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Abstract
Thanks to the availability of a huge amount of spatial data, many
newmachine and deep learning (ML/DL) applications have emerged
that are able to deal with such kind of information. In particular,
new cost models have been developed with the aim of predicting
the cost of spatial operations carefully. For obtaining good ML/DL
models, the training activity is usually performed with synthetically
generated datasets that capture as many spatial distributions as
possible and as many combinations of features as desired (e.g.,
cardinality, geometry complexity, etc), with the aim to improve the
generalization capabilities of the trained models. However, when
a model is used to estimate some properties of a spatial operation,
like the range query selectivity, balancing the characteristics of the
input datasets could be not enough to guarantee a balancing in the
ground truth values of the target variable. Therefore, we need to
develop a way to balance the final results without recomputing the
operation from scratch. This paper formalizes the notion of dataset
balancing in the context of spatial ML/DL, proposes a set of metrics
for evaluating the degree of balancing of the input domains and
the target values, and defines a set of augmentation techniques
specifically tailored for spatial data. Finally, it tests the effects of
such augmentations in the training of a generic ML cost model for
estimating the selectivity of spatial range query.

CCS Concepts
• Information systems→ Database management system en-
gines; • Computing methodologies→Machine learning ap-
proaches.
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1 Introduction
In recent years, the increased availability of spatial data has been
accompanied by the development of many tools for efficiently deal-
ing with such kind of information. Spatial big data systems, like
SpatialHadoop [9], GeoSpark [23], Simba [21], LocationSpark [14],
and Sphinx [7], have been developed with the aim to provide op-
timized implementations of spatial operations, like range queries,
spatial join, and so on. Several different implementations of these
operations are usually available, each one fitting well with the dif-
ferent characteristics of the input datasets. Therefore, they need to
be accompanied by cost models that can help choose the best one
and estimate the cost of the operations in advance. Many of these
cost models are based on the application of machine learning (ML)
or deep learning (DL) techniques that are able to capture better
the intertwined characteristics of both the spatial datasets and the
operations [16–18].

A recent development in such field is the attempt to provide
generic ML/DL models that are able to deal with any kind of spatial
datasets and can be tailored to specific spatial operations with a
small effort [4, 5]. The training of such models is performed through
synthetically generated datasets that are able to capture a large
variety of spatial distributions and characteristics of geometries,
like their cardinality, complexity, placement, and so on. For this
purpose, specific spatial data generators have been developed, such
as SpiderWeb [11], which are able to treat a wide set of relevant spa-
tial parameters [20]. These tools are able to provide a huge training
set that can be balanced with respect to the specific characteristics
of interest. However, when ML/DL models are used to estimate
some properties of spatial operations computed on such datasets,
balancing the original dataset is not a sufficient requirement for
obtaining balanced results. Let us consider, for instance, the ML
model presented in [4] which estimates a set of range query param-
eters, such as selectivity, number of MBR tests, and execution time.
In this case, even if the considered datasets are generated such that
there are an equal number of them for each spatial distribution,
and the range queries are properly distributed inside the reference
space, the resulting parameters could be very skewed somehow.
For instance, the range of resulting selectivity values could cover
only a small portion of the possible spectrum from 0 to 1, with a
very small number of candidates for values greater than 0.1.

Balancing the training set is a very important issue in ML/DL
problems since the performances of the obtained models greatly
depend on the grade of data balancing. Imbalanced data essentially
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means having unequal examples for different things inside a train-
ing set. This can seriously affect howwell yourML/DLmodel works,
especially when it needs to handle the less common cases. The clas-
sical problems related to imbalanced data are biased learning and
misleading accuracy. In classification tasks, the second problem
has been overcome by considering other evaluation metrics, for
instance, F1 score, precision, and recall, in place of accuracy. How-
ever, in regression tasks, like the estimation of the range query
selectivity or execution time, this cannot be easily addressed in the
same way. In these cases, there is a need for specific techniques
dealing with the balancing of the input training set.

In the literature, there are essentially three adopted method-
ologies for dealing with unbalanced training sets: undersampling,
oversampling, and augmentation. Undersampling is a resampling
technique that essentially focuses on balancing the class distribu-
tion by reducing the number of instances in the majority class.
This is typically achieved by randomly removing instances from
the majority class until a more balanced training set is obtained.
This technique is suitable if the number of available instances in
the minority class is still enough. Conversely, oversampling essen-
tially consists of increasing the number of instances in the minority
classes. This is typically done by either duplicating existing in-
stances or generating synthetic data points similar to the minority
class. This last activity, also known as augmentation, represents a
better choice with respect to the duplication of instances because
it reduces the overfitting risk.

Data augmentation differs from the generation of synthetic data
because it is driven by the original data with some minor changes.
Many augmentation techniques have been defined in the literature
for image datasets, which essentially consist of slightly changing an
image to obtain a different one that includes the same information.
For instance, they consist of making geometric and color space
transformations, such as flipping, resizing, cropping, brightness,
and contrast changes. These techniques are not suitable for spatial
data in vector format, particularly for spatial operations. Let us
consider the spatial range query; in this case, a slight modification
on the input dataset or the query window can greatly change the
obtained result. Since the recomputation of the operation result
can be very costly, augmentation techniques for spatial data should
be driven by the desired obtained results, preventing the need to
recompute them on the modified input datasets.

The contribution of this paper is manifold: (a) it formalizes the
notion of balancing for a spatial input collection from which both
a training and test set will be extracted (Sect. 3). (b) It introduces a
set of balancing metrics for both the input domains and the ground
truth values, which allow one to measure the degree of balancing of
an input collection correctly (Sect. 4). (c) It proposes a set of spatial
augmentation techniques that allows one to increase the number
of instances in the minority classes without re-executing costly
operations (Sect. 5). These generic operations have been tailored to
the specific problem of estimating spatial range query parameters,
like selectivity, number of MBR tests, and execution time. Guided by
the desired result, namely the minority class to be augmented, they
are able to slightly modify the input datasets to obtain it without
recomputing the range query from scratch. Finally, (d) it tests the
proposed metrics and augmentation techniques to a set of spatial
input collections with different characteristics (Sect. 6).

2 Related Work
Augmentation techniques have been widely studied and applied in
the context of image classification. In [12], the authors study the
impact of various data augmentation methods in image classifica-
tion tasks made with Convolutional Neural Networks (CNN). The
considered augmentation methods include GAN/WGAN, Flipping,
Cropping, Shifting, PCA jittering, Color jittering, Noise, Rotation,
and some combinations. Some of them, like PCA and color jitter-
ing, are specifically tailored for image processing and cannot be
applied to spatial data in vector format. However, some others,
like rotation and noise, have inspired some of the augmentation
techniques proposed in this paper. In [13], the authors propose a
comprehensive survey about image data augmentation techniques,
subdividing them into two main classes: basic image manipulations
and deep learning approaches. The first class includes geometric
transformations, such as rotation and flipping, and photometric
transformations. Conversely, the second class uses deep learning
techniques, like adversarial training and GAN data augmentation,
to produce new training data. Similarly, the work in [15] experi-
mentally demonstrates that geometric augmentation methods out-
perform photometric methods when training on a coarse-grained
dataset, showing that altering the geometry of the images is more
important than just lighting and color. If some techniques of the
geometric transformations can be considered as a starting point for
the ones proposed in this paper, the main difference remains the
difficulty in producing augmented data with the desired characteris-
tics, which corresponds to preserving a particular behavior during
the application of a spatial operation, like producing the same se-
lectivity in a range query. Conversely, the photometric methods
are not applicable here since they are based on the construction of
a lower-dimensional representation of a raster image.

As highlighted in [10], the powerfulness of an augmentation
technique depends on its ability to preserve the properties of the
original data we are interested in. Therefore, augmentation tech-
niques have to be tailored and specialized based on both the input
data and the kind of properties under study. This suggests not only
that the methods developed for raster images cannot be applied
to vector spatial data but also that the applicable techniques can
change based on the considered spatial operation and metrics.

In [22], the authors propose a set of GIS-based data augmenta-
tion techniques that can automatically generate labeled training
map images from shapefiles using GIS operations. Even if these
techniques are tailored for geographical data and try to preserve
important spatial characteristics, they have been designed for raster
images and include techniques like blurring and resizing, which
are specific for raster data rather than vector formats.

The generation of synthetic spatial datasets with specific char-
acteristics and distributions has been widely treated in [20] and
implemented in tools like [11]. However, starting from a balanced
bunch of spatial datasets is not enough to obtain a balanced training
set for estimating the costs of spatial operations. For instance, for
a cost model, like the one in [18], which estimates the selectivity
of the range query, the notion of balancing is defined in terms of
the number of query results rather than the properties of the input
datasets. Obtaining a balanced set of ground truth values cannot
be governed by simply changing the characteristics of the input.
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In [5], the authors declare to balance the training set of the
ML/DL models for spatial cost estimation by applying some un-
dersampling and oversampling techniques without giving much
details about them and without formalizing their definition. To the
best of our knowledge, this paper is the first attempt to formal-
ize the problem of balancing collections of spatial vector data by
proposing a set of metrics and augmentation techniques that allow
the increase of the minority classes without the need to recompute
costly spatial operations.

3 Problem definition
As previously explained in Sect. 1, the training of a ML/DL model
requires balanced training sets to be effectively performed. This
means that the preparation of a training set, even synthetically
generated or set up from real data, cannot be donewithout following
some guidelines that lead to a balanced situation with reference
to both the input domains and the ground truth values. Balancing
the input domain means producing a training set with the proper
level of variability and representability of the reality to be modeled,
ensuring better generalization capabilities. Conversely, balancing
the ground truth is essential to training the model correctly on all
the proposed cases. In this paper, we concentrate on the proper
generation of a synthetic training set that exposes good balancing
characteristics in both dimensions. This goal is particularly achieved
through the definition of a set of spatial augmentation techniques
properly tailored for the scope.

In order to introduce the problem of balancing a training set
with respect to both the input domains and the ground truth values,
we need to formalize the notion of input collection from which the
training and the test set will be produced. Essentially, the input col-
lection identifies the set of information that needs to be produced to
obtain a useful set of data points. Clearly, such a set of information
and the structure of the resulting data points greatly depends on
the purpose for which the training is performed. However, in the
considered application context, we can identify two main kinds of
input collections: the one that serves to estimate the characteristics
of a spatial dataset, and the one used to estimate some properties
of a spatial operation applied on a spatial dataset. In the first case,
the input collection will consist only of a set of spatial datasets and
a value associated with each of them, representing the property of
interest. Conversely, in the second case, besides the set of spatial
datasets and associated target values, we also need a set of parame-
ters describing the operation to be performed. The first case can
clearly be seen as a specialization of the second one, where the
operation parameters are omitted. For this reason, without loss of
generality, in the following formalization, we concentrate on the
second case, while the notation for the first one can be obtained by
removing all references to the operation parameters.

Definition 3.1 (Input collection). Given a set of target variables
{𝑣1, . . . , 𝑣𝑤} that we want to estimate with an ML/DL model 𝑀 ,
we define an input collection 𝐶 from which the data points of a
training and test set are generated, as :

𝐶 = {⟨𝐷𝑖 ,𝑂𝑖 ,𝑇𝑖 ⟩}𝑘𝑖=1 (1)

where in each tuple, 𝐷𝑖 is the spatial dataset,𝑂𝑖 are the parameters
of the operation to be performed on 𝐷𝑖 , and 𝑇𝑖 is the ground truth

values for the variable {𝑣1, . . . , 𝑣𝑤} to be estimated. The ground
truth values in 𝑇𝑖 can be real values in regression tasks or labels in
classification tasks.

In the following, the set of spatial datasets in a collection 𝐶 will
be denoted as D, while the set of all operation parameters in 𝐶

will be denoted as O; finally, for each target variable 𝑣𝑖 the set of
ground truth values appearing in 𝐶 is denoted asV𝑖 .

Starting from an input collection 𝐶 , the training and test set
of an ML/DL model can be easily obtained by extracting from
⟨𝐷𝑖 ,𝑂𝑖 ⟩ ∈ D ×O the set of features, and from𝑇𝑖 the corresponding
desired target values. In particular, the set of features will properly
represent 𝐷𝑖 ∈ D and 𝑂𝑖 ∈ O in the form of vectors. For instance,
a spatial dataset 𝐷𝑖 can be described by a histogram, like in [18], or
a spatial embedding, like in [5]. Similar considerations can be made
for𝑂𝑖 , which can be used to describe, for instance, the window of a
range query operation. The most suitable representation is the one
that correctly and meaningfully represents the characteristics of
the problem. However, its finding is out of the scope of this paper
since the balancing of the input domain is done with reference to
the sets 𝐷𝑖 ∈ D and 𝑂𝑖 ∈ O, not on their specific representations.

As regards the target variables, we can observe that several
different target variables can be associated with the same pair
⟨𝐷𝑖 ,𝑂𝑖 ⟩ ∈ D × O. Given a variable 𝑣𝑖 its value 𝑡𝑖 ∈ V𝑖 can be
computed or obtained explicitly by running a procedure or by a
surveyed labeling process. The combination of each pair ⟨𝐷𝑖 ,𝑂𝑖 ⟩
with the value of a single of these variables will lead to a different
training and test set. Let us consider an ML/DL model like the one
in [5], which tries to estimate several parameters of a range query
operation, like the selectivity, the number of MBR tests, and the ex-
ecution time. In this case, every 𝐷𝑖 ∈ D represents a spatial dataset
on which several range query operations are performed, each one
described by a different set of parameters 𝑂𝑖 ∈ O. For each pair
⟨𝐷𝑖 ,𝑂𝑖 ⟩, 𝑇𝑖 is composed of three values, one for each considered
metric. Starting from this situation, three training and test sets will
be extracted and fed into a specific ML/DL model.

Given an input collection 𝐶 , the general assumption made in
this paper is that generating a new tuple ⟨𝐷,𝑂,𝑇 ⟩ is a very costly
operation, particularly if we want to produce a tuple such that
one or more variables in 𝑇 belongs to specific values. For instance,
generating a new dataset and range query pair from scratch that
produces a given selectivity value is difficult and time-consuming.

Starting from an input collection 𝐶 , we can say that balancing
the input domains of a training set means balancing the spatial
characteristics of the datasets in 𝐷𝑖 and the parameters in 𝑂𝑖 from
which such a representation has been extracted.

Definition 3.2 (Balancing of the input domains). Given a collec-
tion 𝐶 = {⟨𝐷𝑖 ,𝑂𝑖 ,𝑇𝑖 ⟩}𝑘𝑖=1, 𝐶 is well balanced with respect to the
input domain if and only if the datasets in D and/or the operation
parameters in O are well distributed in the reference space.

In the same way, we can define the notion of balance for the
ground truth values by considering the set of values in V𝑖 for each
target variable 𝑣𝑖 .

Definition 3.3 (Balancing of the ground truth value). Given a col-
lection𝐶 = {⟨𝐷𝑖 ,𝑂𝑖 ,𝑇𝑖 ⟩}𝑘𝑖=1, we say that it is well balanced with re-
spect to the ground truth values of a target variable 𝑣𝑖 ∈ {𝑣1, . . . 𝑣𝑤}
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if and only if the corresponding values in V𝑖 are uniformly dis-
tributed in their specific domain.

Given such preliminary definitions, it is necessary to measure
and improve the balancing level of an input collection with respect
to both the input domains and the ground truth values. For this
purpose, Sect. 4 introduces some balancing metrics based on the
well-known notion of fractal dimension, while Sect. 5 describes a
set of spatial augmentation techniques that allow one to improve
the balancing of an input collection.

4 Balancing Metrics
As highlighted in the previous section, balancing a training set
requires, as a first step, the identification of some metrics that can
quantify the distribution of a set of values in a domain.

Regarding balancing the input domains, we can analyze the
degree of balancing of the spatial datasets in D. This phase will
involve the analysis of all spatial characteristics of a dataset, namely
the location (spatial distribution), the extension, and the complexity
of the geometries contained in it, as detailed in Sect. 4.1-4.3. In a
similar way, the analysis of the level of balancing of the ground
truth values can be performed as done in Sect. 4.4

4.1 Metrics for the input spatial distributions
The distribution of the geometry locations inside a dataset can
be described by the well-known concept of fractal dimension, as
done in [3]. The fractal dimension of a uniformly distributed spatial
dataset is close to the dimension of its embedding space; thus, it is
close to two if we consider datasets in 2D, while it is close to zero if
all geometries of the considered dataset are concentrated around a
point of the reference space. In theory, the fractal dimension can be
computed only on an infinite set of points with the self-similarity
property. However, an estimation of the fractal dimension of a
finite set of points can be obtained by applying the box-counting
method [1], and in [2, 3] its computation has been extended to a
finite set of geometries. In particular, given a dataset 𝐷 , a family
of histograms covering its reference space and with an increasing
cell size 𝑟 are computed. From each histogram, a single number
is obtained by summing up all the values contained in its cells;
usually, the number of geometries falling in the cell is considered.
This sum is called box-counting, and the trend of this quantity, by
varying the size 𝑟 of the grid cells, provides information about the
dataset distribution. More than one box-counting function can be
defined by considering different values for the exponent 𝑞 in the
following definition, producing different fractal dimensions (𝐸0, 𝐸2,
...) as theoretically defined in fractal theory.

Definition 4.1 (Box-counting plot). Given a dataset 𝐷 , containing
a set of geometries, the Box-counting plot is the plot of 𝐵𝐶𝑞

𝐷
(𝑟 )

versus 𝑟 in logarithmic scale:

𝐵𝐶
𝑞

𝐷
(𝑟 ) =

∑︁
𝑖

(ℎ𝑠𝑟𝐷 (𝑖))𝑞 𝑤𝑖𝑡ℎ 𝑞 ≠ 1 (2)

where ℎ𝑠𝑟
𝐷
(𝑖) is the value contained in the 𝑖-th cell of the histogram

built on 𝐷 with cells of size 𝑟 .

Given the box-counting plot of a spatial dataset 𝐷 , we can ex-
ploit the observation in [1] to determine its fractal dimension, as
explained below.

Definition 4.2 (Fractal dimension). For real datasets, the box-
counting plot reveals a trend of the box-counting function that,
in a large interval of scale values 𝑟 , behaves as a power law:

𝐵𝐶
𝑞

𝐷
(𝑟 ) ≃ 𝛼 · 𝑟𝐸𝑞 (3)

where 𝛼 is a constant of proportionality and 𝐸𝑞 is a fixed exponent
that characterizes the power law. 𝐸𝑞 is an estimate of the 𝑞-fractal
dimension of 𝐷 , denoted as 𝐷𝑞 , which is equal to:

𝐷𝑞 =
1

(𝑞 − 1) ·
𝜕 𝑙𝑜𝑔(∑𝑖 (ℎ𝑠𝑟𝐷 (𝑖))𝑞)

𝜕 𝑙𝑜𝑔(𝑟 ) (4)

for the range of 𝑟 where it is a constant value.

Given this estimate 𝐸𝑞 of the fractal dimension of 𝐷 , we can
concentrate on the simplest cases: 𝑞 = 0 and 𝑞 = 2. Considering for
simplicity only 𝐸2, we will use the notation 𝐸2 (𝐷𝑖 ) for denoting the
𝐸2 value computed on the dataset 𝐷𝑖 ∈ D. A measure of balancing
of the spatial distributions of all datasets 𝐷𝑖 ∈ D can be defined
starting from the set of values 𝐸2 (𝐷𝑖 ) as follows.

Definition 4.3 (Measure of balancing of the spatial distributions).
Given the collection of datasets D = {𝐷1, . . . , 𝐷𝑘 } contained in
the input collection 𝐶 , a measure of balancing of their spatial
distributions can be computed with the following two steps. (a)
The individual fractal dimension of each dataset 𝐷𝑖 ∈ D is com-
puted through the box-counting method in Def. 4.2, obtaining the
list: 𝐸2 (D) = (𝐸2 (𝐷1), . . . , 𝐸2 (𝐷𝑘 )) representing for each dataset
𝐷𝑖 ∈ D the estimation of the fractal dimensions 𝐸2.(b) The measure
of balancing of the input spatial distributions can then be obtained
by computing again the fractal dimension on 𝐸2 (D):

𝐵𝑞 (D, 𝐸2 ()) = 𝐸𝑞 (𝐸2 (D)) (5)

The more 𝐵𝑞 (D, 𝐸2 ()) is close to 1, the moreD is balanced with
respect to the distribution of its spatial datasets. Regarding the
choice of 𝑞, we can use 𝑞 = 0 or 𝑞 = 2: 𝐵0 is close to 1 if at least
one sample per class is present, while a value of 𝐵2 near to 1 means
that the samples are uniformly distributed among all classes.

4.2 Metrics for the input spatial extensions
Considering other features that characterize the content of a spatial
dataset, we can concentrate on those that describe the spatial exten-
sions of the geometries contained in the datasets of D and apply
the same measure of balancing to them. With reference to what
has been done in [18], the following measures can be considered:

• The average area of the geometries of a dataset 𝐷 ∈ D

𝑓𝑎𝑟𝑒𝑎 (𝐷) =
∑
𝑔𝑖 ∈𝐷 𝑎𝑟𝑒𝑎(𝑔𝑖 )

|𝐷 | (6)

where 𝑔𝑖 ∈ 𝐷 is a geometry in the dataset 𝐷 , 𝑎𝑟𝑒𝑎(𝑔𝑖 ) is a
function returning the area of 𝑔𝑖 , and |𝐷 | is the number of
geometries in 𝐷 .

• The average length of the 𝑥-side of the Minimum Bounding
Rectangle (MBR) of the geometries in 𝐷 ∈ D:

𝑓𝑙𝑒𝑛𝑥 (𝐷) =
∑
𝑔𝑖 ∈𝐷 𝑀𝐵𝑅(𝑔𝑖 ).𝑥𝑚𝑎𝑥 −𝑀𝐵𝑅(𝑔𝑖 ) .𝑥𝑚𝑖𝑛

|𝐷 |
Where𝑀𝐵𝑅(𝑔𝑖 ) returns the MBR of the geometry 𝑔𝑖 , while
𝑀𝐵𝑅(𝑔𝑖 ) .𝑥𝑚𝑎𝑥 and 𝑀𝐵𝑅(𝑔𝑖 ) .𝑥𝑚𝑖𝑛 are the maximum and
minimum 𝑥 coordinates of the MBR of 𝑔𝑖 , respectively.
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• The average length of the𝑦-side of theMBR of the geometries
in 𝐷 ∈ D: 𝑓𝑙𝑒𝑛𝑦

(𝐷) can be obtained as the previous measure
by simply using 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 in the equation above.

For each of these measures, we can apply a procedure analog to
the one described in Def. 4.3 for obtaining a measure of balancing
based on the notion of fractal dimension. In the remainder of this
paper, we will consider only the balancing of the average area of
the geometries in the datasets 𝐷𝑖 ∈ D. The extension to the other
two measures, and eventually other measures of interest for the
problem at hand, is straightforward.

Definition 4.4 (Measure of balancing of the spatial extension).
Given the collection of datasets D = {𝐷1, . . . , 𝐷𝑘 } contained in the
input collection𝐶 , a measure of balancing of their spatial extensions
can be computed with the following two steps. (a) For each dataset
𝐷 ∈ D, the average area of the geometries in 𝐷 is computed as in
Eq. 6, obtaining the list: 𝑓𝑎𝑟𝑒𝑎 (D) = (𝑓𝑎𝑟𝑒𝑎 (𝐷1), . . . , 𝑓𝑎𝑟𝑒𝑎 (𝐷𝑘 )). (b)
The measure of balancing of the input spatial extensions can then
be obtained by computing the fractal dimension on 𝑓𝑎𝑟𝑒𝑎 (D):

𝐵𝑞 (D, 𝑓𝑎𝑟𝑒𝑎 ()) = 𝐸𝑞 (𝑓𝑎𝑟𝑒𝑎 (D)) (7)

The more 𝐵𝑞 (D, 𝑓𝑎𝑟𝑒𝑎 ()) is close to 1, the more D contains
datasets whose average geometry area covers the entire range of
values. In other words, if our input collection wants to contain
geometries with an average area from a value 𝑎𝑚𝑖𝑛 to a value 𝑎𝑚𝑎𝑥 ,
𝐵1 is close to 1 if there is at least a dataset for each meaningful
discrete interval between 𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥 . Conversely, a value of
𝐵2 near 1 requires that the discrete intervals are also uniformly
covered by the datasets in D.

4.3 Metrics for the input geometry complexities
The final spatial characteristic of the input domains we could want
to balance is the complexity of the geometries in the datasets of D.
The complexity of the geometries can be represented by both the
kind of geometries (i.e., points, linestrings, boxes, and polygons) and
the average number of vertices in each geometry. Given these, and
eventually other analogous measures of the geometry complexity,
their balancing level can be determined through the computation
of the fractal dimension of the values as done in Eq. 7.

In the experiments of this paper, we will consider only homoge-
nous datasets containing geometric objects of the same type and
the same number of vertices. Therefore, without loss of generality,
we will not consider such dimension in the following.

4.4 Metrics for the ground truth values
The previous metrics concentrate on measuring the level of balanc-
ing of the input domains. However, the balancing of the ground
truth values is not only the most important factor for improving
the prediction capabilities of a model, but also the most challenging
task to obtain.

With reference to Eq. 1, each element of an input collection can
contain one or more ground truth values: 𝑇𝑖 = {𝑡1, . . . , 𝑡𝑤}, one
for each target variable {𝑣1, . . . , 𝑣𝑛} to be estimated. Therefore, the
balancing analysis has to be performed for every single variable 𝑣𝑖
by comparing the corresponding set of valuesV𝑖 appearing in𝐶 to
its set of possible values. In other words, for each target variable 𝑣𝑖 ,
we can apply the box-counting method to the elements in V𝑖 . The

more the fractal dimension is close to one, the more the balancing
is good.

Definition 4.5 (Measure of balancing of a target variable). Given
an input collection 𝐶 and a target variable 𝑣 for which the set of
values appearing in𝐶 is denoted asV , the measure of balancing of
𝑣 can be estimated by computing the fractal dimension on the set
V: 𝐵𝑞 (V) = 𝐸𝑞 (V).

Notice that this definition also requires the subdivision of the
spectrum of possible values into discrete intervals of interest. This
can be done in several ways that depend on the desired target to
be achieved. However, as will be clear in Sect. 6, a user with the
proper information can surely formulate an educated guess.

4.5 Balancing Metrics of an Input Collection
Given all the metrics introduced above for evaluating the balanc-
ing of the input domains and the ground truth values, the overall
balancing of an input collection 𝐶 with respect to a target variable
𝑣𝑖 can be described by the following tuple:

𝐵(𝐶) = ⟨𝐵0 (D, 𝐸2 ()), 𝐵2 (D, 𝐸2 ()), (8)
𝐵0 (D, 𝑓𝑎𝑟𝑒𝑎 ()), 𝐵2 (D, 𝑓𝑎𝑟𝑒𝑎 ()), 𝐵0 (V𝑖 ), 𝐵2 (V𝑖 )⟩

To not clutter the notation, in the following, we refer to the
tuple 𝐵(𝐶) as ⟨𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6⟩, where 𝑏1 = 𝐵0 (D, 𝐸2 ()), 𝑏2 =

𝐵2 (D, 𝐸2 ()),𝑏3 = 𝐵0 (D, 𝑓𝑎𝑟𝑒𝑎 ()),𝑏4 = 𝐵2 (D, 𝑓𝑎𝑟𝑒𝑎 ()),𝑏5 = 𝐵0 (V𝑖 ),
and 𝑏6 = 𝐵2 (V𝑖 ).

In the next section, we propose some techniques for balancing an
input collection𝐶 also through the addition of new spatial datasets,
synthetically generated from the available ones, and with known
ground truth values for a target variable 𝑣𝑖 .

5 Balancing techniques
Given an input collection 𝐶 = {⟨𝐷𝑖 ,𝑂𝑖 ,𝑇𝑖 }𝑘𝑖=1, a balancing tech-
nique allows one to add new tuples or remove existing ones already
in 𝐶 in order to obtain a new input collection 𝐶′ that is more bal-
anced with respect to input domains and/or the ground truth values.
A balancing technique can be formally defined as follows.

Definition 5.1 (Balancing technique). A balancing technique is
a function F () that can be applied to an input collection 𝐶 =

{⟨𝐷𝑖 ,𝑂𝑖 ,𝑇𝑖 }𝑘𝑖=1 to generate a new collection 𝐶𝑏 = {⟨𝐷′
𝑖
,𝑂′

𝑖
,𝑇 ′
𝑖
}ℎ
𝑖=1

such that: 𝐵(𝐶𝑏 ) ≻ 𝐵(𝐶). Given two balancing tuples 𝐵(𝐶𝑏 ) =

⟨𝑏′1, 𝑏
′
2, 𝑏

′
3, 𝑏

′
4, 𝑏

′
5, 𝑏

′
6⟩ and 𝐵(𝐶) = ⟨𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6⟩, we say that:

𝐵(𝐶𝑏 ) ≻ 𝐵(𝐶) ⇐⇒ (9)
𝑏′𝑖 ≥ 𝑏𝑖 for 1 ≤ 𝑖 ≤ 4 ∧ 𝑏′𝑗 > 𝑏 𝑗 for 5 ≤ 𝑗 ≤ 6

Given this general definition of a balancing technique, we can
identify the following three important characteristics:

• It should be able to increase the number of instances of an
under-represented class without forcing the re-computation
of the corresponding ground truth value. This is the most
complex part of a balancing technique since it requires defin-
ing and implementing proper augmentation strategies.

• It should be able to decrease the number of instances of an
over-represented class without reducing the balancing of
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the input characteristics of the datasets of the class. This
characteristic corresponds to having some under-sampling
mechanisms that are guided by the balancing metrics.

• It should be applicable to a variable number of subdivisions of
the ground truth domain. As described at the end of Sect. 4.4,
balancing the domain of a target variable requires the subdi-
vision of its domain into a set of discrete intervals in order to
properly identify which cases should be artificially produced
(i.e., augmented) or removed (i.e., sampled).

From this set of desiderata, it follows that a good augmentation
technique can be structured in the following two steps: (a) the
elements in the input collection 𝐶 are firstly subdivided into a
given number of classes according to the domain of the ground
truth values of the considered target value, (b) a new input collection
is obtained by producing new elements in the minority classes and
decreasing the elements in the majority ones. The first step involves
the definition of a proper partitioning technique, which essentially
takes the domainT of a target variable and subdivides it into a set of
intervals (or classes). Given them, the elements in 𝐶 are associated
with the corresponding class based on its own value 𝑇𝑖 .

Definition 5.2 (Partitioning technique). Given a collection of input
datasets 𝐶 = {⟨𝐷𝑖 ,𝑂𝑖 ,𝑇𝑖 ⟩}𝑘𝑖=1, the finite domain T = [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ]
of the ground truth values of the considered target variable, and a
desired number 𝑛 of classes to generate, the partitioning of 𝐶 with
respect to T is produced as follows:

P(𝐶,T) = {𝐶 𝑗 }𝑛𝑗=1
where ∀𝑗 = {1, . . . , 𝑛}𝐶 𝑗 ⊆ 𝐶 contains the elements ⟨𝐷𝑖 ,𝑂𝑖 ,𝑇𝑖 ⟩
such that 𝑡𝑠𝑡𝑎𝑟𝑡 + ((𝑖 − 1) · 𝛿) ≤ 𝑇𝑖 < 𝑡𝑠𝑡𝑎𝑟𝑡 + (𝑖 · 𝛿), and 𝛿 =

(𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡 )/𝑛𝑐 .

This discretization of the ground truth domain allows one to
identify the under-populated and the over-populated classes, as
well as to select the correct augmentation or sampling technique to
apply. In this regard, the second step of an augmentation technique
consists of applying the correct balancing action to each class.

Definition 5.3 (Balancing action). Given a partitioning 𝑃 = P(𝐶,T),
the balancing of 𝐶 produces a new input collection 𝐶′ by unioning
the elements in the classes obtained by applying a balancing action
A to the classes of the partition 𝑃 :

𝐶′ =
⋃
𝐶 𝑗 ∈𝑃

A(𝐶 𝑗 ) (10)

The balancing action A can decide to add or remove elements
from a given class 𝐶 𝑗 ∈ 𝑃 according to the cardinality of that
class. In particular, given the threshold 𝜃 = |D|/𝑛𝑐 , where 𝑛𝑐 is the
desired number of classes:

• If |𝐶 𝑗 | ≥ 𝜃 , then A performs an under-sampling to remove
some elements from the over-populated classes so that a total
amount of about 𝜃 elements are present in the class. The
selection can be done randomly or by trying to preserve
the balancing level of the domains of the input features
characterizing the class.

• If |𝐶 𝑗 | < 𝜃 , thenA adds new elements to the under-populated
class by selecting another element of𝐶 and applying an aug-
mentation transformation that preservers the ground truth

value already in𝐶 𝑗 , or that generates a desired ground truth
value not present before in 𝐶 𝑗 . In this way, a new element
⟨𝐷,𝑂,𝑇 ⟩ can be added to𝐶 𝑗 without requiring to recompute
the ground truth from scratch.

Starting from this general approach, the problem is to identify a
set of augmentation transformations that change the characteristics
of the input datasets while preserving the ground truth value or
generating new ground truth values in a controlled manner with-
out recomputing it. In general, given a vector spatial dataset, an
augmentation transformation is any transformation that moves the
geometries in the reference space; thus, it can be any affine trans-
formation, like rotation, translation, or scaling. However, with the
aim to preserve the ground truth value or change it in the proper
way, the specific set of augmentation techniques also depends on
the target value and, eventually, the operation performed on the
dataset to obtain it. In this paper, we propose the following set of
augmentation operations: rotation, noise, and merge that are deeply
presented in the following subsections.

5.1 Dataset Rotation
The first augmentation technique we propose is the rotation of
the dataset 𝐷 by an angle 𝛼 around the centroid of the MBR of its
reference space. In general, this affine transformation should leave
the ground truth unvaried or allow one to recompute the new value
of ground truth very easily.

Let us consider, for example, the case in which the input col-
lection contains a set of datasets and the ground truth for each of
them is another geometry representing the position of a point of
interest. In this case, the rotation of the input dataset 𝐷 also pro-
duces the rotation of the desired point 𝑝 , so the new ground truth
for the new dataset 𝐷′ can be easily obtained by applying the same
transformation on 𝑝 . In a similar way, in case the input collection
contains a set of elements, each one composed of a dataset 𝐷 , the
parameters of range query𝑊 (i.e., query window), and a target
variable representing the selectivity, rotating both the dataset 𝐷
and the range query𝑊 does not substantially modify the original
selectivity. The selectivity of a range query is defined as follows:

Definition 5.4 (Selectivity of range query). Given a spatial dataset
𝐷 and a query window𝑊 = (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 ), the range
query operation 𝑅𝑄 (𝐷,𝑊 ) produces the following result:

𝑅𝑄 (𝐷,𝑊 ) = {𝑔 | 𝑔 ∈ 𝐷 ∧ 𝑔 ∩𝑊 ≠ ∅}
where 𝑔 ∩𝑊 returns the intersection between the geometry of the
spatial object 𝑔 and the query window𝑊 . The selectivity of a range
query is defined as:

𝑠𝑒𝑙 (𝑅𝑄 (𝐷,𝑊 )) = |𝑅𝑄 (𝐷,𝑊 ) |
|𝐷 |

namely, it is the ratio between the cardinality of the result and the
cardinality of the dataset.

From this definition, it is clear that a rotation of both the dataset
𝐷 and the query window𝑊 does not substantially impact the previ-
ously computed selectivity value. More specifically, this operation
can discard some original geometries because they go outside the
reference space after the rotation. However, if the query window
remains inside the reference space, the new selectivity value can be
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easily computed starting from the result of the original query and
the updated cardinality of the dataset. Fig. 1 illustrates an example
of this operation applied to a dataset and its range query window.

rotation
𝛼 = 90°

Figure 1: Example of application of a rotation operation ap-
plied to a dataset 𝐷 and a range query window𝑊 .

Similar considerations can be made for other target values of
range query operation, like the execution time or the number of
MBR tests. Since the result of the range query operation does not
change, the time required or the number of MBR tests performed
to compute it are not affected by this operation.

5.2 Noise addition or removal
Inspired by the classical addition or removal of noise in image
augmentation, this technique aims to add new geometries or remove
existing ones inside the dataset without altering the ground truth
value. The effective implementation of this technique will depend
on the specific input collection and, in particular, on the considered
operation and target variable.

noise

Figure 2: Example of application of a noise augmentation
applied to a dataset 𝐷 and a range query window𝑊 .

Let us consider again the case of an input collection generated to
estimate the selectivity of the range query. In this case, the addition
or removal of noise corresponds to the addition of new geometries,
or the removal of existing geometries, outside or inside the query
window𝑊 . This augmentation operation can be used to generate
from ⟨𝐷,𝑂,𝑇 ⟩ a new tuple ⟨𝐷′,𝑂′,𝑇 ′⟩ for a specific value of 𝑇 ′

without recomputing the range query operation from scratch. In
particular, if we want to produce a new tuple for another selectivity
value 𝑇 ′ > 𝑇 , we can alternatively add some geometries inside
the range query window𝑊 or remove some geometries outside it.
Fig. 2 illustrates an example of this operation applied to a dataset
and its range query window.

The addition or removal of geometries outside a query window
can also be used to produce a new tuple for the other two range

query target variables: the execution time and the number of MBR
tests. Indeed, if the range query operation is performed by exploit-
ing the use of a spatial index [6], the addition of geometries outside
the region of interest does not influence the computational cost or
the number of performed comparisons.

5.3 Dataset merge
This technique essentially tries to exploit some existing datasets in
D by combining them properly so that a new element can be pro-
duced with minimal effort. The way the combination is performed
greatly depends on the target variable to be estimated. Consider-
ing the case of the range query operation again, the merging two
datasets𝐷1, 𝐷2 ∈ D such that we know the result of the application
of a range query𝑊 on 𝐷1 and𝑊 ∩ 𝐷2 = ∅, allows one to obtain
another tuple for which the new selectivity value can be easily
computed, while the required time and number of comparisons
remains the same. Fig. 3 illustrates an example of this augmentation
applied to two existing datasets and a range query window𝑊 ,

merge

Figure 3: Example of application of a merge augmentation
applied to two datasets 𝐷1 and 𝐷2 and a range query window
𝑊 previously computed on 𝐷1.

The following section illustrates the results of a set of experi-
ments performed on a set of input collections synthetically gener-
ated to estimate the range query selectivity.

6 Experiments
In this section, we present a set of experiments performed with
the aim to (a) explore the expressiveness of the balancing metrics
proposed in Sect. 4, (b) verify the impact of the level of balancing of
a training set in both the input domains and the ground truth values
on the accuracies of an ML/DL model, (c) test the effectiveness of
the augmentation techniques introduced in Sect. 5 in improving the
balancing of a collection of spatial datasets and thus increasing the
accuracy of the trained models1.

1Source code available at https://github.com/smigliorini/spatial-augmentation.
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For the purposes of these experiments, we start by synthetically
generating, through the SpiderWeb tool [11], 2,000 datasets in the
reference space 𝑅𝑆 = (0, 0, 10, 10). These datasets are characterized
by different cardinalities, contain geometries with different average
areas, and have different global MBRs that are contained in 𝑅𝑆

but can be smaller than 𝑅𝑆 . Moreover, they cover all available
distributions in [20]: uniform, diagonal, Gaussian, parcel, bit, and
Sierpinski, some of which are illustrated in Fig. 4.

(a) (b) (c)

Figure 4: Examples of the considered datasets and their dis-
tributions: (a) Sierpinski, (b) parcel, (c) uniform.

Given such datasets, we build an initial input collection by per-
forming a total of 100,000 range queries over them, varying their
placement and size, and collecting three different target variables:
the selectivity, the number of MBR tests, and the execution time.
Range query operations are performed through the open source
Beast library (Scalable Exploratory Analytics on Spatio-temporal
Data) [8] and exploit the use of a very efficient spatial index, called
R*-Grove [19], also provided by the same library. Relatively to the
considered ML/DL model, we use the ones proposed in [5] for es-
timating the range query selectivity. This model is based on (i) a
first layer that computes the histogram of the given dataset, (ii) a
second layer that extracts the spatial embedding of the histograms,
(iii) a third layer that receives the spatial embedding and the four
coordinates of the query rectangle and produces the estimate of
the range query parameters.

Starting from this input collection of 100,000 data points, that
is called global collection 𝐶0, we have first extracted a collection,
called 𝐶𝑡𝑒𝑠𝑡

1 , from which we generate the test set used in all the
experiments. With the aim of obtaining a balanced test set, we have
applied on𝐶𝑡𝑒𝑠𝑡

1 a set of balancing actions for trying to balance the
input domains and the ground truth values, taking the selectivity
as the target variable. This leads to a new balanced test collection
denoted as 𝐶𝐵𝐴𝐿𝑡𝑒𝑠𝑡1 .

With the aim to study the effectiveness of both the balancing
metrics and the augmentation techniques, starting from the global
input collection 𝐶0, we also generate the set of collections in Tab. 1
from which different training sets are then produced.

• 𝐶𝑡𝑟𝑎𝑖𝑛
1 : it contains only randomly chosen datasets with the

most frequent distributions: uniform and parcel. The distri-
bution of the ground truth values is left as is in the original
collection without any balancing action being applied. The
purpose of this collection is to demonstrate the effect of an
imbalanced input domain on the training process.

• 𝐶𝑡𝑟𝑎𝑖𝑛
2 : it contains only randomly chosen datasets with the

most frequent distributions: diagonal, bit, Gaussian, and Sier-
pinski. The distribution of the ground truth is left as in the

𝐶𝑡𝑟𝑎𝑖𝑛
1 𝐶𝑡𝑟𝑎𝑖𝑛

2 𝐶𝑡𝑟𝑎𝑖𝑛
3 𝐶𝑡𝑟𝑎𝑖𝑛

4 𝐶𝑡𝑒𝑠𝑡
1
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Figure 5: The number of datasets for each selectivity class
with a partitioning of the input domains donewith a logarith-
mic scale as follows: Class 0 = [0, 5𝑒-9], Class 1 = [5𝑒-9, 5𝑒-8],
Class 2 = [5𝑒-8, 5𝑒-7], Class 3 = [5𝑒-7, 5𝑒-6], Class 4 = [5𝑒-6, 5𝑒-5],
Class 5 = [5𝑒-5, 5𝑒-4], Class 6 = [5𝑒-4, 5𝑒-3], Class 7 = [5𝑒-3, 5𝑒-2],
Class 8 = [5𝑒-2, 3𝑒-1].

original collection. As in the previous case, this collection
aims to show the effect of having an imbalanced input do-
main in the training set.

• 𝐶𝑡𝑟𝑎𝑖𝑛
3 : it contains randomly chosen datasets of all distribu-

tions and with a high frequency of small values of ground
truth (close to zero). In this case, we want to study the effect
of having an imbalanced set of ground truth values.

• 𝐶𝑡𝑟𝑎𝑖𝑛
4 : it contains randomly chosen datasets of all distri-

butions but with a high frequency of big values of ground
truth (close to 0.3). This is similar to𝐶𝑡𝑟𝑎𝑖𝑛

3 but with a strong
imbalance on the opposite side of the ground truth domain.

For each of these collections, Tab. 1 contains in the first columns
the number of datasets they contain and their subdivision among all
possible distributions, where “uni” means uniform, “diag” stays for
diagonal, “gau” is the Gaussian, “par” means parcel and “sie” is the
Sierpinski one. The table then reports the measure of balancing of
each collection by showing the fractal dimension computed on the
input domains, the distribution and the average area of geometries,
and the ground truth values considering three target variables, i.e.,
selectivity, number of MBR tests and execution time.

Fig. 5 illustrates for each collection the result of applying a parti-
tioning P which subdivides its datasets with respect to the ground
truth of the selectivity and considering the following 9 classes or in-
tervals {[0, 5𝑒-9], [5𝑒-9, 5𝑒-8], [5𝑒-8, 5𝑒-7], [5𝑒-7, 5𝑒-6], [5𝑒-6, 5𝑒-5],
[5𝑒-5, 5𝑒-4], [5𝑒-4, 5𝑒-3], [5𝑒-3, 5𝑒-2], [5𝑒-2, 3𝑒-1]}. Notice that the
adopted partitioning is not linear, but we use a logarithmic scale
because we are more interested in the order of magnitude of the
selectivity value, rather than in its linear increment.
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Table 1: Input collections for the training and test set extraction. The first section reports unbalanced collections, while
the second section is related to balanced collections. For each collection, the 𝐵0 and 𝐵2 values for the input domain (i.e.,
spatial distribution and average geometry area) and the ground truth values are reported. In bold, the minimum values of 𝐵2
(corresponding to unbalanced cases) and underlined the maximum values of 𝐵2 (corresponding to more balanced cases).

Name #datasets % of distribution Measure of balancing 𝐵(𝐶) (see Eq. 8)
(uni,dia,bit,gau,par,sie) input ground truth

distribution area selectivity #MBRTests execution time
(𝐵0, 𝐵2) (𝐵0, 𝐵2) (𝐵0, 𝐵2) (𝐵0, 𝐵2) (𝐵0, 𝐵2)

Unbalanced collection

𝐶𝑡𝑟𝑎𝑖𝑛
1 32,036 (66,4,3,4,21,2) (0.78,0.61) (0.95,0.79) (0.93,0.48) (0.87,0.49) (0.68,0.59)

𝐶𝑡𝑟𝑎𝑖𝑛
2 15,433 (3,32,18,34,3,9) (0.79,0.65) (0.95,0.86) (0.88,0.33) (0.84,0.61) (0.67,0.61)

𝐶𝑡𝑟𝑎𝑖𝑛
3 13,460 (22,22,12,22,14,8) (0.80,0.62) (0.96,0.69) (0.85,0.15) (0.77,0.41) (0.69,0.61)

𝐶𝑡𝑟𝑎𝑖𝑛
4 17,577 (34,17,7,12,28,2) (0.80,0.64) (0.95,0.66) (0.87,0.87) (0.87,0.64) (0.64,0.59)

𝐶𝑡𝑒𝑠𝑡
1 10,316 (16,18,17,18,16,15) (0.84,0.75) (0.95,0.84) (0.92,0.49) (0.86,0.62) (0.63,0.57)

Balanced collection

𝐶𝐵𝐴𝐿𝑡𝑟𝑎𝑖𝑛2 30,813 (3,33,19,35,3,6) (0.78,0.65) (0.91,0.74) (0.89,0.64) (0.81,0.72) (0.63,0.61)
𝐶𝐵𝐴𝐿𝑡𝑟𝑎𝑖𝑛3 40,460 (14,25,18,25,9,9) (0.79,0.67) (0.82,0.53) (0.85,0.57) (0.73,0.70) (0.65,0.56)

𝐶𝐵𝐴𝐿𝑡𝑒𝑠𝑡1 11,055 (13,21,19,21,12,13) (0.80,0.53) (0.89,0.71) (0.90,0.61) (0.74,0.63) (0.57,0.58)

6.1 Balancing analysis
Tab. 1 allows us to analyze, for each generated collection, the level
of balancing in both the input domains and the ground truth val-
ues. The first considered input domain is the spatial distribution
of the geometries contained in the datasets. In this case, all col-
lections have a 𝐵0 (D, 𝐸2 ()) and 𝐵2 (D, 𝐸2 ()) value below 1, with
𝐵2 (D, 𝐸2 ()) always lower than the corresponding value of 𝐵0. This
situation derives from the aim to study the effect of unbalanced
collections and the need for at least one representative for each dis-
tribution to exploit the augmentation techniques in Sect. 5 during
the balancing activity. Indeed, having a value of 𝐵0 (D, 𝐸2 ()) near 1
means that at least one representative for each spatial distribution
is present in the collection, while 𝐵2 (D, 𝐸2 ()) is near 1 only when
the number of representatives for each class is uniform. Conversely,
as regards the second considered input domain, namely the average
area of the geometries, the collections are quite balanced in this case
both with respect to 𝐵0 (D, 𝑓𝑎𝑟𝑒𝑎) and 𝐵2 (D, 𝑓𝑎𝑟𝑒𝑎) in three cases
and only with respect to 𝐵0 (D, 𝑓𝑎𝑟𝑒𝑎) in the other two. Comparing
the maximum value of 𝐵0 for the two input domains, we can notice
that even when a collection contains all the distributions in [20],
it is more difficult to cover the entire domain of the spatial distri-
butions rather than the entire range of spatial extensions, indeed
𝐵0 (D, 𝐸2 ()) < 𝐵0 (D, 𝑓𝑎𝑟𝑒𝑎) for all collections.

Themost interesting part is related to the balancing of the ground
truth values. In this case, we can observe that a higher balancing
value on the input domains does not always correspond to a higher
balancing value on the ground truth values. As mentioned for the
input domains, the obtained balancing measures are usually quite
good for the 𝐵0 parameter, since we tried to build them in order to
cover the entire range of values, but they are usually poor in the
𝐵2. Having complete coverage of the possible range of values will

allow us to apply the augmentation techniques to improve also the
values of 𝐵2 for the considered target variable.

In Tab. 1, we can observe that even the collection with the most
balanced input domains (i.e., 𝐶𝑡𝑟𝑎𝑖𝑛

2 ) can be imbalanced in the
ground truth values. Indeed, for the selectivity, the balancing mea-
sure of 𝐶𝑡𝑟𝑎𝑖𝑛

1 is better than the one of 𝐶𝑡𝑟𝑎𝑖𝑛
2 , even if the first is

lower balanced in both input domains. The best balancing value
for the selectivity is obtained for 𝐶𝑡𝑟𝑎𝑖𝑛

4 , which is among the worst
with respect to both the distribution and the area.

Moreover, when the balancing of different target variables is
considered, each collection can behave in an inconsistent way. For
instance, 𝐶𝑡𝑟𝑎𝑖𝑛

2 is quite balanced for the number of MBR tests
and the execution time, but is very unbalanced for the selectivity.
Conversely, 𝐶𝑡𝑟𝑎𝑖𝑛

4 is quite good for the selectivity, but is less good
for the other two parameters. This observation reveals that different
balancing actions have to be performed on the same collection based
on the selected target variable.

6.2 Augumentation and testing
Given the input collections in Tab. 1, we extract the corresponding
training set from each of them, and we apply the ML model 𝑀
proposed in [5] for the prediction of the range query parameters.
The extraction essentially consists of computing the dataset his-
togram, representing the spatial dataset, and concatenating this
representation with the coordinates of the range query, to form the
input features of the model. A trained model is obtained from each
collection in Tab. 1, all these models are tested with respect to the
same balanced test set 𝐶𝐵𝐴𝐿𝑡𝑒𝑠𝑡1 .

Tab. 2 reports the results of the test performed on each model
with the same training set. For the accuracy evaluation, we use
the standard WMAPE metric, namely the Weighted Mean Absolute
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Table 2: Results of the training and testing of𝑀 for estimating
the selectivity of the range query. Only the best results are
reported. Hyperparameters of column Hyperpar are H1 =
64,32,32,16,16, H2 = 128,64,64,32,32, H3 = 256,128,128,64,64,
H4 = 512,256,256,128,128, H5 = 1024,512,512,256,256. Column
TT reports the training time in seconds and the number of
epochs inside brackets.

Collection Hyperparam WMAPE TT

Unbalanced collections

𝐶𝑡𝑟𝑎𝑖𝑛
1 H5 0.756 594 (54)

𝐶𝑡𝑟𝑎𝑖𝑛
2 H3 0.994 149 (17)

𝐶𝑡𝑟𝑎𝑖𝑛
3 H4 0.996 67 (10)

𝐶𝑡𝑟𝑎𝑖𝑛
4 H4 0.871 401 (42)

Balanced collections

𝐶𝐵𝐴𝐿𝑡𝑟𝑎𝑖𝑛2 H1 0.409 594 (80)
𝐶𝐵𝐴𝐿𝑡𝑟𝑎𝑖𝑛3 H2 0.456 613 (80)

Percentage Error, since it allows us to correctly treat zeros in the set
of actual and predicted values. It is a variant of MAPE in which the
mean absolute percentage error is treated as a weighted arithmetic
mean. Most commonly, the absolute percent errors are weighted by
the actual values, which leads to the following formula:𝑊𝑀𝐴𝑃𝐸 =∑𝑛
𝑖=1 |𝐴𝑖 − 𝑃𝑖 |/

∑𝑛
𝑖=1 |𝐴𝑖 |, where 𝐴𝑖 are the actual value, while 𝑃𝑖

are the predicted value. The table also reports the required training
time, which clearly increases as the cardinality of the training set
increases, as well as the number of used epochs. In this regard,
we can notice that the number of epochs can be less than the
set value (i.e., 80) if the training is prematurely stopped since no
improvements of the loss function are observed for more than
six epochs. This is another indicator that the training set is not
sufficiently good to perform profitable learning.

The obtained results confirm that building a training set from an
unbalanced collection does not produce good results. In particular,
the worst results are obtained for 𝐶𝑡𝑟𝑎𝑖𝑛

2 , 𝐶𝑡𝑟𝑎𝑖𝑛
3 and 𝐶𝑡𝑟𝑎𝑖𝑛

4 , which
are the collections with the lower values of 𝐵2 with respect to the
selectivity. This confirms that the proposed measures are effective
in identifying the goodness of a training set.

Given the values in Tab. 1 and Tab. 2, we decide to concentrate
on the two worst cases: 𝐶𝑡𝑟𝑎𝑖𝑛

2 and 𝐶𝑡𝑟𝑎𝑖𝑛
3 , and apply to them the

augmentation techniques proposed in Sect. 5. The new balancing
metrics for the corresponding balanced datasets are reported in the
second part of Tab 1 with the name 𝐶𝐵𝐴𝐿𝑡𝑟𝑎𝑖𝑛2 and 𝐶𝐵𝐴𝐿𝑡𝑟𝑎𝑖𝑛3 , re-
spectively. After the augmentation actions, in both cases, the value
of 𝐵2 for the selectivity is much better than the original ones. In
particular, for 𝐶𝐵𝐴𝐿𝑡𝑟𝑎𝑖𝑛2 , it reaches the value of 0.64 starting from
an initial value of 0.33, while for𝐶𝐵𝐴𝐿𝑡𝑟𝑎𝑖𝑛2 , it becomes 0.57 in place
of 0.15. As already explained, the value of 𝐵0, in this case, does not
change so much since the original datasets have been built in a way
to ensure that at least one representative for each class is present,
while the number of elements in each class is very unbalanced. We
can also notice that this augmentation performed with reference to

the selectivity also has a positive effect on another target variable,
namely the number of MBR tests, since these two are highly related
to each other. Conversely, no substantial improvement has been
made in the balancing of the execution time.

These new datasets are used to extract two new training sets
for the same model𝑀 , and the obtained results are also reported
in Tab. 2. The obtained WMAPE error confirms that using a more
balanced training set allows one to obtain more accurate models.
Moreover, we can see that also the maximum number of epochs
is reached in these cases, suggesting that the learning process is
completely performed.

7 Conclusion
This paper presents an extensive discussion about the balancing
problem in training and test sets with reference to ML/DL models
dealing with spatial datasets and spatial operations. First of all, a
general formalization of the problem is provided, and a measure
of balancing for the input domains and the ground truth values is
proposed, which is based on the notion of fractal dimension and
its box-counting estimation. Secondly, a set of augmentation tech-
niques for spatial input collections is provided by focusing on a
specific spatial operation that is the well-known range query. Fi-
nally, experiments are reported, which illustrate the applicability of
the proposed balancing measures, the effects of having unbalanced
training sets on the accuracy of ML/DL models, and demonstrate
the benefits of the proposed spatial augmentation techniques. The
performed experiments reveal that producing a balanced training
set is not a simple task, even when only the balancing of the input
domains is considered and particularly when the balancing of the
ground truth values is desired. Moreover, since producing new data
points in a training set for specific ground truth values is often a
costly operation, tailored balancing techniques need to be proposed
that allow the generation of new data points without recomputing
the ground truth from scratch.

The obtained results confirm the goodness of the approach and
encourage further investigation in this direction, in particular in
the identification of other spatial augmentation techniques that
can be generally applied or are tailored for other kinds of spatial
operations. Another future work consists of increasing the effi-
ciency of the proposed augmentation techniques in terms of space
and time requirements for their execution. In this regard, massive
exploitation of the index structures, as well as the use of big data
paradigms like MapReduce, can help in achieving such results.
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