
A note on the analysis of theorem-proving strategies

Maria Paola Bonacina ∗

Department of Computer Science

University of Iowa

Iowa City, IA 52242-1419, USA

bonacina@cs.uiowa.edu

Abstract

In recent work David Plaisted proposed an approach to analyze the search efficiency of

theorem-proving strategies, and applied it to Horn propositional logic. In this note we comment

on this approach. We point out a number of problematic issues in the modelling of search and

the analysis of strategies, including the formalization of the search plan, the representation of

contraction, and the duality of forward and backward reasoning. These issues are especially

relevant for the analysis of strategies in first-order logic, where the search space is infinite.

1 Introduction

The evaluation of theorem-proving strategies has been done traditionally in an empirical manner:

a strategy is implemented in a theorem prover, the prover is applied to a number of theorem-

proving problems, and the running times are reported and possibly compared with those of existing

theorem provers. In recent years, a growing effort has been devoted to make the empirical evalu-

ation of theorem provers more systematic. The need for a standard collection of theorem-proving

problems and a standard set of empirical measures has been recognized. The first requirement

was met in part with the creation of the TPTP library [23]. The second issue is currently debated

in the theorem-proving community, with different measures, involving running time, number of

theorems proved, and similar data, being considered for different purposes [22].

While benchmarking of theorem provers is necessary, and the current progress in the me-

thodology of empirical evaluation is of critical importance for the field, the problem of strategy

evaluation remains open. A theorem-proving system is made of many components in addition

to the theorem-proving strategy, including for instance data structures, indexing techniques and

service algorithms such as those for unification or term replacement. The performance of a theorem

prover depends on all these components, and, furthermore, on the overall engineering of the

system. It is very difficult to establish quantitatively how different components contribute to the

observed performance. Therefore, empirical evaluation is evaluation of theorem-proving systems,

not theorem-proving strategies. The goal of evaluating strategies independent of implementation

∗Supported in part by the National Science Foundation with grant CCR-94-08667.

1

requires the development of a theory of “strategy analysis,” comparable to algorithm analysis,

and with potentially similar beneficial consequences.

David Plaisted recently presented an approach to strategy analysis [20], which studies the

search efficiency of theorem-proving strategies applied to Horn propositional logic. In this paper

we comment on this approach. The emphasis is on the method, not on the results. We use the

framework of [20] as a starting point to discuss methodological issues that need to be addressed

in order to analyze theorem-proving strategies. Our intent is to call attention to these issues,

highlighting open problems. An alternative approach to strategy analysis may be found in [5, 4],

where it is applied to analyze the effect of contraction on the search space. Since the present paper

concentrates on method, and not on specific analyses, it is self-contained. This note is organized

in four sections: preliminary notions, a summary of the approach of [20], the critical comment,

and final remarks.

2 Basic notions

A theorem-proving strategy is made of an inference system and a search plan. The inference

system defines the possible inferences, and the search plan selects at each step of a derivation

the inference rule and the premises for the next step. We distinguish contraction-based strategies

and subgoal-reduction strategies. The first group includes strategies based on resolution, Knuth-

Bendix completion and term rewriting (e.g., [3, 6, 10, 21] and [9] for a survey). The second group

includes model elimination [15], and therefore Prolog technology theorem proving (e.g., [2]), the

MESON strategy [16], and the problem-reduction-format strategies [18]. Tableau-based methods

also belong to the latter group, since they can be interpreted in terms of model elimination (e.g.,

[14, 25]). Clause linking [13] reduces to the Davis-Putnam procedure on propositional problems.

In this section we recall the basic characterizations of these strategies, because they are relevant

to the following discussion.

Contraction-based strategies work primarily by forward reasoning. They use expansion rules

such as resolution to generate consequences from existing clauses. Initially, the existing clauses

are those obtained by transforming in clausal form the axioms of the problem and the negation

of the target theorem. Forward-reasoning methods do not generally distinguish goal clauses from

the others, seeking to obtain a contradiction - the empty clause - from the whole set. Generated

clauses are kept and used for further generations, so that the strategy works on a database of

clauses. The major source of redundancy for these strategies is that they generate and retain

clauses that do not contribute to proving the theorem. Contraction-based strategies counter this

problem by using contraction rules, such as simplification and subsumption, to delete redundant

clauses. Since the inference system typically features multiple inference rules, and generated

clauses are kept, creating many possible choices of premises, the search plan plays an important

role. Forward-reasoning strategies admit a variety of search plans, which sort the clauses in the

database by different criteria or orderings. Contraction-based strategies employ eager-contraction

search plans, that give priority to contraction over expansion, in order to maintain the database

minimal with respect to the contraction rules.

2

Subgoal-reduction strategies work by reducing the goal to subgoals. Each inference step in-

volves the current goal and at most another premise. The current goal is initially an input clause,

usually a goal clause. Then, it is the most recently generated goal. If no rule applies to the most

recently generated goal, the strategy backtracks to the previous current goal. Since generated

clauses (goals) are retained only for the purpose of backtracking, the strategy does not form a

database of clauses, and works on a stack of goals. Since there is no database, there is no con-

traction, and the search plan is fixed to be depth-first search with iterative deepening [11]. The

major source of redundancy for these strategies is that by focusing only on the most recently

generated goal, with no memory of previous steps, they reduce repeatedly the same subgoals.

Subgoal-reduction methods counter this problem by using techniques for lemmaizing or caching

(e.g., [2, 7, 14, 15, 19, 25]), that enable them to keep track of already solved or failed subgoals.

3 Plaisted’s approach to the analysis of strategies

Most of the research in complexity of theorem proving studies the complexity of propositional

proofs (e.g., see [24] for a survey), while most of the work on search concentrates on the design of

heuristics (e.g., [17]). The classical source for the modelling of search in theorem proving is [12],

which, however, was not concerned with evaluating the complexity of the strategies. The object

of [20] and this note is the complexity of searching for a proof. Thus, the first step is to have a

model of the search space (the realm of possibilities) and search process. The second step is to

define measures of complexity in such a model, so that strategies can be evaluated and compared

in terms of such measures. The third step is to carry out the analysis itself. In this section we

extract the relevant elements from [20] according to this view.

3.1 The model of the search space

A theorem-proving strategy is formalized in [20] as a 5-tuple < S, V, i, E, u >, where S is a set of

states, and E is a set of pairs of states, in such a way that < S,E > forms a directed graph. The

component V is a set of labels for the states in S. The component i is a mapping from the set of

input clauses to S, which identifies the initial state(s). The component u is a function from S to

{true, false}, where u(s) = true if and only if s is a state where unsatisfiability is detected. It

is assumed that u is an almost trivial test, such as recognizing that a set of clauses contains the

empty clause. A more precise definition of V and u depends on the specific strategy. A function

label, such that label(s) denotes the label of state s, is also used. It is required that no two distinct

edges (s1, t1) and (s2, t2) in E have t1 = t2. This implies that the directed graph is a set of trees.

A strategy is said to be linear if for all states s, there is a unique state t such that (s, t) ∈ E, that

is, every state has unique successor.

Given a strategy G =< S, V, i, E, u > and an input set of clauses R, a state s ∈ S is reachable

from R if there is a path from a state in i(R) to s. S(R) denotes the subset of S containing

all states that are reachable from R, and E(R) denotes the restriction of E to S(R). Then,

G(R) =< S(R), E(R) > is the search space for the theorem-proving problem R according to the

strategy G.

3

3.2 The application of the model to the strategies

For resolution, the labels of the states are finite sets of clauses. If R is the input set of clauses, and

s0 ∈ S is the state with label R, the input function i:R → S is the function such that i(ψ) = s0

for all ψ ∈ R. In other words, all input clause are mapped to a single initial state, whose label

is the set of input clauses. It follows that G(R) is a tree with R as the label of the root. An arc

connects state s to state t if the label of t is the union of the label of s and all the resolvents in

s according to the inference system. This means that each state has a unique successor, that is,

the tree G(R) for resolution degenerates to a list. Accordingly, all resolution-based strategies are

linear in [20]. The function u is defined by u(s) = true if and only if the label of s contains the

empty clause.

For model elimination, each state is labelled by a single chain1, which is the current goal

in that state. Equivalently, we can think of a label as a singleton set containing one chain. If

R = {ψ1, . . . , ψn} is the input set of clauses, there are states s1, . . . , sn with labels {ψ1}, . . . , {ψn},

respectively, and i(ψj) = sj, for all 1 ≤ j ≤ n. In other words, there is an initial state for each

input clause. This captures the fact that any input clause can be chosen as the initial chain. It

follows that G(R) is a set of trees, one for each possible initial chain. An arc connects state s to

state t if the chain labelling t is generated from the chain labelling s in one ME-step (ME-extension

or ME-reduction or ME-contraction [15, 16]). The function u is defined in the same way as for

resolution. The strategies based on model elimination are not linear, because an arc represents a

single step, and more than one step may be applicable to a chain (e.g., ME-extension steps with

different input clauses).

3.3 The complexity measures

The measures of complexity of search proposed in [20] aim at measuring the total size of the search

space. The total size of G(R) is defined as ||G(R)|| =
∑

s∈S(R) |label(s)|. For resolution, the labels

are finite sets of clauses, and therefore ||G(R)|| is the sum of the cardinalities of the sets of clauses

labelling the nodes of G(R). For model elimination, the labels are singleton sets, so that ||G(R)||

is equal to the number of nodes in G(R).

The measure ||G(R)|| is refined further into three measures, called duplication by iteration,

duplication by case analysis and duplication by combination. Duplication by iteration is the

maximum length of a path in G(R). Duplication by case analysis is the maximum size of a

subset of S(R) no two elements of which are on the same path. Duplication by combination is

the maximum cardinality of a label of a state in S(R), i.e., maxs∈S(R)|label(s)|. Since G(R) is a

tree or a set of trees, duplication by case analysis reduces to the number of paths, and ||G(R)|| is

bounded by the product of duplication by iteration, duplication by case analysis and duplication

by combination. The analysis proceeds by establishing whether these measures are exponential

or linear or constant in the length of the input set R read as a single string.

1A chain is a sorted clause with plain literals, called B-literals, and framed literals, called A-literals for ancestors

[15, 16].

4

3.4 The analysis

According to the analysis in [20], basic resolution strategies have linear duplication by iteration

and exponential duplication by combination. The duplication by case analysis is trivially constant

(more precisely, equal to 1), because each state has unique successor. The exponential duplication

by combination captures the complexity of generating and keeping clauses, since resolvents are

generated by combining in different ways the input literals. Since one of the measures is expo-

nential, resolution strategies are regarded as inefficient. For positive hyperresolution, however,

the duplication by combination is linear, because positive hyperresolvents in Horn logic are unit

clauses, so that all generated clauses are unit clauses, and literals are not combined. Also, the

duplication by combination of positive resolution reduces from exponential to linear if the strategy

is equipped with an ordering on predicate symbols, and only the negative literals with smallest

predicate are resolved upon. In summary, resolution strategies are either efficient, but not goal-

sensitive (e.g., positive hyperresolution and positive resolution), or goal-sensitive, but not efficient

(e.g., negative resolution), or neither efficient nor goal-sensitive (e.g., ordered resolution). These

results are worst-case results. For instance, ordered resolution is efficient for some sets of clauses

and orderings (e.g., all well-ordered sets2), but there are sets for which an ordering that makes

the strategy efficient cannot be found. The same is true for goal-sensitivity.

Model elimination has exponential duplication by iteration and exponential duplication by

case analysis. The duplication by combination is trivially constant (equal to 1), because each

state is a singleton. The exponential duplication by iteration captures the redundancy of solving

subgoals repeatedly. Duplication by case analysis is also exponential because a state may have

multiple successors. Thus, resolution and model elimination are sort of dual: resolution has low

duplication by case analysis and iteration, but high duplication by combination, and vice versa

for model elimination.

If model elimination is enriched with unit lemmaizing3, duplication by iteration becomes linear,

because lemmaizing prevents solving repeatedly the same successful subgoals. Lemmatization

adds a forward-reasoning character to the strategy, because lemmas are generated and retained. In

the framework of [20] this means exponential duplication by combination and constant duplication

by case analysis, so that model elimination with lemmaizing has the same duplication as the

resolution strategies. In Horn logic model elimination can be enhanced with caching4. The

use of caching further reduces the duplication, because not only successful subgoals (success

caching), but also failed subgoals (failure caching) are not repeated. Assuming depth-first search

with iterative deepening (and therefore depth-dependent caching, e.g. [2, 7]), duplication by

combination becomes linear (more precisely, quadratic). Similar results apply to the other subgoal-

reduction strategies. In summary, subgoal-reduction strategies are inefficient, but goal-sensitive.

Subgoal-reduction strategies with caching are efficient and goal-sensitive.

2A set of Horn clauses is well-ordered if there is a partial ordering < such that if P :−P1, . . . , Pn is a clause in

the set then Pi < P for all i, 1 ≤ i ≤ n.
3In Horn logic all lemmas generated by lemmaizing are unit lemmas.
4Caching is not consistent with ME-reduction, which is necessary for the completeness of model elimination in

first-order logic (e.g., [2, 7]). In first-order logic one may use lemmaizing or more complicated caching schemes (e.g.,

[1, 7, 25]) that are not analyzed in [20].

5

4 Discussion of Plaisted’s approach

In this section we point out and discuss a few aspects of the analysis in [20]: the omission of

the role of the search plan, the absence of contraction, the problem of encompassing properly

contraction-based and subgoal-reduction strategies in a model of search, and the choice of worst-

case analysis. The comment is written having first-order logic in mind, since this is also the final

purpose of the approach of [20].

4.1 The role of the search plan

The first remark to the model of search in [20] is that it ignores the search plan. For resolution-

based strategies, the search plan chooses the parents of the next resolution step among the clauses

in the database. In the model of search in [20] neither the search plan itself nor its application

are represented. For resolution, even the existence of multiple choices is not represented, because

each state has a unique successor defined by the addition of all resolvents.

The choice of not including the search plan in the model is motivated in [20] by the intent of

measuring the total size of the search space generated by an inference system, not the behaviour

of specific search plans. (It is remarked that the total size of the search space is also relevant

for concrete search plans that are exhaustive, such as breadth-first search and depth-first search

with iterative deepening.) However, omitting the search plan is not appropriate for a general

framework for strategy analysis:

1. The total size of the search space can be measured only if the search space is finite, as in

the propositional problems considered in [20]. For infinite search spaces, such as those of

first-order problems, the total size cannot be measured, and the role of the search plan is

even more important. Thus, a model of search needs to make the analysis of the behaviour

of specific search plans possible.

2. The total size of the search space depends on the inference system, not on the search plan.

Measuring the total size of the search space and omitting the search plan in the formulation

of search problems imply that it is not possible to differentiate between strategies that have

the same inference system but different search plans, even in finite search spaces.

3. Last and most important, in order to do strategy analysis, it is not sufficient to have a

representation of the search space as a static space, given prior to the derivation, because

in the general case such space is infinite and cannot be measured. In order to deal with

infinity, we need to represent the search process, or the evolution of the search space during

the derivation. For this purpose, the model needs to include the search plan as an explicit

component, and to represent the effect of its selections on the search space.

4.2 The problem of contraction

The formalism of [20] does not include contraction inferences as a basic element. Inferences are

represented by the arcs in the directed graph, and the arcs considered in [20] cover only expansion

6

inferences, such as the addition of resolvents, or the generation of a successor chain from a chain

in model elimination. The effect of contraction inferences does not appear in the representation of

the search space. The choice of representing expansion inferences by arcs that add all resolvents is

also an obstacle to including contraction in the model. For instance, the search space of a strategy

that applies subsumption after every resolution step cannot be represented in this model, because

subsumption by a resolvent may delete the parent clauses of other resolution steps that were

originally enabled.

It follows that the analysis in [20] first considers all resolution-based methods as expansion-

only strategies. Results for strategies with subsumption and clausal simplification are obtained

by modifying the results for the expansion-only versions of the strategies. For some strategies

with specific restrictions, and because of the simplicity of Horn logic, it is sometimes possible to

capture the effect of contraction even if it is not represented in the model. One such instance is

positive resolution: since in Horn logic positive clauses are unit clauses, each positive-resolution

step generates a resolvent that subsumes its non-unit parent. It follows that if a positive resolution

strategy applies subsumption after each resolution step, the duplication by combination reduces

from exponential to linear. For most strategies, the analysis of contraction in [20] consists in

showing that subsumption and clausal simplification do not apply in the sets of clauses used

to establish the worst-case results. This is the case for the parametric sets S2
n and An that

give the exponential upper bounds on duplication by combination for negative resolution and

ordered resolution, respectively. This way of reasoning cannot be extended to first-order logic

and equational logic, where contraction is most useful, because the search space is infinite, and

worst-case analysis does not apply (see Section 4.4).

Since contraction may make a great difference in practice, the analysis of strategies needs to

explain such observations from the experiments. Contraction makes the search space dynamic, by

deleting clauses. Therefore, the analysis cannot be done in a framework where the search space

is static. In this sense, the issue of contraction is related to the issue of modelling search as a

dynamic process of Item 3 in Section 4.1.

4.3 The treatment of contraction-based and subgoal-reduction strategies

The search space of subgoal-reduction strategies has been traditionally represented as a tree (e.g.,

AND/OR-tree). The nodes are labelled by the goals (e.g. the chains of model elimination), and

the input clauses are viewed as “operators” that may be applied to reduce the goals, rather than

as part of the description of the state. The treatment of model elimination in [20] follows this

pattern.

The representation of the search space of contraction-based strategies, however, is more proble-

matic. The representation in [20] depends dramatically on the stipulation that an arc represents

the addition of all the resolvents. If we drop this convention, and let an arc represent a single

resolution inference, as for model elimination, the search space is neither a list nor a tree, but

a general graph, because each state has many successors and a state may be reached through

different paths. The choice of [20] of associating to an arc the generation of all resolvents, and

collapsing the search space of resolution to a list, has several consequences:

7

1. The non-uniform interpretation of the elements of the formalism: an arc represents an infer-

ence for model elimination and all the possible inferences in the given state for resolution.

2. The counterintuitive result that resolution is linear, whereas model elimination is not.

3. The difficulty with strategies interleaving expansion and contraction as pointed out in Sec-

tion 4.2.

4. The duality of the measures of duplication: all resolution strategies have constant duplica-

tion by case analysis; all model elimination strategies have constant duplication by combi-

nation; no strategy has both duplication by case analysis and duplication by combination.

In summary, the search space formalism of [20] is modelled after an idea of theorem proving

which is essentially subgoal reduction:

1. The tree structure, which is natural for subgoal-reduction strategies, but not for contraction-

based strategies, is assumed already in the general characterization of a strategy as a tuple

< S, V, i, E, u >. Then, the search space of subgoal-reduction strategies is represented

properly as a set of trees, while the search space of resolution is reduced to a list.

2. Resolution has a very high degree of non-determinism, because of all the possible selections

of clauses in the database. However, it is represented as a completely deterministic strategy.

On the other hand, the “degrees of freedom” of model elimination (e.g., choice of input

clause for ME-extension steps5 and choice of initial chain) are represented (e.g., a state may

have multiple successors and there is a tree for each choice of initial chain).

3. If the existence of multiple choices is not represented in the model, there is no need for the

search plan. Indeed, the search plan, which is fundamental for contraction-based strategies,

is not included in the model. This does not affect the analysis of subgoal-reduction strategies,

because their search plan is fixed to be depth-first search with iterative deepening.

4. The positive effect of lemmaizing and caching in reducing the duplication of subgoal-

reduction strategies is successfully captured.

5. On the other hand, contraction, which counters the duplication of forward reasoning, and

is absent in subgoal-reduction strategies, is not included in the model.

One could motivate the approach of [20] by observing that subgoal reduction is quite natural

in Horn logic. However, while the analysis is applied in [20] to Horn propositional logic, the

basic ideas on the modelling of search and on the nature of the complexity in theorem proving

are intended for first-order logic. An additional evidence of this is that SLD-resolution is treated

like all other resolution methods, even if SLD-resolution is a subgoal-reduction strategy for Horn

logic. A plausible reason is that in first-order logic linear resolution [8] is not an input strategy,

because it needs to include resolutions with the ancestors of the current goal. It follows that input

5ME-contraction and ME-reduction are deterministic rules, since ME-contraction simply removes the leftmost

literal of a chain if it is an A-literal, and ME-reduction removes the leftmost literal of a chain if it is a B-literal that

unifies with an A-literal of opposite sign in the chain.

8

clauses and generated clauses (the ancestors) are part of the state. On the other hand, model

elimination is an input strategy also in first-order logic, and the state only needs to contain the

current chain. This difference, however, emerges only in first-order logic, because linear input

resolution is complete for Horn logic [8]. Thus, the basic choices on how to represent the search

space of strategies in [20] are made having first-order logic in mind.

It seems that the approach of [20] implicitly envisions resolution as a subgoal-reduction stra-

tegy where the whole database of clauses is the goal (to be reduced to the empty clause) and

the only operator is adding all resolvents. The defining features of methods that are not subgoal

reduction strategies may not be captured and analyzed properly in a framework which casts all

strategies in the mold of subgoal reduction. Strategy analysis needs a common framework which

is sufficiently rich to capture different classes of strategies.

4.4 The type of analysis

The analysis in [20] is worst-case analysis. Working by worst-case analysis means trying to exhibit

special sets of clauses where a strategy performs poorly. This raises the question of how significant

these special sets, and therefore worst-case analysis, are in practice.

A first issue is that worst-case sets may display regularities of structure, such as symmetries,

or even recurrence relations, that may not appear in real theorem-proving problems. The sets

used in [20] to establish worst-case results incorporate recurrence relations on the indices of the

literals in the clauses. The recurrence relations have exponential solution, and this is used in the

proofs of the exponential behaviour of the strategies. It is suggested in [20] that these negative

patterns occur often in real derivations, but are not detected by the experimenters because of

the very high number of clauses generated by the theorem provers. This claim, however, may be

difficult to verify for the same reason, and concrete examples are not reported.

A second issue is that in the quest for worst-case sets one may consider sets of clauses that are

hard from a combinatorial point of view, but easy in practice. This is the case for the parametric

sets S2
n and An used in [20] to defeat negative resolution and ordered resolution, respectively. S2

n is

satisfiable and contains no positive clauses, so that positive hyperresolution or positive resolution

would not apply a single inference and establish that the set is satisfiable in the time needed to

read it. Similarly, An is satisfiable and contains neither positive nor negative clauses, so that it

is trivial also for negative resolution.

One may suggest that satisfiable sets should not be considered. On the other hand, one may

object to excluding them because satisfiable sets may occur in practice if the theorem is not

true, or it has been misformulated. More importantly, the issue is whether worst-case analysis

is appropriate for theorem proving, or whether it may be misleading, and emphasize combina-

torial patterns in lieu of real difficulty. In addition, worst-case analysis cannot be extended to

infinite search spaces. Therefore, the general study of theorem-proving strategies needs to develop

different forms of analysis.

9

5 Summary

In this note we have commented on the approach to the analysis of theorem-proving strategies

that was presented in [20]. The method of [20] applies to theorem proving the tools of classical

algorithm analysis (e.g., finite search space, total size of the tree as the measure of complexity,

worst-case analysis). We have pointed out a number of issues that are left open by this type of

approach, including infinite search spaces, search as a dynamic process, search plans, contraction

inferences, and an analysis other than worst-case analysis. In [5, 4] we have proposed an alternative

approach to the modelling of search that works with infinite search spaces, contraction inferences

and a different notion of complexity. More problems remain open, as the field of strategy analysis

is only at the beginning.

Acknowledgements

I would like to thank David Plaisted, for answering my questions on his paper, and Jieh Hsiang,

for many discussions on Plaisted’s work.

References

[1] O. L. Astrachan. Investigations in theorem proving based on model elimination. PhD thesis,

Dept. of Computer Science, Duke University, 1992.

[2] O. L. Astrachan and M. E. Stickel. Caching and lemmaizing in model elimination theorem

provers. In D. Kapur, editor, Eleventh Conference on Automated Deduction, volume 607 of

Lecture Notes in Artificial Intelligence, pages 224–238. Springer Verlag, 1992.

[3] L. Bachmair and H. Ganzinger. On restrictions of ordered paramodulation with simplifica-

tion. In M. E. Stickel, editor, Tenth Conference on Automated Deduction, volume 449 of

Lecture Notes in Artificial Intelligence, pages 427–441. Springer Verlag, 1991.

[4] M. P. Bonacina and J. Hsiang. On the notion of complexity of search in theorem proving.

Logic Colloquium, San Sebastián, Spain, July 1996. Bulletin of Symbolic Logic, to appear.

[5] M. P. Bonacina and J. Hsiang. On the modelling of search in theorem proving – towards a

theory of strategy analysis. Technical Report 12/95, Dept. of Computer Science, University

of Iowa, 1995.

[6] M. P. Bonacina and J. Hsiang. Towards a foundation of completion procedures as semidecision

procedures. Theoretical Computer Science, 146:199–242, 1995.

[7] M. P. Bonacina and J. Hsiang. On semantic resolution with lemmaizing and contraction. In

N. Foo and R. Goebel, editors, Fourth Pacific Rim Int. Conference on Artificial Intelligence,

volume to appear of Lecture Notes in Artificial Intelligence. Springer Verlag, 1996.

[8] C. L. Chang and R. C. Lee. Symbolic logic and mechanical theorem proving. Academic Press,

New York, 1973.

10

[9] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook

of theoretical computer science, volume B, pages 243–320. Elsevier, 1990.

[10] J. Hsiang and M. Rusinowitch. Proving refutational completeness of theorem proving strate-

gies: the transfinite semantic tree method. Journal of the ACM, 38:559–587, 1991.

[11] R. E. Korf. Depth-first iterative deepening: an optimal admissible tree search. Artificial

Intelligence, 27(1):97–109, 1985.

[12] R. Kowalski. Search strategies for theorem proving. In B. Meltzer and D. Michie, editors,

Machine Intelligence, volume 5, pages 181–201. Edinburgh University Press, 1969.

[13] S.-J. Lee and D. A. Plaisted. Eliminating duplication with the hyperlinking strategy. Journal

of Automated Reasoning, 9(1):25–42, 1992.

[14] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: a high performance theorem

prover. Journal of Automated Reasoning, 8(2):183–212, 1992.

[15] D. W. Loveland. A simplified format for the model elimination procedure. Journal of the

ACM, 16(3):349–363, 1969.

[16] D. W. Loveland. Automated theorem proving: a logical basis. North Holland, New York,

1978.

[17] J. Pearl. Heuristics – Intelligent search strategies for computer problem solving. Addison

Wesley, Reading, MA, 1984.

[18] D. A. Plaisted. A simplified problem reduction format. Artificial Intelligence, 18:227–261,

1982.

[19] D. A. Plaisted. Non-Horn clause logic programming without contrapositives. Journal of

Automated Reasoning, 4(3):287–325, 1988.

[20] D. A. Plaisted. The search efficiency of theorem proving strategies. In A. Bundy, editor,

Twelfth Conference on Automated Deduction, volume 814 of Lecture Notes in Artificial In-

telligence, pages 57–71. Springer Verlag, 1994. Full version: Technical Report MPI I-94-233.

[21] M. Rusinowitch. Theorem-proving with resolution and superposition. Journal of Symbolic

Computation, 11(1 & 2):21–50, 1991.

[22] G. Sutcliffe and C. Suttner. The design of the CADE-13 ATP system competition. Technical

Report 95/15 and AR-95-05, Dept. of Computer Science, James Cook University, Australia

and Institut für Informatik, TU Munchen, Germany, 1996.

[23] G. Sutcliffe, C. Suttner, and T. Yemenis. The TPTP problem library. In A. Bundy, edi-

tor, Twelfth Conference on Automated Deduction, volume 814 of Lecture Notes in Artificial

Intelligence, pages 252–266. Springer Verlag, 1994.

[24] A. Urquhart. The complexity of propositional proofs. Bulletin of Symbolic Logic, 1:425–467,

1995.

11

[25] K. Wallace and G. Wrightson. Regressive merging in model elimination tableau-based theo-

rem provers. Journal of the IGPL, 3(6):921–937, 1995.

12

