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Abstract: Fraudulent practices concerning honey are growing fast and involve misrepresentation of
origin and adulteration. Simple and feasible methods for honey authentication are needed to ascertain
honey compliance and quality. Working on a robust dataset and simultaneously investigating
honey traceability and adulterant detection, this study proposed a portable FTNIR fingerprinting
approach combined with chemometrics. Multifloral and unifloral honey samples (n = 244) from
Spain and Sardinia (Italy) were discriminated by botanical and geographical origin. Qualitative
and quantitative methods were developed using linear discriminant analysis (LDA) and partial
least squares (PLS) regression to detect adulterated honey with two syrups, consisting of glucose,
fructose, and maltose. Botanical and geographical origins were predicted with 90% and 95% accuracy,
respectively. LDA models discriminated pure and adulterated honey samples with an accuracy of
over 92%, whereas PLS allows for the accurate quantification of over 10% of adulterants in unifloral
and 20% in multifloral honey.

Keywords: honey; near-infrared spectroscopy; adulteration; geographical origin; botanical origin

1. Introduction

Beekeeping is facing significant challenges in the agri-food sector due to climate
change [1], the excessive use of agrochemicals [2], the spread of the Varroa parasite [3],
industrialization [4], and the presence of adulterated and counterfeit products on the market
sold at low prices [5]. This last aspect has recently been highlighted by a coordinated action
led by the European Commission’s Directorate-General for Health and Food Safety (DG
SANTE), along with the national authorities of 18 countries, the European Anti-Fraud
Office (OLAF), and the European Commission’s Joint Research Centre (JRC). This action
revealed several fraudulent practices, highlighting the need for new analytical techniques
to verify the authenticity of bee products [6].

Considering recent survey data [6], a reliable analytical approach is required for
detecting adulterants in honey and tracing its origin. The methods used for routine control
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should be accurate and suitable. For instance, they may be useful in monitoring honey
imports from non-EU countries and the internal market, which are both susceptible to
fraud and adulteration. In this framework, the capacity to conduct on-site analysis using
portable instruments is desirable for food supply chain control.

Authenticity is a crucial aspect of honey quality. It also refers to compliance with de-
clared information, quality regulations, and safety [7,8]. According to European legislation,
the honey label must indicate whether the honey comes from the EU, non-EU countries, or
a mixture of both. Additional information, such as floral and territorial attribution, may
also be included [9] as these features determine the organoleptic properties of honey [10,11].
Indeed, consumers are becoming increasingly aware of the characteristics of honey and
are making purchasing decisions based on its stated floral or territorial origin [12,13]. In
addition to honey quality standards, European legislation states that honey must not con-
tain adulterants. The most commonly used are syrups from C3 and C4 plants, such as
corn syrup and rice syrup [14,15], or glucose and sucrose syrups derived from beets or
canes [16].

Analytical methods for food authentication can be classified according to the approach
employed [17]. The targeted approach focuses on the detection and quantification of specific
known compounds or markers, which are characteristic of a particular food class, to verify
its authenticity. The untargeted approach, which is also referred to as fingerprinting,
involves a comprehensive analysis without prior knowledge of specific compounds. This
approach aims to identify and profile all detectable substances to discover patterns or
markers that are indicative of authenticity.

Several analytical techniques can be used to authenticate honey using both approaches,
including elemental analysis [18,19], isotope pattern determination [20,21], electronic sen-
sors [22,23], and chromatography or hyphenated methodologies [24–27]. Similarly, spectro-
scopic methods such as NMR [28], Raman spectroscopy [29,30], spectrofluorimetry [31], UV-
Vis spectroscopy [25,32], and infrared (IR) or near-infrared (NIR) spectroscopy [24,33,34]
have also been used for this purpose, offering several advantages. For instance, although
mass spectrometry-based methods guarantee excellent analytical performance in terms
of sensitivity and versatility, they typically require sample preparation procedures, in-
cluding solid-phase and liquid–liquid extraction or even energy-assisted methods (such
as microwave-assisted and pressurized-liquid extraction) [24]. Conversely, spectroscopic
analysis frequently necessitates a reduced number of sample preparation steps or enables
noninvasive measurement [35]. Furthermore, the time required for analysis is typically
longer for chromatographic techniques, with a single run often lasting several minutes [36].
In comparison, spectroscopic methods can rapidly obtain a spectrum or output, which can
be directly used for quality control or detect adulteration. For this reason, spectroscopic
methods are particularly well suited to use with an untargeted approach, especially when
combined with machine learning and/or chemometric techniques that maximize infor-
mation in complex and large datasets [37–39]. Additionally, spectroscopic techniques are
more straightforward, and the instrumentation is more cost-effective and user-friendly. In
conclusion, considering these aspects, an untargeted spectroscopic approach satisfies all the
requirements needed for a screening method that aims to preliminarily analyze suspected
counterfeit honeys.

Among the spectroscopic methods, IR and NIR are among the most frequently used
as they can detect thermal treatments [40] and adulteration [15,16,41–43], classify honey
according to botanical and/or geographical origin [33,39,44–47], and predict chemical and
physical properties [48]. For example, the NIR region is useful for determining honey
authenticity because major sugar variations influence it [49–52]. Both analytical techniques
have numerous advantages, and IR spectroscopy, especially when coupled with an ATR
(attenuated total reflectance) device, allows for fast and simple analysis. However, NIR
spectroscopy is also a consolidated analytical method in the food industry that allows for
the prediction of food composition and functional properties [53]. It also enables food
safety evaluation and quality control, guaranteeing easy and fast analysis, noninvasive
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measurement, or minimal sample preparation [35]. Moreover, the recent portable NIR
instrumentation allows for obtaining great optical performance and is equipped with
detectors similar to those present in benchtop devices [54].

Recently, portable NIR spectrophotometers have been tested for honey quality con-
trol [55] and fraud detection [49,56]. Escuredo et al. [55] reported that moisture, hydrox-
ymethylfurfural, color, and flavonoids can be accurately predicted. Guelpa et al. [49]
distinguished authentic South African honey from imported or adulterated samples. Nev-
ertheless, the authors did not differentiate samples according to their botanical origin, and
the geographical discrimination is not well supported by the limited sampling, as well as
the adulteration study. Folli et al. [56] tested the detection of honey adulterated with nectar,
glucose, and sugarcane molasses. However, even in this case, the study analyzed only five
commercial and uncharacterized samples. Therefore, although some preliminary findings
have been previously presented, the realistic feasibility of the approach has yet to be demon-
strated. A larger dataset is required to consider the high variability in honey saccharide
composition, both in terms of botanical and geographical origin. Similarly, the variability
in sugar composition should be considered in adulteration studies, which require larger
datasets for model calibration. In conclusion, although portable NIR spectroscopy shows
great potential, further testing is required to demonstrate its effectiveness as a screening
method for predicting botanical and geographical origins and in detecting adulterations.

This study aimed therefore to evaluate NIR portable spectroscopy as a screening
approach for combating honey fraud by tracing botanical and geographical origin and
detecting adulterants. Given the lack of robustness of previously reported work, this study
has been conducted by analyzing a large dataset composed of both unifloral and multifloral
honey from different geographical origins. Furthermore, the influence of botanical origins
on adulterant detection has been investigated since previous studies never considered
both aspects simultaneously. To propose a fast and simple method, the data processing
included simple chemometric tools that are commonly implemented in instrument soft-
ware. Therefore, advanced or machine learning techniques were not considered at this
stage. A total of 244 multifloral and unifloral honey samples from Spain and Sardinia (Italy)
were analyzed. These countries were compared because they share similar floral sources
and pedology [18]. As previously reported, these conditions increase the difficulties in
honey traceability studies; however, they ensure that the geographical discrimination is
less significantly influenced by the comparison of different botanical origins. In addition,
720 adulterated samples were prepared using two adulterant syrups with different saccha-
ride compositions. Linear discriminant analysis (LDA) was used to discriminate samples
based on botanical and geographic origin, while partial least squares (PLS) regression was
used for adulterant quantification. Different spectral pretreatments were evaluated while
genetic algorithms (GAs) were used for variable selection [57]. The GA variable selection
offers a very good solution in terms of both predictive ability and interpretability and does
not require any spectroscopic experience by the user [58]. A particular feature of GAs is that
they individuate not only the expected bands but also additional, sometimes unexpected,
bands whose presence allows for an increase in the predictivity of the model [59].

2. Materials and Methods
2.1. Honey Samples and Adulterants

This study analyzed 244 honey samples from Spain (n = 71) and Sardinia (Italy, n = 173)
collected between 2020 and 2022, according to the flowering and seasonality of the botanical
sources [18]. The collection included both unifloral and multifloral honey. It consists of
68 multifloral honeys (35 from Sardinia and 33 from Spain), 42 eucalyptus honeys (30 from
Sardinia and 12 from Spain), 32 rosemary honeys (6 from Sardinia and 26 from Spain) and
3 varieties of typical Sardinian unifloral honeys, 37 thistle honeys, 36 asphodel honeys,
and 29 strawberry tree honeys [60]. These botanical varieties were selected based on
common botanical sources between the two geographical areas. In addition, some peculiar
unifloral honeys of Sardinia were taken into account to compare also uncommon botanical
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origins [60]. The melissopalynological analysis is reported in Table S1. All the samples
were stored in the dark at 4 ◦C until analysis.

Two syrups were prepared and tested as adulterants. The first (AD1) was a colorless
syrup composed of glucose (26%), maltose (32%), fructose (17%), and water (25%). The sec-
ond (AD2) was a pale yellow syrup composed of glucose (19%), fructose (56%), and water
(25%). The composition of the adulterants was chosen based on the composition of honey
and the most commonly used adulterants, such as rice and corn syrup [36]. Honey contains
mainly fructose (35–40%) and glucose (30-35%) in varying proportions depending on the
botanical and geographical origin [61]. Other sugars in honey, such as maltose, are present
in concentrations less than 10%. Adulterant syrups may contain several carbohydrates in
different percentages. Corn syrup, and in particular high fructose corn syrup (HFCS), is
usually employed for honey adulteration as it predominantly contains glucose and fructose
in high percentages. On the other hand, rice syrup can contain high percentages of maltose
and other higher sugars that are derived from the hydrolysis of starch [62,63]. Therefore,
the syrups used in this study are composed of fructose, glucose, and maltose to evaluate
the detection of the commercial adulterants most used for honey counterfeiting.

2.2. Reagents and Instrumentations

Saccharides, D-(+)-Glucose (BioXtra, ≥99% (GC)), D-(+)-Maltose monohydrate (BioX-
tra, ≥99%), and D-(−)-Fructose (BioXtra, ≥99%), were from Sigma Aldrich (St. Louis, MI,
USA). Type I water (resistivity > 18 MΩ cm−1) was produced using a MilliQ Plus System
from Millipore (Milan, Italy) and used in all the analytical phases. The samples were
homogenized using an Ultra-Turrax mixer mod T18 (IKA, Staufen, Germany). The FT-NIR
spectra of honey were acquired using a miniaturized MicroNIR OnSite-W (VIAVI, Santa
Rosa, CA, USA) equipped with a tungsten light source, linear-variable filter connected to an
InGaAs array detector for NIR measurements and a vial holder for liquid analysis [54,64].

2.3. Sample Preparation and Spectra Acquisition

All the samples were homogenized and heated in a thermostatic water bath at 35 ◦C.
The spectra were acquired in triplicate at 25 ◦C, ranging from 908 to 1676 nm with 100 scans
and 6.15 nm resolution, resulting in spectra characterized by 125 wavelengths. The samples
were analyzed in duplicate. The reference spectra were collected every 10 min. The
assignment of specific spectral regions to the corresponding absorption of the chemical
functional group was performed according to the literature [65–69]. The spectral analysis is
discussed in Section S1 of the Supplementary Material. Figure S1 shows the honey spectra
colored according to botanical origin.

2.4. Chemometric Analysis

The workflow of the chemometric analysis is summarized in Figure 1. The pure honey
samples (244) were randomly analyzed to acquire the FT-NIR spectra, which were used to
develop classification models for the traceability of the geographical and botanical origin.
The unifloral honeys (15 asphodel, 15 eucalyptus, 15 strawberry tree, and 15 thistle) and
multifloral honeys (30 Spanish and 30 Sardinian) were adulterated with syrups AD1 and
AD2, respectively.

The statistical models for the detection of adulterants were calculated separately,
distinguishing between the unifloral and multifloral honey samples (Tables S2 and S3).
Each dataset consisted of 240 samples, 60 pure and 180 adulterated, with low (5, 10, 15, and
20%), medium (25, 30, 35, and 40%), and high (45, 50, 55, and 60%) concentrations of syrup.
For each dataset (Figure 1A), a principal component analysis (PCA) of the NIR spectra was
run to visualize the data and detect possible outliers using T2 vs. Q diagnostics. A linear
discriminant analysis (LDA) was used to build discriminant models. Genetic algorithms
(GAs) were employed to reduce the spectral variables [58]. This was necessary because
LDA cannot be performed when there are numerous and highly correlated variables.
Predictive models were built using partial least squares (PLS) regression with both full-
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spectra and GA variable selection. The datasets were randomly divided into a training
set (two-thirds of the total samples) and a test set (one-third of the total samples) for
external validation. The training set was used to calculate the models performing a 5-
fold cross-validation. For each model, the raw spectra, Standard Normal Variate (SNV)-
transformed spectra, and multiplicative scatter correction (MSC)-transformed spectra were
evaluated. Each pretreatment was evaluated by applying either first- or second-derivative
functions, resulting in nine different combinations of data pretreatment methods (Figure 1B).
The honey samples were discriminated according to their botanical and geographical
origins using LDA (Figure 1C). The datasets used for LDA modeling consisted of equally
partitioned categories. The results obtained in the LDA confusion matrices were evaluated
in terms of accuracy and calculated as the percentage average of correct predictions of each
category. Additionally, an LDA was run to discriminate four categories at different levels
of adulteration (Figure 1B). The quantification models were created using PLS regression
(Figure 1C). PCA was run on Minitab 16.2.0 on autoscaled data, whereas PLS and LDA
were performed using the Chemometric Agile Tool (CAT) software (R version 3.1.2) [70].
Finally, the GAs were run on MATLAB (R2021a release) with PLS-GA Toolbox [58].
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Figure 1. (A) Composition of datasets and geographical–botanical origins of honeys. (B) Adul-
teration levels and categories. (C) Workflow of chemometric analysis. ITA = Sardinia (Italy);
SPA = Spain; ASP = asphodel; STR = strawberry tree; THI = thistle; MF = multifloral; EUC = eucalyp-
tus; ROS = rosemary; AD1 = adulterant syrup of glucose–maltose–fructose (26%–33%–17%, moisture
25%); AD2 = adulterant syrup of glucose and fructose (19%–56%, moisture 25%); 1st der = first
derivate; 2nd der = second derivate; SNV = Standard Normal Variate; and MSC = multiplicative
scatter correction.



Foods 2024, 13, 3062 6 of 18

3. Results and Discussion
3.1. Honey Traceability
3.1.1. Principal Component Analysis of Pure Honeys

The first PCA was performed on the FT-NIR spectra of 244 pure honey samples from
Sardinia and Spain (Figure S2). The T2 vs. Q diagnostic plot revealed the presence of
five outlier samples, which were subsequently removed from the dataset. The remaining
samples were categorized based on their geographical and botanical origins. Table S4
shows the dataset division according to the type of traceability study. Figure 2 shows the
PCA score plots using different spectral processing.
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Figure 2. Score plots of the PCA run on the different datasets of pure honeys. (A) Discrimination
of geographical origin; (B) of botanical origin; and (C) of both geographical and botanical origin.
ITA = Sardinia; SPA = Spain; AS = asphodel; EU = eucalyptus; MF = multifloral; RO = rosemary;
ST = strawberry tree; and TH = thistle.

The samples were color-coded according to the honey categories. Figure 2A displays
the geographical origin of the honeys. All the samples overlapped, except for a Sardinian
group that had negative scores on PC1 and PC2. Figure 2B shows the botanical origin of the
samples, which mostly overlap, except for a portion belonging to the eucalyptus category.
Figure 2C highlights that this group is exclusively composed of Sardinian eucalyptus
honey, which is the only category separated from the other groups. The use of different
preprocessing methods did not improve the object separation. This finding is consistent
with those of previous studies that examined unifloral or multifloral honey from Hungary
and Argentina [37,71]. In these cases, the PCA showed no clear separation according to
botanical [71] or geographical origin [37,71].

3.1.2. Geographical and Botanical Classification

The dataset used for the geographical classification of honey included 168 samples
from Sardinia and 71 samples from Spain for a total of 239 samples (Table S4). Variable
selection was performed using the GA, whereas LDA was used to discriminate between
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the honeys. All the results obtained with different spectral pretreatments are reported
in Table S5. The GA-selected spectral regions for each model were 926.7—957.7 nm,
1199.2—1217.8 nm, 1236.4—1248.8 nm, and 1632.8—1645.2 nm. All the mathematical trans-
formations, except for the SNV spectral pretreatment, resulted in accurate models both
in calibration and validation. The model based on the raw spectra was the most stable;
it used 30 variables distributed across six spectral regions and it accurately assigned 96%
of the training set samples and classified 95% of the test set samples. Table 1 displays the
confusion matrix obtained using LDA for geographical classification.

Table 1. Confusion matrices of the LDA model for the geographical origin classification.

Cross-Validation Prediction

ITA SPA Accuracy ITA SPA Accuracy
ITA 108 8 93% ITA 49 3 94%
SPA 1 46 98% SPA 1 23 96%

Average accuracy 96% Average accuracy 95%
ITA = Sardinia (Italy); SPA = Spain. Model: GA-raw spectra.

The dataset was also used for botanical classification. The samples were categorized
into six botanical origins (asphodel, eucalyptus, multifloral, rosemary, strawberry tree,
and thistle), as shown in Table S4. The GA selected between 41 and 56 wavelengths,
depending on the spectral pretreatment (Table S6). The selected spectral regions for all
the models were 926.7–945.3 nm, 1001.0–1007.2 nm, 1056.8–1100.1 nm, 1124.9–1131.1 nm,
1186.8 nm, 1347.9–1354.1 nm, 1391.3–1416.0 nm, 1478.0–1509.0 nm, 1539.9–1546.1 nm, and
1601.9–1657.6 nm. The best performance was achieved using raw spectra and SNV-based
models when considering the validation accuracy. The model based on raw spectra used
49 wavelengths distributed in 12 regions and correctly assigned 85% of the training samples,
with an average prediction accuracy of 91%. Table 2 shows the corresponding confusion
matrix obtained using LDA for botanical classification.

Table 2. Confusion matrices of the LDA model for the botanical origin classification.

Cross-Validation Prediction

AS EU MF RO ST TH Accuracy AS EU MF RO ST TH Accuracy
AS 22 0 1 0 0 1 92% AS 10 0 2 0 0 0 83%
EU 1 20 2 3 2 0 71% EU 0 13 1 0 0 0 93%
MF 4 2 35 4 0 0 78% MF 0 0 23 0 0 0 100%
RO 1 1 3 15 0 0 75% RO 0 0 2 9 0 0 82%
ST 0 0 0 0 18 0 100% ST 0 1 0 0 6 0 86%
TH 0 1 0 0 0 24 96% TH 0 0 0 0 0 12 100%

Average accuracy 85% Average accuracy 91%

AS = asphodel; EU = eucalyptus; MF = multifloral; RO = rosemary; ST = strawberry tree; and TH = thistle. Model:
GA-raw spectra.

The dataset was then divided into nine categories based on both geographical and
botanical origin (Table S4). Table S7 presents the results of the models built by select-
ing the spectral variables after different mathematical pretreatments. The number of
wavelengths selected by the GA ranged from 36 (second-derivative MSC spectra) to
54 (first-derivative SNV spectra). The selected spectral regions were 920.5–926.7 nm,
1056.8–1063.0 nm, 1205.4–1217.8 nm, 1490.4–1509.0 nm, 1546.1–1552.3 nm, and 1657.6 nm.
The raw and SNV-treated spectra led to more balanced models in terms of training and
testing accuracy. The first model accurately classified 83% and 85% of the training and
test set samples, respectively. Similarly, the second model correctly classified 83% of the
training set and 83% of the test set honey. Table 3 presents the confusion matrix of the LDA
model for the geographical–botanical classification.
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Table 3. Confusion matrices of the LDA model for the botanical-geographical origin classification.

Cross-Validation

AS-IT EU-IT MF-IT RO-IT ST-IT TH-IT EU-SP MF-SP RO-SP Accuracy
AS-IT 20 0 2 0 0 1 0 1 0 83%
EU-IT 0 20 0 0 0 0 0 0 0 100%
MF-IT 2 0 19 0 0 0 0 1 1 83%
RO-IT 0 0 1 3 0 0 0 0 0 75%
ST-IT 0 0 0 0 13 2 0 1 0 81%
TH-IT 0 1 0 0 3 21 0 0 0 84%
EU-SP 1 0 0 0 0 1 6 0 1 67%
MF-SP 2 0 1 0 0 0 0 17 2 77%
RO-SP 0 0 0 0 0 0 1 1 15 88%

Average accuracy 83%

Prediction

AS-IT EU-IT MF-IT RO-IT ST-IT TH-IT EU-SP MF-SP RO-SP Accuracy
AS-IT 9 0 0 0 1 1 0 1 0 75%
EU-IT 2 8 0 0 0 0 0 0 0 80%
MF-IT 0 0 12 0 0 0 0 0 0 100%
RO-IT 0 0 0 1 0 0 0 0 0 100%
ST-IT 0 0 0 0 7 1 0 1 0 78%
TH-IT 0 0 0 0 1 11 0 0 0 92%
EU-SP 0 0 0 0 0 0 3 1 0 75%
MF-SP 0 0 2 0 0 0 0 8 1 73%
RO-SP 0 0 0 0 0 0 0 1 8 89%

Average accuracy 85%

IT = Sardinia (Italy); SP = Spain; AS = asphodel; EU = eucalyptus; MF = multifloral; RO = rosemary;
ST = strawberry tree; and TH = thistle. Model: GA-raw spectra.

The geographical model (Table 1) was more accurate than the botanical one (Table 2),
whereas the accuracy tended to decrease when the origins were combined (Table 3). This
finding agrees with the previous data obtained from this dataset using elemental finger-
printing [18]. As previously reported, these conditions increase the difficulties in honey
traceability studies. However, comparing common botanical varieties from different ge-
ographical origins ensures that discrimination based on this factor is less significantly
influenced by botanical origin. Regarding data processing, the raw spectra enabled the de-
velopment of highly accurate models, thereby reducing the importance of the pretreatment
method selected. However, it is essential to remark that the spectral regions identified by
the genetic algorithms may vary depending on the botanical and geographical origin under
consideration, as well as the necessity to use other pretreatment methods.

The results obtained can be compared with other methodologies adopted for the botan-
ical discrimination of these varieties. This research group has spent years investigating
unifloral honeys from Sardinia, employing various methodologies for botanical discrimina-
tion. The combination of four simple parameters, namely, pH, acidity, conductivity, and
DPPH, enabled the discrimination of honeys with a prediction accuracy of 100% [72]. In
contrast, the application of an elemental analysis [73], ATR-FTIR with random forest or
genetic algorithms [33,39], discriminated honeys with an accuracy of 87%. In this study,
portable NIR enabled botanical discrimination with 91% predictive accuracy, demonstrating
comparable performance to previous approaches while offering the significant advantages
associated with the speed and cost-effectiveness of the technique.

Regarding the geographical discrimination, although the accuracy obtained is 95%,
the results should be discussed considering also the botanical origin. Looking at the results
obtained combining both origins (Table 3), multifloral, eucalyptus, and rosemary honeys
from Spain were rarely classified as Italian samples. The accuracy of this approach is
comparable to that of other techniques, such as elemental or isotopic analysis [18,21,74],
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which are among the most widely used for geographic discrimination because the elements
or isotopic ratios are closely related to the environment.

A review of the literature reveals that NIR spectroscopy has rarely been employed to
simultaneously trace botanical and geographical origins. Furthermore, the data available
are largely limited to results obtained with benchtop devices. Guelpa et al. [49] employed
a portable NIR for the differentiation of imported and exported honey, yet they did not
consider the impact of botanical varieties on the results. While the discrimination is accu-
rate, the research design does not ensure that the discrimination observed is dependent on
botanical or geographical origins. Bodor et al. [71] discriminated between different unifloral
honeys produced in various regions of Hungary. The models were generally less accurate,
and the botanical classification model was more accurate than the geographical classifi-
cation model. Truong et al. [75] used visible–near-infrared spectroscopy to authenticate
mono-floral, multifloral mānuka, and other (non-mānuka) honeys from eight geographic
regions in New Zealand. The accuracy of the models was consistent with the results ob-
tained in this study. However, some spectral regions selected in the 1000–1400 nm range
do not match, which may be due to the different origins of the honeys investigated. The
results obtained in this study are also consistent with those reported by Damiani et al. [37]
and Ballabio et al. [76], who differentiated honey from various regions of Argentina and
Italy using a data fusion approach. However, in this case, in addition to the NIR spectra,
their models were calculated using other data obtained by FT-MIR and FT-Raman.

In conclusion, the results of this study support that portable NIR spectroscopy is a
feasible screening method for tracing both the botanical and geographical origin of honey.
Nevertheless, geographical classification is more accurate when considering different
botanical origins that are not common to the geographical regions under consideration.
Therefore, as initially assumed, traceability studies need to consider both aspects to be
generalizable. The findings also confirm that unifloral honeys (such as asphodel, strawberry
tree, and thistle honey) can be traced with higher accuracy than multifloral honeys. This
may be attributed to the lower intraclass variability that is characteristic of unifloral honeys.
As a result, on the other hand, the proposed approach and the obtained models suggest
that NIR can discriminate between multifloral and unifloral honeys, which is a significant
outcome given the disparate economic values.

3.2. Detection of Adulterants
3.2.1. Principal Component Analysis of Adulterated Honeys

The unifloral (UF) and multifloral (MF) pure honey samples were adulterated with
two different adulterant syrups (AD1 and AD2). The samples were subjected to FT-NIR
spectral acquisition, resulting in four different datasets of 240 samples each (Figure 1A).
PCA was performed on each dataset to detect outliers. The T2 vs. Q diagnostic plots
obtained are shown in Figure S3. Figure 3 shows the PCA score plots, and the samples
are colored according to their level of adulteration. All the spectral pretreatments were
evaluated, and the plots with the best visual separation are presented in Figure 3.

The various categories were not separated despite a consistent trend in all the plots.
Indeed, the pure samples were completely separated from their adulterated counterparts.
This distinction was achieved by applying the following spectral pretreatments: MSC and
the first derivative on the MFAD1 dataset (Figure 3A), the first derivative on the MFAD2
dataset (Figure 3B), the SNV and second derivative to the UFAD1 dataset (Figure 3C), and
the second derivative to the UFAD2 dataset (Figure 3D). The PCA identified patterns in
all the cases under investigation. These results are consistent with previous studies that
have examined unifloral honey from China adulterated with rice syrup and corn syrup [77],
acacia honey from Croatia adulterated with glucose syrup [78,79], and honey from Hungary
and Spain adulterated with HFCS [38,80].
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3.2.2. Classification of Pure and Adulterated Honeys

LDA was used to distinguish between pure honey samples (multifloral and unifloral)
and adulterated samples (spiked with AD1 and AD2 syrups). As described in Section 2.4,
the models were developed separately for each dataset using various pretreatment methods
and the GA for variable selection. The outliers were removed using the T2 vs. Q diagnostic
plots (Figure S3). All the results are reported in the Supplementary Material (Tables S8–S11).
Table 4 presents the performance of the best model for each dataset. The most accurate
models for classifying pure and adulterated multifloral honeys were those obtained using
the second-derivative MSC (MFAD1) and first-derivative MSC (MFAD2) as spectra process-
ing. The average cross-validation accuracy was 97% when the honeys were adulterated
with AD1 and 92% when adulterated with AD2. The prediction accuracies were 100%
and 99%, respectively. Considering the unifloral honeys, the best results were obtained
using MSC (UFAD1) and the first-derivative SNV (UFAD2). In this case, the accuracy did
not vary significantly according to the type of adulterating syrup. The cross-validation
accuracy was 96%, while the prediction accuracy was 98% and 100%, respectively. Notably,
the LDA-MFAD1 model was more accurate than LDA-MFAD2, whereas LDA-UFAD2 was
more accurate than LDA-UFAD1. Overall, the performance of the models depended on the
botanical origin and adulterant used. Multifloral honey may have a higher variability in
the fructose/glucose ratio, which can make identification more difficult when honeys are
adulterated with AD2 syrups. In contrast, unifloral honey has a less variable composition,
making adulteration relatively easier to detect.
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Table 4. Confusion matrices of LDA models for classifying adulterated honeys.

MFAD1, 2nd-Derivative MSC Model MFAD2, 1st-Derivative MSC Model

Cross-Validation Cross-Validation

AdulterationPure Low Medium High Accuracy AdulterationPure Low Medium High Accuracy
Pure 36 3 0 0 92% Pure 36 2 1 0 92%
Low 0 38 1 0 97% Low 0 35 3 0 92%

Medium 0 0 38 0 100% Medium 0 2 35 3 88%
High 0 0 0 40 100% High 0 0 1 39 98%

Average accuracy 97% Average accuracy 92%

Prediction Prediction

Pure Low Medium High Accuracy Pure Low Medium High Accuracy
Pure 20 0 0 0 100% Pure 20 0 0 0 100%
Low 0 20 0 0 100% Low 0 19 0 0 100%

Medium 0 0 20 0 100% Medium 0 0 19 1 95%
High 0 0 0 18 100% High 0 0 0 20 100%

Average accuracy 100% Average accuracy 99%

UFAD1, MSC Model UFAD2, 1st-Derivative SNV Model

Cross-Validation Cross-Validation

AdulterationPure Low Medium High Accuracy AdulterationPure Low Medium High Accuracy
Pure 33 0 0 0 100% Pure 35 1 0 0 97%
Low 1 35 2 0 92% Low 0 38 1 0 97%

Medium 0 0 37 0 100% Medium 0 2 36 1 92%
High 0 0 1 40 98% High 0 0 0 40 100%

Average accuracy 96% Average accuracy 96%

Prediction Prediction

Pure Low Medium High Accuracy Pure Low Medium High Accuracy
Pure 16 0 0 0 100% Pure 18 0 0 0 100%
Low 0 18 1 0 95% Low 0 19 0 0 100%

Medium 0 1 20 0 95% Medium 0 0 20 0 100%
High 0 0 0 19 100% High 0 0 0 20 100%

Average accuracy 98% Average accuracy 100%

MF = multifloral honey; UF = unifloral honey; AD1 = first adulterant syrup; and AD2 = second adulterant syrup.

3.2.3. Quantification of Adulterants by PLS

The percentage of adulterants in the multifloral and unifloral honey was estimated
using PLS. As described in Section 2.4, the models were built considering the two adulterant
syrups and multifloral and unifloral honeys separately, resulting in four datasets. The
outliers were removed using T2 vs. Q diagnostic plots (Figure S3). The performance was
evaluated based on the different pretreatment methods, using both GA-selected variables
and full spectra. All the results are reported in the Supplementary Material (Tables S12–S15).
Generally, for each dataset, the best preprocessing method was GA-MSC.

Table 5 presents the performance of each PLS model. Figure 4 displays for each dataset
the ‘predicted vs. measured’ graphics in calibration and prediction, respectively.

The MFAD1 model is characterized by an explained variance of 95.8% using nine latent
variables and 13 wavelengths. The root mean square error of cross-validation (RMSECV)
was 4% for a median adulterant/honey (A/H) value of 32% (relative error of 13%). The root
mean square error of prediction (RMSEP) was 4% for a median A/H value of 34% (relative
error of 13%). The samples with adulteration levels above 15% A/H were accurately
predicted, whereas those below 10% were frequently detected as pure honey (Figure 4A,B).
The MFAD2 model used 35 wavelengths distributed across five spectral regions, which
described 90.4% of the total variance using 10 latent variables. The RMSECV was 6% for a
median value of 30% A/H (relative error of 20%), and the RMSEP was 7% for a median
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value of 31% A/H (relative error of 23%). The samples containing 20% A/H or more were
correctly identified as adulterated, whereas the samples with lower concentrations could
be mistaken for pure honey (Figure 4C,D).

Table 5. Prediction parameters for detecting adulterants in honey using PLS.

Dataset Spectral
Pretreatment

Variable
Selection

n. of
Variables LV

Explained
Variance

(%)

Cross-Validation Prediction

Median RMSECV RMSECV% Median RMSEP RMSEP% Bias

MFAD1 MSC GA 13 9 95.8 0.32 0.04 13 0.34 0.04 13 0.006
MFAD2 MSC GA 35 10 90.4 0.30 0.06 20 0.31 0.07 23 −0.004
UFAD1 MSC GA 19 10 96.1 0.33 0.04 12 0.33 0.04 12 0.005

UFAD2 MSC + 1st
derivative GA 28 8 93.9 0.35 0.05 14 0.31 0.05 16 −0.008

MF = multifloral honey; UF = unifloral honey; AD1 = first adulterant syrup; AD2 = second adulterant syrup;
MSC = multiplicative scatter correction; GA = genetic algorithm; LV = latent variables; RMSECV = root mean
square error in cross-validation; and RMSEP = root mean square error in prediction.

The UFAD1 model demonstrated consistent performance, with an explained variance
of 96.1% using 10 latent variables and 19 wavelengths. The RMSECV was 4% for a median
value of 33% A/H (relative error of 12%). The RMSEP was 4% for a median value of
33% A/H (relative error of 12%). The model allowed for the accurate prediction of the
adulteration levels at concentrations of 15% A/H or higher (Figure 4E,F). Finally, for the
UFAD2 dataset, the most promising model was the GA first-derivative MSC spectrum-
based model, which used 28 wavelengths distributed across seven spectral regions. It
was characterized by eight latent variables that described 93.9% of the total variance. The
RMSECV was 5% for a median value of 35% A/H (relative error of 14%). The RMSEP was
5% for a median value of 31% A/H (relative error of 16%). Except for one pure sample,
which was predicted to contain 20 wt% A/H, every sample was accurately estimated. The
pure samples were only confused with honeys adulterated at A/H < 10% (Figure 4G,H).

Previous studies on acacia honey from Croatia reported a similar accuracy of PLS
models in predicting honey adulterated with fructose and glucose syrups [78,79]. The
authors found that Artificial Neural Networks performed better than PLS, but implement-
ing this algorithm in management software may be challenging for routine analysis. Li
et al. [81] developed qualitative and quantitative methods to detect HFCS and maltose
syrup in 12 unifloral honeys from China. The results were in excellent agreement with
those obtained for multifloral honeys from Spain that were adulterated with rice syrup,
inverted sugar, brown cane sugar, fructose syrup, and HFCS [38,82].

The results obtained using PLS regression support what was observed using LDA. The
PLS-MFAD1 model accurately predicted adulterated samples with AD > 10% A/H, whereas
the PLS-MFAD2 model correctly predicted samples with AD > 20% A/H. In contrast, PLS-
UFAD1 and PLS-UFAD2 had limits of 15% and 10% A/H, respectively. Therefore, it is
easier to quantify adulterants in unifloral than multifloral honeys. The findings of this
study also confirm that portable NIR can be employed for adulterant quantification, with
levels of prediction similar to those obtained with benchtop devices.



Foods 2024, 13, 3062 13 of 18
Foods 2024, 13, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 4. Experimental versus calculated value plots obtained by the models for detecting adulter-
ants in multifloral and unifloral honeys (percentages of adulteration are shown as decimal). (A) 
MFAD1, calibration step; (B) MFAD1, validation step; (C) MFAD2, calibration step; (D) MFAD2, 
validation step; (E) UFAD1, calibration step; (F) UFAD1, validation step; (G) UFAD2, calibration 
step; and (H) UFAD2, validation step. MF = multifloral honey; UF = unifloral honey; AD1 = first 
adulterant syrup; and AD2 = second adulterant syrup. 

  

Figure 4. Experimental versus calculated value plots obtained by the models for detecting adulterants
in multifloral and unifloral honeys (percentages of adulteration are shown as decimal). (A) MFAD1,
calibration step; (B) MFAD1, validation step; (C) MFAD2, calibration step; (D) MFAD2, validation
step; (E) UFAD1, calibration step; (F) UFAD1, validation step; (G) UFAD2, calibration step; and
(H) UFAD2, validation step. MF = multifloral honey; UF = unifloral honey; AD1 = first adulterant
syrup; and AD2 = second adulterant syrup.

4. Conclusions

This study proposes and validates the use of portable NIR spectroscopy for honey
screening. It allows for the prediction of honey origin and the detection of adulterants
through fast and on-site analysis. Qualitative and quantitative models were developed
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for both unifloral and multifloral honey samples. Two of the most common adulterants
with different compositions of glucose, fructose, and maltose were evaluated. The data
were processed using several pretreatment methods, including full-spectrum analysis and
genetic algorithms for variable selection. The preprocessing methods had a minimal impact
on the accuracy of the models, although multiplicative scatter correction was generally the
most effective. The models were developed using common and user-friendly chemometric
tools that can be easily implemented in quality control software. Based on the results
obtained, the botanical origin influences the ability of each model to predict adulterants.
Similarly, the botanical origin also affects geographical classification.

This study shows that portable NIR can be used to detect adulterants and predict
botanical and geographical origin. Notably, models need to be developed considering
both factors; otherwise, the accuracy of the origin prediction may be biased. As requested
by the European Community, this approach aims to identify counterfeit honey quickly,
accurately, and on site. Because the analytical technique and data processing are simple, the
approach could be used by regulators as well as distributors or companies. A hypothetical
data processing workflow could include a first step to evaluate botanical and geographical
origins, followed by a second step to identify adulterants. In the future, the datasets will
be expanded to include new botanical varieties, countries of origin, and adulterants. In
addition, other models will be developed to predict chemical–physical parameters and the
presence of contaminants for complete quality control.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods13193062/s1, Section S1: Spectral analysis; Figure S1:
(a) Overlapping of the FT-NIR spectra of the honey samples. (b) Averaged spectra of each botanical
honey category; Figure S2: T2 vs. Q diagnostic plots of the PCA calculated on the dataset of all the
pure honey samples; Figure S3: T2 vs. Q diagnostic plots of the PCA calculated on the four adulter-
ant datasets; (a) MFAD1; (b) MFAD2; (c) UFAD1; and (d) UFAD2; Table S1: Melissopalynological
analysis of multifloral and unifloral honey from Spain and Sardinia, Italy; Table S2: Experimental
plan for preparation of multifloral honeys adulterated with syrups and dataset generation; Table S3:
Experimental plan for preparation of unifloral honeys adulterated with syrups and dataset genera-
tion; Table S4: Division of the honey dataset into the different categories according to traceability;
Table S5: Discrimination of honeys based on geographical origin using LDA; Table S6: Discrimina-
tion of honeys based on botanical origin using LDA; Table S7: Discrimination of honeys based on
geographical–botanical origin using LDA; Table S8: Classification parameters for detecting AD1 adul-
teration in multifloral honeys using LDA with varying spectral pretreatments; Table S9: Classification
parameters for detecting AD2 adulteration in multifloral honeys using LDA with varying spectral
pretreatments; Table S10: Classification parameters for detecting AD1 adulteration in unifloral honeys
using LDA with varying spectral pretreatments; Table S11: Classification parameters for detecting
AD2 adulteration in unifloral honeys using LDA with varying spectral pretreatments; Table S12:
Prediction parameters for detecting AD1 adulteration in honeys using PLS with varying spectral
pretreatments; Table S13: Prediction parameters for detecting AD2 adulteration in multifloral honeys
using PLS with varying spectral pretreatments; Table S14: Prediction parameters for detecting AD1
adulteration in unifloral honeys using PLS with varying spectral pretreatments; Table S15: Prediction
parameters for detecting AD2 adulteration in unifloral honeys using PLS with varying spectral
pretreatments [65–69].
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