On the reconstruction of proofs in distributed theorem proving
with contraction: a modified Clause-Diffusion method

Maria Paola Bonacina *
Department of Computer Science
University of Iowa
lowa City, TA 52242-1419, USA
bonacina@cs.uiowa.edu

Abstract: Proof reconstruction is the operation of extracting the computed proof from the
trace of a theorem proving run. In experiments with distributed theorem proving by Clause-
Diffusion, we observed that proof reconstruction is far from being a trivial task in distributed
theorem proving with contraction: because of the distributed nature of the derivation and
especially because of backward contraction, it may happen that a deductive process generates
the empty clause, but does not have all the necessary information to reconstruct the proof.
We present a modified Clause-Diffusion method which guarantees that the deductive process
that generates the empty clause will be able to reconstruct the distributed proof. This result
is obtained without imposing a centralized control on the deductive processes and without
resorting to a round of post-processing with additional, ad hoc communication. We define a set
of sufficient conditions and we prove that if a distributed strategy satisfies these requirements,
then proof reconstruction is guaranteed. We show how the modified Clause-Diffusion method
satisfies these requirements and we compare the modified Clause-Diffusion method with previous
versions of Clause-Diffusion and related approaches.

Keywords: Automated theorem proving, distributed deduction, contraction.

1 Introduction strategy, but theorem proving runs that involve

millions of clauses are not regarded as excep-
Proof reconstruction is an important feature of tional. Since an output of this size is unpractical
theorem provers that implement resolution-based for most purposes, theorem provers incorporate
or completion-based strategies for clausal and equa- an algorithm to reconstruct the computed proof,
tional refutational theorem proving. These strate- that is, to extract from the record of all the gen-
gies work primarily by forward reasoning, that is, erated clauses those that are related by inference
by deriving consequences from the axioms and steps to the empty clause. The task of extract-
the negation of the input theorem, until a con- ing a computed proof from a much larger set
tradiction, the empty clause, is generated. While of inference steps does not pertain solely to for-
searching for the empty clause, these procedures ward reasoning procedures. The need of shrink-
typically generate a very high number of clauses, ing a huge output to a smaller, more manageable,
many of whom may not contribute directly to de- more meaningful output is typical for all prob-
riving the empty clause. The numbers of clauses lems involving search, because solving a problem
vary with the theorem proving problem and the by searching consists in generating many possi-
bilities until a successful one is found.

*Supported in part by the GE Foundation Faculty Fel- .
lowship to the University of Iowa and by the National In this paper, we focuse on proof reconstruc-
Science Foundation with grant CCR-94-08667. tion in distributed theorem proving by forward

reasoning procedures. By distributed theorem
proving, we mean having multiple concurrent,
asynchronous deductive processes working in par-
allel on the same theorem proving problem. Each
process executes a theorem proving strategy, has
its own data base of clauses and develops its own
derivation. The processes may all execute the
same strategy or execute strategies with differ-
ent search plans, e.g. different criteria to select
inference rules and premises. A method for dis-
tributed theorem proving specifies, together with
the strategy or strategies to be executed by the
processes, a mechanism to subdivide the theorem
proving problem among the processes and a com-
munication scheme: the former aims at ensuring
that each process has less work than a single se-
quential process would; the latter aims at ensur-
ing that the processes cooperate, for instance by
exchanging the clauses they derive. In this con-
text, a distributed derivation is made by the col-
lection of the derivations developed by the pro-
cesses and it succeeds when one of the processes
generates the empty clause. We refer to [6] and
[11] for surveys on parallel and distributed deduc-
tion for different strategies and architectures and
to [5] for our Clause-Diffusion method, which we
adopt here as a starting point.

In sequential theorem proving, proper book--
keeping is sufficient to guarantee proof reconstruc-
tion. The situation is sensibly different in dis-
tributed theorem proving. The distributed na-
ture of the derivation implies that while one pro-
cess succeeds first, all processes contributed to
the proof, and it is not trivial to guarantee that
the successful process is capable of reconstructing
the proof by consulting only its own data base.
As an example, consider the following scenario:
a deductive process p; generates an equation ¢
and applies it to reduce another clause ¢ to a
new form 1’. It follows that ¢ and v are parents
of ¢'. Then, process p; also simplifies ¢ itself to
¢'. Later, ¢ and 1)’ are sent by process p; to
another process p;. Eventually, p; generates the
empty clause, and the proof involves 1)’ at some
stage. When p; tries to reconstruct the proof, the
history of ¢ will refer to ¢ and v, but neither
of them can be retrieved in the data base of p;.
We observed this and other difficulties during ex-
periments with our Clause-Diffusion prototypes
Aquarius [4] and Peers [7].

In this work we give a systematic treatment
of the problem of proof reconstruction in distri-
buted theorem proving and we propose a solu-
tion. First, we define formally proof reconstruc-
tion. Second, we overview briefly the Clause-
Diffusion approach. Then we classify the fail-

ures in distributed proof reconstruction reported
in our experiments. These observations guide the
design of the modified Clause-Diffusion method,
that we describe along with the proof reconstruc-
tion failures, showing informally how modified
Clause-Diffusion prevent them. In the formal
sections of the paper, we prove that the modi-
fied Clause-Diffusion method is fair, and there-
fore complete, if the underlying inference sys-
tem is complete, and that it guarantees proof re-
construction. We demonstrate this property by
formulating sufficient conditions for distributed
proof reconstruction: we show that our condi-
tions are sufficient and that the modified Clause-
Diffusion method fulfills them. Modified Clause-
Diffusion guarantees proof reconstruction by us-
ing the asynchronous communication that is al-
ready in place in the Clause-Diffusion method-
ology for the distribution of inferences. No ad
hoc communication for proof reconstruction is
needed. Also, modified Clause-Diffusion preser-
ves the characteristic of Clause-Diffusion that all
deductive processes are asynchronous peers. No
central control, such as in a master-slave type of
organization, where the master performs central-
ized book-keeping and decision-making, is added.
The capability of proof reconstruction is ensured
by simpler and more uniform schemes for commu-
nication, identification and allocation of clauses,
that are executed in a purely distributed, asyn-
chronous fashion by the processes.

2 Proof reconstruction

This section contains preliminary material: a de-
finition of the computed proof and the condi-
tions for proof reconstruction in sequential the-
orem proving. We assume to have a strategy
C =< I; X > for first-order clausal theorem prov-
ing, where I is the set of inference rules and ¥ is
the search plan controlling the application of the
inference rules. Given a theorem proving prob-
lem in refutational clausal form So = S U {—¢},
the strategy C will generate a derivation
Sol—csll—c...sil—csi+1 Fc...,

where at each step an inference rule is applied to
selected premises according to the search plan.
The proof computed by a derivation can be de-
fined and represented graphically by adopting the
classical convention of representing proofs as trees.
An expansion inference step, such as a resolu-
tion or paramodulation step, deriving clause ¢,
from premises ¢1,...¢,—1, iS represented as a
subtree with root ¢, and children ¢1,...@,_1.
We denote it by the pair (@n, f(©1,.-,©n-1)),
where f is the symbol of the applied inference

rule. This representation can be applied also to
contraction inferences, such as simplification or
normalization, where a clause ¢,_1 is reduced
to ¢, by simplifiers @1, ... pn_2: @, is the root
and @1,...¢n—2,¢n—1 are the children. In turn,
©1, . - . Pn—1 have children, representing their pre-
mises. Thus a tree represents a proof of the clause
associated to its root:

Definition 2.1 Given a derivation
SokeSike...FeS; ...,

for all clauses ¢ € |J;~oSi, the ancestors-tree

of ¢, denoted by at(p), is defined inductively as

follows:

o if o € Sy, i.e.
at(p) = ¢,

w is an input clause, then

o if v is derived at stage i > 0 by inference
rule f, with premises p1,...pn—1, then

at(p) = (¢, f(at(e1), ... at(pn-1)))-

The ancestors-tree of a clause contains all its an-
cestors, including both expansion-ancestors, i.e.
clauses used as parents in expansion steps, and
contraction-ancestors, i.e. simplifiers and ances-
tors that were reduced. Since each clause has its
own set of variables, the same clause is never de-
rived twice. Rather, multiple variants of a clause,
i.e. clauses that differ only by a permutation of
variables, are typically generated during a deriva-
tion. If a clause is derived at stage ¢ and a vari-
ant ¢’ of ¢ is derived at stage j, their ancestors-
trees are two distinct objects, even if they may
represent the same inferences logically. We re-
call that treating variants as distinct clauses is
necessary to represent proofs as trees: if variants
are not differentiated, the graph of the proof may
contain cycles. Also, a proof tree may have more
than one node labelled by the same clause, since
a clause may be a premise of more than one step
in a proof.

Definition 2.2 Given a successful derivation
SobFcSike...SiFe Siv1 -..Fe Sh,

the computed proof is at(Od), the ancestors-tree

of the empty clause.

We call naming scheme the mechanism that
a theorem prover uses to associate identifiers to
clauses. Identifiers are chosen from a domain A,
which is ordered and has the cardinality of IN, of-
ten IN itself. A naming scheme induces a retrieval
relation R C A x L, where L is the language of
clauses on the given signature, and (x,¢) € R
means that = is the identifier of clause . We
denote by (A, R) the naming scheme that uses

domain A and induces retrieval relation R. The
relevant property for proof reconstruction is the
following:

Definition 2.3 A theorem proving strategy C has
an unambiguous naming scheme (A, R) if, for all
derivations by C, SobF¢SikFec...Sitc Siv1 .-,
R: A — ;>0 Si is a bijective function.

R needs to be a function, so that, given an iden-
tifier x, there exists one and only one clause ¢ €
U;>o Si, identified by . Bijectivity implies that
every generated clause has a unique identifier.
Multiple variants of a clause are treated as dis-
tinct clauses and are given different identifiers.

Existing sequential theorem provers implement
proof reconstruction by using unambiguous nam-
ing schemes. For instance, the theorem prover
Otter [10] uses an unambiguous naming scheme
and a data structure for representing clauses with
fields to store the identifier of the clause, the
identifiers of its parent clauses and the code of
the inference rule (expansion or contraction) that
derived it. When an empty clause O is gener-
ated, the prover reconstructs at(d) by retrieving
the parents of O, then the parents of the par-
ents and so on, until the reconstruction process
retrieves clauses that were part of the input set.
This algorithm assumes that the chains of refer-
ences among clauses contain no cycles, (i.e. the
prover builds proof trees correctly), and informa-
tion about the used inference rules is stored with
the clauses, so that proof reconstruction reduces
to ancestors retrieval. We shall also make these
assumptions in this paper.

Additional care is needed if the strategy fea-
tures contraction inference rules, such as simplifi-
cation, because clauses deleted by simplification
may appear in at(d) and thus should be saved
for the purpose of proof reconstruction even if
they are no longer used for inferences. Saving all
clauses deleted by simplification is not appealing
because of memory consumption. Fortunately, it
is possible to establish a priori that a large set of
clauses deleted by contraction will not be needed
for proof reconstruction. The key observation is
the distinction between forward contraction, the
contraction of newly generated clauses right after
generation, and backward contraction, the con-
traction of all other clauses [6]. Clauses deleted
by forward contraction are not used as premises
of other steps before deletion and therefore will
not be needed for proof reconstruction. Clauses
deleted by backward contraction may be needed
for proof reconstruction, because they may have
been used as premises of other steps before be-
ing deleted. Therefore, it is sufficient to save the

clauses deleted by backward contraction in a sep-
arate component D of the data base, which will
be consulted only by the proof reconstruction al-
gorithm:

(S(); Do) FC(SI; Dl) FC e (S,L, Dl) FC ooy
Theorem provers such as Otter proceed in this
way for the sake of proof reconstruction, with no
apparent harm for performance.

3 Modified Clause-Diffusion

In this section, first we give a brief overview of

the general elements of the Clause-Diffusion ap-

proach [5] and then we concentrate on proof re-

construction and modified Clause-Diffusion. We

classify the types of failure in proof reconstruc-

tion that we observed experimentally and we show
informally how modified Clause-Diffusion prevents
such failures.

Clause-Diffusion seeks to realize a form of co-
arse-grain parallelism for theorem proving called
parallelism at the search level. Analysis and mo-
tivation for this choice were given in [6]. The
idea is to have concurrent deductive processes
Do, - - - Pn_1 Searching in parallel the search space
of the theorem proving problem. We assume a
distributed environment, with distributed memo-
ry and message-passing, where each process

POy -+ Pn1
runs on a node of the system, also denoted by
Do, - - - Pn—1. Given a theorem proving strategy C
and an input problem Sy, each process pr exe-
cutes C, generating its derivation

SkbeSibe.. .Sk ...

The distributed derivation is formed by the col-
lection of these derivations and it succeeds as
soon as one of them does. The set S* represents
the local data base at pj, whereas UZ;& S* rep-
resents the global data base. The processes may
execute different versions of C, e.g. differing in
the search plan.

Intuitively, this approach is most fruitful, if
the processes search different portions of the search
space. Clause-Diffusion tries to realize this effect
by assigning each clause to a process and estab-
lishing that each process will perform only those
inferences that involve its own clauses, called its
residents. Consider for instance the paramodula-
tion inference rule. According to Clause-Diffusion,
process pi will perform only those paramodula-
tion steps that paramodulate into a clause be-
longing to pi. For two clauses 11 and 12, belong-
ing to pr and pp respectively, pir will paramod-
ulate 9 into i1, whereas p; will paramodulate
11 into 9. Similar criteria for subdivision ap-
ply to other expansion inference rules, such as

resolution.

In order to make inferences between clauses
belonging to different processes possible, a Clau-
se-Diffusion method features a communication sc-
heme, according to which the processes broad-
cast, or diffuse (hence the name of the methodol-
ogy) their clauses. The messages carrying clauses
are called inference messages. It follows that the
data base of each process contains both residents
and non-resident clauses that were received as in-
ference messages. By collecting clauses received
as messages, each process forms an approximated
version, termed localized image set, of the current
state of the global data base. This set is used as
a set of simplifiers, so that a process can contract
a clause with respect to the global data base, not
just its own local data base. This feature is called
distributed global contraction.

The issue of subdividing a theorem proving
problem is a difficult one: since a clause can be
generated in many ways, subdividing the clauses
among the processes does not prevent the pro-
cesses from generating common clauses. The data-
driven partition of inferences in Clause-Diffusion
provides an approximation to the ideal of a true
partition of the search space. Specific Clause-
Diffusion strategies may be defined by giving con-
crete search plans, algorithms for allocation of
residents, schemes for communication and dis-
tributed global contraction et cetera. We refer
to [5, 3, 4, 7] for a detailed presentation of the
Clause-Diffusion methodology and specific strate-
gies.

3.1 The communication scheme

The scheduling of communication affects proof
reconstruction, because proof reconstruction may
fail if a clause is broadcast, and received, earlier
than one of its ancestors. In turn, this may hap-
pen only if clauses are used as premises, and thus
have descendants, before being broadcast. Thus,
we call this type of failure failure by delayed diffu-
ston, because broadcasting is scheduled too late
with respect to inferences:

e Fuailure by delayed diffusion: consider clau-
se ¢ belonging to process pi. Assume that
Pi use ¢ as premise before broadcasting it.
For instance, ¢ is applied as a simplifier to
reduce 9 to ¢'. Thus ¢ is a parent of 1)’.
Depending on how clauses are selected for
broadcasting, it may happen that py broad-
casts 1)’ before it broadcasts ¢. It follows
that some other process p, may receive 1)’
and find a proof involving 1)’ before receiv-
ing ¢. Process p;, will not be able to re-

construct the proof, because the reference
to ’s identifier in 1)’ cannot be solved. It
may also happen that p; applies ¢ to gen-
erate 1’ and then deletes ¢ by backward
contraction, so that p; does not broadcast
o at all. The effect on proof reconstruction
is similarly negative.

The original Clause-Diffusion made each process
responsible for broadcasting its residents and spec-
ified not to delay broadcasting after expansion.
In the provers of [4, 7], each process broadcasts its
residents when they are selected for the first time
as premises of expansion inferences. Therefore,
in our experiments failures by delayed diffusion
were due mostly to missing contraction-parents.
If clauses are broadcast after expansion, failures
by delayed diffusion for expansion-parents may
also occur. Modified Clause-Diffusion prevents
these failures by adopting an eager communica-
tion scheme:

e Broadcast inference message: each process
is responsible for broadcasting as inference
messages the clauses it generates. When-
ever process pj generates a new, or raw,
clause ¢, px reduces ¢ to its normal form
¢’ (forward contraction) and if ¢’ is not
deleted, pi executes the allocation algorithm
(of the specific Clause-Diffusion strategy),
to decide which process ¢’ belongs to. Re-
gardless of whether ¢ is assigned to pg, px
keeps ¢ and also broadcasts it as an infer-
ence message.

Thus a clause will be broadcast by the process
that generates it, not by the process that owns it.
If the allocation algorithm assigns ¢ to py, then
pr keeps it as its resident and also broadcasts
it as an inference message for the benefit of the
other processes. If ¢ is assigned to another node
pj, then py keeps and broadcasts ¢, realizing in
one operation both the goal of sending ¢ to its
owner p; and the goal of broadcasting ¢ to all the
processes. Failures by delayed diffusion cannot
occur, because clauses are broadcast before being
used as premises.

3.2 The naming scheme

A naming scheme for a distributed derivation nee-
ds to identify each clause uniquely in the global
data base. The naming scheme is related to the
communication scheme because a clause needs to
receive its global identifier before being broad-
cast. Therefore, the process that broadcasts a
clause should also name it. In the original Clause-
Diffusion, both tasks are performed by the owner

of the clause. In modified Clause-Diffusion, a
clause is given its global identifier by the process
that generates it:

e the global identifier of a clause generated
by pr and allocated to p; (by the allocation
algorithm run at py) is < j,k,1 >, if ¢ is
the [-th clause to be allocated as resident
to p; among all those generated by py.

As a special case, if pi allocates the clause to it-
self, the identifier will have the form < k, k,1 >,
with the same meaning for [. This naming scheme
has no repetitions, meaning that no process gen-
erates twice the same identifier. Its implementa-
tion requires that each process keep a count of
how many clauses it has already allocated to any
process, including itself.

3.3 The treatment of clauses gen-
erated by backward contraction

In a strategy with backward contraction, raw clau-
ses are generated not only by expansion but also
by backward contraction. The treatment of raw
clauses generated by backward contraction is a
critical issue for distributed proof reconstruction
and for distributed deduction in general. The
Clause-Diffusion methodology recommends that
a process broadcast a clause only if it is irre-
ducible with respect to all the simplifiers avail-
able to the process, in order to prevent broad-
casting a clause which is known to be redun-
dant. Modified Clause-Diffusion respects this in-
dication by broadcasting clauses right after nor-
malization by forward contraction. Of course, a
clause that was irreducible at the time of broad-
casting may become reducible at a later stage,
as other simplifiers are generated. Consider a
clause ¢ that was broadcast at some stage of a
distributed derivation, is stored at all the nodes
and is reducible to ¢'.

If all the processes are allowed to reduce ¢ to
¢’ and to treat the generated clause like a raw
clause generated by expansion, up to n copies of
¢’ may be generated, normalized, given a (differ-
ent) global identifier and broadcast. (We recall
that the processes are asynchronous, and there-
fore unlikely to perform these steps at the same
time.) This will induce in turn more backward
contraction steps, e.g. subsumption steps, to get
rid of all the duplicates. In order to avoid the re-
dundancy of this scenario, one may restrict back-
ward contraction based on ownership of clauses,
by establishing that a process may simplify only
its own clauses. Accordingly, only the owner of
¢ reduces it to ¢’ and broadcasts ¢’ as a new

clause (we assume here for simplicity that ¢’ is
irreducible). Upon receiving the inference mes-
sage ¢, the other processes will use it to replace
@ in their data bases. For this purpose, and for
proof reconstruction, ¢’ would carry in its his-
tory the information that it was generated by
backward contraction of ¢. The disadvantage
of this scheme is that the processes are not al-
lowed to delete by simplification those redundant
clauses that are not their residents. The effect of
backward normalization is delayed until reduced
forms are received as inference messages. Since
most of the data base of a process may be made
eventually of non-resident clauses, the limitation
of the contraction power of the processes is sig-
nificant.

The original Clause-Diffusion method adopted
a compromise between unrestricted backward con-
traction and subdivision of backward contraction
by ownership. All processes reduce ¢ to ¢’, but
only the owner, say p;, of ¢ is allowed to gen-
erate a new identifier for ¢’ and broadcast ¢’
with its new name. The other processes gener-
ate ¢’ and store it temporarily with the identi-
fier of ¢. When they receive the inference mes-
sage ¢’ broadcast by p;, they update their data
bases with the correct identifier of ¢’. A problem
with this approach is that it makes the naming
scheme ambiguous, because for some time ¢ and
¢’ have the same identifier at all nodes different
from p;. Indeed, proof reconstruction may fail in
two ways:

1. Failure by name clash at a receiver:
if a process pg, k # i, reduces ¢ to ¢, stores
¢’ with the identifier x which was originally
’s, and later finds a proof including a refer-
ence to ¢ through z, p; may not be able to
reconstruct it correctly, because the identi-
fier x may retrieve ¢’ instead.

2. Failure by name clash at the sender:
processes other than p; may use ¢’ as pre-
mise before its identifier is updated. There-
fore, the histories of other clauses may con-
tain occurrences of identifier x referring to
¢'. If p; finds a proof containing one such

reference, it will not be able to reconstruct

it, because the identifier z will retrieve ¢ at
Pi-

This scheme cannot be fixed by allowing the pro-
cesses other than p; to generate new names for
their copies of ¢’: the naming scheme would still
be ambiguous, since ¢’ would be stored under
different indentifiers and name clashes on occur-
rences of ¢’ would occur.

Modified Clause-Diffusion proposes a differ-
ent compromise, that preserves proof reconstruc-
tion. Each process may perform backward con-
traction of its own clauses by any contraction
rule. It may apply without restrictions those con-
traction rules, such as subsumption and tautol-
ogy deletion, that do not produce new clauses.
In addition, it may use simplification to delete
clauses belonging to other processes, but it is not
allowed to generate their reduced forms. Thus,
all processes may apply backward contraction to
detect that ¢ is reducible and delete it, but only
the owner of ¢ is allowed to complete the back-
ward contraction inference, generate ¢’, name it
and broadcast it. At all the other processes the
contraction step initiated by deleting ¢ will be
completed with no additional work, when the in-
ference message ¢’ is received and stored. Delet-
ing ¢ without generating ¢’ is incomplete locally,
but it is complete globally, as long as ¢’ is gen-
erated by the owner of ¢ and broadcast.

This approach has several advantages. First,
it does not induce the redundant communication
and duplication of unrestricted backward con-
traction, without strongly reducing the contrac-
tion power of the processes, since they can still
delete redundant clauses regardless of ownership.
Second, generation of new clauses by backward
contraction and generation of raw clauses by ex-
pansion are treated uniformly: both are restricted
based on ownership of clauses; all raw clauses and
all inference messages are handled in the same
way, regardless of how they were generated. All
received inference messages can simply be added
to the data base, because it is not necessary to use
them to update incorrect identifiers or to replace
copies of their ancestors. Finally, this scheme
implies that all clauses generated by backward
contraction get new identifiers. Together with
the assumption that the naming scheme has no
repetitions, this means that the naming scheme
is unambiguous and there are no name clashes.

3.4 Distributed derivations

We conclude this section on modified Clause-Dif-

fusion by summarizing its operations in a for-

mal description of its derivations. A distributed

derivation is made of a collection of n derivations
TFreTFbe.. . TFrc. .,

for 0 < k < n—1, by the processes pg, p1,- - -, Prn—1-

In a derivation the superscript indicates the pro-

cess and the subscript indicates the stage. Here

and in the rest of the paper T' is the tuple
(S;V;CP; MI; MO; D)

where S is the set of residents, V' is the set of non-

resident clauses currently held at a node, C'P is
the set of raw clauses, M is the set of inference
messages being received (input), MO is the set
of inference messages to be broadcast (output)
and D is the set of clauses deleted by backward
contraction. A distributed derivation succeeds
as soon as one of its component derivations does.
The different types of operations work as follows:

e Expansion takes premises in SUV and puts
the generated raw clauses in CP. For ex-
ample, if ¥ belongs to px and 5 belongs
to pn, we have: ¢y € S*, 1y € Sh 1y € VP
and 1o € V¥, p;, paramodulates 1) into 1,
and pp paramodulates 11 into 5.

e Forward contraction applies the simplifiers
in SUV to normalize the raw clauses in C'P:
deleted clauses disappear, whereas a non-
trivial normal form goes in MO and in S,
if it belongs to the process, in V' otherwise.

e Backward contraction applies the simpli-
fiers in SUV to the clauses in SUV: deleted
clauses go in D, whereas a non-trivial nor-
mal form goes in MO and in S, if it belongs
to the process, in V' otherwise.

e The act of receiving an inference message is
represented by the appearance of the mes-
sage in M I. The receiver processes the re-
ceived inference message by moving it from
MT to S if the clause belongs to the pro-
cess, to V otherwise.

e The act of broadcasting an inference mes-
sage is initiated by putting the clause in
MO:; the effect of broadcasting is repre-
sented in the derivation by the clause ap-
pearing in the M1 components of all the
other processes at later stages.

Since each clause added to V' is broadcast and
added to S by one of the processes, it follows
that all clauses in V' are copies, or “images”, of
clauses in S: if ¢ € V¥, then ¢ € SJ}»L, for some
h and j. The union S* U V* forms the localized
image set of process pg, that is, the “image” of
the global data base known to pg.

3.5 Uniform fairness

Fairness of the original Clause-Diffusion method
was proved in [3]. Since the method and the
formal description of the derivations are differ-
ent, we need to prove separately the fairness of
modified Clause-Diffusion. Fairness of a theorem
proving strategy means that the inferences that

are necessary to prove the theorem will not be
postponed indefinitely by the search plan of the
strategy. A stronger property, that we call uni-
form fairness, says that all expansion inferences
from persistent, non-redundant premises will be
considered eventually by the search plan:

Definition 3.1 (Bachmair, Ganzinger 1992) [2]
A derivation
SobeSike...SiFe Siy1 ...

is uniformly fair if I.(Sec — R(Sx)) € U;>¢ Sis
where Soo = U505, S5 (the limit of the deriva-
tion) is the set of persistent clauses, I.(S) is the
set of clauses that can be inferred from premises
in S in one expansion step of the given strategy,
and R(S) is the set of clauses that are redundant
in S based on the redundancy criterion R of the
given strategy.

We refer to [2] for the definition of redundancy
criterion. Intuitively, redundant clauses are those
that can be deleted by contraction without detri-
ment for the refutation. For the purpose of this
paper we simply need to recall that R is the re-
dundancy criterion of strategy C in the sense that
the clauses deleted by the contraction rules of C
are redundant according to R. Also, we shall
use two properties of redundancy criteria given
in [2]: a redundancy criterion is monotonic, that
is, if S C 5, then R(S) C R(S’), and redundant
clauses are irrelevant in establishing the redun-
dancy of other clauses: if (S" —S) C R(S’), then
R(S") C R(S).
For distributed derivations, we have local and
global limits, e.g. S¥ = J,, Njsi Sk and So =
Z;& Sk . Limits for the other components of
a distributed derivation are defined in the same
way. The definition of uniform fairness consid-
ers clauses in S only. However, each process in a
distributed derivation performs expansion infer-
ences from premises in SUV and deletes by con-
traction clauses redundant with respect to SUV.
The following lemma and theorem will bridge
this gap. The lemma will show that if a clause
is redundant with respect to (S UV), then it
is redundant with respect to So. The theorem
will show that if the local derivations are uni-
formly fair with respect to expansion inferences
on S UV and the communication scheme sat-
isfies additional conditions, then the distributed
derivation is uniformly fair.

Lemma 3.1 For allk, 0 <k <n-—1, R((SU
V)5) € R(Sw)-

Proof: we prove that R((S U V)s) C R(Sw):
since (SU V)% C (SUV)y, it follows R((S U

V)E)Y C R((SUV)s)) € R(Sa) by monotonic-
ity of R.

If (SUV)se C S holds, then R((SUV)y) C
R(Ss) follows by monotonicity of R.

If (SUV)s C S does not hold, then there
exists some clause ¢, which is persistent in the
V' component of the derivation, but not in the
S component: ¢ € Vo, but ¢ € So. We show
that such a clause must be redundant. Since each
clause added to the V component is broadcast
and added to the S component by one of the
processes, ¢ € S] for some process p; and stage
i. Since ¢ € S, @ is deleted by contraction at
p;, that is, ¢ is redundant: ¢ € R((S U V)i).
Since (SUV)., C (SUV), it follows by mono-
tonicity of R that ¢ € R((SUV)s). Thus, we
have that every clause that is in (S U V)e, but
not in S, is in R((S U V)ws). In other words,
we have ((SUV)o — Sx) € R((SUV)s). By
the second property of redundancy criteria (ir-
relevance of redundant clauses), it follows that
R((SUV)x) € R(Sex)- O

Theorem 3.1 If a distributed derivation
T¥reTFbce. . . TFc ..,
with T = (S;V;CP; MI; MO; D), is such that

1. all raw clauses, all incoming messages and
all outgoing messages are processed:

Vk, 0 < k < n-—1, CPY = MI} =
MO, =10,
2. all persistent, non-redundant residents are

broadcast:

Vi) € (Soo — R(S)), there exist a process
pr and a stagei, i > 0, such that) € MOF,

all expansion inferences from persistent, non-
redundant clauses at any given node py will
be considered either by process py or by oth-
ers; in particular, inferences between per-
sistent, non-redundant residents will be con-
sidered by py itself:

Vk,0<k<n-1,

L((SUV)E — R((SUV)L)) € Ui CF;
where CP; = U;L;OI CPJ

and I.(S%, — R((SUV)L,)) € Uiso crt,

then the distributed dem’ijation is uniformly fair:
Ie(So0 = R(S0)) € Ug=Zg Uz CPF.

Proof: let ¢ be any clause in I (Sec — R(S))
with parents 11,99 € (Soo — R(Sx)). Let pi and
ph, 0 < k,h <n—1, be the processes that own 1,
and 1) Tespectively, that is, 1, € (S%, — R(Sx))
and 12 € (S% — R(Sx)).

If k = h, then ¢ € I.(S% —R(Sx)). By Lemma 3.1,
R((SUV)E)) C R(Sw) and thus (SE —R(S..)) C
(SE —R((SUV)E))), so that ¢ € I.(S*, — R((SU
V)&)). By Condition 3, we have ¢ € J,~, CPF.
If k # h, by Condition 2, we have ¢ € MO,
for some process r and stage i; and ¥ € M 032
for some process g and stage i5. Since MOy, = ()
by Condition 1, the messages 1, and 5 are dif-
fused. Since 1 and 5 are persistent and non-
redundant, they cannot be contracted on the way
and therefore 11 arrives at pp and 1) arrives at
Pkt Y1 € MI]-h1 for some stage j; and ¥y € MI]’-“2
for some stage j». Since MI,, = @ by Condi-
tion 1, we have that ¢; € Vl? for some stage [y
and 1o € W’; for some l5. Since 11 and 5 are
persistent, they will not be deleted by backward
contraction: ¢; € V2 and ¢y € VE. Since they
are non-redundant, we have 1,1 € ((SUV)X —
R(Ss)) at node pg and 1, € ((SU V)L —
R(S~)) at node p;. By Lemma 3.1 applied as
above, we have 11,19 € ((SUV)E —R((SUV)X.))
at node py, and ¥y, s € ((SUV): —R((SUV)R))
at node pp. By Condition 3, applied to either pg
or py, we have ¢ € Uy—y U= CPF. O

Given a specific Clause-Diffusion strategy with a
refutationally complete inference system, it suf-
fices to verify the hypotheses of this theorem to
establish that the strategy is fair, and thus com-
plete. Condition 1 and 2 express the fairness re-
quirements for the communication scheme, while
condition 3 expresses the local fairness of the
search plan(s) controlling the inferences at the
nodes. For condition 1, we emphasize that based
on the definition of limit, CPX =) does not
mean that C'P* will be eventually empty, which
for an infinite derivation may never occur, but
that no clause will persist in CP*, i.e. all clauses
added to CP* will be removed eventually.

4 Reconstruction of distribu-
ted proofs

In this section we develop formally the discus-
sion of distributed proof reconstruction of Sec-
tions 3.1 and 3.3. The first step is to generalize
to distributed strategies the notion of unambigu-
ous naming scheme:

Definition 4.1 A distributed theorem proving st-

rategy C has a globally unambiguous naming sche-

me (A, R) if, for all derivations,
TFreTFbe. . . TFrc. .,

with T = (S;V;CP; MI; MO; D), for all pro-

cesses p, for 0 < k < n—1, R is a bijective

function R: A — |J,5, SFUVFUDE.

The codomain of the retrieval function is given
by SUV U D, because these are the components
a process will consult when reconstructing the
proof.

Condition 2 for fairness says that all persis-
tent non-redundant residents will be broadcast.
This is not sufficient, however, for proof recon-
struction, because the proof may contain non-
persistent clauses or persistent but redundant cla-
uses. Thus, we need to require that the communi-
cation scheme of the distributed strategy satisfies
an additional property:

Definition 4.2 A distributed theorem proving st-
rategy C has a comprehensive communication sche-
me if, for all derivations,
TEreTFbe. . . TFc ..,
with T = (S;V;CP; MI; MO; D), for all pro-
cesses pr, 0 < k < n—1, if there is a stage i, i >
0, where the search plan ¥y, selects ¢ as premise,
then there exist a process p;, 0 < j <n—1 (pos-
sibly, but not necessarily j = k) and a stage 1,
1 >0, such that ¢ € MO

In other words, all premises will be broadcast
eventually. This definition is the weakest require-
ment that is sufficient to guarantee proof recon-
struction. We chose to give the weakest require-
ment, so that our treatment is as general as possi-
ble. Accordingly, this definition does not exclude
a communication scheme that is comprehensive
thanks to a round of post-processing, with ad
hoc communication for proof reconstruction. For
Clause-Diffusion strategies, however, the primary
goal of the communication scheme is not proof
reconstruction but the distribution of inferences.
Therefore, it is much more interesting, and more
efficient, to achieve proof reconstruction by using
the communication that is already in place for in-
ferences, as we do in modified Clause-Diffusion.
Definitions are given for infinite derivations
for the sake of generality, but for the purpose of
proof reconstruction, we are interested in success-
ful, and therefore finite, derivations. For finite
derivations, Definition 4.2 says that all premises
will be broadcast before termination. Termina-
tion may be implemented by having the success-
ful process broadcasting a halting message, that
reaches the other processes like an asynchronous
interrupt and forces them to halt. In such a
context, the earlier the processes broadcast their
clauses, the better is the communication scheme
for the purpose of implementing Definition 4.2. A
communication scheme that delays broadcasting
till after the clauses have been used as premises
may fail to be comprehensive and cause failures
by delayed diffusion (see Section 3.1), because a

process may halt upon receiving a halting mes-
sage before having broadcast all the clauses it
used as premises. As we discussed in Section 3.1,
modified Clause-Diffusion takes the eager (and
safest) approach of broadcasting new clauses as
soon as possible, right after forward contraction.
The complementary requirement is that all
broadcast clauses will be received by all nodes:

Definition 4.3 A distributed theorem proving st-
rategy C has a safe communication scheme if, for
all derivations,
TEreTire.. . TFc ...,

with T = (S;V;CP; MI; MO; D), for all pro-
cesses pr, 0 < k < n—1, if p € MOF for
some stage i, i > 0, then for all processes pj,
0<j#k<n—1, there exists a stage l;, I; > 0,
such that ¢ € MIZJJ

We remark that a communication scheme which
allows unrestricted interleaving of backward con-
traction and communication may not be safe.
Consider, for instance, a communication scheme
where broadcasting is implemented by a receive-
and-forward mechanism along routes of more than
one hops. Moreover, assume that the interme-
diate nodes are allowed to apply backward con-
traction to received messages before forwarding
them and to forward their reduced forms. Such
a scheme can be fair, because fairness is only con-
cerned with persistent and non-redundant clauses,
but it is not safe, because inference messages car-
rying non-persistent clauses may not be received
in the form they were broadcast. On the other
hand, a communication scheme where a message
is broadcast in one hop, with no forwarding by
intermediate nodes, is safe. Also a receive-and-
forward mechanism is safe, if backward contrac-
tion is not intermingled with the receive-and--
forward operation. The latter is a reasonable
constraint, since the end receiver of an inference
message will most likely be able to perform the
backward contraction steps that the intermedi-
ate nodes would perform on the message. This
is the case, for instance, if contraction is done by
localized image sets. Furthermore, interleaving
of backward contraction and receive-and-forward
means that the broadcast operation is not atomic
with respect to the inferences. This makes the
design more complicated and less realistic, since
in most software systems for programming dis-
tributed computations the communication oper-
ations, including broadcast, are available to the
programmer as atomic primitives.

The following theorem summarizes all the con-
ditions for proof reconstruction:

Theorem 4.1 Given a distributed theorem prov-
ing strategy C such that

1. C has a globally unambiguous naming scheme,

2. C deletes the clauses in S UV by backward
contraction and saves in D the clauses deleted
by backward contraction,

3. C satisfies the three hypotheses of Theorem 3.1
for uniform fairness and

4. C has a comprehensive and safe communi-
cation scheme,

then for all derivations
TEreTFbce. . . TFc ..,
with T = (S;V;CP; MI; MO; D), if process p;,
for some i, 0 <1 < n —1, generates the empty
clause at stage h; and every process py, for all k,
0 <k <n-—1, terminates at stage hy, then p;
can reconstruct at(0) from its final state
(S;V;CP; MI; MO; D)j, .

Proof: we show that all clauses in at(d) can be
found in (S; V;C’P;Ml;Mg;D)}'Li. The proof is
by induction on the depth m of at(O).

Base: if m = 1, then at(d) = (O, f(¢1,...1¢)),
where 1, ..., are input clauses and f is the
inference rule that p; uses to generates O from
1,...1, at stage h;. Thus, ¥1, ..., are avail-
able at p; at stage h;.

Induction hypothesis: all clauses in at(d) up to
depth m = q are retrievable by p;.

Induction step: let ¢ be a clause at depth ¢ in
at(d) and let v1,...1, be its parents at depth
g + 1 (This proof applies regardless of whether
the step generating ¢ from ;,...4, is an ex-
pansion or a contraction step.). We show that,
given their identifiers, p; can retrieve 1, ...,
at stage h;. We need to consider the following
cases:

1. The step generating ¢ from 4, ..., was
executed at p; at some stage [;, 0 < [; < h;.
This means that ¢1,...1, € (SUV);] .

(a) If 4, ...9, are all persistent, then
Y1,...¢9, € (SUV); and therefore
can be retrieved at stage h;. (This
subcase applies only if the step gener-
ating ¢ from 41, ..., is an expansion
step.)

If 21, ..., are not all persistent, then
there is some ¢;, 1 < j < r, which was
deleted by p;. Since 1; was in SUV/,
it must have been deleted by back-
ward contraction. Then, 1; € Dj.
and 1, ..., € (SUV UD)] .

2. The step generating ¢ from v,...1, was
executed at some pg, k # 4. Since the
strategy has a comprehensive communica-
tion scheme and ¥4, . . . ¥, were used as pre-
mises, 11, ..., were broadcast before ter-
mination. Since the communication scheme
is also safe, they were received by all pro-
cesses before termination. In particular,
they were received by p;: for all ¢;, 1 <
j < r, there is a stage I;, 0 < [; < h;,
such that 1; € MI;J,. By hypothesis 1 of
Theorem 3.1, M}, = MI};J, = (. Thus,
P1,...19, are moved from the MI compo-
nent to SUV. Forall j, 1 < j < r, either v;
is persistent or it is not. If it is persistent,
then ¢; € (SUV)i . If it is not persistent,
then, since it is in SUV, it must have been
deleted by backward contraction. Since the
strategy saves in D the clauses deleted by
backward contraction, we have v¢; € D}lj.
In both cases, ¥; can be retrieved by p; at
stage h;. O

Modified Clause-Diffusion has a globally un-
ambiguous naming scheme (Section 3.2), because
it has no repetitions and it is invoked for all
non-trivial new clauses, including those gener-
ated by backward contraction. The communica-
tion scheme is comprehensive, because non-trivial
new clauses are broadcast upon generation (Sec-
tion 3.1). If the specific strategy is fair, has a safe
communication scheme and saves clauses deleted
by backward contraction, then proof reconstruc-
tion is guaranteed.

5 Discussion

We studied the problem of proof reconstruction
in the context of distributed theorem proving by
peer, concurrent, deductive processes with asyn-
chronous communication and distributed mem-
ory. A distributed derivation succeeds as soon as
one of the deductive processes does. The proof
reconstruction problem is to guarantee that the
successful process be able to reconstruct the dis-
tributed proof based solely on the final state of its
data base. We showed that this property is not
trivial, as the successful process may fail to find
locally all the clauses that are necessary to recon-
struct the proof, even if the distributed strategy
is fair and complete.

As a starting point, we assumed the metho-
dology for distributed deduction by Clause-Diffu-
sion that we developed in previous work. By an-
alyzing the failures of proof reconstruction that
we observed in experiments with our Clause-Dif-

fusion prototypes, we focused on the components
of a Clause-Diffusion strategy that are relevant
to the reconstruction of proofs: the communica-
tion scheme, the naming scheme and the treat-
ment of the new clauses, reduced forms of pre-
viously existing clauses, generated by backward
contraction. Not surprisingly, backward contrac-
tion, the feature of contraction-based strategies
that makes their parallelization difficult, turned
out to be crucial for proof reconstruction also.
Based on this analysis, we proposed a modified
Clause-Diffusion method with new communica-
tion scheme, naming scheme and treatment of
raw clauses introduced by backward contraction.
We proved that modified Clause-Diffusion is fair
and thus complete like original Clause-Diffusion.
Then, we showed that modified Clause-Diffusion
guarantees proof reconstruction and thus is a so-
lution to our proof reconstruction problem.

We remark that proof reconstruction in dis-
tributed memory is more difficult than proof re-
construction in parallel theorem proving in shared
memory, because in the latter there is only one
data base in shared memory and proof recon-
struction can be done like in the sequential case.
Similarly, proof reconstruction in a distributed
system with peer processes is more challenging
than in a distributed system with a hierarchi-
cal organization: if the processes work as mas-
ter and slaves, it is sufficient to reconstruct the
proof in the data base of the master. More gen-
erally, the more centralized is the control and
the more predictable is the communication, the
simpler is the book-keeping and thus proof re-
construction. For instance, in the Team-Work
method of [1], the data bases of the deductive
processes are periodically merged, so that proof
reconstruction can also be done in a single data
base. In this paper we showed that proof re-
construction can be achieved in distributed theo-
rem proving with distributed memory, peer pro-
cesses and asynchronous communication, with-
out adding centralized control or ad hoc post-
processing, and using solely the communication
already prescribed by the method for the distri-
bution of inferences.

The emphasis of this paper was not on the
efficiency of distributed theorem proving strate-
gies. We refer to previous work, e.g. [4, 5, 7],
for considerations on the strengths and limita-
tions of the Clause-Diffusion approach in this re-
gard. Since the feasibility of proof reconstruc-
tion requires that all clauses used as premises
are broadcast, one may conjecture that a strat-
egy without the proof reconstruction property
may need less communication and therefore be

more efficient. On the other hand, uniform fair-
ness, which is used to establish fairness and thus
completeness of the strategy, requires that all
persistent, non-redundant clauses are broadcast.
Since in practice a strategy cannot predict which
clauses will be persistent, we think that proof re-
construction does not pose much higher require-
ments than those required by completeness. This
is written under the assumption that the strategy
gives highest priority to contraction, and, there-
fore, does not use as premises clauses which are
presently redundant. For experimental purposes
and study of performances, one may implement
both the original Clause-Diffusion without proof
reconstruction and the modified Clause-Diffusion
with proof reconstruction.

In addition to being a desirable property, we
feel that the proof reconstruction issue led us
to polish and streamline Clause-Diffusion signif-
icantly. The continuation of this research will be
to realize a new Clause-Diffusion prototype which
implements modified Clause-Diffusion.

Acknowledgements

I would like to thank Jieh Hsiang for his com-
ments on an earlier version of this paper.

References

[1] J.Avenhaus and J.Denzinger, Distribut-
ing Equational Theorem Proving, in
C.Kirchner (ed.), Proceedings of the Fifth
Conference on Rewriting Techniques and
Applications, Montréal, Canada, June
1993, Springer Verlag, Lecture Notes in
Computer Science 690, 62-76, 1993.

[2] L.Bachmair and H.Ganzinger, Non-Clausal
Resolution and Superposition with Se-
lection and Redundancy Criteria, in
A Voronkov (ed.), Proceedings of Logic
Programming and Automated Reasoning,
Springer Verlag, Lecture Notes in Artificial
Intelligence 624, 273-284, 1992.

[3] M.P.Bonacina and J.Hsiang, On fairness
in distributed deduction, in P.Enjalbert,
A Finkel and K.W.Wagner (eds.), Proceed-
ings of the Tenth Symposium on Theoret-
ical Aspects of Computer Science, Wiirz-
burg, Germany, February 1993, Springer
Verlag, Lecture Notes in Computer Science
665, 141-152, February 1993.

[4] M.P.Bonacina and J.Hsiang, Distributed
Deduction by Clause-Diffusion: the Aquar-

ius Prover, in A.Miola (ed.), Proceedings
of the Third International Symposium on
Design and Implementation of Symbolic
Computation Systems, Gmunden, Austria,
September 1993, Springer Verlag, Lecture
Notes in Computer Science 722, 272-287,
September 1993.

M.P.Bonacina and J.Hsiang, The Clause-
Diffusion methodology for distributed de-
duction, to appear in D.A.Plaisted (ed.),
Fundamenta Informaticae, Special Issue on
Term Rewriting Systems.

M.P.Bonacina and J.Hsiang, Paralleliza-
tion of deduction strategies: an analytical
study, to appear in the Journal of Auto-
mated Reasoning.

M.P.Bonacina and W.W.McCune, Dis-
tributed theorem proving by Peers, in
A.Bundy (ed.), Proceedings of the Twelfth
International Conference on Automated
Deduction, Nancy, France, June 1994,
Springer Verlag, Lecture Notes in Com-
puter Science 814, 841-845, 1994.

R.Butler and E.L.Lusk, User’s Guide to the
p4 Programming System, Technical Report
ANL-92/17, Mathematics and Computer
Science Division, Argonne National Labo-
ratory, October 1992.

W.W.McCune, OTTER 2.0 Users Guide,
Technical Report ANL-90/9, Mathematics
and Computer Science Division, Argonne
National Laboratory, March 1990.

W.W.McCune, Otter 3.0 Reference Man-
ual and Guide, Technical Report ANL-
94/6, Mathematics and Computer Science
Division, Argonne National Laboratory,
January 1994.

C.B.Suttner and J.Schumann, Parallel
Automated Theorem Proving, in L.Ka-
nal, V.Kumar, H.Kitano and C.B.Suttner
(eds.), Parallel Processing for Artificial In-
telligence, Elsevier, 1994.

L.Wos, D.Carson and G.Robinson, Effi-
ciency and completeness of the set of sup-
port strategy in theorem proving, Journal
of the ACM, Vol. 12, 536-541, 1965.

