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Abstract—Detecting the presence of persons and estimat-
ing their quantity in an indoor environment has grown in
importance recently. For example, the information if a room
is unoccupied can be used for automatically switching off
the light, air conditioning, and ventilation, thereby saving
significant amounts of energy in public buildings. Most exist-
ing solutions rely on dedicated hardware installations, which
involve presence sensors, video cameras, and carbon dioxide
sensors. Unfortunately, such approaches are costly, subject
to privacy concerns, have high computational requirements,
and lack ubiquitousness. The work presented in this article
addresses these limitations by proposing a low-cost occu-
pancy detection system. Our approach builds upon detecting
variations in Bluetooth Low Energy (BLE) signals related to the presence of humans. The effectiveness of this approach
is evaluated by performing comprehensive tests on five different datasets. We apply several pattern recognition models
and compare our methodology with systems building upon IEEE 802.11 (WiFi). On average, in multifarious environments,
we can correctly classify the occupancy with an accuracy of 97.97%. When estimating the number of people in a room,
on average, the estimated number of subjects differs from the actual one by 0.32 persons. We conclude that our system’s
performance is comparable to that of existing ones based on WiFi, while significantly reducing cost and installation effort.
Hence, our approach makes occupancy detection practical for real-world deployments.

Index Terms— Bluetooth Low Energy (BLE), occupancy detection, occupancy counting, pattern recognition.

I. INTRODUCTION

THE deployment of smart buildings has gained momentum
in recent years, thanks to the wide availability of low-cost

and accurate sensing and actuating devices, which are con-
trolled by advanced artificial intelligence-based systems. This
has promoted the development of several smart applications
in many relevant scenarios, like, for example, health care [1],
[2], assistance of elderly and people with special needs [3]–[5],
human activity recognition [6], [7], heating, ventilation, and
air-conditioning systems [8], recognition of the environmental
status [9], and smart home solutions in general [10].
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One of the critical problems in these scenarios is detecting
whether a room is occupied. If this information is available
in real-time, relevant decisions can be taken quickly and auto-
matically. For example, air-conditioning/heating and lighting
can be switched off once a room is empty. If the number of
people in a room can be estimated, systems such as ventilation
can be controlled adaptively, thereby improving the air quality
and further reducing the energy consumption. The occupancy
information is also relevant in case of an emergency, when
rescue actions should be directed towards rooms in which the
presence of people has been detected. Hence, automatically
detecting the presence of people and estimating their quantity
has been studied frequently in recent times [11]–[14].

Related work: Technologies for occupancy detection and
estimation of the number of people in a room can be
broadly categorized into a) room installations, e.g., [13], and
b) body-worn devices, e.g., [11]. Body-worn solutions rely
on sensors that are worn on the body of each subject in a
room. These devices emit wireless signals, which are ana-
lyzed by receivers installed in the environment. However,
the assumption that every person always wears such a device
when entering a specific room is unrealistic in practical
scenarios. For this reason, recent research has focused on
techniques that rely only on devices deployed within the room

1558-1748 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on January 29,2025 at 12:37:30 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-5422-9826
https://orcid.org/0000-0002-8018-0472
https://orcid.org/0000-0002-6962-5987
https://orcid.org/0000-0003-2849-683X
https://orcid.org/0000-0002-7833-1673


17054 IEEE SENSORS JOURNAL, VOL. 21, NO. 15, AUGUST 1, 2021

infrastructure [7], [15], without requiring any body-worn
devices. Techniques that solely rely on room installations
exploit analyzing properties such as, e.g., the CO2 level, audio
signals, video images, or radio signal propagation patterns.
Other feasible methods rely on indirect measures, such as
the air quality, which can be assessed using electromag-
netic fields [16]. In addition, a large number of published
approaches rely on inferring occupancy information from the
Channel State Information (CSI) of WiFi networks. Occupancy
detection using wireless signals is a challenging problem,
especially because of the multitude of activities and posi-
tions that people can occupy within an environment, leading
to a large variety of different signal patterns. For exam-
ple, Yang et al. [17] presented a real-time, device-free, and
privacy-preserving WiFi-enabled IoT platform for occupancy
sensing. This approach makes use of CSI information and can
achieve a detection accuracy of 96.8%. Depatla et al. [18]
propose a methodology to identify two distinctive patterns in
the CSI data related to people in a room: blocking the Line
Of Sight (LOS) and scattering. Based on this, it is possible
to estimate the total number of occupants, thereby achieving
an accuracy of 96%. Similarly, Zou et al. [13] presented
an occupancy detection methodology based on CSI data.
It measures the similarity between adjacent CSI time series
and reaches an accuracy of 99.1%. Chen et al. [19] proposed
an occupancy detection system, which relies on analyzing the
changes in the statistical metrics of the power consumed by
the building (i.e., the electricity for ventilation and lightning).
Similarly, Akbar et al. [20] presented an occupancy detec-
tion system based on the electric power consumption. Here,
machine learning algorithms, such as kNN and SVM were
applied. This approach claims an average accuracy of 94%.
Furthermore, BLE-based systems have been widely studied.
Sánchez et al. [21] presented a body-worn methodology that
uses BLE beacons with a broadcast frequency of ≈ 10 Hz and
smartphones to determine the level of occupancy in indoor and
outdoor spaces, thereby achieving an average accuracy of 95%.
Chen et al. [22] presented a stochastic methodology that
simultaneously uses BLE and WiFi data. It uses a frequency
of 1 Hz and utilizes connection/traffic information to estimate
the number of users and the environment status.

Limitations of existing approaches: Most of the previously
known approaches require special hardware with high com-
putational power. In addition, dedicated devices have to be
installed into the rooms under surveillance. This also holds true
for WiFi-based setups. In particular, commercially available
WiFi devices, such as routers and laptops, typically do not
provide access to CSI data. Only very few WiFi Systems on
Chips (SoCs) natively provide access to the CSI data, and all of
them are deprecated. For this reason, most recent approaches
build upon Broadcom’s BCM43 series, for which a firmware
patching framework [23], [24] unlocks access to the CSI data.
Hence, special WiFi receivers need to be installed into a build-
ing only for the purpose of gathering CSI data. Since WiFi
radios are typically power-hungry, they need access to the
electricity grid. In addition, the patched firmware prevents such
devices from actively communicating over WiFi networks,
since they can only act as observers that extract WiFi signals.

Hence, such receivers also require access to a wired network
for relaying the gathered CSI data to a server. In summary,
occupancy detection systems based on CSI incur a significant
installation effort and hence cost. Furthermore, they need to
be planned and installed in advance and cannot be flexibly
used on-the-fly when the necessity of occupancy detection
arises at short notice. Finally, the main limitation of existing
BLE-based methodologies is that they are mostly integrated
into body-worn systems interacting with an existing WiFi/BLE
infrastructure. In addition, their sampling frequency is usually
lower than 10Hz, which negatively impacts their accuracy.

Contributions of this paper: To overcome these limita-
tions, this paper presents an easily accessible occupancy
detection and people counting platform, based on a mobile
Android application and BLE devices (e.g., using the low-cost
nRF52832 SoC). The proposed system, which relies on a few
BLE devices, can be flexibly deployed in a room, e.g., by glu-
ing them onto the walls. Such devices can be battery-powered
and might operate for multiple days to weeks before needing
to be recharged. Hence, they do not need any access to
the electricity grid and neither need to be connected to the
wired network. An Android smartphone, a Single Board Com-
puter (SBC) or a PC, which can send the occupancy results to a
server via WiFi, acts as a BLE receiver. Our detection system
analyzes the received BLE signals using pattern recognition
techniques. It is driven by the insight that occupancy causes
variations in the radio signal propagation patterns, which can
be observed in the Received Signal Strength Indicator (RSSI).
The main characteristics of the proposed approach are the
following ones.

• Low-cost: Each node costs only a few USD (e.g.,
the nRF52832 SoC costs ≈ 2 USD), which is only a
fraction of the cost of a WiFi AP (i.e., ≈ 100 USD). The
receiver can be a standard Android smartphone, which
are available starting from below 100 USD;

• Non-invasive: Users do not have to carry any devices on
their body and cameras are not used;

• Compatible: Our approach works properly with any BLE
sender/receiver that provides the ability of measuring the
RSSI with a frequency of at least 45 Hz;

• Ubiquitous and flexible: Being a mobile, “pocket-size”
system, our approach is suitable for environments without
existing infrastructure;

• Accurate: The performance of the proposed approach is
comparable to that of existing CSI-based systems.

Overall, the main contributions of this work are as follows.

• We propose a BLE-based occupancy detection system,
which comes with considerably lower cost and installa-
tion effort than existing approaches;

• We evaluate its performance by using multiple real-world
measurements and by applying a workflow exploiting
several pattern recognition algorithms (i.e., regression and
classification algorithms), fed by both feature representa-
tions and raw measurement data;

• We experimentally compare its performance to state-
of-the art CSI-based systems. To make both approaches
comparable, we implemented such a CSI-based system in
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the same environments as our proposed, BLE-based one.
Our results suggest that the much simpler RSSI signal
of BLE is sufficient for both accurately detecting the
occupancy of a room, as well as for estimating the number
of people inside of it.

Our own previous work: This paper is an extension of
our conference paper [25]. Among other changes, we have
added an evaluation that compares our BLE-based approach
to a method that exploits state-of-the-art CSI information.

Organization of the paper: The rest of the paper is
organized as follows. Section II provides the necessary
background. Section III details the proposed methodology.
Section IV discusses experimental results. Finally, concluding
remarks are reported in Section V.

II. PRELIMINARIES

This section introduces the necessary background, on which
our proposed approach is built upon.

A. Received Signal Strength Indicator (RSSI)
In radio communication technologies, the Received Signal

Strength Indicator (RSSI) indicates the received signal power
measured by the receiving device. In BLE, the RSSI is an
integer value that indicates the received power in dBm. The
RSSI is often exploited for fingerprinting [26] in localization
applications, where a certain signature of RSSI values is
used to identify a known location. In this paper, we exploit
different RSSI propagation patterns to identify whether a room
is occupied and estimate the number of people inside of it. The
analysis of the gathered data through dedicated pattern recog-
nition techniques provides the capability to identify patterns
that correspond to the number of people in the environment
and, in some cases, to the activities that these people are
carrying out (e.g., walking, laying down, or sitting) [17].

B. Channel State Information
Following the 802.11ac standard, WiFi networks use

Orthogonal Frequency Division Multiplexing (OFDM) as a
digital transmission method. Here, every channel utilizes a
bandwidth of 20, 40, 80, or 160 MHz [27]. Each channel is
subdivided into 64 (for 20 MHz channels) to 512 (for 160 MHz
channels) subcarriers. Each subcarrier uses distinct frequencies
within the channel, and data is transmitted simultaneously
on all of these subcarriers in parallel. Let X be the signal
emitted on a specific subcarrier, and Y the corresponding
signal that has arrived at the receiver. Then, typically the
following relation is assumed [28].

Y = H · X + N (1)

Here, N represents noise, whereas H is the channel state
information (CSI). When a signal is transmitted over the
wireless link, it is attenuated and/or undergoes a phase change.
Both effects are quantified by the CSI H . Hence, H for a
single WiFi frame is a vector that contains a complex number
for every subcarrier, describing how the amplitude and phase
of the signal have changed. The presence of human bodies
and their movements have a major impact on H . Therefore,

it is possible to infer information on room occupancy from
CSI signals.

In our experiments, we use a bcm43455c0 WiFi radio
with a modified firmware based on the Nexmon firmware
patching framework [23], [24]. We use 20MHz channels
with 64 subcarriers. Hence, for every received WiFi frame,
we obtain 64 amplitude and phase values, of which 56 are
related to actual data transmissions [27]. In this work, we use
the amplitude information from multiple different access
points in a room to infer whether or not the room is occupied.
Towards this, we use the classifiers described in Section III-C
and compare the results obtained when using CSI with those
obtained from a BLE- and RSSI-based system.

C. Regression and Classification Algorithms
Regression and classification are artificial intelligence-based

techniques, which apply a supervised learning algorithm on
labeled training data. After having learned from the labeled
data, an unknown input can be classified, or a property that
has some dependency on the input data can be predicted [29].

Classification aims to decide which choice among a set
of classes explains best a certain, previously unknown input.
It is the most common operation in machine learning and
depends strongly on the data representation (i.e., raw data,
manually or automatically extracted features). The quality of
this classification is commonly assessed by the precision P,
specificity S, recall R, also called sensitivity, and overall
accuracy A. These metrics are defined as follows [30]:

P = t p

tp + f p
S = tn

f p + tn

R = t p

tp + f n
A = t p + tn

p + n
(2)

Here, t p represents the number of true positives, f p the
number of false positives, n the total number of negatives, and
p the total number of positives. Precision and recall quantify
how the classifier can avoid false positives and correctly
classify all of the samples that belong to a specific class,
while specificity quantifies the ability to classify true negatives
correctly. Finally, accuracy is the number of correctly classified
data samples out of all samples.

While the goal of classification is determining to which
class a certain observation belongs, regression attempts to
predict a value based on an observation of the input data.
A set of independent variables that form the input are called
“predictors” or “features” [29]. The accuracy of the regression
model is measured in terms of Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE), calculated as given
by the following equation [30]:

RM SE =
√

1

n

∑n

i=1
(|yi − xi |)2

M AE = 1

n

∑n

i=1
|yi − xi | (3)

Here, xi identifies the actual outcome of the input data, yi

the estimated outcome, and n the number of samples under
consideration.
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TABLE I
DATASET OF RSSI MEASUREMENTS

Fig. 1. Schematic view of the proposed methodology.

III. METHODOLOGY

The methodology we propose for occupancy detection
and people counting consists of the following three phases
(cf. Figure 1).

1) Offline RSSI data collection for the training of the
pattern recognition models. The RSSI is related to the
communication between multiple BLE senders (e.g.,
smartphones, BLE beacons or SBCs) and a single BLE
receiver (e.g., smartphone or SBC);

2) Training of multiple pattern recognition models by using
the data obtained from the previous phase;

3) Online evaluation of the pattern recognition models for
predicting the occupancy in real-time.

The methodology makes use of a communication architecture
exploiting a central receiver (typically a smartphone or an
SBC) that collects RSSI data from several BLE devices located
in the environment. The received data are then forwarded to
a database on a server. The goal is to study the changes
in the radio signal propagation patterns generated between
the senders and the receiver to estimate the status of the
environment (i.e., environment occupancy, and number of
people). For this purpose, we identify the most appropriate
recognition/regression model among multiple choices.

A. Experimental Setup
Initially, the BLE devices establish a synchronized connec-

tion to the receiver. The receiver periodically forwards data
to a server for offline data processing and for the training
of the pattern recognition model. Though the approach will
work with a large variety of BLE devices, in our experiments,
we used Nordic Thingy 52 nodes as transmitters, which are
based on the nRF52832 SoC. In our experiments, we evaluated
different sampling frequencies of the accelerometer of the
Nordic Thingy board in the range between 5 Hz and 200 Hz
and transmitted these data via BLE. The system adjusts the
data transmission rate (i.e., the connection interval in BLE)

accordingly, and hence the choice of the sampling frequency of
the acceleration sensor also determines the connection interval.
Our approach supports arbitrary transmitter positions in the
environment, with the only restriction that the location cannot
vary between the offline training and the online prediction
phase. We use an Android smartphone as the receiving device.
Hence, our methodology supports simple ad-hoc installations
without requiring any fixed infrastructure, since all devices
are battery-powered and do not need access to a wired
network. Considering the requirements of future deployments,
Android has been chosen due to its compatibility with several
pattern recognition libraries (e.g., Keras, Tensorflow, or Weka).
Though we have carried out the classification and regression
on a computer in our experiments, the resulting system sup-
ports deployments in which only the training phase is executed
on a server, whereas the detection can be done directly on the
smartphone. This eliminates the need for the smartphone to
maintain an internet connection.

B. Offline Data Collection
During the offline data collection phase, the receiver gathers

the data collected by the BLE sensors distributed in the
environment at a fixed sampling frequency. Each received
packet is timestamped and associated with its corresponding
RSSI measurement. To reduce the energy consumption for
communication, we accumulate the samples received by the
phone and periodically transmit them to the server in a batch.
Finally, we manually assign the number of persons present
in the environment at each timestamp to this data. We also
manually enter the distance between each emitter and the
receiver.

The resulting labeled dataset for training the classifiers,
as stored on the server, is exemplified in Table I. Each
column M ACAddri , i = 1, 2, .., n, refers to the RSSI mea-
surements for the emitter with MAC address i . The column
occupancy is false when the number of people in the envi-
ronment is 0, and true otherwise. The column Nr. Occu-
pants contains the number of people inside the observed
environment at the corresponding timestamp. This number
is provided by an external human observer who updates
the occupants’ number every time they leave or enter the
environment. These labels are used for supervised learning.
The Distance row contains the distance between emitter i
and the receiver. RSSI measurements represent the input (i.e.,
predictors) for the pattern recognition models used during
the online evaluation. Similarly, the occupancy state and the
number of people in the environment are the target outcome
(i.e., the outcome variables) that we attempt to predict.

Authorized licensed use limited to: Universita degli Studi di Verona. Downloaded on January 29,2025 at 12:37:30 UTC from IEEE Xplore.  Restrictions apply. 



DEMROZI et al.: ESTIMATING INDOOR OCCUPANCY THROUGH LOW-COST BLE DEVICES 17057

Fig. 2. Pattern recognition model training workflow.

In other words, these are the labels for supervised learning.
Finally, to mitigate the effects of a potential “overfitting” of the
model, we eliminate duplicates present in the dataset, thereby
maintaining only their first occurrence.

C. Pattern Recognition Model Training
In this step, the collected data are used to train a pattern

recognition model for the following scenarios:
1) Recognition of the occupancy status of the environment;
2) Estimation of the number of people inside the environ-

ment.

The overall workflow for this phase is shown in Figure 2.
The resulting model is capable of predicting the occupancy
status and people count online, based on RSSI data from live
measurements. Initially, the collected RSSI data are segmented
into time-windows of 1s. Subsequently, from each segment,
we extract a comprehensive set of features, as given by
Table II, using the software library presented in [31].

We have chosen time windows of 1 second because we
assume that the occupancy status cannot change at shorter time
scales. For each window, we compute 159 features per BLE
transmitter. At the end of the segmentation and feature extrac-
tion phase, we have obtained two datasets: one that consists of
raw RSSI data, which we call the raw dataset in the following,
and RSSI features data obtained as described above, which we
call the features dataset. Both of them are used in the analysis
reported below. Before this analysis, we “clean”/“normalize”
the data by removing outliers. We thereby use the robust scalar
method, which works as given by the following equation:

Dnor =
{

xnor : ∀x ∈ D, xnor = x − QD
2 (x)

QD
3 (x) − QD

1 (x)

}
(4)

Here, QD
1 , QD

2 , QD
3 are the first, second (aka median), and

third quartiles of the dataset D, x is a sample of D, and Dnor

is the dataset D after applying the robust scale outlier removal
technique.

Feature selection: Not all the extracted features contribute
positively to the detection accuracy. A higher number of
features does not always imply a greater accuracy of the
pattern recognition model; similarly, a smaller number of
features does not always lead to a reduction of the accuracy.
Therefore, we identified those features that actually contribute
most to the quality of the classification. For this purpose,
we applied feature selection techniques known from the lit-
erature [32]. The main benefits obtained from the removal
of unnecessary/misleading features (e.g., features with very
low variance, duplicates of existing features, or high noise)

are: i) reduction of overfitting; ii) reduction of noise-related
errors; iii) improvement of the accuracy; iv) reduction of
the training time [33]. The proposed methodology makes use
of a tree-based feature selection technique, which is applied
only to the RSSI features dataset. Tree-based estimators,
by definition, internally create an ordering of the features
representing the training dataset, which makes them very
suitable to be used by feature selection methods. More details
on tree-based feature selection can be found in [32]. After
feature extraction, the training phase takes place. It creates
the models for occupancy detection and occupancy counting.
More information on the training phase is given in Section III-
D.

1) Occupancy Detection: Occupancy detection represents a
binary classification problem, where false means the environ-
ment is empty, and true that there is at least one person
in the environment. In particular, five different classifica-
tion models (i.e., k-Nearest Neighbor (kNN), Weighted kNN
(WkNN), Linear Discriminant Analysis (LDA), Quadratic
LDA (QLDA), and Support Vector Machine (SVM)) are used.

Here, the goal is to estimate the occupancy status over a time
window of 1 second by using only the RSSI features dataset,
since the used classifiers cannot handle raw time series data
if they have not been segmented by the segmentation phase
shown in Figure 2. The results of this classification problem
are evaluated by using the quality metrics we have introduced
in Equation 2.

2) Occupancy Counting: Unlike occupancy detection, which
is a binary classification problem, the occupancy counting
scenario is an estimation problem. Here, we aim to identify
the number of people being present in the environment. Mul-
tivariate regression analysis (i.e., Gradient Boosting, Random
Forest, Linear, Ridge, RANSAC, Bayesian, and TheilSen) on
both the raw and features dataset predict one variable (viz.,
the Nr. of occupants), based on multiple input variables (raw
data samples and features) [29]. We study two different cases.
In the first case, we only consider raw data. Here, the model
returns an estimation of the number of occupants every 5 ms
(when a sampling rate of 200 Hz is used). In the second
case, we only consider features data, obtaining an estimation
of the number of occupants every second (i.e., once per
window length used for data segmentation). The results of
this prediction are evaluated by using the quality metrics we
have introduced in Equation 3.

D. Training and Validation
To evaluate/validate the quality of our pattern recognition

models, the RSSI raw and features datasets are partitioned into
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TABLE II
MOST IMPORTANT TIME AND FREQUENCY DOMAIN FEATURES USED IN OUR ANALYSIS

Fig. 3. Training and validation approach.

training and testing datasets. In particular, for each considered
scenario, the raw RSSI and features datasets are initially
split (according to a hold-out procedure [33]) into a training
dataset (75% of all measurements) and a testing dataset (25%
of all measurements). On the training dataset, we run the
pattern recognition model training phase, as described in
Section III-C. We use a k-fold cross validation procedure with
k = 3, 5, 10 [33], as shown in Figure 3. We want to point out
that we do not perform the usual model training approach, but
we apply the grid-search training approach that exhaustively
generates optimal pattern recognition model1 candidates from
a given grid of parameters. For example, the SVM model
learns from the training dataset by using different configuration
parameters (e.g., kernel function [linear, polynomial, sigmoid,
radial basis function], penalty [li , l2], or loss function [hinge,
squared hinge]). It is tested on the testing dataset for each con-
figuration, returning the configuration that achieved the best
results in the training phase. Finally, we use the testing dataset
to further examinate the best model. In the end, the procedure
returns the above-mentioned evaluation metrics, viz., RMSE,
and MAE for regression, and sensitivity, specificity, precision,
and accuracy for classification.

1with regard to the given grid of parameters

IV. EXPERIMENTAL RESULTS

For evaluating the proposed methodology, an extensive set
of experiments and analyses have been conducted. The goal
is to evaluate which of the trained models leads to the best
classification and prediction in the scenarios we consider.

A. Characteristics of the Analyzed Datasets
Table III shows the characteristics of the datasets we col-

lected in three different environments (i.e., a university class-
room, a home living room, and an industrial laboratory)
by adopting the setup described in Section III-A. Columns
1 to 4 contain the dataset ID, the number of radio signal
transmitters distributed in the environment, i.e., BLE devices
or WiFi access points (APs), the considered scenario, and the
size of the environment. Columns 5 to 8 show the lowest
and highest number of people inside the environment during
the considered period of time, and the minimal and maximal
distance between the transmitters and the receiver. Finally,
Columns 9 and 10 show the number of samples and the size
of the dataset.

1) Experimental Environments: We next describe the 3 envi-
ronments we tested in our experiments. In all of them, the posi-
tions of the emitters and receivers were fixed. The users
participating in the experiment did not know the positions
of the devices (emitters and receivers) and could not touch
or modify them. Furthermore, they did not carry any devices
that could interact with our setup, e.g., BLE transceivers.

a) Datasets 1, 2 and 3: The experiments corresponding to
these datasets were carried out in a university classroom (8.8 m
× 8.6 m × 3.2 m) with 15 working stations. They involved
6 subjects: 1 female (29 years, 1.58 m height) and 5 males
(25-29 years, 1.75-1.95 m height). We used 1 smartphone as
a receiver and 5 or 6 BLE beacons as senders, as specified in
Table III.

b) Datasets 4 and 5: We collected the considered datasets,
both RSSI and CSI. To the best of our knowledge, no dataset
that provides both RSSI (from BLE communication) and
CSI (from WiFi communication) data concerning occupancy
detection and counting scenarios is publicly available. These
datasets aim to compare RSSI data of a BLE piconet to CSI
data of an IEEE 802.11ac network (WiFi) for benchmark-
ing purposes. In particular, to extract CSI data, we used a
Raspberry Pi 4/B+ that interacts with the nearest APs of the
environment. For the CSI data extraction, we used the Nexmon
firmware patching framework [23], [24]. We developed a
custom software in C++ for recording and storing these data.
The experiments for Dataset 4 were carried out in a home
living room (6.6 m × 4 m × 2.75m). They involved 2 subjects:
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TABLE III
DATASET CHARACTERISTICS (DATASETS 1 TO 3 USE ONLY RSSI MEASUREMENTS. DATASETS 4 AND 5 USE BOTH RSSI AND CSI DATA)

1 female (54 years, 1.66 m height) and 1 male (26 years,
1.80 m height). Instead, the tests for Dataset 5 were carried
out in an Industrial Computer Engineering (ICE) laboratory
(18 m × 6 m × 6 m), containing one production line, several
machines, and various devices, such as sensors and actuators,
which communicate using different communication protocols.
Our tests for Dataset 5 involved 1 female (27 years, 1.80m) and
4 males (25-29 years, 1.75-1.95 m height). We could control
the packet rate and hence sampling frequency of the BLE data.
On the other hand, we did not have control over the CSI
sampling frequency, which was given by the (off-the-shelf)
WiFi network. In particular, in datasets 4 and 5, the CSI data
was perceived as 45 Hz, but highly depended on the connection
utilization. Overall, all the datasets together contain 4 hours
of collected data and require 4GB of storage.

B. Occupancy Detection
In this section, we evaluate the proposed occupancy detec-

tion technique. To adequately mimic as many of the different
situations that occur during an everyday use of a room,
we have carried out the following experiments. Subjects
entered and left the environment in an undefined, random
order, with the only constraint that each of them must stay
in the environment for at least one minute. Besides, they
have carried out the following different activities. i) All were
standing still, ii) all were in motion simultaneously, iii) all
were sitting simultaneously, iv) some were moving, while
some were sitting, and v) in Dataset 5, subjects took a position
in one of the working stations.

The achieved results are reported in Table IV. The results
were computed by processing Datasets 1, 2, and 3 as if they
belonged to a single contiguous dataset. The data contained
in these 3 datasets are made up of 68% non-empty environ-
ment instances (i.e., the room was occupied) and of 32%
empty environment instances (i.e., they represent an empty
room).

We evaluated 5 different classification models implemented
in the B-HAR framework [34] by using the RSSI features
dataset, as depicted in Figure 2. The outcome represents the
environment status: false when the environment is empty, true
if at least one person is in the environment. In Table IV,
Column 1 and 2 show the RSSI data sampling frequency
and the used classification models, Columns 3 to 6 show the
results in terms of specificity (S), recall (R), precision (P),
and comprehensive accuracy (A). Rows 2 to 6 presents the
five different classification models trained and tested using the

TABLE IV
OCCUPANCY DETECTION RESULTS (DATASET 1, 2 AND 3)

data collected at 200 Hz (i.e., the maximal sampling frequency
of the acceleration sensor.).

Overall, the SVM model with a linear kernel achieved the
most noticeable results, i.e., 99.92% recall (empty environ-
ment), 99.91% specificity (non-empty environment), 99.91%
precision, and 99.92% accuracy. Compared to all other models
we considered, the SVM model requires higher computa-
tional capabilities; however, the Keras library [35] provides a
Quasi-SVM model implementation for Android-based mobile
devices, with sufficiently low computational complexity to be
run on a smartphone. Furthermore, to identify the best system
configuration, the architecture was tested using different sam-
pling frequencies. Rows 7 to 9 show the most accurate (among
all the five tested models) classification results corresponding
to the 20 Hz, 45 Hz, and 100 Hz sampling frequencies,
respectively. As shown, decreasing the frequency from 200 Hz
to 45 Hz only slightly affect the accuracy of the model, while
under 45 Hz the negative impact on RMSE and the MAE is
more significant.

By examining the classification outcome in detail,
we observed that the incorrectly classified samples are mostly
related to the situation in which people inside the environment
are all seated, regardless of their number.

It is worth mentioning that we have presented the results
for real-time detection, with a detection delay of around 1s.
A longer allowed delay of, e.g., 30s, would be sufficient for
most applications, such as controlling the ventilation and air
conditioning. This would also allow for sampling windows of
30s, for which we expect a much higher detection accuracy,
also when all subjects are sitting.

C. Occupancy Counting
Occupancy counting is realized using dedicated regression

algorithms, as already described. As for occupancy detection,
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TABLE V
OCCUPANCY COUNTING RESULTS (DATASETS 1, 2 AND 3)

we study the results for this scenario using Datasets 1, 2, and
3 with seven different regression models. Table V presents the
results obtained using both the raw and feature datasets over
RSSI data for a sensor sampling frequency of 200 Hz (Rows
2 to 8). Rows 9 to 11 show the most accurate (among all
the seven tested models) estimations for sampling frequencies
of 20 Hz, 45 Hz, and 100 Hz. The outcome is an estimation
of the number of persons within the environment.

Our results suggest that the Random Forest regression
model achieves the best results on the feature dataset for all
considered sampling frequencies (i.e., 20 Hz, 45 Hz, 100 Hz,
and 200 Hz). As for the case related to occupancy detection,
decreasing the frequency from 200 Hz to 45 Hz only slightly
affects the accuracy of the model, while the negative impact
on RMSE and the MAE is more significant under 45 Hz.
Given that the maximum connection interval in BLE is 7.5ms,
which corresponds to a frequency of roughly 133 Hz, it is
expected that sampling rates between 200 Hz and 133 Hz
lead to a similar connection interval and hence to the same
accuracy.

In summary, given a set of features based on RSSI measure-
ments, the proposed occupancy counting system can estimate
the number of people in the environment with an RMSE
of 0.4 and an MAE of 0.3. In other words, in almost all
cases, the Random Forest estimator can correctly identify the
number of the environment occupants, with an error of at most
± 1 person.

When using only the raw dataset, we achieved an RMSE
of 0.7 and an MAE of 0.4. Hence, the computation of the
features is justified by the increased regression quality. As
for the occupancy detection scenarios, the estimation error is
amplified when all people inside the environment are sitting. It
is worth noting that unlike many other existing works, in which
a limited number of environmental situations are studied,
our goal is to account for the most realistic environmental
situations, into which a group of people perform different
activities.

D. RSSI vs. CSI
As already described, the results presented so far concern

BLE networks computed using RSSI data. In this section,
we compare the performance when using BLE against the
performance when using WiFi/CSI data. For this purpose,

we created Datasets 4 and 5, which contain both RSSI and
CSI data collected in the same environments.

Table VI shows the results we obtained for Datasets 4 and
5 in the occupancy detection scenario. Column 2 lists the
five considered classifiers. Columns 3 to 6 (RSSI-based) and
7-10 (CSI-based) show the results when using Dataset 4,
while Columns 11 to 14 (RSSI-based) and 15-18 (CSI-based)
show the results for Dataset 5. Similarly, Table VII depicts the
results obtained for Datasets 4 and 5 for occupancy counting.
In particular, the upper parts of Tables VI and VII present
the achieved results obtained using data sampled at 200 Hz
(w.r.t. acceleration data over BLE) and 45 Hz (w.r.t. CSI data).
Similarly, the bottom parts present the achieved results for data
sampled at 20 Hz, 45 Hz, and 100 Hz. We can summarize the
achieved results by comparing CSI vs. RSSI as follows:

• As expected for both RSSI and CSI, the detec-
tion/prediction for Dataset 4 works more accurately
than for Dataset 5, mainly due to the environment size
and shape. Moreover, various electrical machines were
present and potentially interfering in the environment of
Dataset 5. Besides, the larger height of the environment
has negatively affected the results;

• Running the classifiers on the features dataset achieved
more reliable results than when using the raw dataset;

• In our experiments, on average, the SVM classifier
achieved the most reliable results concerning the occu-
pancy detection problem. The Random Forest regression
algorithm achieved the best results concerning the occu-
pancy counting problem;

• The more complex and comprehensive CSI data leads
to an only marginally higher detection accuracy than
our proposed BLE-based system, as shown in Tables VI
and VII. Hence, there is little benefit in setting up a more
complex and expensive WiFi-based detection system.
It is worth mentioning that in the studied environments,
the number of information sources for CSI was larger
than for BLE (i.e., four vs. five in Dataset 4 and four vs.
twelve in Dataset 5).

The overall accuracy of the proposed methodology, among
all the three tested environments, when taking into account
only the most accurate classifiers, is 97.97% for occupancy
detection. The RMSE for occupancy counting on the average
of all the five tested datasets is 0.32.

E. Sampling Frequency and Energy Consumption
The sensor sampling frequency used for the results pre-

sented above were 20Hz, 45Hz, 100Hz, and 200Hz for BLE.
For WiFi, we recorded packets with an average frequency of
45Hz. Concerning BLE devices, a lower sampling frequency
would also reduce the energy consumption of the BLE trans-
mitters and - to a minor extent - also of the receiver. Since
battery life also affects the usability of our approach, we study
its energy consumption in detail in this section. We first discuss
the energy characteristics of the hardware we have used. We
evaluate the average RAM and memory demand, as well as
the energy consumption of the transmitters (i.e., Nordic Thingy
52 with a 64 MHz Cortex M4 MCU, 512 Kb Flash, 64 Kb
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TABLE VI
OCCUPANCY DETECTION RESULTS (DATASETS 4 AND 5) - BLE Vs. CSI

TABLE VII
OCCUPANCY COUNTING RESULTS (DATASETS 4 AND 5) - BLE Vs. CSI

RAM, and a Battery of 1440 mAh) and the receiver (Oneplus
6 with a Qualcomm SDM845 Snapdragon 845, featuring an
Octa-core 4 × 2.8 GHz Kryo 385 Gold & 4 × 1.7 GHz
Kryo 385 Silver CPU, 128 GB memory, 8 GB RAM, with
Android 10, OxygenOS 10.3.7, and a 3300 mAh Battery).

1) Energy Consumption of the Transmitters: When operating
using a sensor sampling frequency of 200 Hz, the BLE
devices can efficiently operate for more than five days without
recharging their battery. A lower sampling frequency would
further extend their battery lifetime significantly [36]. There-
fore, a sampling frequency of 45Hz represents a good trade-off
between the accuracy of detection/classification and battery
runtime.

2) Energy Consumption of the Receiver: The energy con-
sumption of the smartphone is only marginally affected by
the energy needed for BLE communication [37]. For our
smartphone, when sampling at 200 Hz, we found the following
average values per hour: 6% of CPU usage, 154 mA con-
cerning battery consumption, 122 Mb of memory, 100 Mb of
RAM, and 0.34% of data loss. Instead, sampling at 45 Hz,
we found the following average values per hour: 1% of CPU
usage, 94 mA concerning battery consumption, 74 Mb of
memory, 90 Mb of RAM, and 0.12% of data loss.

V. CONCLUDING REMARKS AND FUTURE WORK

Occupancy detection and occupancy counting provide
important information for smart cities and smart building
environments in several scenarios. However, existing solu-
tions have many limitations, mainly related to high economic
cost, low accessibility, high computational requirements, dif-
ficulties of installation, and lack of ubiquitousness. This
paper presented a pattern recognition-based methodology that
uses low-cost BLE communication technology for occupancy

detection and counting. It can be retrofitted into any environ-
ment with negligible installation effort. Different regression
and classification algorithms were used, achieving promising
results in different environments. In particular, occupancy
can be detected, taking into account only the best classifier,
with an average accuracy of 97.97% over all datasets. The
number of people in a room can be estimated with an aver-
age RSME/MAE of 0.32/0.28 people. We showed that our
methodology working on BLE RSSI data achieves practically
the same accuracy as WiFi/CSI-based approaches do. At the
same time, it comes with a much lower cost and installation
effort.

The datasets we used in our experiments have been created
with a relatively limited number of persons. This is due to
regulations in response to the ongoing SARS-CoV-2 pandemic,
which prevents us from placing more persons into the same
environment. While detecting the occupancy is expected to
work even more reliably when a larger number of persons is
present in a room, the occupancy counting method needs to
be evaluated further when the SARS-CoV-2 restrictions have
been eased.

Our objective for future research is to reduce the num-
ber of senders while maintaining the same performance.
Simultaneously, it is desirable to reduce the dependence of
the methodology on the sender positions and the explicit
knowledge of their distances from each other. This might
be done, e.g., by estimating their distance automatically.
Moreover, we aim to use our proposed system and the created
classification and regression models as substantial models to
move forward the transfer learning research area to recognize
an environment’s context without performing a preliminary
offline data collecting phase. Some smartphone models, such
as the Honor 7 or Samsung Galaxy S5 and S7, fail to keep
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up with the required sampling rates. The limitations of such
devices are mainly related to the operating system’s version.
For limiting the power consumption, some custom OS and
HW versions do not allow an application to extract RSSI
values at frequencies higher than 40 Hz. On the contrary,
devices that do not present such limitations are, for example,
all Oneplus devices and the Samsung Galaxy S9. In future
research, we attempt to address this by further reducing the
sampling rate requirements, making it compatible with literally
all smartphone models.

Finally, our current system carries out the online clas-
sification on a server. However, our detection algorithms
are light-weight enough to be run on a smartphone. Hence,
the server is only needed for the learning phases, while the
online detection can be done on the smartphone in the future.
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