, ..., n}, ∇ ∂

∂xi

∂
∂xj is a vector field on U that is a linear combinaton

of { ∂
∂x1 , ...,

∂
∂xn}, thus we can write

∇ ∂

∂xi

∂

∂xj
= Γk

ij

∂

∂xk

where Γk
ij : U → R, i, j, k ∈ {1, ..., n} are Cr-functions called Christoffel

symbols.

Definition A.30. (Affine connection of functions and tensors). Let ∇ be an
affine connection and let X be a vector field,

- let f ∈ C∞ be a function, then the covariant derivative of f with respect
to X is given by

∇Xf = LXf ; (A.2)

- let α ∈ T ∗M be a 1-form, then its covariant derivative with respect to
X is implicitly given by

⟨∇Xα;Y ⟩ = LXα(Y )− ⟨α;∇XY ⟩, (A.3)

where Y ∈ TM ;
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- let T be a general tensor of type (r, s), then its covariant derivative with
respect to X is given by

(∇XT )(α
1, ..., αr, X1, ..., Xs) =LX(T (α

1, ..., αr, X1, ..., Xs))

−
r∑︂

i=1

T (α1, ...,∇Xα
i, ..., αr, X1, ..., Xs)

−
r∑︂

j=1

T (α1, ..., αr, X1, ...,∇XXj, ..., Xs),

(A.4)

where α1, ..., αr ∈ T ∗M , X1, ..., Xs ∈ TM .

Definition A.31. (Riemannian manifold). A Riemannian metric on a smooth
manifold M is a (0,2)-tensor g : T (M) × T (M) → R that is symmetric and
positive definite. A Riemannian manifold (M, g) is a manifold together with a
Riemannian metric g.

The notion of metric lets us define some concepts as the length of a curve
or angle between vectors as it’s done in the classical Euclidean geometry.

There exist two important invariants of an affine connection on a manifold
M : the torsion and the curvature.

Definition A.32. (Torsion). Let M be a smooth manifold and let ∇ be an
affine connection. Then a torsion is a (1, 2)-tensor defined on vector fields X
and Y by

T (X, Y ) = ∇XY −∇YX − [X, Y ] . (A.5)

Definition A.33. (Levi-Civita connection). Let (M, g) be a Riemannian man-
ifold. An affine connection ∇ on M is called a Levi-Civita connection if:

- it preserves the metric (i.e. ∇g = 0);

- it is torsion-free (i.e. T (X, Y ) = 0).

Proposition A.2. The Levi-Civita connection exists and is unique.

Theorem A.2. (Christoffel symbols for Levi-Civita connection). In the case
of a Riemannian manifold with metric g, the Christoffel symbols are given by

Γi
kl =

1

2
gim
(︃
∂gmk

∂xl
+
∂gml

∂xk
− ∂gkl
∂xm

)︃
where gij, i,j=1,..,n, are the entry of the inverse of the metric tensor.

Definition A.34. (Curvature tensor). Let M be a differentiable manifold and
∇ an affine connection. The curvature tensor associated to ∇ is the tensor field
of type (1, 3) defined as

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z
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for all X, Y, Z ∈ X(M).

Definition A.35. (Geodesic). Let M be a differentiable manifold with an
affine connection ∇. A curve γ : I →M is a geodesic if ∇γ̇ γ̇ = 0.

A geodesic can be seen as the shortest curve that connects two points on
the manifold.

Proposition A.3. (Geodesic equation). Considering the components of the
geodesic curve γ as γ(t) = (x1(t), ..., xn(t)), then they satisfy

d2xi(t)

dt2
+ Γi

jk(x(t))
dxj(t)

dt

dxk(t)

dt
= 0.
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Appendix B

Review of Lie group theory

One of the most powerful structure that can be used to model mechanical
control systems on manifold is the notion of Lie group. A Lie group combines
the concepts of differentiable manifold and continuous group and inherits from
them important properties related to the differential structure and the sym-
metries. In this appendix, we recall the basic concepts of Lie groups theory.
For an extension review on Lie groups theory we refer to [7], [15], [21], [25],
[38], [44].

Lie groups and Lie algebras

In this section, we provide the definition of Lie group and Lie algebra and the
relationship between them. We start with some definitions and properties of
Lie group and Lie algebra.

Definition B.1. (Group). A set G endowed with a binary operation ⋆ :
G×G→ G, (a, b) ↦→ a ⋆ b is a group if:

i) (associativity) a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c for all a, b, c ∈ G;

ii) (neutral element) there exists e ∈ G such that a ⋆ e = e ⋆ a = a for all
a ∈ G;

iii) (inverse) there exists a−1 ∈ G such that a ⋆ a−1 = a−1 ⋆ a = e for all
a ∈ G.

A group is abelian (or commutative) if the group operation is commutative,
i.e. a ⋆ b = b ⋆ a for all a, b ∈ G.

A subset H of G is a subgroup of G if the pair (H, ⋆) is a group, i.e. if H
is a group with respect to the binary operation defined on G.

We are now ready to give the definition of Lie group.

Definition B.2. (Lie group). A Lie group is a group that is also a manifold for
which, given x, y ∈ G, the group operation (x, y) ↦→ xy and inverse operation
x ↦→ x−1 are smooth.
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A Lie group mixes together the notions of differentiable manifold and alge-
braic group, and from them, it inherits the group structure and the differential
one.

There exist many types of Lie groups, among these, are matrix Lie groups.

Example B.1. (Matrix Lie groups). The set GL(n;R) of invertible n × n
matrices with real entries is a Lie group with respect to the operation of matrix
multiplication.

Definition B.3. (Group homomorphism). Let (G, ⋆) and (H, •) be two Lie
groups. A Lie group homomorphism is a map ρ : G → H that satisfies
ρ(a ⋆ b) = ρ(a) • ρ(b) for all a, b ∈ G. If the Lie group homomorphism ρ is a
bijection, then ρ is called an isomorphism, in that case, the groups are said to
be isomorphic and one writes G ≃ H.

Definition B.4. (Subgroup). A Lie subgroup of a Lie group G is a subgroup
H ⊆ G for which the inclusion iH : H → G is an injective immersion; If a Lie
subgroup H of G is a submanifold of G, then it is a regular Lie subgroup.

An example of a subgroup is the notion of one-parameter subgroup, which
is the image of a smooth group homomorphism ρ : R → G.

A related concept to Lie group is the one of Lie algebra.

Definition B.5. (Lie algebra). A Lie algebra V is a R-vector space endowed
with a biliniear operation [·, ·] : V × V → V , called Lie bracket, such that:

i) anti-commutativity: [ξ, η] = − [η, ξ] for all ξ, η ∈ V ;

ii) Jacobi identity: [ξ, [η, ζ]] + [η, [ζ, ξ]] + [ζ, [ξ, η]] = 0 for all ξ, η, ζ.

Definition B.6. (Structure constants). Consider a Lie algebra V with basis
{e1, ..., en} and Lie bracket [·, ·]. The Lie bracket operation has to satisfy

[ei, ej] = ckijek, i, j, k ∈ {1, ..., n},

where ckij ∈ R are called structure constants.

Definition B.7. (Lie algebra homomorphism). Let (V, [·, ·]V ) and (U, [·, ·]U)
be two Lie algebras. A Lie algebra homomorphism is a map ρ : V → U that
satisfies ρ([ξ, η]V ) = [ρ(ξ), ρ(η)]U for all ξ, η ∈ V . If the Lie homomorphism
ρ is a bijection, then ρ is called a Lie algebra isomorphism, in that case, the
groups are said to be isomorphic and one writes V ≃ U .

Definition B.8. (Subalgebra). Let V be a Lie algebra. A Lie subalgebra U of
V is a nonempty subset of V that is a Lie algebra with respect to the bracket
operation in V .

Another way to understand Lie bracket is via the adjoint operator.

Definition B.9. (Adjoint operator). Let V be a Lie algebra and ξ ∈ V . Then
the adjoint operator corresponding to η ∈ V is the linear map adξ : V → V
defined by

adξη = [ξ, η] .
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The difference between the Lie bracket and the adjoint operator is that the
latter fixes the first element while the second is variable.

The importance of the adjoint operator is underlined by the fact that it is
a derivation, which means

adx[y, z] = [adxy, z] + [y, adxz].

Another important property of the adjoint operator is that it is a representa-
tion, that is

[adx, ady](z) = ad[x,y](z).

The adjoint operator is defined as a map from a Lie algebra into itself. It
is possible to define the dual operator that operates on the dual.

Definition B.10. (Dual adjoint operator). Consider a Lie algebra V and its
dual space V ∗. Given ξ ∈ V , we define the dual map ad∗

ξ : V ∗ → V ∗ as
⟨ad∗

ξα; η⟩ = ⟨α; [ξ, η]⟩ for all α ∈ V ∗.

Given a basis of V , the matrix representation of the dual operator [ad∗
ξ ] is

the transpose of [adξ].
Lie groups and Lie algebras are two different mathematical entities: the

firsts are manifolds, the seconds are vector spaces. They are related by the
fact that the tangent space of the identity of a Lie group is a vector space with
a structure of a Lie algebra. To prove this, we have to construct a Lie bracket
operation, thus, we need the notion of left-invariant vector field.

Definition B.11. (Left and right translation map). Let (G, ⋆) be a Lie group.
For g ∈ G, the left translation map is the map

Lg : G→ G

h ↦→ g ⋆ h.

In a similar way, one can define the right translation map as

Rg : G→ G

h ↦→ h ⋆ g.

The left translation map is smooth, its smooth inverse is Lg−1 , therefore
Lg is a diffeomorphism of G. For g ∈ G, the tangent map TeLg : TeG → TgG,
assigns to each tangent vector v to TeG the tangent vector TeLg(v) = Lg∗(v)
as done for a generic tangent map on a manifold (see Definition A.11).

Definition B.12. (Left-invariant function). Let G be a Lie group. A function
f : G → R is left-invariant if L∗

gf = f for all g ∈ G, or equivalently if
f(h) = f(g ⋆ h) for all g, h ∈ G.

Left-invariant functions satisfy f(g) = f(g−1 ⋆ g) = f(e) for all g ∈ G.
Therefore they are constant functions identified by their value at the identity.
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Definition B.13. (Left-invariant vector field). A vector field X on G is left-
invariant if L∗

gX = X for all g ∈ G, or equivalently if X(g ⋆ h) = ThLgX(h)
for all g, h ∈ G. The set of left-invariant vector fields of G will be indicated
with L(G).

As done for left-invariant functions, left-invariant vector fields are identified
by their value at the identity, indeed X(g) = X(g ⋆ e) = TeLg(X(e)). We will
denote with ξL the left-invariant vector field on G defined by ξL(e) = ξ ∈ TeG.

Theorem B.1. (Left-invariant vector fields properties). Left-invariant vector
fields enjoy the following properties:

i) left-invariant vector fields are smooth;

ii) the set L(G) of left-invariant vector fields is a Lie subalgebra of X(G);

iii) TeG and L(G) are isomorphic as vector spaces by the isomorphism

ρ : TeG→ L(G)
Xe ↦→ ρ(Xe) = (Xe)L.

Proof. See e.g. [7], [45].

By the previous results, one can show that there exists a relation between
Lie groups and Lie algebras, in particular, the tangent space at the identity of
a Lie is a Lie algebra.

Definition B.14. (Lie algebra of a Lie group). The Lie algebra g of a Lie group
G is the tangent space at the identity TeG with the bracket [ξ, η] = [ξL, ηL] (e).

The bracket just defined satisfies the Lie algebra bracket properties thanks
to the anti-commutativity and Jacobi properties of the vector fields commuta-
tor.

Another important connection between a Lie group and its Lie algebra is
given by the so-called “exponential map”.

Definition B.15. (Exponential map). Let G be a Lie group, and g its Lie
algebra. The exponential map is provided by

exp : g → G

ξ ↦→ exp(ξ) := ΦξL
1 (e).

The following theorem describes some properties of the exponential map.

Theorem B.2. (Exponential map properties). Let G be a Lie group and ξ ∈ g.
Then:

i) the integral curve R ∋ t ↦→ ΦξL
t (e) = exp tξ is a one-parameter subgroup

of G;
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ii) for all g ∈ G and t ∈ R, ΦξL
t (g) = Lg ◦ exp ξt and thus, left-invariant

vector fields are complete;

iii) exp : g → G is a local C∞-diffeomorphism and T0 exp = idg.

Example B.2. (Matrix exponential). For a matrix Lie group G the expo-
nential map exp : g → G coincides with the restriction to g of the matrix
exponential map.

Lie group action
The idea behind a group can be used to describe the transformation of a
manifold. The structure of this latter can give rise to special symmetries that
can be formalized through the notion of action.

Definition B.16. (Left actions). A left action of a Lie group G on a manifold
M is a smooth mapping Φ : G×M →M such that:

(i) Φ(e, x) = x for all x ∈M ;

(ii) Φ(g,Φ(h, x)) = Φ(gh, x) for all g, h ∈ G and x ∈M ;

(iii) for every g ∈ G, the map Φg :M →M , defined by Φg(x) := Φ(g, x) is a
diffeomorphism.

Similarly, for right action we have the following definition.

Definition B.17. (Right actions). A (smooth) right action of a Lie group G
on a manifold M is a smooth mapping Φ : G ×M → M satisfying the same
conditions as for a left action, except that condition (ii) is replaced by:

(ii’) Φ(g,Φ(h, x)) = Φ(hg, x) for all g, h ∈ G and x ∈M .

To any left-action Φ(g, x) = gx corresponds the right action Φ(g, x) = g−1x.

Definition B.18. (Orbits). Let G act on M . For a given point x ∈ M , we
consider the equivalence condition

x ∼ y ⇔ ∃g ∈ G : gx = y.

The equivalence class

Orb(x) := [x] = {y : y ∼ x} = {gx : g ∈ G}.

is called the group orbit through x.
The set of all orbits is called the orbit space and is indicated by M/G.

Definition B.19. (Types of group actions). The action Φ : G ×M → M of
a group G on a manifold M is said to be:

(i) transitive if for every x, y ∈M there exists a g ∈ G such that gx = y;
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(ii) free if gx = x implies g = e;

(iii) faithful (or effective) if for all g ∈ G such that g ̸= e, there exists x ∈M
such that gx ̸= x;

(iv) proper if, whenever the sequences {xn} and {gnxn} converge in M , the
sequence {gn} has a convergent subsequence in G.

Any action of G on a manifold M induces the corresponding “lifted” actions
on TM and T ∗M .

Definition B.20. (Tangent and cotangent lifts). Let Φ : G ×M → M be a
(left or right) action, so Φg : M → M for every g ∈ G. The tangent lift of Φ
is the action

TΦ : G× TM → TM

(g, (x, v)) ↦→ TΦg(x, v) = (Φg(x), TxΦg(v)),

where x ∈M and v ∈ TxM .
The cotangent lift of Φ is the action

T ∗Φ : G× T ∗M → T ∗M

(g, (x, α)) ↦→ T ∗Φg−1(x, α) = (Φg(x), T
∗
Φg(x)Φg−1(α))

where α ∈ T ∗
xM .

Definition B.21. (Action of a Lie group on its tangent and cotangent bundle).
The tangent-lifted left translation of the tangent bundle of a Lie group G under
its action is given by

G× TG→ TG

(g, (h, v)) ↦→ (gh, gv) := (gh, ThLg(v)) =

(︃
gh,

d

dt
(gc(t))|t=0

)︃
where c(t) is any path in G with c(0) = h and c′(0) = v, while the cotangent-
lifted left translation of the tangent bundle of a Lie group G under its action
is given by

G× T ∗G→ T ∗G

(g, (h, α)) ↦→ (gh, gα) := (gh, T ∗
ghLg−1(α))

where
⟨T ∗

ghLg−1(α), w⟩ = ⟨α, TghLg−1(w)⟩
for all ω ∈ TghG.

Example B.3. (Matrix tangent and cotangent lifted left translations). Let G
be a matrix Lie group that acts by left translation into itself. Let R ∈ G and
(A, Ȧ) ∈ TG and consider the curve C(t) such that C(0) = A and C ′(0) = Ȧ,
then the matrix tangent lifted left translation is given by

G× TG→ TG

(R, (A, Ȧ)) ↦→ (RA,RȦ),
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while the matrix cotangent lifted left translations is

G× T ∗G→ T ∗G

(R, (A,P )) ↦→ (RA,R−TP )

for every P ∈ T ∗
AG.

Thanks to the tangent lifted left translation action, it is possible to con-
struct a diffeomorphism that relates the tangent bundle with the cartesian
product G× g.

Definition B.22. (Left trivialization map). Let G be a Lie group acting
on TG by tangent lifted left translation. Then, the left trivialization map is
defined as

λ : TG→ G× g

(h, ḣ) ↦→ (h, h−1ḣ) = (h, ThLh−1ḣ).

The inverse of the left trivialization map produces λ−1(h, ξ) = (h, hξ) and
since are both smooth, λ is a diffeomorphism.

The left trivialization map lets to recognize some important diffeomor-
phisms that characterized the tangent bundle of a Lie group.

Proposition B.1. Let G act on TG by left lifted left multiplication, then we
have the following diffeomorphisms

TG/G ≃ (G× g)/G ≃ g (B.1)

[(h, ḣ)] ↦→ [(h, h−1ḣ)] ↦→ h−1ḣ (B.2)

where [(·, ·)] denotes the orbit.

Proof. (see [15])

129



130



Appendix C

Proof of the second-order
minimum energy filter on Lie
groups

In this appendix, we recall the proof of Theorem 2.1 as done in [35]. The
proofs of the Lemmas used are not reported and can be found in [35].

The optimal estimation problem

The optimal control problem defined by the deterministic system (2.27) mea-
surement equation (2.28) with the energy cost functional (2.29)-(2.31) is built
in such a way that the external input u(τ) and the measure y(τ) known for
τ ∈ [t0, t]. Substituting ε(τ) = D−1(y(τ) − h(g(τ), τ)) into (2.29) we can
rewrite the cost function without the dependence on measurement errors:

min
(g(·),δ(·))

m(g(t0), t, t0) +

∫︂ t

t0

ℓ(δ(τ), D−1(y(τ)− h(g(τ), τ)), t, τ)dτ. (C.1)

The “control” input is the model error δ.
We denote by V (g, t) the minimum energy value among all trajectories of

(2.27) within the interval [t0, t] that reach the state g ∈ G at time t. The
optimal estimate ˆ︁g(t) is therefore equal to

ˆ︁g(t) = g∗[t0,t](t) = argming∈GV (g, t)

V (g, t0) = m(g, t0, t0)
(C.2)

As stated in [26], the key observation is that if we assume V (g, t) to be
differentiable in a neighborhood of the optimal estimate ˆ︁g(t) then, as V (g, t)
attains its minimum at ˆ︁g(t), we must have

d1V (ˆ︁g(t), t) ≡ 0 (C.3)

(compare with (2.15)).
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The optimal Hamiltonian

In order to write the Hamilton-Jacobi-Bellman equation associated to the op-
timal filter, it is necessary to derive the optimal Hamiltonian. Given the in-
cremental cost (2.31) and the dynamics

ġ(t) = g(t) [λ(g(t), u(t), t) +Bδ(t)] , (C.4)

the (time-varying) Hamiltonian: ˜︁H : T ∗G× Rd × R → R is given by

˜︁H(p, δ, t) :=
1

2
e−α(t−t0)(R(δ)+Q(D−1(y(t)−h(g, t))))−⟨p, g(λ(g, u(t), t)+Bδ)⟩

(C.5)
where g ∈ G is the base point of p ∈ T ∗

gG. Since the optimal control problem
aims to minimize the initial starting point incorporated by (2.30), the function
m can be thought of as a terminal cost and the minimum energy V (g, t) as a
cost-to-go. This justified the presence of the minus sign in (C.5).

The advantage of working with Lie groups is that it is possible to identify
the cotangent vector p ∈ T ∗

gG, via left translation, with an element µ ∈ g,
defined as µ = TeL

∗
g(p). Thus it is possible to use (g, µ) ∈ G × g∗ in place of

p ∈ T ∗G and consider the left-trivialized Hamiltonian ˜︁H : G×g∗×Rd×R → R
defined as

˜︁H(g, µ, δ, t) :=
1

2
e−α(t−t0)(R(δ)+Q(D−1(y(t)−h(g, t))))−⟨µ, λ(g, u(t), t)+Bδ⟩.

(C.6)
We are now ready to compute the left-trivialized optimal Hamiltonian.

Proposition C.1. The left-trivialized optimal Hamiltonian associated to the
optimal control problem (C.4), (C.5) is:

H−(g, µ, t) :=
1

2
e−α(t−t0)⟨µ,B ◦R−1 ◦B∗(µ)⟩

+
1

2
e−α(t−t0)Q(D−1(y(t)− h(g, t)))− ⟨µ, λ(g, u(t), t)⟩

(C.7)

Proof. The vector field g(λ(g, u(t), t)+Bδ) is linear in δ, while the incremental
cost ℓ(δ, ε, t, τ) is quadratic in δ, thus:

δopt = argminδ
˜︁H−(g, µ, δ, t) = eα(t−t0)R−1 ◦B∗(µ).

Substituting in (C.6) the result follows.

The left-trivialized HJB equation and the structure of the
optimal filter

The Hamilton-Jacobi-Bellman equation associated to optimal control problem
(C.1), (C.4) is:

∂

∂t
V (g, t)−H(d1V (g, t), t) = 0

V (g, t0) = m(g, t0, t0)
(C.8)
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where the optimal Hamiltonian H is defined on T ∗G × R. Thanks to the
left-trivialized formulation (C.7), one can obtain the left-trivialized Hamilton-
Jacobi-Bellman equation where the left-trivialized optimal Hamiltonian is de-
fined on G× g∗ × R:

∂

∂t
V (g, t)−H−(g, µ(g, t), t) = 0 (C.9)

where µ : G× R → g∗ is the “left-trivialized differential”:

µ(g, t) := TeL
∗
g(d1V (g, t)). (C.10)

The minimum energy estimator ˆ︁g(t) minimizes the value function V (g, t):

ˆ︁g(t) = argming∈GV (g, t). (C.11)

The key observation (compare with (2.15)) is that, assuming the differentia-
bility of V , we obtain the necessary condition

d1V (ˆ︁g(t), t) = 0, (C.12)

or equivalently
µ(ˆ︁g(t), t) = 0. (C.13)

Lemma C.1. Given f : G× R → R and g : R → G then d1f(g(t), t) = 0 for
all t implies

Hess1f(g(t), t) (ġ(t)) + d1

(︃
∂

∂t
f

)︃
(g(t), t) = 0.

From Lemma C.1 the time differentiation of (C.12) vanishes:

Hess1V (ˆ︁g(t), t)(︂ˆ︁ġ(t))︂+ d1

(︃
∂

∂t
V

)︃
(ˆ︁g(t), t) = 0, (C.14)

here Hess1V (ˆ︁g(t), t) : Tˆ︁g(t)G → T ∗ˆ︁g(t)G is the Hessian operator. By applying
the chain rule to the second term:

d1

(︃
∂

∂t
V

)︃
(g, t) = d1

(︃
H−(g, µ(g, t), t)

)︃
= d1H

−(g, µ(g, t), t) + d2H
−(g, µ(g, t), t) ◦ d1µ(g, t).

(C.15)

Evaluating in g = ˆ︁g(t), from (C.13) we obtain

d1

(︃
∂

∂t
V

)︃
(ˆ︁g(t), t) = d1H

−(ˆ︁g(t), 0, t)+d2H−(ˆ︁g(t), 0, t), t)◦d1µ(ˆ︁g(t), t). (C.16)

The term d1µ(ˆ︁g(t), t) can be expanded through the following Lemma.

Lemma C.2. Given f : G→ R then the derivative of left trivialized differen-
tial TeL∗

g(df(g)) is given by

d(TeL
∗
g(df(g))) = TeL

∗
g ◦ Hessf(g) + ω∗⇋

TeL∗
g(df(g))

◦ TgLg−1

which equals TeL∗
g ◦ Hessf(g) whenever df(g)=0.

133



By Lemma C.2, differentiating (C.10), we get

d1µ(g, t) = TeL
∗
g ◦ Hess1V (g, t) + ω∗⇋

TeL∗
g(d1V (g,t)) ◦ TgLg−1 (C.17)

= TeL
∗ˆ︁g(t) ◦ Hess1V (ˆ︁g(t), t), (C.18)

the second addend on the right-hand side vanishes thanks to (C.12).
For the first term of the right-hand side of (C.15) we have

d1H
−(ˆ︁g(t), 0, t) ◦ TeLˆ︁g(t) = TeL

∗ˆ︁g(t)(d1H−(ˆ︁g(t), 0, t)). (C.19)

We define the left-trivialized Hessian operator as Z(g, t) : g → g∗

Z(g, t) := TeL
∗
g ◦ Hess1V (g, t) ◦ TeLg. (C.20)

With this new formulation of the Hessian operator, we can rewrite the
second term of the right-hand side of equation (C.16) as

d2H
−(ˆ︁g(t), 0, t)◦d1µ(ˆ︁g(t), t) ◦ TeLˆ︁g(t)

= d2H
−(ˆ︁g(t), 0, t) ◦ TeL∗ˆ︁g(t) ◦ Hess1V ◦ TeLˆ︁g(t)

= d2H
−(ˆ︁g(t), 0, t) ◦ Z(ˆ︁g(t), t)

= Z(ˆ︁g(t), t)∗(d2H−(ˆ︁g(t), 0, t))
(C.21)

and the first term of (C.14) as

Hess1V (ˆ︁g(t), t)(︂ˆ︁ġ(t))︂ ◦ TeLˆ︁g(t)
= TeL

∗ˆ︁g(t) ◦ Hess1V (ˆ︁g(t), t)(︂ˆ︁ġ(t))︂
= TeL

∗ˆ︁g(t) ◦ Hess1V (ˆ︁g(t), t) ◦ TeLg ◦ TeLg−1

(︂ˆ︁ġ(t))︂
= Z(ˆ︁g(t), t)(︂ˆ︁g(t)−1ˆ︁ġ(t))︂ .

(C.22)

Substituting (C.21) and (C.19) into (C.22) we get

Z(ˆ︁g(t), t)(︂ˆ︁g(t)−1ˆ︁ġ(t))︂ = Hess1V (ˆ︁g(t), t)(︂ˆ︁ġ(t))︂ ◦ TeLˆ︁g(t)
= −d1

(︃
∂

∂t
V

)︃
(ˆ︁g(t), t) ◦ TeLˆ︁g(t)

= −TeL∗ˆ︁g(t)(d1H−(ˆ︁g(t), 0, t))− Z(ˆ︁g(t), t)∗(d2H−(ˆ︁g(t), 0, t))
(C.23)

and, since Z(ˆ︁g(t), t) = Z(ˆ︁g(t), t)∗ (Z is symmetric), multiplying by Z(ˆ︁g(t), t)−1

we obtain

ˆ︁g(t)−1ˆ︁ġ(t) = −d2H−(ˆ︁g(t), 0, t)− Z(ˆ︁g(t), t)−1 ◦ TeL∗ˆ︁g(t)(d1H−(ˆ︁g(t), 0, t)).
(C.24)

This equation produces a differential equation for ˆ︁ġ(t) as a function of H−

given in (C.7).
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In the following, we adopt the shorthand notation ht(g) and λt(g, u) for
h(g(t), t) and λ(g(t), u(t), t), respectively, and drop the explicit dependence on
time of signals from our notation where convenient.

The differential with respect to µ of the optimal Hamiltonian is given by

d2H
−(g, µ, t) = −eα(t−t0)B ◦R−1 ◦B∗(µ)− λt(g, u). (C.25)

To calculate the differential of the optimal Hamiltonian with respect to g,
we need the following Lemma.

Lemma C.3. Let V be a vector space, let A : V → V be linear and let
Q : V → R be a quadratic form with associated symmetric positive definite
linear map Q : V → V ∗. Given f : G→ V , then

d

(︃
1

2
Q(A(f(g)))

)︃
= (A∗ ◦Q ◦ A(f(g))) ◦ df(g) (C.26)

Hess

(︃
1

2
Q(A(f(g)))

)︃
=(df(g))∗ ◦ A∗ ◦Q ◦ A ◦ df(g)

+ (A∗ ◦Q ◦ A(f(g)))TgG ◦ Hessf(g).
(C.27)

Applying Lemma C.3 to (C.7) (with A = D−1, (y(t)− h(g, t)) = f(g)) we
obtain

d1H
−(g, µ, t) = −eα(t−t0) · ((D−1)∗ ◦Q◦D−1(y−ht(g)))◦dht(g)−µ◦d1λt(g, u).

(C.28)
Substituting g = ˆ︁g and µ = 0, the two expression above become

d2H
−(ˆ︁g, 0, t) = −λt(ˆ︁g, u) (C.29)

d1H
−(ˆ︁g, 0, t) = −e−α(t−t0) ·

(︁
(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁g)))︁ ◦ dht(ˆ︁g) (C.30)

Defining rt(ˆ︁g) ∈ g∗ by

rt(ˆ︁g) := TeL
∗ˆ︁g [︁(︁(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁g)))︁ ◦ dht(ˆ︁g)]︁ (C.31)

we can rewrite (C.24) as

ˆ︁g(t)−1ˆ︁ġ(t) = λt(ˆ︁g, u) + e−α(t−t0) · Z(ˆ︁g, t)−1rt(ˆ︁g). (C.32)

Since the integral part of (2.29) at t0 is equal to zero, the cost functional
satisfy

J(δ, ε, g0; t0, t0) = m(g(t0), t0, t0) (C.33)

and thus, the initial condition for the optimal filter is as in (2.33).
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Approximate time evolution of Z

The solution of (C.32), together with a differential equation for Z(ˆ︁g(t), t),
constitutes the optimal filter. Unfortunately, such an approach is going to
fail as Z satisfies an infinite-dimensional differential equation (linear dynamics
with quadratic cost represents an exception). For this reason, in the following,
we compute an approximation of the time evolution of Z(ˆ︁g, t) along the optimal
solution ˆ︁g(t) by neglecting the third covariant derivative of the value function
V . Such an approximation is denoted by X(g, t), and in order to produce a
differential equation for it, we need the following Lemmas.

Lemma C.4. Given f : G× R → R and g : R → G then

d

dt

(︁
TeL

∗
g(t)◦Hess1f(g(t), t) ◦ TeLg(t)

)︁
=

∇∗
g(t)−1ġ(t) ◦ TeL∗

g(t) ◦ Hess1f(g(t), t) ◦ TeLg(t)

+ TeL
∗
g(t) ◦ Hess1f(g(t), t) ◦ TeLg(t) ◦ ∇g(t)−1ġ(t)

+ TeL
∗
g(t) ◦

∂

∂t
(Hess1f)(g(t), t) ◦ TeLg(t) + h.o.t.

(C.34)

Lemma C.5. Let X ∈ g then

d(g ↦→ TeLg(X)) = TeLg ◦ ω⇋
X ◦ TgLg−1 . (C.35)

We are now ready to provide a differential equation for X(g, t).

Proposition C.2. X(t) := X(ˆ︁g(t), t) ∈ L(g, g∗) fulfills the operator Riccati
equation

Ẋ = e−α(t−t0) · S − F ∗ ◦X −X ◦ F − eα(t−t0) ·X ◦B ◦R−1 ◦B∗ ◦X (C.36)

with

X(t0) = X0 = TeL
∗ˆ︁g0 ◦ Hessm0(ˆ︁g0) ◦ TeLˆ︁g0 (C.37)

F (t) = −ωˆ︁g−1ˆ︁ġ + ω⇋
λt(ˆ︁g,u) + d1λt(ˆ︁g, u) ◦ TeLˆ︁g (C.38)

S(t) =− TeL
∗ˆ︁g ◦ [(︁(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁g)))︁Tˆ︁gG ◦ Hessht(ˆ︁g)

− (dht(ˆ︁g))∗ ◦ (D−1)∗ ◦Q ◦D−1 ◦ dht(ˆ︁g)] ◦ TeLˆ︁g (C.39)

ˆ︁g0 = argming∈Gm0(g). (C.40)

Proof. Using Lemma C.4 we get

d

dt
Z(ˆ︁g(t), t) = d

dt

(︁
TeL

∗ˆ︁g(t) ◦ Hess1 V (ˆ︁g(t), t) ◦ TeLˆ︁g(t))︁
=ω∗ˆ︁g−1ˆ︁ġ ◦ Z(ˆ︁g(t), t) + Z(ˆ︁g(t), t) ◦ ωˆ︁g−1ˆ︁ġ
+ TeL

∗ˆ︁g(t) ◦ ∂

∂t
(Hess1V )(ˆ︁g(t), t) ◦ TeLˆ︁g(t) + h.o.t.

(C.41)
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To compute the partial derivative of Hess1V we will exploit the fact that it
commutes with covariant differentiation on G and then apply equation (C.15).
We rewrite equation (C.15) as

d1

(︃
∂

∂t
V

)︃
(g, t) = d1H

−(g, µ(g, t), t)+(d1µ(g, t))
∗(d2H

−(g, µ(g, t), t)) (C.42)

and consider the dual of equation (C.17)

(d1µ(g, t))
∗(W ) = (Hess1V (g, t))∗ ◦ TeLg(W ) + TeL

∗
g−1 ◦ ω⇋∗

W (TeL
∗
g(d1V (g, t)))

(C.43)
Combining this with (C.42) we conclude that

d1

(︃
∂

∂t
V

)︃
(g, t) =

d1H
−(g, µ(g, t), t) + (Hess1V (g, t))∗ ◦ TeLg(d2H

−(g, µ(g, t), t))

TgL
∗
g−1 ◦ ω⇋∗

d2H−(g,µ(g,t),t)(TeLg(d1V (g, t))).

(C.44)

Then, using the chain rule and Lemma C.5

∂

∂t
(Hess1V )(ˆ︁g(t), t) =Hess1

(︃
∂

∂t
V

)︃
(ˆ︁g(t), t)

=Hess1H
−(ˆ︁g, 0, t) + d2(d1H

−)(ˆ︁g, 0, t) ◦ d1µ(ˆ︁g, t)
+ Hess1V (ˆ︁g, t) ◦ TeLˆ︁g ◦ ω⇋

d2H−(ˆ︁g,0,t) ◦ Tˆ︁gLˆ︁g−1

+Hess1V (ˆ︁g, t) ◦ TeLˆ︁g ◦ d1(d2H−)(ˆ︁g, 0, t)
+ Hess1V (ˆ︁g, t) ◦ TeLˆ︁g ◦ Hess2H−(ˆ︁g, 0, t) ◦ d1µ(ˆ︁g, t)
+ Tˆ︁gL∗ˆ︁g−1 ◦ ω⇋∗

d2H−(ˆ︁g,0,t) ◦ TeL∗ˆ︁g ◦ Hess1V (ˆ︁g, t) + h.o.t.

(C.45)

Here we have used (C.13) and the fact that the Hessian operator at a critical
point is symmetric. From (C.41), (C.45) and (C.18) we obtain

d

dt
Z(ˆ︁g(t), t)

≈ω∗ˆ︁g−1ˆ︁ġ ◦ Z(ˆ︁g, t) + Z(ˆ︁g, t) ◦ ωˆ︁g−1ˆ︁ġ
+ TeL

∗ˆ︁g ◦ Hess1H−(ˆ︁g, 0, t) ◦ TeLˆ︁g + TeL
∗ˆ︁g ◦ d2(d1H−)(ˆ︁g, 0, t) ◦ Z(ˆ︁g, t)

+ ω⇋∗
d2H−(g,0,t) ◦ Z(ˆ︁g, t) + Z(ˆ︁g, t) ◦ ω⇋

d2H−(g,0,t)

+ Z(ˆ︁g, t) ◦ d1(d2H−)(ˆ︁g, 0, t) ◦ TeLˆ︁g + Z(ˆ︁g, t) ◦ Hess2H−(ˆ︁g, 0, t) ◦ Z(ˆ︁g, t).
(C.46)

Differentiating (C.28) and using Lemma C.3 the differential of the left-trivialized
optimal Hamiltonian becomes

Hess1H
−(ˆ︁g(t), 0, t)

=− e−α(t−t0) ·
(︁
(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁g)))︁Tˆ︁gG ◦ Hessht(ˆ︁g)

+ e−α(t−t0) · (dht(ˆ︁g))∗ ◦ (D−1)∗ ◦Q ◦D−1 ◦ dht(ˆ︁g) (C.47)
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From (C.28) and (C.25)

d2(d1H
−)(ˆ︁g(t), 0, t) =(d1(d2H

−))(ˆ︁g(t), 0, t)∗
=− (d1λ(ˆ︁g(t), u(t), t))∗ (C.48)

and differentiating (C.25) yields

Hess2H
−(ˆ︁g(t), 0, t) = −eα(t−t0) ·B ◦R−1 ◦B∗. (C.49)

Substituting (C.47), (C.48) and (C.49) into (C.46) we obtain

d

dt
Z(ˆ︁g(t), t) ≈ e−α(t−t0) · S − F ∗ ◦ Z(ˆ︁g, t)− Z(ˆ︁g, t) ◦ F

− eα(t−t0) · Z(ˆ︁g, t) ◦B ◦R−1 ◦B∗ ◦ Z(ˆ︁g, t) (C.50)

with

F (t) = −ωˆ︁g−1ˆ︁ġ + ω⇋
λt(ˆ︁g,u) + d1λt(ˆ︁g, u) ◦ TeLˆ︁g (C.51)

S(t) =− TeL
∗ˆ︁g ◦ [(︁(D−1)∗ ◦Q ◦D−1(y − ht(ˆ︁g)))︁Tˆ︁gG ◦ Hessht(ˆ︁g)

− (dht(ˆ︁g))∗ ◦ (D−1)∗ ◦Q ◦D−1 ◦ dht(ˆ︁g)] ◦ TeLˆ︁g (C.52)

To conclude we define K(t) := e−α(t−t0)X−1(t) where X satisfies (C.36).
The time derivative of K satisfies

K̇(t) =− αK(t) +K(t) ◦ S ◦K(t) +K(t) ◦ F ∗ + F ◦K(t) +B ◦R−1 ◦B∗

(C.53)

From the definition of torsion

Tλt(ˆ︁g,u)(X) =ωλt(ˆ︁g,u)X − ωXλt(ˆ︁g, u)− adλt(ˆ︁g,u)X
=ωλt(ˆ︁g,u)X − ω⇋

λt(ˆ︁g,u)X − adλt(ˆ︁g,u)X (C.54)

We observe that we can rewrite the operator F as

F (t) =− ωˆ︁g−1ˆ︁ġ + ω⇋
λt(ˆ︁g,u) + d1λt(ˆ︁g, u) ◦ TeLˆ︁g

=− ωλt(ˆ︁g,u)+Kr + ω⇋
λt(ˆ︁g,u) + d1λt(ˆ︁g, u) ◦ TeLˆ︁g

=d1λt(ˆ︁g, u) ◦ TeLˆ︁g − ωλt(ˆ︁g,u) − ωKr + ω⇋
λt(ˆ︁g,u)

=d1λt(ˆ︁g, u) ◦ TeLˆ︁g − ωKr − adλt(ˆ︁g,u) − ωλt(ˆ︁g,u) + ω⇋
λt(ˆ︁g,u) + adλt(ˆ︁g,u)

=d1λt(ˆ︁g, u) ◦ TeLˆ︁g − adλt(ˆ︁g,u) − Tλt(ˆ︁g,u) − ωKr

(C.55)

Defining

A(t) :=d1λt(ˆ︁g, u) ◦ TeLˆ︁g − adλt(ˆ︁g,u) − Tλt(ˆ︁g,u)
E(t) :=S(t)

(C.56)

we finally obtain the operators for the second-order optimal filter.
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