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A markerless platform for automatic assessment of gait
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Introduction

Instrumental gait analysis (iGA) is time-consuming and needs dedicated spaces and personnel. Observational gait
analysis (0GA) offers an alternative, relying on clinicians assessing video recordings of walking to identify normal and
abnormal patterns. Despite the development of structured instruments, 0oGA remains strongly operator dependant, with
low test-retest and inter-rater reliability, calls for visual gait phases segmentation, introducing more evaluation bias [1].
Markerless presents a promising solution to iGA and oGA limitations, and its efficacy in clinical settings has already been
tested [2]. This article presents a Markerless Automatic video-based platform for Gait Analysis (MaGA) as a rightful trade-
off between iGA and oGA.

Methods

MaGA, adapted to the Rancho Los Amigos (RLA) [4], consisted of: (i) a video camera and OpenPose [3]; (ii) a joint
kinematics estimator; (iii) a gait phases identification algorithm; and (iv) a Support Vector Machine (SVM), with a linear
and a non-linear Gaussian kernel, for altered/normal pattern classification for each RLA cell.

Kinematics from ten adults with chronic stroke (7 males, 52.4+9.5 yo) and eight healthy adults (6 males, 28.0+3.7 yo)
were segmented over gait cycle sub-phases and manipulated to extract descriptive statistics (average, minimum,
maximum, etc), closeness (mean absolute error (MAE) and Linear Fit Method coefficients [5]) and statistical difference
(area under the Statistical Parametric Mapping t-curve [6]) between test and control datasets.

Three experts evaluated videos of chronic stroke patients, merging their assessments and assigning RLA cell values (0-3)
based on raised concerns. These data and the extracted features were used to train and test MaGA with a k-fold cross-
validation (k=10). Performances were assessed with accuracy, precision, sensitivity, specificity, F1-score and MAE.

Results

Fig. 1 shows a MaGA-filled RLA sheet against the experts-merged. MaGA generally underestimated severity. Non-linear
SVM generally outperformed the linear model (MAE < 0.50 vs. 0.04-0.70), leading to non-ambiguous severity levels. For
instance, severity = 2 and MAE > 0.5 could indicate switching between normal/altered states (severity < 1.5 or > 2.5).

Figure 5. MaGA-filled
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Discussion

MaGA accurately identified all expert-highlighted items, with only one instance of knee wobbles being missed (marked
by one expert). This could potentially be mitigated with higher resolution and capture rate devices.

MaGA has the potential to be customized according to various 0GA tools, thereby addressing their limitations. Future
plans include MaGA sensitivity analysis to data collection conditions and the establishment of a broader reference
dataset, encompassing individuals with diverse disorders and severity levels.
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