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ABSTRACT
AConditional Simple Temporal Networkwith Uncertainty (CSTNU)

models temporal constraint satisfaction problems in which the en-

vironment sets uncontrollable timepoints and conditions. The ex-

ecutor observes and reacts to such uncontrollable assignments as

time advances with the CSTNU execution. However, there exist

scenarios in which the occurrence of some future timepoints must

be fixed as soon as the execution starts. We call these timepoints

parameters. For a correct execution, parameters must assume values

that guarantee the possibility of satisfying all temporal constraints,

whatever the environment decides the execution time for uncon-

trollable timepoints and the truth value of conditions, i.e., dynamic

controllability (DC). Here, we formalize the extension of the CSTNU

with parameters. Furthermore, we define a set of rules to check

the DC of such extended CSTNU. These rules additionally solve

the problem inverse to checking DC: computing restrictions on

parameter values that yield DC guarantees. The proposed rules can

be composed into a sound and complete procedure.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; • Com-
puting methodologies→ Temporal reasoning.

KEYWORDS
Temporal Constraint Network, Conditional, Uncertainty, Constraint-
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1 INTRODUCTION AND MOTIVATION
Temporal reasoning is an important topic in many contexts where

temporal aspects of processes/data need to be suitably highlighted,

represented, verified, and/or derived. While some approaches focus

on the proposal and identification of computational properties of

temporal reasoning approaches (e.g., temporal logic, time game

automata, . . . ), others aim to offer effective operational models for

temporal reasoning (e.g., temporal networks, temporal constraint

networks, . . . ). Both approaches often propose graph-based rep-

resentations of the faced aspects [2, 12, 13, 16]. For example, in

[13], authors studied the satisfiability, implication, and validation

problems for data dependencies through Temporal Graph Func-

tional Dependencies, while in [16], authors proposed a graph-based

algorithm for acquiring temporal constraints among relations.

Temporal constraint networks (TCN) are a formalism for repre-

senting and reasoning about temporal knowledge in time-constrained

applications. TCNs encode binary temporal constraints between

timepoints as linear inequalities. The first type of TCN, the Simple

Temporal Network (STN), was introduced in [4] to solve the prob-

lem of verifying the satisfiability of a set of temporal constraints.

Extensions of the STN tackle more complex problems in the pres-

ence of, e.g., uncontrollable durations (STNU, [19]), observed con-

ditions (CSTN, [17]), or both (CSTNU, [10]). These extensions led

to the definition of properties such as strong, weak, and dynamic
controllability (DC) [8, 9, 18, 19]. In particular, DC ensures that a

controller can dynamically respond to run-time observations of

uncontrollable assignments of timepoints and observed conditions

by assigning the controllable timepoints during the TCN execution.

DC significantly differs from the satisfiability property. In parallel

with game theory, verifying satisfiability can be seen as a single-

player game to find an assignment of timepoints that satisfies a

given set of temporal constraints. On the other hand, DC can be

seen as a two-player game in which the player has a winning strat-

egy for assigning controllable timepoints based on the observed

assignments of uncontrollable timepoints and conditions chosen

by the opponent so far.

Motivated byworkflow timemanagement [6] as an application of

TCNs, the authors in [5] introduced the concept of parameter nodes

in STNUs. Parameter nodes are STNU timepoints whose (future)

value is fixed at the beginning of the STNU execution before any

other timepoint. The semantics of parameter nodes is in contrast

to the usual interpretation of a TCN timepoint, according to which

a timepoint value is fixed when the timepoint is executed, and
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the fixed value is the time of execution. Parameter nodes enable

the modeling of temporal problems in which the values of some

future timepoints are known in advance. When an STNU with

parameter nodes is executed, the assignments of the controllable

(non-parameter) timepoints also depend on the values that the

parameter timepoints have been assigned at the beginning. Thus,

the introduction of parameter nodes redefined the DC property:

the winning strategy assigning controllable timepoints is not only

based on the values of the previously executed timepoints but also

on the future values of parameter nodes fixed at the beginning.

Besides checking the DC of a network, parameter nodes pose

an additional challenge: determining which admissible values they

may be assigned before an STNU execution starts and preserving

the DC of the STNU. To this end, the work in [7] introduced the

P-Rules, i.e., rules for deriving the minimal bounds for parameter

node values that guarantee the DC of the STNU. Each assignment of

the parameter nodes satisfying these bounds represents a possible

fixing of their values before the start of the STNU execution, which

guarantees the DC of the network.

Although STNU is adequate to represent several problems, e.g.,

robotic plans, on the other hand, it is limited by the lack of se-

mantics for conditional executions, i.e., executions that depend on

observed conditions. Indeed, a broad number of applications, e.g.,

business processes, exhibit conditional executions and require more

expressive temporal constraint networks for a formal representa-

tion and reasoning. As an example of a real temporal constraint

network, we consider here an adapted excerpt from the guideline

for the diagnosis and treatment of ST-segment Elevation Myocardial
Infarction (STEMI), published by the American College of Cardiol-

ogy/American Heart Association in 2004 and updated in 2013 [14].

Example 1.1. The case starts when the patient is admitted to the

hospital, and a first evaluation is done. After admission, the physi-

cian has to define the therapy according to the possible presence of

hypotension. Then, the main decision has to be taken, i.e., whether

to go for a fibrinolytic therapy (which is drug-based) or opt for

catheter-based coronary intervention. The coronary intervention

requires that the operating room is suitably prepared. At the end, a

patient evaluation follows, independently of the procedure.

Figure 1 represents such an excerpt of the guidelines through a

TCN. In such a network, timepoints are represented through tex-

tual labels. For example, Z represents the starting timepoint (Zero

timepoint), DS represents the starting point of diuretics therapy,

and so on.

Temporal constraints are represented as directed edges between

timepoints, with the allowed range of distances between connected

timepoints. Contingent links are represented through double-line

directed edges. Such links represent that some timepoints (contin-
gent timepoints) are not under the control of the system, which can

only observe when they occur within the given range. For example,

DE, the timepoint pointed by a contingent link, represents the end

of the definition of the diuretic therapy, which may happen from 3

to 10 minutes after the start of this activity.

Not all the timepoints are always executed (i.e., happen). For

example, in the case of hypotension, condition represented by the

true literal ℎ, the diuretics and nitrates therapy specification is not

executed. Different execution paths in the network are expressed

through labeled edges. As another example, the true literal 𝑓 repre-

sents the condition that a Fibrinolytic Therapy must be executed.

A last kind of timepoint is represented through underlined tex-

tual labels. It represents some timepoint that has to be executed

at a specific time distance from the starting timepoint Z, within

the given range. Such timepoints are named parameters. This time

distance has to be fixed at the beginning of the execution of the

network. In the example, the parameter corresponding to Operating
Room Prepared (𝑂𝑅𝑃 ) must be specified immediately at the begin-

ning of the execution. In this case, the range [20, +∞] requires the
room not to be prepared too early with respect to the possible use

of the operating room for the coronary intervention. The parameter

𝑃𝑀𝑅 represents the time at which past medical records for the case

must be available. Fixing it before the execution means making

explicit the required time to retrieve such documents. Timepoints

corresponding to 𝑂𝑅𝑃 and 𝑃𝑀𝑅 represent a kind of deadline that

has to be shared with other external processes, which require the

execution of some coordinated tasks. Thus, they must be set at the

beginning of any execution of the considered network to allow

the right execution of external processes that need some kind of

synchronization with the execution of the considered network. For

example, parameter Operating Room Prepared (𝑂𝑅𝑃 ) must be shared

with the stakeholders involved in the (complex) disinfection and

sterilization of the operating room.

After defining the STEMI-related network, it is important to ver-

ify if it is possible to carry out a successful execution. We have to

guarantee that as soon as we know the value of a contingent time-

point, we can move forward with the execution of the timepoints

under the control of the system (controllable timepoints), satisfying

all the given constraints without forbidding any possible (future)

execution path, i.e., we have to guarantee the DC of the network.

On the other hand, the parameter values have to be fixed before

starting the network execution and must allow the following DC. In

the example, we need to determine the values for parameters 𝑂𝑅𝑃

and 𝑃𝑀𝑅 that allow successful executions of the STEMI-related

network. Thus, we need to determine adequate restrictions as done

in STNUs by using the P-Rules. However, in CSTNUs, P-Rules are

insufficient for this purpose, since they do not consider conditions.

Here, we propose to extend the CSTNUs with parameters and

develop a new set of rules for checking the DC, overcoming the cur-

rent limitations of (i) CSTNUs lacking support for parameters, and

(ii) P-Rules lacking support for conditions. In general, given a net-

work of constraints, a DC-checking algorithm determines whether

the network is DC or not. We propose to solve the inverse problem

with respect to parameters: given a CSTNU with parameters, deter-

mine a set of restrictions on parameters, which yield the DC of the

network. The contributions of this paper are the following:

• The parameterized CSTNU, a new kind of temporal constraint

network that is strictly more expressive than the CSTNU;

• An algorithm for parameterized CSTNUs solving the inverse

problem of computing parameter restrictions yielding DC.

2 PRELIMINARIES
Since the concept of labeled constraint is important in the following

definitions, let us introduce it. Given a set P of propositional letters,

a propositional label (p-label) ℓ is any conjunction of literals, where
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Figure 1: Temporal constraint network for a guideline excerpt for managing patients having a myocardial infarction. The
contingent links are in a gray box having the associated clinical activity as a label. Each parameter also has the associated
clinical name as a label. The implicit range is [0, +∞].

a literal is either a propositional letter 𝑝 ∈ P or its negation ¬𝑝 .
The empty label is denoted by ⊡. The label universe of P, denoted

by P∗
, is the set of all labels whose literals are drawn from P. Two

labels ℓ1, ℓ2 ∈ P∗
are consistent if and only if their conjunction

ℓ1 ∧ ℓ2 is satisfiable. Following is the definition of CSTNU from [9].

Definition 2.1 (CSTNU). A CSTNU is a tuple ⟨T ,P, 𝐿, C,OT ,O,
L⟩, where:

• T is a finite set of real-valued variables, called timepoints;
Z ∈ T is the timepoint that occurs before any other one. For

convenience, we assume that Z = 0.

• P is a finite set of propositional letters;

• 𝐿 : T → P∗
assigns p-labels to timepoints;

• C is a set of labeled constraints (requirement links), each with
form (𝑌 − 𝑋 ≤ 𝛿, ℓ), where 𝑋,𝑌 ∈ T , 𝛿 ∈ R, and ℓ ∈ P∗

;

note that if 𝛿 ≤ 0, then 𝑋 has to occur at least |𝛿 | after 𝑌 ;
• OT ⊆ T is a set of observation timepoints;

• O : P → OT is a bijection from propositional letters to

observation timepoints;

• L is a set of contingent links each of the form (𝐴, 𝑥,𝑦,𝐶),
where: 𝐴 ∈ T , 𝐶 ∈ T \ OT , 𝐴 ≠ 𝐶 are called activation and

contingent timepoints, respectively; 𝐿(𝐴) = 𝐿(𝐶); 0 < 𝑥 <

𝑦 < ∞; and distinct contingent links have distinct contingent

timepoints.

• For each labeled constraint (𝑌 −𝑋 ≤ 𝑣, 𝛼), 𝛼 ⊃ 𝐿(𝑌 ) ∧𝐿(𝑋 ).
This property is called constraint label coherence [11].

• For each literal 𝑞 or ¬𝑞 appearing in 𝛼 , 𝛼 ⊃ 𝐿(𝑂 (𝑞)). Such a

property is called constraint label honesty [11].

• For each 𝑌 ∈ T , if literal 𝑞 or ¬𝑞 appears in 𝐿(𝑌 ), then
𝐿(𝑌 ) ⊃ 𝐿(𝑂 (𝑞)), and 𝑂 (𝑞) has to occur before 𝑌 , i.e., (𝜖 ≤
𝑌 −𝑂 (𝑞) ≤ +∞, 𝐿(𝑌 )) ∈ C for some 𝜖 > 0. Such a property

is called timepoint label honesty [11].

Contingent links have no propositional label since between an

activation timepoint and the relative contingent one it is required

that there is one contingent link at most. Hence, the label would be

redundant. A full specification of the values of the propositions in P
is called scenario, and is usually denoted by 𝑠 . A full specification of

contingent link durations is called situation, and it is usually denoted
by 𝜔 . A pair of scenario and situation (𝑠, 𝜔) is called drama.

The properties constraint label coherence, constraint label honesty,
and timepoint label honesty are necessary to guarantee well-defined

labels and networks without label inconsistencies.

An execution strategy is a function that determines a schedule,

i.e., a real-value assignment for the timepoints (but contingent ones)

of a network. We say that a network is executed when a schedule

for timepoints is applied. For historical reasons, given a schedule

𝜓 and a timepoint 𝑋 , we denote with [𝜓 ]𝑋 the value assigned by

𝜓 to 𝑋 . Considering a CSTNU, a dynamic execution strategy is a

function that determines a schedule considering the values that the

environment sets to the propositional letters (scenario) and to the

contingent timepoints (situation) as time passes [9].

We say that a dynamic execution strategy is viable when it guar-

antees that all relevant constraints will not be violated, no matter

which scenario and situation are acquired incrementally over time.

If the network admits a viable dynamic execution strategy, then

the CSTNU is said dynamically controllable (DC). Given a CSTNU,

the DC-checking problem consists of verifying whether it is DC.

There are two important facts about the DC-checking problem:

(1) In [1], the authors showed that the DC-checking problem in

Conditional Simple Temporal Networks (CSTNs) is PSPACE-

complete; CSTNs are CSTNUs without contingent links.

Thus, the DC-checking problem in CSTNUs is PSPACE-hard.

(2) In [9], the authors showed that for solving the CSTNU DC-

checking problem and for executing a CSTNU instance, it is

possible to consider a streamlined representation of a CSTNU
where labels are present only on constraints because the

three properties about labels in the definition allow one to

ignore node labels without consequences. Ignoring node la-

bels makes the analysis of the DC-checking problem simpler.

As proposed in [9], to solve the DC-checking problem, it is in-

teresting to represent the network with an equivalent form called

distance graph. Given a network instance, its distance graph D =

(T , E) is a graph having the same set of nodes and edges deter-

mined considering the bounds of all labeled constraints/contingent

ranges of the original instance [3, 9, 12]. In particular, each labeled

constraint (𝑌 −𝑋 ≤ 𝛿, ℓ) is represented as an ordinary edge 𝑋 ⟨𝛿, ℓ⟩ 𝑌 ,

while each contingent link (𝐴, 𝑥,𝑦,𝐶) between timepoints 𝐴 and 𝐶

is represented as two ordinary edges, 𝐴⟨𝑦,⊡⟩
𝐶 and 𝐶 ⟨−𝑥,⊡⟩ 𝐴, repre-

senting the external bounds and two other edges, called lower and
upper-case edges. Such edges are useful for representing the con-

tingent property of contingent timepoints as temporal constraints.

In particular, a lower-case edge, 𝐴⟨𝑐:𝑥,⊡⟩ 𝐶 , represents the property

that the contingent timepoint 𝐶 cannot be forced to be set to an
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instant greater than the instant 𝑥 after 𝐴. In other words, it is not

possible to have a constraint 𝐴 ⟨−𝑥 ′,⊡⟩𝐶 , with 𝑥 < 𝑥 ′, in the net-

work. As regards upper-case edges, an upper-case edge, 𝐴 ⟨𝐶:−𝑦,⊡⟩
𝐶 ,

represents the fact that 𝐶 cannot be forced to be set to an instant

less than 𝑦 after 𝐴. In other words, it is not possible to have a con-

straint 𝐴
⟨𝑦′,⊡⟩

𝐶 , with 𝑦′ < 𝑦, in the network. The lower/upper-case

edges are necessary to determine the DC property of the network

following the approach proposed in [12].

Figure 2 represents the distance graph for the STEMI-related

network in Figure 1. Hereinafter, we indifferently refer to timepoints

as nodes, and to constraints as edges.

3 DYNAMIC CONTROLLABILITY OF
PARAMETERIZED CSTNUS

To reason about temporal problems in which some timepoints are

fixed at the beginning of the execution requires extending the CST-

NUs with parameters. Thus, we first define parameterized CSTNUs;

then, we tackle two fundamental problems: (1) how to check the

DC property of a parameterized CSTNU; (2) how to determine all

admissible parameter values that do not invalidate the DC property.

3.1 Parameterized CSTNUs
The difference between parameterized CSTNUs and traditional

CSTNUs [9] lies in the partitioning of the set of timepoints into con-
trollable, uncontrollable, observation, and (the newly introduced) pa-
rameters. Parameters are non-observation timepoints whose value

is set at the beginning of the execution.

Definition 3.1 (Parameterized CSTNU). A parameterized CSTNU
is a tuple ⟨T ,P, 𝐿, C,OT ,O,L,PT ,PC⟩, where:

• ⟨T , . . . ,L⟩ is a CSTNU exhibiting label coherence, label hon-

esty, and timepoint label honesty, as in Definition 2.1;

• PT ⊆ T is a set of timepoints, called parameters, whose
values are set by the environment in advance. A parameter

𝑋 ∈ PT is denoted as 𝑋 .

• PT ∩ OT = ∅,
• PC ⊆ C is a set of parameter constraints, i.e., constraints of
the form (𝑌 − 𝑋 ≤ 𝛿, ℓ), where {𝑋, 𝑌 } ∩ PT ≠ ∅.

In general, setting a value for a timepoint corresponds to fixing

its time distance from Z, i.e., introducing two constraints with no

propositional label between the timepoint and Z. Setting values to

all parameters of a parameterized CSTNU is an instantiation:

Definition 3.2 (Instantiation). Let𝑁 = ⟨T ,P, 𝐿, C,OT ,O,L,PT ,

PC⟩ be a parameterized CSTNU, with PT = {𝑋1, . . . , 𝑋𝑚}. An in-
stantiation of 𝑁 is obtained by adding to 𝑁 additional parameter

constraints (𝑋𝑖−Z ≤ 𝑥𝑖 ,⊡) and (Z−𝑋𝑖 ≤ −𝑥𝑖 ,⊡) for each𝑋𝑖 ∈ PT ,

where 𝑥𝑖 ∈ R≥0. We call 𝐼 = (𝑥1, . . . , 𝑥𝑚) a parameter instantiation
for 𝑁 , and denote by 𝑁𝐼 the corresponding instantiation of 𝑁 .

An instantiation of a parameterized CSTNU is a traditional

CSTNU, where each parameter is a timepoint connected to Z with

a pair of constraints that fix its value. For example, an instantiation

of the network in Figure 2 fixing the values of 𝑂𝑅𝑃 and 𝑃𝑀𝑅 to

25 and 10, respectively, is the same network with the addition of

edges Z
25 𝑂𝑅𝑃 , 𝑂𝑅𝑃 −25

Z, Z
10 𝑃𝑀𝑅, 𝑃𝑀𝑅 −10

Z.

In the following, we discuss the DC of parameterized CSTNUs

and how to determine all the admissible parameter instantiations

yielding the DC property by computing parameter constraints.

3.2 Dynamic Controllability
The notions of execution strategy, dynamic execution strategy, and

viable execution strategy for a CSTNU need to be extended in the

case of parameterized CSTNUs to cope with parameters (we put in

italics the extension with respect to the corresponding definition

given in Section 2).

An execution strategy is a function that determines a schedule

for the network timepoints but parameter timepoints and contingent
ones. A dynamic execution strategy is a function that determines

a schedule considering the values that the environment sets to the
parameter timepoints at the start of the execution, the propositional
letters, and the contingent timepoints as time passes. Given a set
of values for parameter timepoints that does not violate any existing
constraint, we say that a dynamic execution strategy is viablewhen
it guarantees that all relevant constraints will not be violated no

matter which truth values for propositions (scenario) and durations
for contingent links (situation) are incrementally acquired over

time.

A parameterized CSTNU can have different viable execution

strategies according to the given set of parameter values. Therefore,

when there exists at least one set of parameter values such that

the network admits a viable dynamic execution strategy, then the

parameterized CSTNU is said dynamically controllable (DC).
Like for CSTNUs, the DC-checking problem for a parameter-

ized CSTNU consists of verifying whether it is DC. Extending the

classification proposed by Vidal and Fargier in [19], theDC-checking
problem can be viewed as the problem to verify if the network is 1)

strongly controllable with respect to possible scenarios and situa-

tions when parameters are considered, and 2) dynamically control-

lable with respect to possible scenarios and situations when only

controllable timepoints are considered. The DC-checking problem

for parameterized CSTNUs is still a PSPACE-hard problem since

a CSTNU is a parameterized CSTNU with no parameters. For the

parameterized CSTNU, the following problems are interesting:

(1) the DC-checking problem for an instantiation of a parame-

terized CSTNU,

(2) the DC-checking problem for a parameterized CSTNU with

given parameter constraints,

(3) the problem of finding all parameter values yielding DC for

a parameterized CSTNU.

Example 3.3. Here is an example for each proposed problem:

(1) Is the instantiation of the network in Figure 2 resulting from
the setting of 𝑂𝑅𝑃 = 25 and 𝑃𝑀𝑅 = 10 DC?
Checking DC of an instantiation of a parameterized CSTNU

is straightforward since the instantiation is a traditional

CSTNU composed of all the timepoints and the respective

constraints, and the parameter nodes and their respective

constraints (cf. Definition 3.2). Thus, applying a CSTNU DC-

checking algorithm such as the one proposed in [9] is suffi-

cient for verifying whether the instantiation is DC.

(2) Is the network in Figure 2 DC when there are the parame-
ter constraints 𝑂𝑅𝑃

⟨−20,¬𝑓 ⟩
Z, 𝑃𝐶𝐼𝑆 ⟨0,¬𝑓 ⟩

𝑂𝑅𝑃 , Z
⟨15,⊡⟩ 𝑃𝑀𝑅,
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Figure 2: Distance graph for the network in Figure 1.

𝑇𝑆 ⟨0,⊡⟩ 𝑃𝑀𝑅? Checking the DC of a parameterized CSTNU

with given parameter constraints is not trivial due to the

different nature of parameter nodes and timepoints. In this

case, checking DC requires considering all possible instantia-

tions, and verifying that each instantiation is DC. A possible

solution to this problem is to proceed in analogy to the ap-

proach shown in [5] for the case of STNUs with parameter

nodes, applying an existing CSTNU DC-checking algorithm.

(3) Given the parameterized CSTNU in Figure 2, which are all the
admissible values for 𝑂𝑅𝑃 and 𝑃𝑀𝑅 that yield DC?
Given a parameterized CSTNU, it is interesting to determine

all the possible values that can be assigned to its parameters,

while ensuring that the DC property is preserved. Indeed,

this is an inverse problem to DC-checking, and it consists of

determining the most general set of parameter constraints

such that including this set into the set PC of the parame-

terized CSTNU (cf. Definition 3.1) keeps the network DC.

The third problem is the most challenging. In the next sections,

we propose a technique to solve it.

3.3 Admissibility Set
To determine all the possible values that can be assigned to a pa-

rameter, let us start defining the concept of admissibility set.

Definition 3.4 (Admissibility Set). Let𝑁 = ⟨T ,P, 𝐿, C,OT ,O,L,

PT ,PC⟩ be a parameterized CSTNU, with PT = {𝑋1, . . . , 𝑋𝑚}.
Let A be a set of minimal constraints over {Z, 𝑋1, . . . , 𝑋𝑚} [4]. We

call A an admissibility set for PT if each solution of A is a param-

eter instantiation 𝐼 for 𝑁 such that 𝑁𝐼 is dynamically controllable.

Given two constraints (𝑌 −𝑋 ≤ 𝛿 ′) and (𝑌 −𝑋 ≤ 𝛿), we say that
(𝑌 −𝑋 ≤ 𝛿 ′) is more relaxed than (𝑌 −𝑋 ≤ 𝛿) if 𝛿 < 𝛿 ′. We call an

admissibility set A maximal if, for any other admissibility set A′

and any two parameters 𝑋,𝑌 , there is no constraint (𝑌 − 𝑋 ≤ 𝛿 ′)
in A′

that is more relaxed than the constraint (𝑌 − 𝑋 ≤ 𝛿) in A.

The admissibility set contains only constraints that must be sat-

isfied by a parameter instantiation independent of any contingent

duration and any condition—propositional letter—which are only

revealed when executing the network.

It is easy to see that an STN is sufficient to represent such a set

of constraints since an STN is a CSTNU without contingent links

and observation timepoints. The STN for the maximal admissibility

set is the unique STN that yields the largest set of solutions, i.e.,

of possible parameter instantiations. Thus, any solution for the

STN encoding the admissibility set represents a fix of the parameter

values that preserves the DC property of the parameterized CSTNU.

By computing the maximal admissibility set, one can compute

the parameter instantiations that guarantee executions without

constraint violations. In the following, we propose a procedure that,

given a parameterized CSTNU, checks whether it is DC and derives

the STN encoding the maximal admissibility set for its parameters.

3.4 Constraint Propagation Rules
A possible technique for solving the DC-checking problem is to

determine an equivalent network propagating the constraints. If

such a process finds a negative cycle, the network is not DC; oth-

erwise, there is at least one solution in the resulting network [9].

Then, such a solution can be calculated incrementally, reacting to

the outcomes of observations and execution time of contingent

timepoints.

Propagating a constraint consists in combining two constraints

by a proper rule in order to obtain an equivalent explicit constraint.

In [9], the authors proposed a set of propagation rules that combine

into a sound-and-complete algorithm to solve the DC-checking

problem for CSTNUs. Briefly, the algorithm consists of a loop that

applies rules until no new constraints are discovered; the computa-

tional complexity of the algorithm is 𝑂 (𝑀 |T |23 | P |
2
| L | ), with 𝑀

the maximum absolute value of any negative weight in the graph.

Here, we propose an extension of such a set of rules for managing

two new aspects that are not considered in [9]: the presence of

parameters, and the determination also of upper bounds for the

execution of timepoints. Determining upper bounds is necessary

to find admissible ranges for the parameters. The new rule set is

depicted in Table 1. Rules can be categorized into two main types.

The first type consists of lower-bound rules, i.e. rules for finding
lower bounds to the execution times of non-contingent and param-

eter timepoints. Rules A, B, C, D, zqR
0
, and zqR

∗
3
, are the ones in

[9] adjusted for the possible presence of parameter nodes; rules

A-Parameter and B-Parameter are new and manage the propaga-

tion of constraints involving parameters. These two last rules are

stronger than the others of the same type when two timepoints

are parameter ones or Z because they determine lower bounds that

must be valid in any possible drama (strong validity).

The second type consists of upper-bound rules that are neces-
sary to find upper bounds to the execution times of controllable

and parameter timepoints. All such rules are new and have never

been proposed in previous work because they are not necessary to
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determine the DC of CSTNUs. At the same time, they are necessary

to determine a proper range of possible values for each parameter.

We do not describe each rule in detail, but we specify two aspects:

the generated edges may have labels with ℵ (multiple upper-case
letters) or may have q-labels (i.e., labels with a third kind of literal);

and many of the rules can propagate such labeled values.

As regards ℵ, it is composed by the conjunction of zero or more

upper-case letters, each representing a contingent timepoint. An

ℵ represents the possibility that all represented contingent time

points occur at their maximum allowed time. A∗ is the set of all
possible conjunct-upper-case letters. An edge 𝑌 ⟨ℵ:−𝛿, ℓ⟩ 𝑋 having

a non-empty ℵ = {𝐶1,𝐶2, . . .} represents a wait constraint that
is meaningful only in a DC context: after the execution of 𝑋 , if

none of the contingent timepoints 𝐶𝑖 ∈ ℵ occurs before 𝑋 + 𝛿 , the

system must wait such a time before executing 𝑌 ; conversely, if

any 𝐶𝑖 occurs before 𝑋 + 𝛿 , the constraint is satisfied, hence 𝑌 can

be executed (assuming that 𝑌 was bound only by this constraint).

As regards q-labels, if 𝑞 ∈ P, then ?𝑞 is a q-literal. ?𝑞 is ⊤ only

when the value of 𝑞 is not set, i.e., unknown. Unknown literals

are necessary for propagating constraints that must be satisfied

for any possible value of propositions present in their labels. The

propositional label concept is extended to q-literals as follows: “a
q-label is a conjunction of literals and/or q-literals”. Q∗

is the set

of all q-labels; it holds P∗ ⊂ Q∗
. Representing the conjunction

of literals and q-literals requires the ★ operator. Informally, if a

constraint has label 𝑞, and another one has label ¬𝑞, then both con-

straints must hold as long as 𝑞 is unknown, which is represented by

𝑞 ★¬𝑞 =?𝑞 [9]. A constraint propagation rule is sound if whenever

a viable and dynamic execution strategy 𝜎 satisfies the preexist-

ing edge(s) in that rule, 𝜎 must also satisfy the edge generated by

that rule. The rules in Table 1 generate edges pointing at Z or at a

parameter—which represent lower-bound constraints with respect

to Z or the parameter—and edges leaving from Z or a parameter—

which represent upper-bound constraints with respect to Z or the

parameter.

In [9], the authors formalized the concept of satisfying a lower-
bound constraint with respect to Z and showed that rules A, B, C, D,

zqR
0
, and zqR

∗
3
in Table 1 are sound. Since the value of a parameter

must be set before the start of a network execution, the derived

constraints involving such a parameter with other parameter time-

point or Z must be satisfied before knowing any possible scenario

or any contingent timepoint occurrence. Thus, any propagation

rule either involving two parameter nodes as the starting and the

ending one, respectively, or involving a parameter node and Z (al-

ways as starting/ending nodes) has to derive a value that must hold

in any scenario (i.e., the scenario label must be ⊡) and any situation
(i.e., if there is a conjunct-upper-case label, it must be removed).

The formalization of the concept satisfying a lower/upper-bound
constraint with respect to a parameter can be adapted as follows.

The following definition refers to a 𝜋-execution strategy: since

its formalization is out of the scope of this paper, we refer the

reader to [9] for further details. In brief, a 𝜋-execution strategy is

an execution strategy specifying both a schedule of timepoints and

an order of dependency between observation timepoints.

Definition 3.5 (Satisfy a Lower-Bound Constraint with respect to
a parameter). A 𝜋-execution strategy 𝜎 satisfies the lower-bound

Rule

Conditions

Pre-existing and Generated Edges

(A)

Apply if 𝑢 + 𝑣 < 0 and 𝛾 := 𝛼𝛽 ∈ P∗
.

If 𝑋 ∈ PT, set ℵ := ∅ and 𝛾 := ⊡

𝑋𝑌Z

⟨ℵ:𝑣, 𝛽 ⟩ ⟨𝑢, 𝛼 ⟩

⟨ℵ:𝑢 + 𝑣,𝛾 ⟩

(A-Parameter)

Apply if 𝛾 := 𝛼𝛽 ∈ P∗
.

If 𝑋 ≡ Z ∨𝑋 ∈ PT, set 𝛾 := ⊡.

𝑋𝑌P

⟨𝑣, 𝛽 ⟩ ⟨ℵ:𝑢, 𝛼 ⟩

⟨ℵ:𝑢 + 𝑣,𝛾 ⟩

(B)

Apply if 𝑥 + 𝑣 < 0,𝐶 ∉ ℵ, and 𝛼 ∈ P∗

𝐴𝐶Z

⟨𝑐 :𝑥,⊡⟩⟨ℵ:𝑣, 𝛼 ⟩

⟨ℵ:𝑥 + 𝑣, 𝛼 ⟩

(B-Parameter)

Apply if 𝛼 ∈ P∗

𝐴𝐶P

⟨𝑐 :𝑥,⊡⟩⟨𝑣, 𝛼 ⟩

⟨𝑥 + 𝑣, 𝛼 ⟩

(C)

Apply if −𝑦 + 𝑣 < 0 and 𝛼 ∈ P∗

Z 𝐴 𝐶
⟨𝐶 :−𝑦,⊡⟩⟨ℵ:𝑣, 𝛼 ⟩

⟨𝐶ℵ:−𝑦 + 𝑣, 𝛼 ⟩

(D)

𝛽,𝛾 ∈ Q∗
. Apply if𝐶 ∉ ℵℵ1.

Set𝑚 := max{𝑣, 𝑤 − 𝑥 }

𝐴Z𝑌 𝐶
⟨𝑐 :𝑥,⊡⟩⟨ℵ1 :𝑤,𝛾 ⟩⟨𝐶ℵ:𝑣, 𝛽 ⟩

⟨ℵℵ1 :𝑚, 𝛽★𝛾 ⟩

(zqR
0
)

𝛽 ∈ Q∗
and 𝑟 ∈ {𝑟,¬𝑟, ?𝑟 }.

Apply if 𝑤 < 0.

𝑅?Z

⟨ℵ:𝑤, 𝛽𝑟 ⟩
⟨ℵ:𝑤, 𝛽 ⟩

(zqR
∗
3
)

𝛽,𝛾 ∈ Q∗
and 𝑟 ∈ {𝑟,¬𝑟, ?𝑟 }.

Apply if 𝑤 < 0.

𝑅?Z𝑌
⟨ℵ1 :𝑤,𝛾 ⟩⟨ℵ:𝑣, 𝛽𝑟 ⟩

⟨ℵℵ1 :max{𝑣, 𝑤}, 𝛽★𝛾 ⟩

(A
+
)

Apply if 𝛾 := 𝛼𝛽 ∈ P∗
.

If 𝑋 ∈ PT, set 𝛾 := ⊡

𝑋𝑌Z

⟨𝑣, 𝛽 ⟩ ⟨𝑢, 𝛼 ⟩

⟨𝑢 + 𝑣,𝛾 ⟩

(A
+
-Parameter)

Apply if 𝛾 := 𝛼𝛽 ∈ P∗
.

If 𝑋 ≡ Z ∨𝑋 ∈ PT, set 𝛾 := ⊡.

𝑋𝑌P

⟨𝑣, 𝛽 ⟩ ⟨ℵ:𝑢, 𝛼 ⟩

⟨𝑢 + 𝑣,𝛾 ⟩

(B
+
)

Apply if 𝛼 ∈ P∗

Z 𝐶 𝐴
⟨𝐶 :−𝑦,⊡⟩⟨𝑣, 𝛼 ⟩

⟨𝑣 − 𝑦, 𝛼 ⟩

(B
+
-Parameter)

Apply if 𝛼 ∈ P∗

P 𝐶 𝐴
⟨𝐶 :−𝑦,⊡⟩⟨𝑣, 𝛼 ⟩

⟨𝑣 − 𝑦, 𝛼 ⟩

(zR1)

𝛽 ∈ P∗
, 𝑟 ∈ {𝑟,¬𝑟 }

Apply if 𝑤 ≥ 0.

𝑅?Z

⟨𝑤, 𝛽𝑟 ⟩
⟨𝑤, 𝛽 ⟩

(zR2)

𝛽,𝛾 ∈ P∗
, 𝑟 ∈ {𝑟,¬𝑟 }.

Apply if 𝑤 < 0, 𝑣 < −𝑤.

𝑅?Z𝑌
⟨𝑤,𝛾 ⟩⟨𝑣, 𝛽𝑟 ⟩

⟨𝑣, 𝛽𝛾 ⟩
Z;𝐴,𝐶,𝑋,𝑌 ∈ T;𝐶 is a cont. node; 𝑃 ∈ PT; 𝑅? ∈ OT; ℵ,ℵ1 ∈ A∗

.

Table 1: Constraint-propagation rules for parameterized
CSTNU. Rules and conditions in blue are the new ones.
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constraint (𝑃 − 𝑌 ≤ −𝛿,⊡), represented by 𝑃 ⟨−𝛿,⊡⟩𝑌 , if, for each

drama (𝑠, 𝜔), it holds [𝜓 ]𝑌 ≥ [𝜓 ]𝑃 + 𝛿 , where (𝜓, 𝜋) = 𝜎 (𝑠, 𝜔).
Definition 3.6 (Satisfy a Upper-Bound Constraint with respect to a

parameter). A 𝜋-execution strategy 𝜎 satisfies the upper-bound con-
straint (𝑌 − 𝑃 ≤ 𝛿,⊡) represented by the edge from P to 𝑌 labeled

by ⟨𝛿,⊡⟩, where P is a parameter if, for each drama (𝑠, 𝜔), it holds
[𝜓 ]𝑌 ≤ [𝜓 ]𝑃 + 𝛿 , where (𝜓, 𝜋) = 𝜎 (𝑠, 𝜔).

We now prove the soundness of the remaining rules in Table 1.

Lemma 3.7 (A-Parameter is sound). RuleA-Parameter in Table 1
is sound.

Proof Sketch. When 𝑋 is neither a parameter timepoint nor

Z, the proof is equal to the soundness-proof of rule A [9]. Oth-

erwise, the rule determines the same value but preserves neither

the propositional label 𝛼𝛽 nor the possible ℵ. A soundness proof

requires showing that if both the constraint between 𝑌 and 𝑃 and

the constraint between Z and 𝑌 hold (antecedents), also the new

constraint between Z and 𝑃 holds (consequence). The removal of

the propositional label 𝛼𝛽 and (possible) ℵ makes the new con-

straint present in more scenarios, and therefore the soundness is

guaranteed. □

Lemma 3.8 (B-Parameter and B
+
-Parameter are sound). Rule

B-Parameter and B+-Parameter in Table 1 are sound.

Proof Sketch. B-Parameter is the extension of the P-Lower

rule [7] for considering also the scenarios. Since it does not alter

the considered scenario, the soundness proof in [7] is still valid.

The same holds for B
+
-Parameter because it is an extension of the

P-upper rule presented and proven to be sound in STNU [7]. □

The proofs of soundness of rules A
+
and B

+
are analogous to the

corresponding rules A and B while the soundness of zR1 and zR2

are straightforward and, therefore, omitted.

Lemma 3.9 (A
+
-Parameter is sound). Rule A+-Parameter in

Table 1 is sound.

Proof Sketch. When 𝑋 is neither a parameter timepoint nor

Z, then ℵ is empty, and the form of the rule is equal to the form of

rule A
+
, but the starting timepoint is a parameter timepoint instead

of Z. Since the soundness proof of A
+
does not use the fact that the

starting point is Z, the soundness proof for such a case is the same.

When𝑋 is either a parameter timepoint or Z, ℵ cannot be empty.

In both cases, ℵ is not added to the resulting edge because the

new edge has to represent the constraint in the worst case (strong

controllability). Note that this stronger requirement implies the

soundness of the rule. □

The proposed rules can be combined into a constraint-propagation

procedure for checking the DC property and deriving the maximal

admissibility set:

Theorem 3.10. Let 𝑁 = ⟨T ,P, 𝐿, C,OT ,O,L,PT ,PC⟩ be a
parameterized CSTNU. Let 𝑁 ′ be the CSTNU resulting from a suc-
cessful constraint propagation in 𝑁 with the rules in Table 1, that is,
no new edges can be derived, and no negative cycle exists in 𝑁 ′. Let
S be the STN formed by {Z} ∪ PT and the respective constraints in
𝑁 ′. Then, 𝑁 ′ is DC, and S encodes the maximal admissibility set for
PT .

Proof. We prove as follows: since the rules of [9] are also in

the proposed rule set, a full propagation with the rule set checks

whether the CSTNU is DC at all. Then, we show that the rule set

is sufficient to derive any constraint involving a parameter that

explicitly or implicitly holds. We argue that the rule set cares for

deriving constraints making parameters independent of any situa-
tion and any scenario. The projection of the graph determined by

the DC-checking algorithm on Z, the parameters, and the edges

between them forms an STN. Such an STN has the property that

any valid instantiation of it yields a set of values for which the

parameterized CSTNU is DC. As the edges produced by the rules

are both necessary and sufficient for making the parameters inde-

pendent, the procedure derives the most general specification of

admissible parameter values, i.e., the maximal admissibility set.

(1) The DC property of the CSTNU obtained from 𝑁 by mak-

ing parameters controllable timepoints is checked by the

procedure as all rules of the procedure in [9] are also in the

proposed rule set. If such a CSTNU is not DC, it is not possi-

ble to dynamically assign parameters in response to observed

contingent durations and conditions so that all constraints

can be met. If a dynamic assignment is not possible, then

also an assignment at the beginning of the execution is not

possible, and the parameterized CSTNU is not DC.

(2) The application of the rules to derive lower bounds for non-

parameter timepoints (rules A, B, C, D, zqR
0
, and zqR

∗
3
) ends

when no new edge like 𝑋 ⟨ℵ:𝑣, 𝛼⟩
Z can be introduced. In the

end, each edge 𝑋 ⟨ℵ:𝑣, 𝛼⟩
Z is the strictest lower bound for 𝑋 .

For a given ℵ, an edge 𝑋 ⟨ℵ:𝑣, 𝛼⟩
Z is the strictest if for each

other ⟨ℵ:𝑣 ′, 𝛼 ′⟩ with 𝛼 → 𝛼 ′, it holds that 𝑣 < 𝑣 ′. In [9],

the authors show the completeness of rules A, B, C, D, zqR
0
,

and zqR
∗
3
for computing a dynamic early execution strategy.

Thus, they derive the strictest lower bounds for timepoints

for each drama.

(3) Rules A
+
, B

+
, zR1, zR2 are sound rules to derive upper-

bounds for non-parameter timepoints. It is easy to see that

these rules are symmetric to rules A, B, zqR
0
, and zqR

∗
3
. The

completeness for determining a dynamic late execution strat-
egy can be shown in a similar way to the proof of complete-

ness for the rules deriving lower bounds. So, the application

of rules A
+
, B

+
, zR1, and zR2 is repeated until they derive

the strictest upper bounds for timepoints for each drama.

(4) Rules A-Parameter, B-Parameter, A
+
-Parameter, B

+
-Parameter

are an extension of rules A, B, A
+
, and B

+
, respectively, where

Z is replaced by a parameter. Thus, they are also sound and

complete rules, which determine, with an iterated applica-

tion, the strictest constraints between pairs of parameters

and between any parameter and Z.

(5) A parameter has to be independent of any observed duration

(any situation) and any observed condition (any scenario).

The two constraints between a parameter 𝑃 and Z (or any

other parameter) must be satisfiable under all possible drama.

This can be guaranteed by requiring that any constraint

between 𝑃 and any timepoint 𝑋 when propagated to Z (or

from Z) becomes a constraint without conditions and wait,

i.e., become the strongest version of the constraint.
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(6) An assignment of a timepoint 𝑋 restricts the admissible in-

stantiations of 𝑃 only if a constraint between 𝑋 and 𝑃 can

be derived. Also, an observed condition can only restrict the

possible instantiations of 𝑃 if 𝑃 participates in a conditional

constraint. Thus, it is sufficient to check (a) for each edge

between 𝑃 and a contingent timepoint, and (b) for each con-

ditional edge involving 𝑃 , whether the values for 𝑃 depend

on situations or scenarios.

(7) The case Item 6(a) is covered by rules B-Parameter and B
+
-

Parameter, which are proved to be sound in Lemma 3.8. For

each edge from contingent 𝐶 to parameter 𝑃 with value

⟨𝑣, 𝛼⟩, resp. from 𝑃 to 𝐶 with value ⟨𝑣, 𝛼⟩, rule B-Parameter,

resp. B
+
-Parameter, derives an edge from 𝐴 to 𝑃 with value

⟨𝑥 + 𝑣, 𝛼⟩, resp. from 𝑃 to𝐴 with value ⟨𝑣 − 𝑦, 𝛼⟩, where𝐴 is

the activation timepoint for 𝐶 . This derived edge represents

a constraint such that any instantiation of 𝑃 satisfying this

constraint also satisfies the original constraint between 𝐶

and 𝑃 , no matter how long the contingent link lasts.

(8) The above Item 6(b) is covered by rules A-Parameter and A
+
-

Parameter, which are proved to be sound in Lemma 3.7 and

Lemma 3.9. Any possible edge between Z and a parameter

represents a lower/upper bound for the parameter. Generally,

such an edge can have a labeled value in which there may be

a label (representing the scenarios in which the constraints

must hold) and an upper-case label, representing which con-

tingent timepoints must be considered. Since the value for

the parameter must be set before the execution of the net-

work, all possible lower/upper bounds must be guaranteed to

be satisfied in any case. Hence, it has to hold unconditionally

in any scenario. The same applies to constraints between any

pairs of parameters 𝑃 and 𝑃 ′. Therefore, any edge between

a parameter and Z or another parameter must be uncondi-

tional. With rule A-Parameter, resp. A
+
-Parameter, an edge

with value ⟨𝑢 + 𝑣, 𝛼⟩ is introduced from parameter 𝑃 to time-

point 𝑋 , resp. from timepoint 𝑋 to parameter 𝑃 . With full

propagation, such an edge is eventually introduced to, resp.

from, a parameter 𝑃 ′, and timepoint Z when 𝑋 = Z.

(9) A full constraint propagation determines a set of edges be-

tween Z and parameters and between pairs of parameters.

These edges represent non-contingent constraints that need

to be fulfilled by the parameter instantiations for the CSTNU

to be DC. Thus, the projection of Z and all parameters, along

with these derived edges between them, form an STN S.
Hence, any solution to S represents an admissible instantia-

tion of parameters, that is, an admissibility set for PT . Since

the rule set derives the strictest such edges, it is not possible

to relax any derived edge without violating the DC property

of the CSTNU. Thus, we conclude that the admissibility set

encoded by S is also the maximal.

□

A full constraint propagation using the rules in Table 1 does not

only solve the DC-checking problem for a parameterized CSTNU

but also derives the maximal admissibility set for its parameters.

Figure 3 shows the STN composed of parameter nodes 𝑂𝑅𝑃

and 𝑃𝑀𝑅 and Z found performing the DC-check on the network in

Figure 2. The STN encodes the maximal admissibility setA = {20 ≤

Z

PMR

ORP

[20, 31]
[0, 15] [5, 31]

Figure 3: The STN representing the maximal admissibility
set for the parameterized CSTNU depicted in Figure 2

𝑂𝑅𝑃 ≤ 31, 0 ≤ 𝑃𝑀𝑅 ≤ 15, 𝑃𝑀𝑅 ≤ 𝑂𝑅𝑃−5,𝑂𝑅𝑃 ≤ 𝑃𝑀𝑅+31}. Any
instantiation of 𝑂𝑅𝑃 and 𝑃𝑀𝑅 that satisfies all the constraints in

A is an admissible assignment of the parameters—before executing

the parameterized CSTNU—which allows dynamically controllable

executions. On the contrary, any instantiation that does not satisfy

A might lead to executions in which some temporal constraint is

not satisfied.

Regarding computational complexity, the original CSTNU DC-

checking complexity is determined assuming a propagation of all

possible labeled values present in each edge to all other edges. If a

rule determines a value already present, the value is ignored; hence

no significant computational cost occurs. Such an analysis is still

valid for the new algorithm even with eight new rules (the blue

ones in Table 1); thus, the complexity is still 𝑂 (𝑀 |T |23 | P |
2
| L | ).

As a proof of concept, we extended the open-source CSTNU

tool [15] to check the DC of the parameterized CSTNU and find

the STN representing the maximal admissibility set. Our imple-

mentation is available as open-source code [15]. Figure 4 depicts

a screenshot of the application after a successful check of the pa-

rameterized CSTNU in Figure 2. On the left side, there is the input

parameterized CSTNU. On the right side, the instance after a suc-

cessful DC checking. The edges forming the STN of the parameter

nodes are magenta.

4 DISCUSSION AND CONCLUSION
CSTNUs are an established formalism representing temporal prop-

erties and requirements of dynamic models (e.g., minimum time

spans between events). Frequently, such models feature parameters

to communicate temporal properties or requirements for the exe-

cution. These properties and requirements are set before executing

the model and may decide the values for specific timepoints in ad-

vance. With parameterized CSTNU, we can represent such models

with parameter nodes and compute their maximal admissibility set.

Revisiting Example 1.1, parameters represent an agreement with

respect to external actors, managing the room preparation and the

provision of medical records. Establishing the specific execution

time of the corresponding parameters has to be done before dealing

with the specific patient, i.e., the values of parameter nodes 𝑂𝑅𝑃

and 𝑃𝑀𝑅 have to be fixed before the execution of the parameterized

CSTNU starts. With the proposed algorithm, we can verify that the

STEMI-related network is dynamically controllable and derive the

STN depicted in Figure 3. It represents the admissible ranges for

setting the parameters’ values before executing the STEMI-related

network. In the example, it means that the operating room has to be

prepared between 20 and 31 minutes after the start Z of the network.

Once we fix the time for the operating room to be prepared, we can

set the time for having the past medical records, which has to be at

least 5 minutes before the room is prepared. Parameter values can

be fixed in any order before executing the network.

Moreover, the allowed ranges of the derived STN may be stricter

than the corresponding ranges when considering parameters as
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Figure 4: Screenshot of the Parameterized CSTNU checker when the input is the Parameterized CSTNU of Figure 2.

simple timepoints. Indeed, while for parameters, we have to set

before starting the right execution time within the range, for time-

points, we can dynamically set the suitable execution time during
the execution of the network. In the example, the derived range

[20, 31] for parameter 𝑂𝑅𝑃 would remain [20, +∞] if we were al-
lowed to consider it as an ordinary timepoint and apply the classical

CSTNU checking algorithm. Indeed, the proposed algorithm for

parameterized CSTNUs derives the maximal admissible ranges for

parameters, which do not depend on the execution of the network.

In contrast, the classical CSTNU algorithm for checking dynamic

controllability does not derive the maximum allowed ranges.

Parameterized CSTNUs and the algorithm defined here can be

considered to represent and solve also temporal problems from

domains other than clinical. For Web services, for example, they

can serve as the basis for defining possible temporal Service Level

Agreements, e.g., a provider may advertise the admissible values

for the service calls that yield the guarantee of timely execution.

In summary, this paper showed that there are temporal problems

in which some timepoint assignments are decoupled from execu-

tion. In particular, it considered the case in which a future timepoint

is fixed before starting the execution. To enable representing such

problems, this paper introduced the notions of CSTNU parameter

node and parameterized CSTNU. Then, it introduced a new set of

constraint propagation rules for checking DC and computing sched-

ules of parameterized CSTNUs. Finally, it defined a procedure for

deriving a set of necessary and sufficient restrictions on parameter

values that yield the DC of a parameterized CSTNU.
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